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Abstract 

This paper examines the Stokes' flow due to an axially symmetric body rotating about its axis 
of symmetry in a micropolar fluid which sustains anti-symmetric stress and couple stress. 
General solutions are obtained to the coupled differential equations governing such a flow 
and the special case of a sphere is deduced. Then, with the aid of a concentrated couple, a 
simple formula for the couple experienced by a body is derived in terms of the angular velocity 
of the flow field. 

§ 1. Introduction 

In a companion paper [-1] the Stokes' flow problem was considered for an 
axially symmetric body moving with uniform velocity in an infinite 
incompressible micropolar fluid. In particular, a general expression for the 
drag was obtained in terms of the stream function by using an argument 
advanced by Brenner [-2] involving an axisymmetric point force. This drag 
formula was similar to that derived by Payne and Pell [-3] in the classical 
case. The purpose of the present paper is to examine in some detail, the 
Stokes' flow problem for the case in which an axially symmetric body is 
uniformly rotating about its axis of symmetry. General solutions are 
obtained for this type of rotational motion and the special case of flow due 
to the rotation of a sphere is deduced. We then establish a simple formula 
for the couple experienced by an axially symmetric body in micropolar 
fluids in terms of the angular velocity of the flow. This formula is similar to 
that of Kanwal [-4] in the case of classical fluids. 

The theory characterizing this particular class of so-called micropolar 
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fluids, was developed by Eringen [5] in 1966 and since then it has been 
under intensive investigation. Unlike Stokes' couple stress theory [-6] 
which represents the simplest generalization of the classical theory that 
allows for polar effects, Eringen's theory introduces a kinematically 
independent rotation vector v. This theory may serve as a satisfactory 
model for a description of the flow properties of such rheologically 
complex fluids as polymeric suspensions, liquid crystals and animal blood 
for which the classical Navier-Stokes theory is inadequate. 

§2. General solution 

We now consider the Stokes' flow due to the slow steady rotation of an 
axially symmetric body in an unbounded incompressible micropolar fluid 
at rest at infinity. Such a flow in a region D exterior to the closed boundary 
B of the body, is governed by the following basic equations [5]: 

The equations of motion 

tji,j +f i  = O, mji,j + ei~ktjk + I i = O, (1) 

and the linear constitutive laws 

tij = - p a i j  + ½(2/t + x)(vi, J + vj, i) + tCeijk(COk -- Vk), 

mi~ = ~vz,fi~ J +/3v~,j + 7v j, i 
(2) 

together with the continuity equation 

V.v=O, (3) 

where tij are components of the stress tensor, mlj are the components of the 
couple stress, v is the velocity vector, v is the micro-rotation vector ,f  is the 
body force, I is the body couple, p is the pressure, 6ij is the Kronecker delta, 
eijk is the alternating tensor, (~, fl, ~, #, tc) are constants characteristic of the 
particular fluid under consideration and c9~ = ½(V x o~)i. 

Equations (1), (2), and (3) reduce to the following system of coupled 
vector differential equations governing the flow within the region D: 

- (/z + x)V × V × v+KV × v - V p + f = O ,  (4) 

( c ~ + f l + 7 ) V V ' v - T V × V × v + x V x v - 2 r v + l = O ,  (5) 

v . v  = 0. (6)  
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It should be emphasized that the quantity ~c links together, through the 
above field equations, the velocity field and the micro-rotation field and for 
this reason it is sometimes called the coupling constant. If ~c vanishes, (4) 
and (5) are decoupled and the classical Navier-Stokes theory is recovered. 

To determine the velocity, micro-rotation and pressure fields, (4), (5) 
and (6) must be solved subject to the relevant boundary conditions. Here 
we shall adopt the conditions suggested by Eringen [-5] which are 

V = V B ,  V = V B o n  B,  (7)  

where the quantities vB, v r are respectively the prescribed values of the 
velocity and micro-rotation vector at a point on the boundary B. Working 
in spherical polar co-ordinates (r, 0, q~) and assuming symmetry about the 
axis 0 = 0, 7r, we let 

v = [0 ,0 ,  v~(r, 0) ]  v = [vr(r, 0), to(r, 0), 0] .  

