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Abstract. An exact solution for the flow of an incompressible viscoelastic fluid between two 
infinitely extended parallel plates, due to the harmonic oscillations of the upper plate and the 
impulsively started harmonic oscillations of the lower plate from rest, in the respective planes 
of the plates, has been obtained. The momentum transfer towards the central region and the 
skin friction of the lower plate are found to be greater for the viscoelastic fluid than that for 
viscous fluid. The effect of out-of-phase oscillations of the plates with different amplitudes on 
the flow characteristics has also been investigated. 

I. Introduction 

The flow of fluid between two parallel plates has been a subject of consider- 
able interest and importance to theoretical as well as experimental investi- 
gators because of its occurrence in rheometric experiments to determine the 
constitutive properties of the fluid, in lubrication engineering wherein the 
rheological characteristics of effective lubricants with higher load carrying 
capacity are obtained and in transport phenomena encountered in chemical 
engineering. Since the gap width between the two plates is usually small 
compared to the lengths, the edge effects are assumed to be negligible and 
the plates are considered to be infinitely long. The flow of fluid may be 
induced by the pressure gradient along the length of the plates or the 
motions of the plates or both. The flow of fluid between the plates may also 
be caused by the presence of source of fluid on the plates. The governing 
equations for the flow often yield exact solutions and thus providing basic 
motion for the stability analysis of  such flows between the plates which is of  
vital interest in the study of the onset of  turbulent motion of fluid. The 
investigation of heat and mass transfer in the flow between two parallel 
plates with constant or time-dependent wall conditions is significantly 
important in view of the applications in chemical engineering processes and 
porous bearings. 
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The momentum, heat and mass transfer in the flow of Newtonian as well 
as non-Newtonian fluids between two long plates, has been studied exten- 
sively by several authors [1-13]. In these studies, the flow is considered to be 
driven by uniform motion of the plates or by constant or time-dependent 
pressure gradient. However, the literature on the impulsively set second 
order fluid motions between two parallel plates is scarce. The unsteady 
motion of a second order fluid between parallel plates when the upper plate 
is moving with uniform velocity and lower plate is performing simple 
harmonic oscillations in its own plane impulsively has been considered by 
Sacheti and Bhatt [4]. The classical Stokes problem of viscous flow near an 
impulsively oscillating plate is well known [1]. The flow confined between 
harmonically oscillating plate and another plate performing impulsively 
started harmonic oscillations has not been analysed so far. The objective of 
the present paper is to examine analytically the unsteady motion of an 
incompressible second order fluid between two infinite parallel plates due to 
the harmonic oscillations of the upper plate and the impulsively set harmonic 
oscillations of the lower plate and to compare the flow characteristics with 
the Newtonian case. The results obtained are of special interest to rheo- 
metric experimenters and lubrication technologists dealing with the influ- 
ence of non-Newtonian character of the fluid on the start-up motion of the 
fluid between two closely placed parallel plates oscillating in their own planes. 

In the following the basic equations governing the flow of an incompress- 
ible second order fluid are given in Section 2. Sections 3 and 4 contain the 
mathematical formulation of the problem and its solution respectively. 
Section 5 deals with the coefficient of  skin friction. The large time solution 
of the problem is dealt in Section 6. The discussion on the results obtained 
are presented in Section 7. 

2. Basic equations 

The constitutive equation of an incompressible second order fluid based on 
the postulate of gradually fading memory is given by Coleman and Noll [15] 
a s  

= p ' r +  + + (1) 

where T is the stress tensor, p" the pressure,/~, ~1, a2 are material constants 
with ~ < 0, and A1 and A2 are Rivlin-Ericksen tensors defined as 

A~ = (grad V) + (grad V) r, (2a) 

A2 = J~ + AI" grad V + (grad V) r" A 1 .  (2b) 
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The equation of continuity is 

div V = 0, (3) 

and the linear momentum equation is 

d i v T +  e f  = ~I?. (4) 

Here V is the velocity, Q the density and f the body force per unit mass. 

