
J O C E L Y N E  C O U T U R E  A N D  J O A C H I M  L A M B E K  

P H I L O S O P H I C A L  R E F L E C T I O N S  O N  T H E  

F O U N D A T I O N S  O F  M A T H E M A T I C S  

ABSTRACT.  This article was written jointly by a philosopher and a mathematician. It 
has two aims: to acquaint mathematicians with some of the philosophical questions at 
the foundations of their subject and to familiarize philosophers with some of the answers 
to these questions which have recently been obtained by mathematicians. In particular, 
we argue that, if these recent findings are borne in mind, four different basic philosophical 
positions, logicism, formalism, platonism and intuitionism, if stated with some moder- 
ation, are in fact reconcilable, although with some reservations in the case of logicism, 
provided one adopts a nominalistic interpretation of Plato's ideal objects. This eclectic 
view has been asserted by Lambek and Scott (LS 1986) on fairly technical grounds, but 
the present argument is meant to be accessible to a wider audience and to provide some 
new insights. 

0 .  I N T R O D U C T I O N  

The following conversation between two professors was overheard  in 
the lounge of the mathemat ics  building. 

A. Did you know that at least two of the following three state- 
ments  are equivalent: Fermat ' s  so-called Last Theorem,  the 
Riemann Hypothesis  and the Cont inuum Hypothesis? 

B. Which two? 
A. That  I don ' t  know. 
B. You can ' t  say that two statements  are equivalent unless you 

are able to prove it. 
A.  All I am saying is that I can prove the disjunction 

(pC>q) v (qC:~r)v (rCz~p), but I don ' t  claim that I can 
prove any of the three alternatives. 

B. How do you prove the disjunction? 
A. Each of p ,  q or r can have two truth values: true or  false. 

Therefore ,  at least two of them must have the same truth 
value. 

B. Come on, we all know that there are proposit ions which are 
neither true nor false. 

Without  realizing it, B took an intuitionist stance; he believed that we 
cannot assume of any proposit ion p that it is true or  false, that is, that 
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p v ~p holds. An intuitionist would certainly have objected to A's 
claim to be able to assert a disjunction without being able to assert any 
of the alternatives. 

Most mathematicians are quite happy to do mathematics without 
bothering about the foundations, not to speak of the philosophy of 
mathematics. Nonetheless, whether they know it or not, they do have 
some kind of philosophy. For example, B in the above dialogue, a 
distinguished analyst, was clearly defending an intuitionist position, 
although, when questioned, he denied being an intuitionist. 

Among the many philosophical positions one can take, there are four 
that have been discussed widely: logicism, formalism, platonism and 
intuitionism. Each of these positions is based on valuable insights into 
what mathematics is or should be; but the answers they offer to these 
questions, when taken in their most radical form, appear to be incom- 
patible. Our contention is that one can keep the best part of these 
insights and consistently defend an eclectic philosophy which combines 
mild forms of these four positions. However, if the reader should feel 
that, in order to achieve this synthesis, too much of the traditional 
positions has been sacrificed, particularly in the case of logicism, we 
hope he will at least accept our own position under a new name, let us 
call it "constructive nominalism". 

We shall begin by discussing each of these positions separately, point- 
ing out its characteristic conception of mathematics and indicating the 
directions in which we intend to weaken it. We shall then show how 
the interpretation of intuitionistic type theory in a particular model, 
call it "the real world of mathematics", allows for their synthesis. For 
the reader who wishes to know more about these four positions than 
he will find here, we recommend the books by van Heijenoort (1967) 
and Benacerraf and Putnam (1984). 

1 .  L O G I C I S M  

Logicism is the oldest of these schools and may be viewed as part of a 
reductionist program, originating with Pythagoras and pervading all 
science. We shall briefly discuss this wider perspective. 

Pythagoras had said that all things are numbers. By "numbers" he 
meant primarily the positive integers, but he also admitted ratios of 
such, as when he said that friendship is as 284 is to 220. What he had 
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in mind presumably was that all science reduces to mathematics, a word 
which he invented, and that mathematics reduces to arithmetic. 

The reduction of the sciences to mathematics was incorporated into 
the program of the nineteenth century positivist Comte, who predicted 
the ultimate reduction of physics to mathematics, of chemistry to phys- 
ics, of biology to chemistry, etc. Modern science has gone a good way 
to carry out the positivist program. 

The reduction of mathematics to arithmetic ran into unexpected 
difficulties when it was discovered by the Pythagoreans that the ratio 
of the diagonal to the side of a square is irrational. (Curiously, the 
proof of the irrationality of x/2 does not appear in the original version 
of Euclid's Elements but in Aristotle's Prior Analytics.) This crisis 
was overcome by Eudoxus, who salvaged the Pythagorean program, 
anticipating Dedekind, by showing that the ratio a/b of two geometric 
quantities was completely determined if one knew all pairs of positive 
integers (p, q) such that pb > qa andpb < qa. (In fact, rational approxi- 
mations p/q to x/2 had already been calculated by the Pythagoreans by 
constructing solutions of the diophantine equation p2_  2q2= ---1.) 

Further progress in the Pythagorean program depended on Descartes' 
reduction of geometry to algebra. Its ultimate success in the 19th cen- 
tury was summarized by Kronecker's assertion that God created the 
(positive) integers and everything else was created by man. (A recent 
spoof of this celebrated statement has it that man created the integers 
and that everything else is Dieudonnr.) 