The continuity equation (6) is then automatically satisfied while (4) and (5) 
reduce to the following form: 

@ 8p 
8r - O, 80 - O, (8) 

(It + K)L% + KG = 0, (9) 

(~+/~+Y) - 7  

+ - -  + v4cot0 -- 2icy r = 0, 
r 

(~z + fl + ~)rs-O- + Y \ ar r / ~,Tr-r + - 21cv° = O' 

( lO) 

(11) 

(V 2 -- b2)F --- O, (13) 

L ( L  - 22)v¢, = O, (12) 

1 
where F(r, O) = V . v ,  G(r, O) = V x v ) ,  and L = V 2 

r 2 sin 2 0 
Equation (8) implies a constant pressure throughout the flow field D while 
(9), (10) and (11) yield the following system of equations: 
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(L - 22)G = 0, (14) 

w h e r e  ~2 ~c(2/, + ~c) and b 2 - 2~c 
~,Cu + ~c) ~ + / ~ + y  

From (12) it follows that if 

Lv01 = O, (L - -  ~2)/)42 ~--- 0, 

then 

Uq~ = Vffa I .3f- Vffa2 

is a solution. Using this and (9) we see that 

(15) 

(16) 

Let 

G = v~2 
K 

u¢i = w/sin 4~(i = 1, 2); 

then it can be easily verified that 

(17) 

V2uoi = sin (aLv4, i (18) 

Hence (15) becomes 

V2u4~1 = 0,  (V  2 - /~2)b/q5 2 = 0,  (19) 

We have thus reduced the mathematical problem to that of solving 
Laplace's and Helmholtz's equations whose solutions in most widely used 
co-ordinate systems are well known. Moreover, if we have any solution of 
the form u~i = H(r, 0) sin ~b, then we can immediately conclude that the 
solution to our problem is v4, i = H(r, 0). For example, a well known 
solution of Laplace's equation is given by 

co 
i , - n - I  i i i 1 u¢01= sin~b ~ [A~r"+B,~ ] [ C . P . ( ~ ) + D , Q . ( ~ ) ] ,  

n = l  

where ~ = cos0, P~(~), Q m(~) are the associated Legendre functions and 
A, 1, B, 1, C, 1, D~ are constants. 

Hence 
cx? 

v4,1= 2 [ Alr"+B~.r -"-1  1 t C 1 t ] [C,P.(~)  + ,Q,(~)]. (20) 
n = l  
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Similarly it can be shown that 

oo 
1 2 vo: = Z r-=EA.I.+~(2r) + 

n = l  

2 , 2 1 2 1 + B, K, + d,~ )] [C.P.(~) + D ,G (~)], (21) 

oo 

F(r, 3) = • r--~[Aa.I.+~(br) + 
n = l  

B 3 3 3 + .K. +~_(br)J [C.P.(~) + D.Q.(~)], (22) 

where I.+~, K.+} are the modified Bessel's functions. Hence the velocity 
field is given by 

V4~ = V41 q- V4,2, 

where the expressions for vol and re2 are explicitly given above. To obtain 
the micro-rotation components, we observe from (10), (11) and (17) that 

1 0F 1 (0re1 ) 
Vr-b  2 #r +2r  \ 30 +volc°t0 + 

+/~+K 1 (&,~ ) 
T r \ 00 +v°2c°tO ' (23) 

1 OF 1 [Ovol ) H+KI/Ove2 ) 
V°-b2 roe 2 ~ r - r  +v+lr - - - ~ r - r  + v * 2 K  r ' (24) 

Substituting (20), (21) and (22) into the above equations produces after 
some simplification, the following expressions: 

3 3 -½ v~ = ~1 ~-[C~3P~(¢) + D~Q.(¢)][A~ {br I~_~(br) - 

- (n + 1)r -I~+½(br)} - U~{br-~K,,_~(br) + 

1 -~ (n+ 1) 1 [A~r n+ + (n + )r K.+~(br)}] + ~ 2r 

B 1 n - 1  1 1 1 1 1 + ,r ][C.{~P.(~) - P._~(~)} + D,{~Q,(~) - 

( n + l )  / z + K  ~ 2 - Q~-1(¢)}] + r-~[A.I.+~(2r) + 



248 H. RAMKISSOON 

2 2 1 1 + BnKn+~(2r)J[Cn{~Pn(~) - -  Pn-I(~)} + 

2 1 1 
+ Dn {~Qn (4) - Qn_~ (~)}], (25) 

oo nr- k 
3 v° = n=,Z b2 ~ [Anln+½(br) + B3. Kn+~(br)][C3{~Pn(~) - 

- P.-I(~)} + D.3{~Qn(~) - Q n - I ( ~ ) } ]  - -  

1 1 1 1 1 1)A~rn-1 
- 2[CnPn(~) + DnQn(~)][(n + 

nB~r_n_2] # + 1¢ 2 1 2 1 - [ C n P n ( ~  ) + D . Q n ( ~ ) ]  x 
K 

x [A2.{2r-~In l(2r) - --~ -~ nr In+t(2r)} - 

- I  - BZ{2r-~Kn_t(2r) + nr -K.+~(2r)}]. (26) 

