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0. Introduction 

In a response to a problem by I. Rival, the following theorem was independently 
proved by Bollobas [ l] and NeSetfil and Rod1 [4]: 

0.1. THEOREM. For every n there exists a poset P whose Hasse diagram H(P) has 
chromatic number 2 n. n 

The examples constructed in [ 11, [4] are complex and have a large dimension. The 
following question (due to W. Trotter and the second author) arises. Let N denote 
the natural numbers and let x(G) be the chromatic number of a graph G. 

0.2 PROBLEM. Given a k E N, is there an n(k) E N such that for any pm& P with 

x(H(P)) 3 n(k) we have dim(P) > k? 

In this note we solve Problem 0.2 negatively for the case k > 3. On the way, we 
define a new characteristic of an (unoriented) graph G = (V, E). Let 6 be a linear 
ordering on V. We say that y E V is between x, z E V if either x < y < z or 
z < y < X. An eyebrow of 6 in G is a triple (x, y, z) E V3 such that {x, z> E E and 
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y is between x and z. We define a number 

eye(G) 

as the minimal k E N such that there are linear orderings < i, Go, . . . , <k with no 
common eyebrow in G. Our motivation to study eyebrows is the following 

0.3 PROPOSITION. Let P be a poset and let <, , < 2, . . . , <k be a collection of 
linear orderings on P such that ( < p) s ( < 1 n Gz, . . . , v <k) =: ( <). Then we have 

ifand only if 6,, Go,. . . , Gk have no common eyebrow in H(P). 
Proof. Look at pairs x <z with {x, z> E H(P). Note that {x, z} $ H( <) if and 

only if there is a y with x < y < z. n 

0.4 COROLLARY. We have eye (H(P)) <dim(P). 
Proof. Apply Proposition 0.3 to the case ( Gp) = ( <). 

In Section 1 below we study the number eye(G) for general graphs. Section 2 is 
devoted to the posets. 

1. Eyebrows in Graphs 

1.1. PROPOSITION. Let G be a graph and let H be a homomorphic image of G. 
Then we have 

eye(G) d eye(H) + 1. 

ProoJ Let G = (V, E), H = (v’, E’) and let f: V + v’ be a homomorphism onto. 
Now choose a collection < ;, d ;, . . . , <<; of linear orderings on V’ with no 
common eyebrow in H. On G, we first fix a linear ordering < and then define 
< 11, G2,. . .> &by 

x d,y if eitherf(x) <:f(y) orf(x) =f(y) and x<y. n 

Unfortunately, d i , < z, . . . , Gk still have common eyebrows. Each of them is of 
the form x < I y < I z where f (x) #f(z) but f (x) = f ( y) or f ( y) = f (z). The situation 
may be remedied by adding one new ordering do where, say, 

x Q 0 y if either f(x) <; f(y) or f(x) =f(y) and x > y. 

We shall now study the complete graph K,, on the set { 1,2, . . . , n}. 

w 

1.2. PROPOSITION. We have 

eye(K,) = rlog log nl + 1. 

(The logarithm is with base 2.) 
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Proof. We first prove 

eye(K,) < 1 + eye(Kr, 112,). (1.2.1) 

Since obviously eye(K,) = 1, this implies the ‘ 6 ‘-inequality. To prove ( 1.2. l), it 
suffices to consider the case of n = m2. Let <, , < 2, . . . , <r be linear orderings on 
(1,. . f, m } with no common eyebrow in K,,,. We consider linear orderings 
<; 3 <;, . . . , <: on { 1, . . . , m} given by 

(i-I)m+k<i(j-l)m+s if eitheri<,jori=j&k<,s. 

Then <;, <;, . . , 6: have no common eyebrows in K, with the possible exception 
of the triples 

((i-l)m+k,(i-l)m+s,(j-l)m+t) where i <Pj 

and 

((j - 1)m + t, (i - 1)m + k, (i - 1)m + s) where j cP i. 

As in the proof of 1.1, one introduces an additional ordering <b to kill these 
eyebrows. For example, we may define 

(i-l)m+k<h(j-l)m+s if eitheri>,jori=j&k<,s. 