Modern logicism asserts the possibility of reducing mathematics to 
logic. In view of the reduction of mathematics to arithmetic just dis- 
cussed, this amounts to reducing arithmetic to logic. This program may 
be resolved into two separate tasks: to reduce set theory to logic and 
to define the natural numbers in the language of set theory. We shall 
first discuss the reduction of set theory to logic. This presumes that by 
"logic" one understands "higher order logic", in which it is possible to 
express membership, if only as a kind of functional application, to start 
with. The formal language which we have adopted (sketched in Section 
7) not only contains symbols for membership and set formation, it 
defines the usual connectives and quantifiers in terms of these. Although 
one might argue that logic is thus absorbed by set theory rather than 
vice versa, we feel that most logicists would not object. 

It was Leibniz who first dreamt of a universal language in which all 
of mathematics, and indeed all of science, could be expressed. Such a 



190 J O C E L Y N E  C O U T U R E  A N D  J O A C H I M  L A M B E K  

language was not developed until the end of the nineteenth century, 
when Frege invented quantifiers, leading to a formalization of logic, 
which was supposed to include the language of set theory. While Russell 
soon discovered that Frege's first formulation of the so-called compre- 
hension scheme was inconsistent, he and Whitehead suggested a way 
out of the difficulty with the help of their theory of types. 

There are other ways of circumventing the inconsistency inherent in 
the unrestricted comprehension scheme. On the whole, mathemati- 
cians, if they pay attention to foundations at all, favour the theory of 
G6del-Bernays, which distinguishes between sets and classes. On the 
other hand, logicians interested in set theory usually favour the rival 
theory of Zermelo-Fraenkel, which allows comprehension only for ele- 
ments of a given set. However, we believe that a form of type theory 
(or higher order logic) is more natural for presenting mathematics. 
Type theory follows natural language in refusing to lump cabbages and 
kings together, as when in English we are forced to distinguish between 
"something" and "somebody". It avoids such counterintuitive construc- 
tions as {0, {0}}, where 0 and {0} have different types. It is less prone 
than the first order set theories to lend itself to such meaningless 
questions as what is the intersection of the number 7r and the algebra 
of quaternions, both of which are usually defined as sets. It avoids 
Russell's and similar paradoxes from the start and not by ad hoc devices. 
It may be of some interest to note that some modern grammarians have 
adopted formal type theory from mathematical logic into so-called 
"categorial grammars" of natural languages (see e.g., Buszkowski et 
al., 1988). Even if the original type theory of Russell and Whitehead 
is too cumbersome for most people's taste, there are simplifications 
available in the literature, for instance the theory discussed by Church 
and Henkin (see Hintikka 1969) and more recently that used in (LS 
1986). 

Without becoming too technical at this stage, we just mention that, 
according to the last mentioned version, there should be given two 
basic types, a type N of individuals and a type f~ of truth values (also 
sometimes called propositions). From these other types can be built up 
by taking finite products and by the so-called power-set operation: if 
A is any type, there is a type PA; the entities of type PA are supposed 
to be sets of entities of type A. 

To give a presentation of type theory, we have to describe terms of 
various types. For some details, see Section 7. At the moment let us 
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only ment ion that terms of type I~ are called " formulas"  and that 
among the terms of any type A there are countably many variables. 
Ra ther  than introducing different styles for variables of  different types, 
we usually write x E A (in the metalanguage) to indicate that x is a 
variable of  type A. Quantifiers range over  variables of  specified type, 
thus we write Vx~Ar and 3xem(X). 

If  a is a term of type A and a a term of type PA, we are permit ted 
to write down the formula a ~ a,  but we are not allowed to write a E a 
for example.  1 We may also think of oz as denoting a function which, 
when applied to the entity denoted by a, produces the truth-value 
denoted by a E a.  The type theoretic comprehension scheme then be- 
comes a kind of  functional abstraction. 

We may thus assume that the first part  of the logicist p rogram has 
been  carried out: set theory has been reduced to logic by finding an 
appropr ia te  axiomatization for higher order  logic or type theory. Let  
us now turn to the second part  of the logicist p rogram and a t tempt  to 
define the natural numbers  in set theoretical notation. 

What  is the number  2? As far as we know, nobody takes the naive 
view that 2 consists of  two plat inum balls which are kept  at room 
tempera ture  somewhere  in Paris. A more sophisticated view has it that 
2 is the class of  all unordered pairs of  things, let us say that 2 is the set 
of  all pairs {x, y}, where x 4: y are individuals, that is, entities of type 
N. Note  that {x, y} is a subset of  the set of individuals, hence an entity 
of  type PN, hence 2 has been  viewed as an entity of type P(PN).  

In this way we can define 0, 1, 2, 3 . . . .  as entities of  type P(PN);  
but,  of course, we must  assume that there are at least n entities of  type 
N for each natural number  n. In other  words, we must  postulate an 
"ax iom of infinity", which assures that there are arbitrarily many enti- 
ties of  type N. One way of doing this is to postulate a one-to-one 
correspondence between the set of individuals and a proper  subset of  
it. Thus,  we associate with each entity n of  type N another  entity Sn 
of the same type and postulate: 

(P1) VxENVyrN( SX = Sy ~ x = y ). 

Moreover ,  we stipulate that a certain entity 0 of  type N does not lie in 
the image of S, by postulating: 

(P2) VxeN(Sx 4: 0). 

However ,  once we have postulated P1 and P2, we may as well abandon 
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our original at tempt to define the natural numbers as entities of type 
P(PN)  and take them more simply as entities of type N, as was antici- 
pated by the choice of the symbol "0".  We now define 1 as SO, 2 as 
S1, etc. The set of natural numbers is then the smallest set u of individ- 
uals such that 0 E u and 'r E U ~ Sx E u). TO simplify matters 
even further, we may as well stipulate that this subset consists of all 
individuals, so we postulate: 

(P3) Vu~_PN((O E U A Vx,~u(X ~ U ~ Sx ~ u) )  ~ ~xE~_N x ~ U), 

P1, P2 and P3 are the three axioms suggested by Peano for a formal 
presentation of the natural numbers. 

