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0-1-sublattices of a bounded distributive lattice and certain preorder relations on its Priestley space, 
which are called lattice preorders. This duality is a natural generalization of the Boolean 
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Introduction 

In a classical paper, B. J&son and A. Tat-ski [ 121 showed that a Boolean algebra 
endowed with a family of join-preserving operations can be represented as a 
subalgebra of a power set ‘$3(X), in such a way that the operations are in 
correspondence with certain relations defined on the set X. Later on, P. R. Halmos 
[9], [lo] characterized the relations between Boolean spaces (i.e., totally discon- 
nected and compact topological spaces) which correspond to O-preserving join- 
homomorphisms between the corresponding algebras of clopen (i.e., closed and 
open) sets. These relations were called Boolean relations. F. B. Wright [21] com- 
pleted these results by showing that the classical Stone duality between Boolean 
algebras and homomorphisms and Boolean spaces and continuous functions can be 
extended to a duality between Boolean algebras and O-preserving join-homomor- 
phisms and Boolean spaces and Boolean relations (see also [A). 
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On the other hand, there is a duality between the subalgebras of a Boolean 
algebra and certain equivalence relations defined on its Boolean space (see, for 
instance, [14]. Note that in [14] the duals of the subalgebras are called Boolean 
equivalences, a nomenclature which is in conflict with the one previously established 
by Halmos). 

The connections between the duality for join-homomorphisms and that for 
subalgebras is given by the quantifiers. A quantzjier on a Boolean algebra A is a 
closure operator on A such that its range is a subalgebra of A. The dual of a 
quantifier Q considered as a O-preserving join-homomorphism is an equivalence 
relation which is also the dual of the range of Q. 

Stone duality for Boolean algebras has been generalized by H. A. Priestley ([ 161, 
[ 171, see also the survey paper [ 181) to a duality between bounded distributive 
lattices and certain ordered topological spaces, which are known as Priestley spaces 
(see $1). It was shown in [5] that the Boolean duality between quantifier ranges and 
equivalence relations can be extended to a duality between quantifiers on distribu- 
tive lattices and certain equivalence relations on the corresponding Priestley spaces. 
Moreover, L. Vrancken-Mawet [20] established a duality between sublattices which 
are closed under relative complementation and certain equivalence relations on the 
corresponding Priestley spaces, while M. E. Adams [l] discovered a duality between 
sublattices and certain subsets of Priestley spaces. On the other hand, G. Hansoul 
[ll] extended some of the results of [12] to bounded distributive lattices. 

The aim of this paper is to consider in a systematic way the extension of both 
kinds of Boolean dualities to Priestley duality. In Section 1, after recalling some 
definitions and the main facts about Priestley duality, we introduce the notion of a 
Priestley relation between Priestley spaces, and we show that there is a duality 
between the category of bounded distributive lattices and O-preserving join-homo- 
morphisms and the category of Priestley spaces and Priestley relations. When 
restricted to the category of bounded distributive lattices and O-l-preserving 
homomorphisms, this duality yields essentially Priestley duality, and when restricted 
to the subcategory of Boolean algebras and O-preserving join-homomorphisms, it 
coincides with the Halmos-Wright duality. In Section 2 we establish a duality 
between 0-1-sublattices of a bounded distributive lattice and certain preorder 
relations on its Priestley space, which are called lattice preorders. This duality is a 
natural generalization of the Boolean case, and is strongly related to that of Adams 
[I]. Finally the relations among this duality and those developed in [20] and [ 51 are 
considered. 

P. D. Bacsich [2] showed that a theorem of A. Monteiro [ 151 on the extension of 
Boolean homomorphisms dominated by join-homomorphisms is effectively equiva- 
lent to the well known theorem of R. Sikorski on the extension of Boolean 
homomorphisms. S. Graf [7] derived a slightly more general form of Monteiro’s 
theorem from a general selection theorem for Boolean relations between Boolean 
spaces. Since we do not have in mind any interesting application, we do not try to 
generalize this selection theorem, but in the Appendix we show that the distributive 
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lattice version of a theorem on the existence of certain minimal join-homomor- 
phisms, which plays an important role in the proof of the selection theorem in [7], 
is in fact equivalent to the axiom of choice. We also establish the equivalence of a 
distributive lattice version of Monteiro’s theorem given in [4] with a theorem on the 
existence of some homomorphisms on bounded distributive lattices given in [2]. The 
equivalence between the main theorem of [4] and Sikorski extension theorem was 
also considered in [8] (but note that in the statement of the lattice extension 
theorem on p. 51 of [ 81, the fundamental condition (C) (see statement (iii) in the 
Appendix) is missing). 

1. Join-Homomorphisms and Priestley Relations 

In this section L, M will denote bounded distributive lattices. By a join-homomor 
phism from L into A4 we understand a mapping j: L --) M such that j( 0) = 0 and 
j(a v 6) = j(a) v j(b). The meet-homomorphisms are defined dually. A mapping 
h : L + M is a homomorphism if and only if it is both a join-homomorphism and 
a meet-homomorphism. The category of bounded distributive lattices and join- 
(meet-)homomorphisms will be denoted by $(A), and 9 will denote the subcate- 
gory of bounded distributive lattices and homomorphisms. Note that the 
isomorphisms in these categories are the same: the one-to-one and onto homomor- 
phisms. 