We have thus generated the complete general solution for slow steady 
axisymmetrical rotational flow. In our particular case of flow due to the 
rotation of an axially symmetric body in an unbounded micropolar 
medium, the condition at infinity demands that for all n 

while 

A~ = A .  z = A .  3 = 0 ,  

Dn 1 = D  2 = D n  3 = 0 ,  

for all n because of the singularity of the functions Q.(~) and Q I (~) along the 
axis ~ = + 1. Hence our solution will be of the form 

oo 

v4, = ~. P~(~)[Anr -"-1  -~ + B.r K.+½(2r)], (27) 
n = l  

o9 

n = l  

c.e.(¢) _~ _} 
b2 [br K,_~(br) + (n + 1)r k.+¢(br)] + 

(n + 1) [~p~(~) _ p l_x(~)] x 
+ 1,/;WJC 

FAn -n-2 /~ + K ~ 1 x L ~ - r  + K Bnr--Kn+~(2r) ' (28) 
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n Cnr - ~ 
v°=n~ 1 be~ l - f  -~2 K"+{ (br)[P"-~(¢) - ¢Pn(¢)] + 

[nAn - n - 2  fl ~- K . _½ 
+ + Bn{zr /,:. + 

L z K 

+ nr-~gn+{(2r)}l ,  (29) 

where A n, B,, C n are constants to be determined from the boundary 
conditions. We now make the following observations: 

(i) The above solutions will also be valid for the case of an axially 
symmetric system of finite bodies which slowly rotates about its axis of 
symmetry. 

(ii) As •--+ O, v~ ~ ~ AnpI, (~)r-n-t 
n = l  

which is the classical result [7]. 
(iii) The far field solution for the velocity field is similar to that for 

classical fluids since (27) implies that 

v~, = O(r - 2) as r ~ oo. 

§ 3. F low about  a rotating sphere 
As a particular case of the solution given by (27)-(29), we have for n = 1, 

V 0 = [A1 r - 2  .J7 Blr-~K~(2r)] sin0, (30) 

Vr=IAlr_3 + 2_(/~ +K)K Bd'-~K~(2r)+~ -{br-~K-~(br)+ 

+ 2rqK~(br)}lcosO, (31) 

V o = F A l r _ 3 _ . b  (p +1¢) Bl {Ar-{K~(2r) + r-kK~O~r) + L2 K 

C1 r--~ q + ~ K~(br)JsinO, (32) 

which are identical to that obtained by Rao et al. [8] for the case of slow 
steady rotation of a sphere. If the sphere rotates with a constant angular 
velocity Oo, then the boundary conditions of no-slip and no-spin lead to 
the following equations on the surface r = a: 
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ve = f2oasin0 , v r = v o = 0. (33) 

Substitution of these boundary conditions (33) into (30), (31) and (32) 
determines the arbitrary constants At, B t and C t whose values are noted 
here for future reference: 

At _ 2~20a3(/z + ~c) [(2 + 2ab + aZb2)22 + b2(1 + a2)], 
A 

Q°)'Ica~ b2 (34) 
BI = AK~()~a) ' 

2Do~.2a~b3~ + ~c) 
C1 - A K ~ ( a b )  ' 

where A = 2J~z(fl + K)(2 + 2ab + aZb 2) + b2(2/~ +/c)(1 + a2). 

Evaluation of the couple is often a troublesome problem even more so in 
the case of micropolar fluids where the couple has contributions from the 
Cauchy stress tg I as well as the couple stress rnkz which these fluids can 
sustain. In the relatively simple case of a sphere, the expression for the 
couple N has been calculated [8] and is found to be 

N = 4zc(2/~ + to)At, (35) 

where A is given by (34). Note that in the limit as ~c ~ 0, we recover the well- 
known classical result of Stokes [9], i.e., 

N c = 8~pa3~0 . (36) 

To calculate the couple for any other body would entail cumbersome 
working and so it would be useful to have a simple formula for this couple. 

Kanwal [-4] derived such a relation between the couple experienced by 
an axially symmetric body and the angular velocity of the flow for 
Newtonian fluids. With the aid of a point or concentrated couple, we now 
proceed to establish a similar relation for micropolar fluids. 