We have seen that, in order to introduce the natural numbers into 
the language of set theory, we must postulate an axiom of infinity or, 
equivalently, Peano's three axioms. Only if this is permitted, may the 
logicist program be said to have succeeded, albeit with some reser- 
vation. Indeed, any theorem Q of arithmetic may be obtained from a 
theorem in pure logic, namely 

(P1 ^ P2 ^ P3) ~ Q. 

We shall return later to an apparent objection against the logicist pro- 
gram raised by G6del 's  incompleteness theorem. 

Since writing the above words, we have become aware of a recent 
development  in theoretical computer  science, which seems to indicate 
that the ad hoc axiom of infinity can be avoided after all, provided one 
is willing to enlarge the theory of types by admitting variable types. It 
appears that the set of natural numbers can then be proved to exist as 
the solution of a certain fixpoint problem. However ,  the last word on 
this development  has not yet been said. 

2. FORMALISM 

Formalism is the position according to which mathematics is essentially 
the study of a formal system, namely one in which mathematical state- 
ments can be proved,  the ideal here being to do for mathematics as a 
whole what Euclid had at tempted to do for geometry. Thus formalists 
are led to deny the importance attached by logicists to the logical status 
of arithmetical and other  mathematical entities and rather confine logic 
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to its role as a deductive apparatus for proving mathematical state- 
ments. 

The early formalists had hoped that the semantical notion of mathe- 
matical truth could be captured by the syntactical notion of theorem. 
In attempting to show this, they were soon diverted from mathematics 
to metamathematics. Ironically, metamathematics turns out to be part 
of arithmetic, in view of the possibility of encoding a string of symbols 
into a single positive integer, its so-called G6del number. 

Originally, Hilbert and others (see, in particular, Kleene 1952) would 
permit only first order number theory into metamathematics; but, by 
now, all the machinery of higher order arithmetic has been admitted. 
The early formalists' hope that the notion of mathematical truth would 
be captured by the notion of theorem was dashed for classical mathe- 
matics by G6del's incompleteness theorem, which asserts that there are 
closed formulas which can be neither proved nor disproved. As we shall 
see later, this discovery need not however discourage an intuitionist. 

Hitbert had also proposed that mathematical tools be used to prove 
the consistency of the formal language of mathematics, that is, to show 
that 0 = 1 is not a theorem. At first sight, this appears to be a rather 
pointless endeavour; for, if mathematics is inconsistent, then every 
proposition can be proved, including the proposition which asserts the 
consistency of mathematics. This was probably the reason why Hilbert 
wanted to restrict metamathematics to elementary number theory, 
whose consistency was not really in doubt. Unfortunately, G/Sdel 
showed, as a consequence of his incompleteness theorem, that, if ele- 
mentary number theory is consistent, then its consistency cannot be 
proved within elementary number theory (and similarly for any formal 
system adequate for arithmetic). 

Our treatment of formalism here has been rather cursory, as it is not 
meant to be a scholarly account of the history of this concept, but an 
attempt to compare our own position with other views, which we have 
taken the liberty of lumping together. In particular, it has been pointed 
out to us that, in addition to the finitistic formalism of Hilbert and the 
constructive nominalism proposed by us, one should take note of the 
radical formalism of those who claim that mathematical assertions have 
no content, that there are no mathematical entities and that mathemat- 
ics is merely a game, and the moderate formalism of those who merely 
emphasize the importance of formal systems and formal deductions. 
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3. PLATONISM 

Mathematicians who believe that mathematical entities exist indepen- 
dently of us and that mathematical truths are there to be discovered 
are called "platonists" or "realists". 2 A platonist would say, for exam- 
ple, that the symbol "2"  denotes an entity in the real world, the number 
2, and that the compound expression "1 + 1" denotes the same entity. 

But what is the real world the platonists talk about? For  sure, plato- 
nists are not empiricists and will not argue that 2 is just a pair of 
platinum balls in Paris; at any rate, there is not enough platinum in the 
world for all the numbers. According to the present state of physical 
theory, it is not at all certain that the material universe is infinite, so 
numbers cannot be material objects. We shall ignore here the ultrafinit- 
ists, who say that very large numbers, say larger than 10 ~t~176 do not 
exist. 

Plato himself never identified the real world with the material uni- 
verse; for him it was occupied by certain entities called "forms".  Unfor- 
tunately, the Greek  word for " fo rm"  developed into two distinct En- 
glish words, namely " idea"  and "ideal" ,  and this has given rise to a lot 
of confusion. What Plato thought inhabited the real world were surely 
not mental ideas but ideal objects. Somehow the number 2 is an ideal 
object of which all concrete realizations, e.g., a pair of platinum balls, 
are but imperfect copies. What are these ideal entities? 

Already in ancient times there were disciples of Plato who thought 
that his so-called forms were just concepts or words, a view which we 
call " the nominalistic interpretation of platonism". In modern parlance, 
we would say "equivalence classes of words",  since the words "2"  
and "1 + 1" are supposed to denote the same entity. Because this 
interpretation of Plato's views was fashionable at the time the New 
Testament was written, we find that the gospel of St. John begins: "in 
the beginning was the w o r d . . . " .  