3. Formulation of the problem 

We consider the fully developed oscillatory flow of a second order fluid, 
represented by Coleman and Noll's constitutive equation [15], between two 
infinitely long parallel plates, with a gap width of Y0, due to the simple 
harmonic oscillations V0 cos (nt + c~) of the upper plate. The x-axis is 
chosen along the lower plate and the y-axis perpendicular to it. Impulsively, 
the lower plate is set to perform the simple harmonic oscillations V cos nt 
at some instant t = 0. The development of flow for t > 0 is analysed 
subsequently. Due to the parallel nature of the flow, the flow variables 
depend on y and t only. Thus 

u = u(y, t), v = O, p' = p ' (y,  t), (5) 

and the momentum equations (4) become 

(~U @* ~2U ~3U 
Q Ot Ox + # @2 + ~i c3t 0y (6) 

0 - 8y ' (7) 

in the absence of body forces, where p* is the modified pressure given by 

P* = P' -- (2el + e2)/[0u']2 (8) 
0y] \ 

From the equations (5) and (8), it follows that 

- o ,  ( 9 )  
~x 
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and the equation (6) becomes 

~U ~2U ~3U 
Ot - v - -  -- K - -  (10) Oy 2 Ot Oy 2' 

where v = /1/~ and K = - ~ / ~ .  
The solution of  the equation (10) is subject to the following conditions 

U(yo, t) = V0 cos (nt + ~p), ( l l a )  

0, f o r t ~ <  0, 
u(0, t) = (1 lb) 

Vcos nt, for t > 0. 

4. Solution of the problem 

We seek the solution of  the equation (10) in the form 

u = Uo(y, t) + ul(y,  t), (12) 

where u0 is the solution of  the equation 

DU O (~2 b/0 03 U0 
0t - v - - -  K - -  (13) Oy2 0t 0y 2' 

subject to the conditions 

Uo(Yo, t) = V0 d "'+~)' (14a) 

u0(0, t) = 0, (14b) 

and ul is the solution of  the equation 

0t - v - - -  K - -  (15) ~y2 c3t 0y 2' 

subject to the conditions 

t ~< 0: ui(y,  t) = 0, (16a) 

t > 0: us(0, t) = V e  int, ul(yo, t) = 0, (16b) 

and only the real part  of  the complex quantities have physical meaning. 
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Separating the variables in the form 

uo(y,  t) = f ( y )  e i(nt+(°), (17) 

The solution of  the equation (13) subject to the conditions (14) is obtained as 

sinh a)5 ei(m+¢), (18) 
V0 sinh a 

l,/0 mR 

where 

a in ~1/2 = Y (19) 
v -- i n K J  Yo, )5 Yo" 

Defining the Laplace transform of  u~ (y ,  t) as 

u l ( y ' P )  = f o e  p ' u ~ ( y , t )  dt, p > 0, (20) 

the equat ion (15) is t ransformed to 

~2fi I _ P 
- -  fil  = 0 ,  ( 2 1 )  

Oy z v -- p K  

and the condit ion (16b) is t ransformed to 

V 
f i ,(O,p) - • , f i l (Yo ,P)  = 0. (22) 

p - in 

The equat ion (21) subject to the conditions (22) yields the solution as 

Vsinh[(v P-- Kpj~l/2 (Yo - Y)I 
/~1 = 1/2 " (23) 

The inverse Laplace t ransform of  equat ion (23), after employing the calculus 
of  residues [16], is obtained in the form 

V sinh [a(1 - )5)] eint 
ul = sinh a 

V(-- 1)k4~k~ 2 sin [kzr(1 -- 3~)] ( 
+ 

[k2zc2 + i(2~ 2 + kZ~Zfl)](2~ 2 ~_ kZz~2/3) exp k k = l  

k2~2nt ) 
2~2+k2~2/3  ' 

(24) 
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where 

= ( n  ,],/2 Kn (25) 