§ 4. Concentrated couple 

The mathematical technique devised in our companion paper [ 1] to obtain 
the fundamental singular solution due to a point force, consisted of a 
Helmholtz decomposition followed by a three-dimensional Fourier trans- 
form. Here however, the method of associated matrices [10] shall be 
utilized as an alternative. 
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Let 

l II 
1 0 0 X i 

I - -  0 1 , X = X 2 ,  

0 0 X 3 

Y =  
I 0 - - X  3 X 2 X 2 X l X  2 X l X  3 

X 3 0 -- X 1 , Z = X 2 X  1 X 2 X 2 X  3 
- - X  2 X 1 0 X 3 X  1 X 3 X  2 X 2 

be matrices with elements as real numbers. I fd  2 = X~ + X2 2 + X 2 and the 

superscript "t" over a matrix denotes its transpose, then the following can 

easily be verified: 

X t X  = d 2, X t y =  O, X t Z  = d2X t, 

Y X  = O, y 2  = _ d 2 l  + Z ,  Y Z  = O, 

Z X  = d 2 X ,  Z Y  = O, Z 2 = d2Z,  

X X  t = Z .  

Denot ing matrix operators  A, X, Y, Z etc. by capitals and working in 

Cartesian co-ordinates (xl, x2, x3), we let ~/c~x i = X i (i = 1, 2, 3). It then 
follows that  

V 2 = d 2, V × u = Yu and VV.u  = Zu ,  

where a vector u is represented by the column matrix {ul, u2, U3] t, The 
system of equations given by (4), (5) and (6) can now be represented in 

matrix form as 

:j A v = l , (37) 

P 

where the matrix A is given by 

[ LiI K Y  - X  

A = IcY  L 2 I  + (~z + f l ) Z  o , (38) 
X t o o 
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where L 1 = (# + K)d 2 and L 2 = ?d 2 - 21¢. 

7he solution of(37) takes the form 

Io'J = A -  1 , (39)  

and so the problem reduces to finding the inverse matrix A-1  of (38). 

After some working this is found to be 

- L 2 d 2 I  - L 2 Z  K Y X - 

Lad  2 L 3 d 2 

A 1 KY L1L f l  + {x 2 - (~ + f l )L1}Z 
- = o (40)  

L 3 L a L  4 

X t 

d2 o fl + K 

where L 3 = L~L 2 + x2d 2 and L 4 = ( .  + fl + ?)d 2 - 2~c. Substitution of 

(40)  i n t o  (39)  now produces the following Galerkin-type representations 

for the field parameters r, v, a n d  p:  

I) = V 2 1 7 V  2 - -  2K] ~ -  [TV 2 - -  2K]VV" ~ - 

- K [ ~  + f l +  7 ) V 2 -  2K]V x q~ + V~,  (41) 

r = -KVa(V x ~ )  + (u + x)V2[(a + fl + 7)V 2 - Dc]9 + 

.~_ [/(2 __ (0~ -~- f l)(f l  q- K ) V 2 ] V V . ~ o ,  (42) 

p = - V 2 [ ? ~  + K)V 2 - ~¢(2p + x)]V" ~ ,  (43) 

where ~ ,  q~ and ~b satisfy the equations 

W417(,u + x)V 2 - ~:(2# + t¢)]~ = - f ,  (44) 

V2[(a + fl + ?)V 2 - 2K] [7~ + K)V 2 - ~c(2p + ~c)]~o = - l (45) 

Viq~ = 0. (46) 

It is immediately obvious that  

V 2 p  = V'f,  
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so that in the absence of body forces, p is in general a harmonic function. 
We now examine the particular case of a concentrated couple in the 
absence of any body force in an infinite unbounded medium otherwise at 
rest. To enable us to do this, we will require the three-dimensional solutions 
of the singular equations 

2 2 2 [V z,V 4,V z + % 2 , ( v  z + a z ) ( v  a + a z ) , ( V  z+ a 2 ) (V  2 + a 2 ) (  v + a 3 ) 3 9 =  

which are given by 

1 [ 1  r 
9 = 4~-~ r ' 2 '  

exp (iaor) 

= - 6 ( x  - y)[1, 1, 1, 1, 1] (47) 

where 

exp (ialr) - exp (ia2r) 
r ' r ( a  2 - a 2)  ' 

X = (X1,  X2 ,  X3)  , 

~ exp (iasr)7 
~= 1 L~ r J (48) 

rZ 2 ( x i - y i )  z, E s [(a~ z z 2 2 -1 = = - a m ) ( a  S - - a , , ) ]  , 
i = 1  

s # m ~ n, s, m, n, = 1, 2, 3 and 6 ( x  - y )  is the Dirac delta function. 