After  these historical asides, let us return to the modern formalist 
who is searching for a meaning of his formal expressions and who 
shares our  predilection for such a nominalistic interpretation. He would 
be tempted to say that the number 2 is the equivalence class of all 
terms of type N which are provably equal to the term "S(S0)",  that is 
to say, the set of all terms a of type N for which there is a proof of 
the formula "or = S(SO)". This will account for the fact that "1 + 1" 
and "S(S0)" denote the same number.  Why is this not the accepted 
view? 
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Using classical logic, it is fairly easy to prove the following formula: 

3!~eN((X = 0 A p)  V (X = SO A ~ p ) ) ,  

where p is some given formula.  Let  us abbreviate  this as 3!x~Nq~(X). 
Most mathematicians would now be willing to introduce a number  
which is 0 if p is true and 1 if p is false. Such a number  can be 
represented by a closed te rm in our  formal  language if we suppose that 
it contains a description opera tor  h la Russell or  only a minimization 
operator/~xeN. Even if the language does not contain such an operator ,  
a conservative extension of the language will. We then obtain the closed 
term 

meaning "the least (and only) x E N such that th(x)", so that th(a) is a 
theorem.  The equivalence class [a] of a should be a number  inhabiting 
our  platonic universe. 

Can we assume that [a] =[SmO], that is, that c~ = smo is a theorem? 
If  so, we have the theorem: 

(S 'O  = 0 A p) v ( s m o  = SO A --]p). 

In case m = 0, we can prove smo 4: SO, hence p.  In case rn 4: 0, we can 
prove Sin0 4: 0, hence ~ p .  Thus our assumption that [a] is of  the form 
[Sin0] leads to the conclusion that p can be either proved or disproved. 
Unfortunately,  G6del  has shown that,  as long as our  formal system is 
adequate  to handle ari thmetic and consistent, that is, 0 = 1 cannot be 
proved,  there will be a closed formula p which can be neither proved 
nor disproved. (This is Rosser 's  version.) We must therefore discard 
the assumption that [a] is one of the numbers  0, 1, 2 . . . .  and infer 
that our tentative platonic universe contains numbers  other  than those 
we learned about  in kindergarten.  

While a classical platonist might see G6del ' s  incompleteness theorem 
as a deathblow to the formalist program,  a classical formalist would see 
it as a deathblow to nominalistic platonism! 

Our  argument  involved numbers,  that is, entities of type N. We could 
equally well have argued about  truth values, that is, entities of type fl,  
assuming these to be equivalence classes of  closed formulas. If  p is 
provable,  its truth value is T( t rue)  and, if p is disprovable,  its truth 
value is •  If  p is neither provable nor disprovable,  its truth 
value must be something else. This would contradict an ancient and, 
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until recently, sacred dogma,  first enunciated by Aristotle: every state- 
ment  is true or false. If  this so-called principle of the excluded third is 
taken as an axiom, say in the form Vxea(x v 7x ) ,  it follows t h a t p  v 7 p  
is provable  for any formula p.  Incidentally, the same principle was used 
in the proof  of 3!xeNtp(X) mentioned above. 

To sum up, the naive nominalistic a t tempt  to reconcile formalism 
and platonism does not work as long as we subscribe to the Aristotelian 
doctrine that every proposit ion is true or false. 

4. INTUITIONISM 

As illustrated in our opening dialogue, an intuitionist does not believe 
in the principle of the excluded third, namely that every statement is 
either true or false. Thus,  he does not accept as a principle of reasoning 
that, for all propositions p ,  p v 7 p  or, equivalently, 7 7 p  ~ p .  

Why should one reject a principle which seems to be confirmed 
repeatedly by everyday experience,  at least as far as declarative sen- 
tences are concerned? 

Brouwer  appears  to have been the first to seriously challenge this 
venerable principle, which had been stated by Aristotle and which has 
been used by mathematicians all along. While Brouwer  would have 
admit ted that this principle can be used safely when reasoning about  
the finite quantities one meets  in the material  world, he claimed that it 
breaks down when one deals with the infinite quantities of mathematics.  

For  example,  according to Aristotle 's  principle, a real number  must 
be either rational or irrational. Brouwer  would argue that we cannot 
know this by looking at any finite part  of its decimal expansion, but 
only when we have either expressed it in the form p/q, with integers p 
and q, or given a proof  of irrationality, such as the famous classical 
proof  of the irrationality of ~/2 quoted by Aristotle. 

Intuitionism had a precursor in the constructivism of Kronecker .  To 
illustrate the kind of argument  a constructivist would object to, we 
present  the following example due to van Dalen: there exist two ir- 
rational numbers  a and/3  such that o~ ~ is rational. We argue that x/2 ~~ 
is either rational or irrational. In the first case take ot = ~/2 and /3 = 
X/2, in the second case take ct = x/2 "~ and/3  = ~/-2, so that a ~ = X/22 = 
2. 

Let  p be the statement:  x/2 ~'~ is rational. Then ct is the least (and 
unique) x E N such that 
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(p  A X ---- V~) v (-rip A X = V ~ ) .  

The existence of such an x is assured in classical mathematics by the 
assumption that p v 7 p ,  but this is prec!sely what is in question. 

Actually, we happen to know that X/2 ~: is irrational by a deep result 
due to Gelfand, but this is irrelevant to our argument. It also so happens 
that there is an easy constructive proof  of the same theorem anyway: 
take a = V2 and fl = 2 log2 3, so that a s = 3; but this is irrelevant also. 
What matters is that the proof  suggested by van Dalen is non-construc- 
tive because it is based on the principle of the excluded third. 

It is a surprising fact, discovered by Brouwer,  that even without the 
assumption p v 7 p ,  for all propositions p,  or the equivalent assumption 
that -~Tp ~ p  for all p,  also due to Aristotle, one can do most of 
mathematics, namely the constructive part of mathematics, To this we 
may add that, if we list Vxe~(x v 7 x )  as a premiss to intuitionistic 
logic, we can of course do all of classical elementary mathematics, at 
least as long as we stay away from the axiom of choice. Thus, taking 
p - Vx~a(x v 7x ) ,  a mathematical statement q is a theorem classically 
if and only if p ~ q is a theorem intuitionistically. 