Using equations (18) and (24) in (12), we obtain 

fi = sinh a3~ ei(nt+~) + I 7" sinh [a(1 - p)] C" 
sinh a sinh a 

IY( - 1)k4kn~ 2 sin [kn(1 - fi)] ( - kZ~nt  
+ 

[k2~ + i(2~ 2 + k2~fl)](2~2 + k2rdfl) exp \ 2 ~  T-~--~fl / ' 
k = l  

(26) 
where 

u V 
- -  m ~ m 

f i -  Vo I? Vo (27) 

The equation (26) can be written in the form 

fi = ]ul ei("'+*), (28) 

where Ifil is the amplitude of the velocity field oscillations and • is the phase 
difference of  the oscillations of the fluid layers with respect to the lower plate 
oscillations (refer to Appendix). 

5. Coefficient o f  friction 

The coefficient of  friction c i is given by 

0~ K O2fi 
c i - (29) 

The second term in the expression (29) represents the effect of  viscoelasticity 
of the fluid on c I. The coefficient of  drag experienced by the impulsively 
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started lower plate is given by 

a(1 + ifl) e~(.t+e) _ lPa(1 + i/3) cosh a ein, 
Cyo = (cy)y=o - sinh a sinh a 

217 

8 k 2 ~2 ~4 

2.. [k2~z2 + i(2cd + k2zc2fl)](2c~ 2 + k2rc2~) 2 
k = l  

( x exp 2e 2 + k2rc2fl . 

The equat ion (30) can be written in the form 

% = I%1 ei(n'+~c), (31) 

where I%lis the amplitude of  the skin friction oscillations and q~,. is the phase 
angle (refer to Appendix). 

6. Large time solution 

The solution given in equat ion (26) is useful for small values of  time only, 
since 2~ 2 + k2rc2/3 will be negative beyond some value of  k which leads to 
very slow convergence of  the summation during numerical computa t ion  for 
large values of  time. 

However ,  the asymptotic  expansion of  the transform function in equat ion 
(23) in ascending powers of  small p retaining the simple pole at p = in and 
the application of  inversion theorem leads to the large time solution in the 
closed form as 

I p sinh [a(1 - p)] ei., ' sinh a)5 ei(,,,+,/, ) -t- (32) 
fi - sinh a sinh a 

and the coefficient of  skin friction at the lower plate is given by 

a(1 + i f l )ei( . ,+e)_ l?a(1 + i f l )cosh a eint" (33) 
% - sinh a sinh a 
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7. Results and discussion 

The numerical computation of  the velocity distribution and coefficient of  
friction at the lower plate has been done for ~ = 4 and fl = - 1/3, 0. The 
Newtonian case corresponds to fl = 0. Figures 1-6 show the amplitude of  
velocity distribution at different times T = nt. It can be observed that the 
momentum transfer towards the central line y = 0.5 is greater for the 
second order fluid than that for Newtonian fluid. When the plates are 
oscillating with a phase difference q~ = re/2, the momentum transfer from 
the lower plate y = 0 towards the central line is greater than that for q~ = 0 
and ~b = re. As 17 increases, the momentum transfer towards the central line 
also increases. The high shear region formed in the flow domain by the 
out-of-phase oscillations of  the plate is narrower for second order fluid as 
compared to the Newtonian case. For instance, in Fig. 6, we observe that the 
high shear region in which Ifil ~< 0.2, at time T = re, is of  width 0.277 for 
Newtonian fluid and it is found to be of  width 0.216 for second-order fluid. 
That is, the high shear region becomes narrower by 22% approximately. As 
~b increases, the high shear region becomes thinner. These effects can be 
attributed to the release of  the strain energy stored in the shearing fluid 
layers due to the elasticity of  the fluid. Figures 7-12 show the phase angle 
of  velocity distribution at different times T. The phase difference is found to 
increase in case of  second order fluids in comparison with the Newtonian 
case. When the two plates are performing out-of-phase oscillations, the fluid 
layer oscillating in phase with the lower plate is at a higher level in case of  
non-Newtonian fluid than that in Newtonian case. As 17 increases, this layer 
moves up and is at the lowest level when ~b = re. The large time (T ~ ~ )  
behaviour of  the velocity distribution is shown in Figs. 13-16. 