( 1.2.1) is proved. 
To prove that eye (K,) > Flog log nl + 1, let < i, < *, . . . , <, be linear orderings 

on (1,. . . , n] and let r < rlog log nl + 1. By a classical result of Erdos and 
Szekeres, two linear orderings on { 1, . . . , n} either agree or disagree on a certain 
subset of cardinality rn “‘1. Applying this result repeatedly, we find a set of 
cardinality 2 3 where every two of the orderings < , , Go, . . . , < r either agree or 
disagree. This is exactly equivalent to finding a common eyebrow of 
< \,r <2,. . . , -<, in K,,. n 

1.3. COROLLARY. For an arbitrary graph G, we have 

eye(G) d VwlogX(G)l+ 2. 

2. Complex Diagrams of Simple Posets 

2.1. THEOREM. For each k > 0 there exists a finite set X and linear orderings 
LI, L2 on X such that 

x(H(L 1 n L2)) 3 k. 

Proof. Will be given in 2.5. n 

2.2. DEFINITION. A preordering on a set X is reflexive and transitive relation < 
on X such that (Vx, y E X) (x < y or y < x). Given functions a,, . . . , ak : x + Z, 
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we define a preordering [c(i) . . . , Q] on X by putting 

x[a,, . . . 1 QJY if (a,(x), . . . 9 Q(X)) cL (ICY), . . . ,4d.~>> 
where cr. is the lexicographical ordering giving more weight to the coordinates 
toward the left. 

In the sequel, we shall sometimes denote n-tuples (xi, . . . , x,) by juxtaposition 
X,X?. . . x,. The symbol 1x1 will denote the cardinality of a finite set X. 

2.3. CONSTRUCTION. Define a graph G, = (V,. E,) as follows: 

vn=({o}x{o )...) n-l}x{O ,...) n-l}) 

u({1}x{0 )...) nn}x{0 )...) n-l}) 

We shall put U, = ((0) x (0, . . . , n - l}) ~((1) x (0, . . . , nn}) so that V, = 
U, x{O,...,n-1). Let 

n,: V,, +N, i E {1,2,3} 

be the projection to the i-th coordinate. Observe that the components of G, are 
stars with centres of the form Okx where k, x E (0, . . . , n - l}. Define 

by &Q) = Okx where Okx, u are in the same component of G,. 

2.4. LEMMA. Let M be an independent set in G,. Then we have an xy E U,, such 
that 

Mn({x)n{y)n{O,. . . ,n - l}) =8. (2.4.1) 

Proof. Suppose that (2.4.1) is not true for any xy E U, with x = 0. Then we have 
for each y E (0, . . . , n - 1) an aY E (0, . . . , n - l} such that 

Oya,. E M. 

Let a be the number with the n -adic expansion a, _ , a,, ~ 2 . . . a,. By definition, we 
have 

{Oya,, lay} E En. 

Thus, by the independency of M, Mn({l) x {a} x (0, , . . , n - l}) =(b. n 

2.5. Proof of Theorem I. By induction on k. Let Rl, R2 be strict linear orderings 
on [O,...,n-1) such that 

x(H(R 1 n R2)) > k. 
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Without loss of generality, we have R 1 = ( <) (the usual ordering of natural 
numbers). Define a permutation tx : (0, . . . , IZ - l} + (0, . . . , n - 1) by 

cc(i) = l{j E (0, . . . , n - l} Ij(R2)i)l. 

Now put 

x= v,, 

Ll =[n,,712,C1%1, 

L2 = bb $7 7c3 4, n11 - %I. 
It is easy to check that Ll, L2 are linear orderings. We claim that 

H(LlnL2)~E,u({xya,xyb}~{a,b}~H(RlnR2)&xy~U,}. (2.5.1) 

To see this, let first xy E U,,, {a, 6) E H(R 1 n R2), a < b. Since trivially 

xyu(L 1 n L 2)xyb, 

we have to check that there is no v E V, with 

xyu Ll 17 Ll xyb (2.5.2) 

xya L2 v L2 xyb. (2.5.3) 

Suppose the contrary. Since z, (xyu) = rr, (xyb), i = 1,2, it follows from (2.5.2) that 
ZI = xyc for some c with 

a(u) < a(c) < a(b). 