Most of Brouwer 's  arguments were epistemic, concerning the nature 
of mathematical knowledge. They were directed against a platonistic 
conception of mathematical truth which presupposes a universe in which 
the truth or falsity of mathematical statements is fixed once and for all. 
But according to Brouwer,  the truth of such a statement results only 
from a constructive process, namely that of finding and displaying a 
proof,  apparently a product  of the human mind. Unfortunately,  the 
accident of discovery would make truth dependent  on time; thus Ferm- 
at's theorem, of doubtful status today, might only become true in the 
next century. Few present day intuitionists would go as far, except 
metaphorically for purposes of illustration or to motivate Kripke mod- 
els. 

Brouwer 's  epistemic arguments also seemed to attack formalism: 
mathematics as a constructive process is neither a linguistic activity nor 
a formal game. However ,  Brouwer himself later felt that formalism 
was not incompatible with intuitionism. The formalization of intuitionis- 
tic logic was worked out by Heyting and Kleene. In fact, most present 
members of the Dutch intuitionist school make liberal use of formalist 
tools to justify their principles. 

To illustrate how intuitionistic principles can be proved formally, let 
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us sketch a proof  of the disjunction principle: if p v q is provable then 
e i the rp  is provable or q is provable. So suppose p v q has been proved, 
then one can also prove: 

3x~N((p A X = 0 )  V (q ^ x = 1)). 

Let  us abbreviate this as 3x~N~0(x) and consider the term /-tx~Nq~(X) of 
type N. Now it can be shown that, in pure intuitionistic type theory,  
every term of  type N is provably equal to a standard numeral of the 
form S"0. (For the proof  of this, see e.g., LS 1986.) Therefore ,  one 
can prove I~x~ur = SnO, hence r that is, 

(p  ^ S"0 = 0) v (q ^ S"0 = S0). 

In case n = 0 we obtain a proof  of p,  in case n 4 :0  we have a proof of 
q. 

Why should a mathematician who believes in the principle of the 
excluded third study intuitionism? He might be induced to suspend his 
belief for the purpose of argument,  if he could be persuaded that this 
exercise would pay off, aside from the fact that, as a formalist, he 
should have no objection to investigating the consequences of an axio- 
matic system which omits the principle of  the excluded third. 

Mathematicians are interested in certain categories called toposes, 
which first made their appearance in algebraic geometry.  We shall make 
an attempt to convey the idea of what a topos is in Section 8 below. 
Prominent among toposes is the topos of sheaves on a topological 
space. While the concept of sheaf may be too technical for the non- 
specialist, a sheaf may be viewed as a variable set (Lawvere 1975). It 
was recently shown by Barr  (1986) and B6nabou (unpublished) that 
the notion of sheaf also subsumes the popular concept of fuzzy set, 
provided equality is also allowed to be fuzzy. These toposes possess an 
internal language which, in general, turns out to be intuitionistic and 
obeys the principle of the excluded third only in some special cases. 
One important consequence of this is that any theorem about sets which 
has been proved using only intuitionistic logic must hold about the 
objects of any topos, for example about sheaves. In other  words, a 
theorem proved intuitionistically about sets holds more generally than 
stated and may be interpreted as a new classical theorem about sheaves. 

However ,  the most profound effect which intuitionism has had on 
the general mathematical community has been to direct attention to 
constructive proofs. 



O N  T H E  F O U N D A T I O N S  O F  M A T H E M A T I C S  199 

5 .  C O N S T R U C T I V E  N O M I N A L I S M  

Let  us recall our  earlier nominalistic attempt to reconcile formalism 
and platonism by saying that entities in the real world are provable 
equivalence classes of terms. Actually, it is not necessary to invoke the 
notion of equivalence class, for example, to explain the number  2. All 
we are doing is to work with terms such as SSO and SO + SO, but with 
a new equality relation between them: two (in the old sense) terms are 
to be considered equal (in the new sense) if they are provably equal in 
the formal language. 3 

While this at tempted reconciliation did not work in the framework 
of classical logic, we would now like to defend the position that it does 
work if one adopts a moderate  intuitionist position. In fact, the two 
arguments presented above to demolish the at tempted reconciliation 
depended on the principle of the excluded third, the provability of 
p v 7 p ,  which is precisely what the intuitionist questions. 

Of course, the mere fact that a counterargument fails does not prove 
that the at tempt works. The proof  that it does is somewhat tedious and 
we shall only give a sketch here. (For further details see LS 1986.) It 
depends on the notion of model for intuitionistic higher order  logic or, 
as we shall call it here,  the interpretation of intuitionistic type theory 
in a possible world. We are talking here about the possible worlds of 
mathematics; this does not include the material universe, as long as we 
do not know that it is infinite. 4 

The possible worlds in which we wish to interpret our formal language 
are certain toposes (which are assumed to have natural numbers ob- 
jects), namely those toposes whose internal language satisfies the fol- 
lowing three conditions: 

(1) not every proposition is true; 
(2) if p v q is true then either p is true or q is true; 
(3) if 3xEA ~p(X) is true then ~p(a) is true for some entity a of 

type A. 

One has a G6del-Henkin style completeness theorem: a formula of any 
intuitionistic type theory (not just the pure one, e.g.,  the internal 
language of a topos) is provable if and only if it is true under every 
interpretation in a possible world. 

We shall try to show that among all the possible worlds there is one 
that stands out from the others; it is constructed linguistically. To begin 
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with, we must make sure that pure intuitionistic type theory has been 
formulated in such a way as to contain sufficiently many terms of each 
type. By this we mean that, whenever one can prove 3 !x~.A ~D(X), there 
is a term a for which one can prove ~(a). One way of doing this is to 
admit a Russellian description operator  lx~A SO that we can write 
a =- l x e z  ~(X). However ,  for pure intuitionistic type theory,  this turns 
out to be unnecessary, provided we admit enough special instances of 
the description operator ,  for example {x E A ] ~(x)} of type PA for 

luePA ~xeA (X e U r ~(X) ). 