The small time behaviour of  the coefficient of  skin friction at the lower 
plate y = 0 is shown in Figs. 17 and 18. As soon as the lower plate starts 
oscillating impulsively, there is a surge in the values of  coefficient of  skin 
friction experienced by the lower plate. The skin friction is found to be 

Table 1. L a r g e  t i m e  v a l u e s  o f  coeff ic ient  o f  s k i n  f r i c t i on  Clo = Icjol cos  (nt + ~bc) a t  the  l o w e r  

p l a t e  y = 0 

N e w t o n i a n  (ct = 4 , /~  = 0) N o n - N e w t o n i a n  (ct = 4, fl = - 1/3) 

A m p l i t u d e  Iclol P h a s e  a n g l e  ~b c A m p l i t u d e  Iclol P h a s e  a n g l e  q~, 

0.5 0 2.967 79 --  2 .409 71 3.040 59 --  2 .666 79 

0.5 n /2  2.988 --  2.311 5 3.346 68 --  2.485 23 

0.5 n 2 . 6 9 7 2 2  - - 2 . 2 9 8 7  2 . 8 2 0 2 5  - - 2 . 3 5 8 6 5  

1.0 0 5 . 7 9 3 9 2  - - 2 . 3 8 3 9 2  5 . 9 2 0 0 6  - - 2 . 5 9 4 4 8  

1.0 ~ /2  5.814 65 --  2 .333 55 6.241 57 --  2 .500 69 

1.0 n 5.523 04  --  2 .328 47 5.697 74 --  2 .439 66 
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Fig. 1. Amplitude of velocity distribution at different times T for V = 0.5 and q5 = 0. 
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Fig. 2. Amplitude of velocity distribution at different times T for 12 = 0.5 and q~ = ~/2. 
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Fig. 5. Ampl i tude  o f  velocity distr ibution at different times T for 17 = 1.0 and ~b = n/2. 
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Fig. 7. Phase  angle o f  the velocity d is t r ibut ion  at  different t imes  T for I 7 = 0.5 and  ~b = 0. 
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Fig. 8. Phase  angle  o f  the  velocity d is t r ibut ion  at  different t imes  T f o r  I 7 = 0.5 and  t# = re/2. 
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Fig. 11. Phase angle o f  the velocity distr ibution at different times T f o r  V = 1.0 and ~ = ~/2. 

0.9- 

0.8- 

0.7- 

0.6- 

3•T=- 
~ 
z 

. . . . . . .  NEWTONIAN 

- -  NON- NEWTONIAN 

-4.0 -3.0 -2.0 -I,0 0 1,0 0 3.0 4.0 

PHASE ANGLE ~b ~" 
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Fig. 13. Ampli tude  o f  the velocity distr ibution at large times for V = 0.5 and q~ = 0, n/2, n. 
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Fig. 15. Phase angle of  the velocity dis t r ibut ion at  large times for 12 = 0.5 and  ~b = O, n/2, n. 
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Fig. 16. Phase angle of  the velocity dis t r ibut ion at  large times for 12 = 1.0 and  4~ = O, n/2, n. 
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Fig. 17. Coefficient o f  skin  f r ic t ion ve rsus  T for  V = 0.5 a n d  ~b = 0, n/2, n. 
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m a x i m u m  when the phase  difference of  the oscillations o f  the plates is re/2. 
The skin friction is greater  in case of  the second order  fluid as compa red  to 
the Newton ian  case. As 12 increases, the skin friction is also found to 
increase. After  large time, the skin friction oscillations reach a steady pa t te rn  

whose values are shown in Table  1 for  different values o f  the pa ramete r s  
and qS. 
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Appendix 

Lett ing ~ = ~r + ifii and separat ing the real and  imaginary  parts  o f  equa-  
t ion (26), we obta in  