We conclude that 

uR2cR2b. (2.5.4) 

Now there are two possibilities: 

Case 1. x = 1. Then, as we easily see, rc2+(xyz) = z for any z and thus (2.5.3) 
implies a < c < b or, equivalently, 

uRlcRlb. (2.5.5) 

Case 2. x = 0. Then +(xyz) = xyz and thus, (2.5.5) follows from (2.5.3) again. In 
both cases, (2.5.4) together with (2.5.5) contradict the assumption 

{a, b} E H(R 1 n R2). 

We have shown that 

H(LlnL2)~{{xya,xyb)~{a,b}~H(RlnR2)&xy~U,}. 

To prove (2.5. l), it remains to show that H(L 1 n L2) 2 E,, or, equivalently, that if 

(Okx, lik) E E, (2.4 6) 
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then there is no v with 
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OkxLl VLl 12X (2.5.7) 

OkxL2vL2 lik (2.5.8) 

(Observe that we have trivially Okx(L 1 n L2) lik.) Suppose that the above is false. 
From (2.5.8) we obtain 

zn2c$(v) = k = z*q%(Okx) = TC~C$( lik), 

n3$(v) =x = qti(Okx) = q$(lik). 

Since 2’ # Okx, we have rc,(~) = 1 and hence v = ljk for some j E (0, . . . , n” - l}. 
Now (v L 1 lik) implies j < i, while (v L2 lik) implies i <j. (2.5.1) is proved. 

Denote the right hand side of 2.5.1 by E,,. We will show that 

x(V,,$) >k+ 1. 

LetM,,..., A4, be a partition of V,, into independent sets of (I’,, EJ. By Lemma 
2.4, we have A4,,, n ((d} x {rz - l}) = 8 for some d E U,, , Thus, 

xn,(M,n((d} x {O,...,n-l}>>,...,~~(Mm-ln((d} x {O,...,n- l}) 

form a partition of (0, . , n - l} into independent sets of H(R1 nR2). From the 
induction hypothesis we obtain k < m - 1. n 

Combining Proposition 1.1 with Theorem 2.1, we have the following result: 

2.6. COROLLARY. For every n, s there exists a graph G,, with the following 
properties: 

G,,, has girth s (2.6.1) 

x(G,,~) = n 

eye(G,.,) < 3 

(2.6.2) 

(2.6.3) 

Proof. It is well known that for every graph H and every s there exists a graph 
G such that x(G) = X(H), G has girth s and there is a homomorphismf: G + H (see, 
e.g., [3]). If H has the properties given by Theorem 2.1 then eye(G) < eye(H) + 1. 

n 

3. Concluding Remarks 

3.1. Although one might think that the inequalities 1.1 and 1.2 may be improved by 
one, in general this is false. For instance, if n is sufficiently large then 

eye(Ki) = 3 



CHROMATIC NUMBER OF HASSE DIAGRAMS 47 

(where Ki is the complete tripartite graph). This may be seen as follows: Suppose 
there were linear orderings <, , 6 2 on the vertices of K;f with no common eyebrow. 
By Zarankiewicz’s theorem, there are vertices u;, i = 0, 1,j = 0, 1, 2 in Kz such that 
U; belongs to the j-th part and for each j #k, s < 2, the validity of the formula 

does not depend on the values of E, 6. Since <, and & have no common eyebrow, 
we may assume without loss of generality that, say, 

is a common eyebrow and else 

is a common eyebrow (a arbitrary). This proves that 

eye(Kz) = 3 = Flog log 3]+ 2. 

To the contrary, 

eyeG<3=rloglogml+l 

holds for every graph with X(G) 6 6. In fact, let f: V(G) -+ (1, 2,3, $6) be a 
coloring. Choose an injective function g : V(G) + N. Consider the permutations rt, 
of (1,2,3,4,6) given by n, = (165324), rc2 = (264315), 7~~ = (354216). Then the 
orderings given by [x,5 g], [zzf, g]. [rcJ g] have no common eyebrow. This suggests 
the following 

3.2. PROBLEM. For which values of m does x(G) <m imply 

eyeG<rloglogm]+l? 

(Yes for m = 5,6, No for m = 2, 3,4.) 

3.3. At the moment we do not know whether Corollary 2.6 may replace 

eyetG,J d 3 

by eye(G,,) < 2. 
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