In particular, one does not have to adjoin the minimization scheme 
I~xeN~(X) when 3xeN~(X) is provable, as one gets it for free. Even so 
all closed terms of type N have the form S"0 for some n ~ 0. 

Given a presentation of pure intuitionistic type theory with enough 
terms, one can construct a topos by identifying terms of the same type 
which are provably equal. To be precise, its objects, called sets, are 
provable equivalence classes of terms of type PA, for any type A, and 
its arrows, say between a set a of type PA and a set/3 of type PB, are 
provable equivalence classes of terms p of type P(A • B) which can be 
proved to satisfy the usual conditions for a function from a to/3: 

I-p c_ a x / 3  ^ %~.,,,, (x �9 o~ => :a!,,~B(x, y) e p). 

For details of this construction we must refer the reader  to (LS 1986); 
where it is also shown that this linguistic topos is a possible world, in 
the sense of satisfying (1) to (3) above. It is usually called the free 
topos. (It may also be characterized abstractly as the initial object in 
the category of all toposes.) 

It turns out that in the free topos all entities of type N are "standard":  
they have the form S"0 for some natural number n. Unfortunately,  this 
is not true in all possible worlds, as follows from the proof of GOdel's 
incompleteness theorem. 

It also follows from G6del 's  theorem that this linguistic construction 
of a possible world won' t  work in classical mathematics, as we pointed 
out earlier. While one can construct the free "Boolean"  topos (that is, 
a topos satisfying Aristotle's law of the excluded third) in the same 
manner,  it is not a possible world to satisfy a classical mathematician, 
nor an intuitionist for that matter.  For  example, the free Boolean topos 
contains a proposition p for which p v -np = T but neither p = T nor 
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-~p = T. Moreover ,  it contains entities of type N which are not of the 
form S"0 for any natural number  n. 

On the other  hand, the free topos (constructed from pure intuitionis- 
tic type theory) seems to be acceptable to moderate  intuitionists as a 
possible world. It has one property which they expect the real world 
to have: " t rue in the free topos" means "provable intuitionistically". 
We therefore suggest that the linguistically constructed free topos be 
accepted as the real (=  ideal) world of mathematics, at least of elemen- 
tary mathematics. To put this proposal to the test, we shall take another  
look at GOdel's incompleteness theorem. 

The semantic version of this theorem asserts that there is a formula 
g which is true but not provable,  thus apparently confounding the 
formalist and the logicist at the same time. This interpretation of what 
G6del  showed is all very well from the standpoint of a classical platonist, 
which GiSdel was, as it leaves open the question " t rue where?"  

If one examines G6del 's  argument closely (see Couture 1985), one 
realizes that what he actually showed is that g is true in any model with 
the following property: if ~(Sn0) is true in the model for each natural 
number  n, then VxeN~(x) is true in that model. By the completeness 
theorem mentioned above, we then merely infer that not every model 
has the assumed property.  In fact, the free topos does not have it and 
G6del 's  formula g is false in the free topos. Anyway, intuitionists would 
not accept the property in question, unless it is modified by specifying 
that the reason for asserting ~(Sn0) is the same for each n. 

Let  us summarize once more the four current philosophies in some- 
what oversimplified form in order  to extract from each what we are 
willing to accept, culminating in our own nominalistic synthesis. 

Logicism: Mathematical entities can be defined in the lan- 
guage of symbolic logic. 
Formalism: Whether  mathematical entities exist or not, what 
matters are the terms of a formal language which supposedly 
describe them. Whether  mathematical statements are true 
in an absolute sense or not,  what matters is whether they 
can be proved. 
Platonism: Mathematical entities exist independently of our 
way of viewing them; mathematical truths are there to be 
discovered. 
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Intuitionism: Mathematical entities are mental constructs, 
mathematical truths are statements capable of being known. 

With some reservation, we accept the logicist reduction of mathematics 
to logic via the theory of types, but only provided Peano's postulates 
for the natural numbers are included. We are willing to think like 
intuitionists, temporarily suspending our belief in the principle of the 
excluded third, in order to find constructive proofs and to gain greater 
generality for our results. On the other hand, we do not hesitate to 
investigate consequences of the hypothesis Vx~c~(x v -~x), particularly 
in metamathematics. We admit that only such propositions are true 
which are knowable, that is, provable, but we believe that truth is 
independent of the historical accident that a proof has already been 
discovered. We are prepared to study the formal language of intuitionis- 
tic type theory and to make use of any mathematical tools to establish 
intuitionistic principles as metatheorems. We allow that pure intuitionis- 
tic type theory describes a "real" world whose entities are equivalence 
classes of terms of the formal language, two terms a and /3 being 
equivalent if the statement a --/3 is provable. 

As an illustration of this nominalistic synthesis of the four basic 
philosophical positions, we shall look at the problem of substitutional 
interpretation of quantifiers which has lately been discussed by philoso- 
phers. 

6. S U B S T I T U T I O N A L  I N T E R P R E T A T I O N  O F  Q U A N T I F I E R S  

Much has been written by philosophers about the question of substitu- 
tional interpretation of quantifiers. In its simplest formulation, the 
question takes the form: is the truth of the quantified statements 
3xEAq~(X) and Vx~A q~(x) dependent on the truth of the statement ~o(a) 
for some or all closed terms a of the language respectively? The problem 
is of course that not all entities the formal language is claimed to be 
about need have names in the language. Nonetheless, the question is 
easily answered in the affirmative for languages specially constructed 
in a hierarchic fashion (Kripke 1976) or for languages which permit 
one to argue inductively on the complexity of formulas, in which ~0(a) 
is necessarily simpler than 3xEA r or VxEA ~p(X), as in Russell's ram- 
ified type theory without reducibility (see Couture 1989) or in Martin- 
Lrf ' s  (1984) constructive type theory. But neither of these theories 
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is adequate for mathematics, so what about pure intuitionistic type 
theory? 