1 
Ur = cosh2A __ Cos2B {sinh A~ cos B~ [sinh A cos B cos (nt + (o) 



and  

5i 
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+ cosh  A sin B sin (nt + q~)] + cosh  A35 sin B35 [cosh A sin B 

7 

x cos  (nt + (a) - sinh A cos  B sin (nt + q~)]} + 
coshZA _ cos2B 

× {sinh A cos  B [sinh A(1 - 35) cos  B(1 - 35) cos  nt 

- cosh  A(1 - 35) sin B(1 - 35) sin nt] + cosh  A sin B 

x [sinh A(1 - 35) cos  B(1 - 35) sin nt 

+ cosh  A(1 - 35) sin B(1 - 35) cos  nt]} 

(-- 1)g4k37z3~ 3 sin [kT:(1 - 35)] 

kZ~2nt) ) (A1) 
× exp  2~ z + kZ~c2fl , 

1 

coshZA _ cos2 B {sinh Ap cos  B35 [sinh A cos  B sin (nt + (p) 

- cosh  A sin B cos  (nt + q~)] + cosh  A35 sin By 

x [sinh A cos  B cos  (nt + (a) + cosh  A sin B sin (nt + ~b)]} 

P 
+ cosh2A _ cos2 B {sinh A cos  B [sinh A(1 - 35) cos  B(1 - 35) 

× sin nt + cosh  A(1 - 35) sin B(1 - 35) cos  nt] + cosh  A sin B 

× [cosh A(1 - 35) sin B(1 - 35) sin nt -- sinh A(1 - 35) 

× cos  B(1 - 35) cos  nt]} - (" 
( -  1)k4~ka 2 sin [ku(1 35)] 

( k2 2 t ) 
x exp 2e2 + k 2~2B J '  (A2) 
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where, 

N.M. Bujurke, P.S. Hiremath and S.N. Biradar 

A = [ f l + x / 1  + f l 2 1 ' / 2 1  +f12 

c~ 
B = 

[(1 +/~)(/~ + ~/1 +/~)1 '/~ 

Hence, we have in equation (28) the following 

(A3) 

(A4) 

Im [%1 = 

Re [%] = 

and 

1 
{sinh A cos B [Q cos (nt + (a) 

cosh2A cos2B 

- P sin (nt + qS)] ÷ cosh A sin B [Q sin (nt + 4)) 

+ P cos (nt + q~)]} + 
iv 

cosh2A - -  c o s Z B  

× {sinh A cosh A [ P  sin nt - Q cos nt] - sin B cos B 

x [Q sin nt + P cos nt]} 

8k47~4~4 

=, [k4~ 4 + (2~ 2 +/~2/~)21(2~2 +//k2~2) 2 

// k 2 rc 2 n t "~ 
× exp \ 2~2-7 ~ 2 / ~ / ,  (A7) 

1 
coshZA _ cosZ B {sinh A cos B [Q sin (nt + (o) 

÷ P cos (nt + q~)] ÷ cosh A sin B [P sin (nt ÷ (o) 

The real and imaginary parts of  the coefficient of  friction at the lower plate 
given in equation (30) is 

fi = (fi2 + fi2)1/2, (A5) 

O0 = tan-l(fii/fir) - nt. (A6) 
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where, 

P = 

Q = 

B - flA, 

A - fiB. 

Hence,  we have 

- Q cos (nt + ~b)]} + 
17 

cosh2A - c o s 2 B  

x {sin B cos B [Q cos nt - P sin nt] - sinhA cosh A 

z [Q sin nt + P cos nt]} 

8 k  2 ~2 ~4 

+ ~7 k=l ~ [k 4rc4 + (2~ 2 + /3~rc2)~1( 2c~ + fl k2rc2) 

/ n t kZ zc 2 
× exp [ 

2~ 2 T ~--k27~2 J ' \ 

Icxol = (Re [%]2 + Im [eyo]2) ~/2, 

and 

Im [ % ] )  _ nt. 
~bc = tan-I  R e  [cj~] 

(A8) 

(A9)  

(A10) 

( A l l )  

(A12) 