Let 

f = 0 ,  l = N f i ( x - y )  

with N as an arbitrary constant vector acting at an arbitrary point y. It can 
be easily verified using (47) and (48) that the solutions of the equations (44), 
(45) and (46) are given respectively by 

= 0, (49) 

N 1- 1 1 1 q, / q._ _× 
4r~y( / t+K)(c~+fl+7)  2 2 b  z r b2(b 2 - 2 2  ) 

exp ( -  b r )  
x q 

r 

45=0, 

22(221_ b 2) exp ( 7  2r) j ,  (50) 

(51) 
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and consequently (41), (42) and (43) yield 

v - 4n(2/1 + ~c)V x N _1 - eXPr ( -  2r) (52) 

V - -  --~ 

N exp( -  2r) VV'N 
÷ x 

4n7 r 4nT(g + tc)(~ + fl + 7) 

F K2 1 K2 -- 22(~ _I_ fl)(fl _[_ K) exp(-)~r) 
x [ ~ r  + 22(22 - b z) r 

+ 

+ ~c2- b2(e + fl)(~ b~2-  Z ~ +~c)exp ( -  br) 1, (53) 

p = O. (54) 

These then, are the fundamental singular solutions describing the axisym- 
metric flow field due to a point couple and we shall now utilize these results 
to obtain a general expression for the couple experienced by an axially 
symmetric body in Stokes' flow. 

§ 5. Couple on an axially symmetric body 

Introducing cylindrical polar co-ordinates (R, ~, z), we let ov represent the 
velocity field due to a point couple of magnitude N acting at the origin 
along the z-direction. Hence 

where do, ~ are the usual unit vectors. 
Substitution of (55) into (52), produces the following simplified ex- 

pression for ~v: 

o r  

NIR 

N 
ra~"a'~ = 4n(2# + K) 

Rexp( -2r )  R)~exp ( -  ~r)~ 
r 3 r 2 J '  

[1 - e x p ( - 2 r ) - r 2 e x p ( - 2 r ) ] ,  (56) 

where c(2 is the angular velocity. 
As x ~ 0, cv ~ 0, which is expected for classical fluids. 
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In order to establish the required formula, an appeal is made to an 
argument advanced by Brenner [2] and utilized for the drag formula [1]. 
The argument is the following: If the medium is unbounded, at a 
sufficiently large distance from the obstacle, the flow field must become 
identical to that which would be generated by the action of a point couple 
equal in magnitude to the couple on the obstacle, provided the fluid is at 
rest at infinity. Hence if N is the couple on any axially symmetric body 
rotating uniformly about its axis of symmetry and £2 is the angular velocity 
associated with the flow generated, then 

lim r3c£2 = lim r3£2. (57) 
r--~ co r--+ oo 

This, together with (56), produces the desired result 

N = 4zr(2Ct + ~c) lira r3£2. (58) 
g--~ oO 

With the help of this formula, one can evaluate the couple experienced on 
any axially symmetric body simply from a knowledge of the angular 
velocity of the flow and a simple limiting process. 

If we put tc = 0, (58) reduces to the classical formula 

N O = 8~¢t lim r3f2 (59) 
r---~ oo 

obtained by Kanwal [4]. It is of interest to compare (58) and (59) with the 
corresponding drag formulae given respectively by the author [1] and 
Payne and Pell [3]. They are: 

r~ 
D = 47~(2p + zc) lim R2 

r--~ oo 

r~, 
D O = 82z/.t lim R 2  , 

?--* o0 

where N is the stream function. 
As an application of our main result (58), we now deduce the couple on a 

rotating sphere. From (30), we see that the angular velocity of the flow field 
is of the form 

- I  
= A i r  -3 + Blr  -K~(2r), 
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where the constants A 1 and B 1 are given explicitly by (34). With the aid 
of (58), the couple experienced by the sphere is easily obtained as 

N : lim r3g-2 = 4z~(2/z + x)A 1 
r--+ oo 

which is identical to (35). 
In conclusion we make the following observations in the case of a sphere 

and we note that these observations are similar to those for the drag 
problem [1]: 

(i) F rom (35) and (36), it can be verified that N / N  o > 1. In fact, we can 
establish the following bounds: 

/¢ /¢ 
1 + = - - < N / N  o < 1 + - - .  

z#  lz 

(ii) The couple increases with K//~, so that in the case of very strong 
coupling (~c >>/~), the couple becomes infinitely great. 

(iii) In comparison to the classical theory, micropolar fluid theory gives 
rise to an increased couple. Whether an increased couple is experienced by 
any axisymmetric body in the case of micropolar theory, is a problem 

worth investigating now that a simple formula for the couple has been 

obtained. 
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