Since quantifiers can be interpreted in any possible world, they can 
be interpreted in the real world, namely the free topos. Thus, the 
formula 3xE A ~o(x) of pure intuitionistic type theory is true in the real 
world if and only if ~p(a) is true for some entity a of type A in the real 
world. But since the real world was created linguistically, we can say 
that 3xEA ~(X) is true if and only if ~(a) is true for some term a of 
type A in the language. Therefore, the substitutional interpretation of 
existential quantifiers is valid for pure intuitionistic type theory. 

Strictly speaking, the above argument applies only to formulas ~x)  
which contain no free variables other than x. The question is still partly 
open if there are other free variables, for example a free variable of 
type l~ x N. 

What about universal quantifiers? One might hope that the formula 
Vx~Aq~(X) of pure intuitionistic type theory is true in the real world if 
and only if q~(a) is true for all closed terms a of type A. Unfortunately, 
this is not so, as follows from G6del's proof of the incompleteness 
theorem. For Gbdel constructed a formula ~p(x), with x a variable of 
type N, such that ~p(sno) is provable for all n >t 0 but VxEjv~p(x) is not 
provable. His proof remains valid about intuitionistic type theory, 
where "provable" means "true". Moreover, in pure intuitionistic type 
theory, all closed terms of type N are provably equal to some standard 
numeral of the form S"0. This argument shows that the naive attempt 
to interpret universal quantifiers substitutionally by means of closed 
terms does not work. Of course, if we allow substitution by open terms, 
the substitutional interpretation is valid trivially, since V~eA~p(x) is 
provable if and only if the open formula ~p(x) is provable. 

What about pure classical type theory, which we may take to be pure 
intuitionistic type theory with an additional axiom, namely 
V~n(x  v 7x) or Vx~a(~Tx f i x ) ?  Then VxEA~(X ) is equivalent to 
7 3 ~ a ~ ( x ) ,  by De Morgan's Rule, so we only have to look at the 
interpretation of existential quantifiers. Unfortunately, the substitu- 
tional interpretation of existential quantifiers does not hold in pure 
classical type theory, as is seen from the following example. 

Let ~(u) be the formal statement which asserts that u of type P(PN) 
is a non-principal ultrafilter of sets of natural numbers. Then one easily 
proves classically: 

3 ~ p ~ ( 3 . ~ N ~ , ( u )  ~ ~(v)), 
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yet no one has ever found a description of a non-principal ultrafilter, 
that is, a closed term a of type P ( P N )  so that ",I~(a) can be inferred 
from the assumption 3uet,(pu) ~ (u ) ,  nor does such a term exist. 

7. A P P E N D I X  O N  I N T U I T I O N I S T I C  T Y P E  T H E O R Y  

For the reader 's  convenience we give a brief sketch of a recent formula- 
tion of pure intuitionistic type theory,  which is adequate for elementary 
mathematics, including arithmetic and analysis, when treated construc- 
tively. As far as we know, the only theorems in these disciplines which 
are essentially non-constructive are those whose proof  requires the 
axiom of choice. Even there it is not easy to find an example of a 
theorem for which no constructive proof  can be shown to exist (see 
above). Constructive arithmetic has been treated in some fashion by 
Goodstein (1970) and the standard text on constructive analysis is by 
Bishop (1967). 

From basic types 1, l~ and N one builds others by two processes: if 
A is a type so is PA; if A and B are types so is A • B. Intuitively: 

1 is the type of a specified single entity (introduced for 
convenience); 

is the type of truth-values or propositions; 
N is the type of natural numbers; 
PA is the type of sets of entities of type A; 
A x B is the type of pairs of entities of types A and B 
respectively. 

We allow arbitrarily many variables of each type and write x E A to 
say that x is a variable of type A. In addition, we construct terms of 
different types inductively as follows: 

1 12 N PA A x B  
* a = a' 0 {x e A [ q~(x)} (a, b) 

a E ot Sn 

it being assumed that a and a'  are terms of type A already constructed, 
a of type PA,  n of type N, q~(x) of type 1~ and b of type B. 

Logical symbols may be defined as follows: 

T ~ - , = * ,  
p A q = - - ( p , q ) =  (T,  T),  
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p ~ q - - p A q = p ,  
V~eA ~(x) -- {x E A ] ~(x)} = {x E A ] T}, 

where it is understood that p,  q and ~(x) are terms of type fL From 
these symbols one may define others, taking care not to make implicit 
use of De Morgan's rules (Prawitz 1965): 

J_ .-~ Vt~i,tt , 
~ p  =-- Vt~cf fp ~ t), 
p v q = - - V t E n ( ( ( p ~ O  A ( q ~ t ) ) ~ t ) ,  
~]xEA ~(X) ~ VtEfl( (VxEA(~)(X) ~ t) ) ~ O" 

Other  symbols, such as appear  in 3 !xEA ~(X), {a}, o1~ C fl, (9/ X fl etc are 
defined in the usual fashion. 

Axioms and rules of inference are stated in terms of a deduction 
symbol F x,  where X is a finite set of variables. The permissible deduc- 
tions take the form 

Pt  . . . . .  p ,  Fxpn+l ,  

where the p~ are terms of type 12 and X contains all the variables which 
occur freely in the p~. The axioms and rules of inference hold no 
surprises. Here  are a few special cases for purpose of illustration: 

p F p ;  

r 
qo(a) F Ik(a)' 

(a, b) = (c, d)Fa = c; 

 (Sx) 
9(0) Fx 

As already mentioned,  the language sketched here provides adequate 
foundations for constructive arithmetic and analysis. However ,  for 
metamathematics,  as practiced nowadays, and this includes category 
theory,  more powerful languages are required. This is because we may 
need higher types than those contained in the hierarchy constructed 
above, for instance when we speak of the category of all toposes, and 
because we may require the axiom of choice, as for example in the 
proof  of the completeness theorem. It also appears that the needs of 
computer  scientists have not been met,  who would wish proofs to be 
incorporated into the language on the same level as terms. Moreover ,  it 
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has been  suggested that,  in order  to benefit fields as varied as linguistics, 
computer  science and quantum mechanics,  one should replace in- 
tuitionistic logic by linear logic (Girard 1987). 

8 .  A P P E N D I X  O N  T H E  N O T I O N  O F  A T O P O S  

Following the appearance  of certain concrete toposes in algebraic geo- 
metry,  the abstract notion of a topos was conceived by Lawvere and 
elaborated by him and Tierney. Their  definition may be carried out in 
the language of category theory,  which itself may be expressed in a 
formal language, unfortunately one more  powerful than that outlined 
in Section 7, as was already pointed out there. 

How can one convey the idea of categories and toposes without going 
into technical details? In category theory the emphasis is on morphisms 
(arrows) between structures (objects) and the former  are by no means 
subordinate to the latter, as Bell (1988) puts it. He  continues: "So 
category theory is like a language in which the 'verbs '  are on equal 
footing with the 'nouns ' . "  

A topos is an abstractly described category in which it is possible to 
carry out a number  of important  constructions usually carried out in 
the category of sets. In this general context one says "objects"  rather  
than "se ts"  and "a r rows"  rather  than "functions".  In particular, there 
is assumed to be a terminal object 1 corresponding to a typical one 
element  set {*}. One can form the cartesian product A • B of any two 
objects corresponding to the set of  all pairs of  elements  of A and B. 
One can form the power object PA corresponding to the set of all 
subsets of  A. Given any two arrows f :  A - ,  B and g : A -*  B, one can 
imitate the construction which for sets yields {a @ A ] f (a)  = g(a)}. One 
can characterize the subobjects of  a given object by their characteristic 
arrow into the object of  truth values, just as every subset of a set A has 
the form {a E A [ h(a) = Y}, where h : A ~ {T, _L} is the usual charac- 
teristic function. Finally, there is given an object N of natural numbers 
with arrows 1 --* N (zero) and N ---, N (successor) allowing one to imitate 
the following construction for sets: given a set A, an e lement  a of  A 
and a function h : A - - * A ,  one can construct a uniquely determined 
function f : N ~ A such that, for each n in N, f ( n )  = hn(a). 

In Section 5 above we presented a construction of the so-called free 
topos f rom pure intuitionistic type theory. By the same process one can 
associate a topos with an applied intuitionistic type theory as well. An 
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applied theory differs from the pure one in the following respects: (a) 
there may be types other than those contained in the hierarchy de- 
scribed in Section 7 and there may be equations holding between them; 
(b) there may be terms other than those described in Section 7 and 
there may be additional axioms. 

On the other hand, starting with any topos whatsoever, one can 
construct an applied intuitionistic type theory, its "internal language", 
which was already mentioned in Section 4. The idea here is that all 
objects of the topos are admitted as types and that arrows from 1 to A 
are taken as terms of type A. In particular, one exploits the abstract 
properties o f A  x B to construct an arrow <a, b> : 1 ---~A x B from given 
arrows a : 1 ~ A  and b : 1 ~ B  and views it as a term of type A • B. 
Similarly, one exploits the abstract properties of PA to construct an 
arrow a E a : 1 ~ fl  from given arrows a : 1 ~ A and a : 1 ~ P A  and 
views it as a term of type ~ .  And  so on. As in pure intuitionistic type 
theory, one defines the term p n q, thus obtaining an arrow 
p n q : 1 ~ ~ .  One is now in the position to define the deduction sym- 
bol. For example, p~-q is taken to mean that the arrows p A q and p 
from 1 to ~ coincide. When we said in Section 5 that a proposition p 
is true in the internal language, we meant nothing else than that the 
arrows p and 7- from 1 to II  coincide. 

More detailed expositions of topos theory are available in the books 
by Goldblatt  (1979) and Bell (1988). 

N O T E S  

1 We have followed Curry (1963) and the usual mathematical  practice and used symbols 
such as " E "  to denote  themselves and concatenat ion to represent  concatenation.  Thus  
a E a is meant  to be the result of  placing the term a before and the term a after the 
symbol " E " .  Somet imes,  a half-hearted use of ordinary quotat ion marks may  creep into 
our  presentat ion,  as in this footnote.  To be quite rigorous about  the "use  versus men t ion"  
distinction, one would have to use some device such as Quine ' s  corners (Quine 1958), 
which we feel would be out  of  place here. 
2 As far as we know, the word "p la tonism" was introduced into mathemat ics  by Bernays 
(see Benacerraf  and Pu tnam 1984). 
3 If a and /3  are terms of type A,  we consider a to be equal to /3  in the new sense if the 
formula a = /3  is provable,  more  precisely, if the result of  putt ing a before and /3  after 
the equal  sign is a provable formula.  See also note 1. 
4 The  expression "possible world",  a l though borrowed from Leibniz, here has  a precise 
meaning ,  namely  that of  a topos satisfying (1), (2) and (3). It is not  to be confused with 
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its homonyms used in the interpretation of natural languages, of quantum mechanics or 
of modal logic. 

NOTE A D D E D  IN P R O O F  

The authors wish to express their indebtedness to the referee, whose searching questions 
helped them to elaborate and improve their argument. 
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