Given a relation R s X x Y, for each 2 E 1, R(Z) will denote the image of Z by 
R, i.e., 

R(Z) = (y E Y 1 there is x E Z such that (x, y) E R} 

and for each Z E Y, R-‘(Z) will denote the inverse image of Z by R, i.e., 

Note that the domain of R is R - l(Y), in symbols, dam(R) = R-‘(Y). When x E X 
(y E Y), we are going to write R(x)(R-l(y)) instead of R((x))(R-‘((y))). 

Let X be a poset ( =partially ordered set) and Y E X. We shall denote by 
(Y]([ Y)) the set of all x in X such that x < y ( y 6 x) for some y E Y. Y is increasing 
(decreasing) if Y = [Y) (Y = (Y]). 

A totally order-disconnected topological space is a triple (X, <X, r) such that 
(X, <X) is a poset, (X, r) is a topological space and given x, y in X such that x 6 y, 
there is a clopen ( =closed and open) increasing set U such that x E U and y $ U. 
A Priestley space is a compact totally order-disconnected topological space. Given 
a Priestley space X, D(X) will denote the lattice of increasing clopen subsets 
of x. 

Given a bounded distributive lattice L, X(L) will denote the Priestley space of L, 
i.e. X(L) is the set of prime filters of L, ordered by inclusion and with the topology 
having as a sub-basis the sets of the form oL(a) = {P E X(L) 1 a E P} and 
X(L)\a,(a) for each a EL. 
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It was shown by H. A. Priestley [ 161, [ 17] ( see also the survey article [ 181) that 
a,: L + D(X(L)) is a lattice isomorphism and that the mapping E,: X + X(D(X)) 
defined by the prescription Ed = {U E D(X) 1 x E U} is both a homeomorphism 
and an order isomorphism. 

1.1. LEMMA. Let jE$(L,M), QEX(M) and TcL. Zf given t ,,..., tk in T, 
there is an a E j-‘(Q) such that a < t, A . . . A tk, then there is a P E X(L) such that 
TcPsj-‘(Q). 

Proof. Note first that since Q is a prime filter of M, then Z = Mb-‘(Q) is an 
ideal of L. Let F = F(T) be the filter generated in L by the subset T. Since j-‘(Q) 
is an increasing subset of L, the hypothesis on T implies that F c j-l(Q), i.e. 
FnZ = 0. Therefore, by the Birkhoff-Stone Theorem [3, 111.4. Theorem 11, there is 
a prime filter P of L such that F E P and P n Z = 0. n 

1.2. DEFINITION. Let X and Y be Priestley spaces. A relation R G X x Y is said 
to be a Priestley relation provided the following conditions are satisfied: 

(i) For each x E X, R(x) is a closed and decreasing subset of Y. 
(ii) For each V E D(Y), R -l(V) E D(X). 

A Priestley relation is said to be functional in case dam(R) = X and R(x) has a 
greatest element for each x in X. 

We are going to denote by g(X, Y) the set of all Priestley relations R E X x Y, 
and by 9(X, Y) the subset of functional Priestley relations, where X and Y are 
Priestley spaces. 

REMARKS. Let R E 9(X, Y). Since Y E D(Y) and dam(R) = R-‘(Y), we see that 
dam(R) E D(X). Moreover, R is a closed subset of the product space X x Y. 
Indeed, suppose (x, y) 4 R. Then y $ R(x), and by condition (i) in Definition 1.2 
there is V E D(Y) such that y E I/ and Vn R(x) = 8. By condition (ii) in the same 
definition, R-‘(V) E D(X). Therefore (X\R-‘(Y), V) is a neighborhood of (x, y) 
disjoint from R. 

1.3. EXAMPLES. (i) The empty relation is trivially a Priestley relation. 
(ii) Let X, Y be Priestley spaces. If f: X + Y is a continuous and monotonic 

function, then R, = ((x, y) E X x Y ) y <f(x)} E 9(X, Y). Indeed, R,-(x) = (f(x)], 
which is a closed [ 18, Proposition 2.61 and decreasing subset of Y and 
RT’( V) = f-‘(V) for all increasing subsets of Y. Conversely, with each 
R E 9(X, Y) associate the function fR: X + Y by defining fR(x) as the greatest 
element of R(x). Since for each U E D(Y), fg ‘( U) = R-‘(U) E D(X), it follows that 
fR is continuous and monotonic. It is plain that R = Rf, and f = fRf. 

(iii) In particular, for each Priestley space X, the dual order ax E X x X is the 
functional Priestley relation associated with the identity function on X. 

(iv) Let L, M be bounded distributive lattices. For each j E f(L, M), 
i* = {(Q, P) E X(M) x X(L) 1 P 5 j-‘(Q)} is a Priestley relation, and dom( j*) = 
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{Q E X(M) 1 j( 1) E Q}. Indeed, it is plain that j*(Q) is a decreasing closed subset of 
X(M) for each Q E X(L) and that j*- ‘(~~(a)) E o,(j(a)) for each a E L. Hence to 
prove thatj* is a Priestley relation we need to show that o,(j(u)) cj*-‘(~~(a)) for 
each a E L. Let Q E cr,(((u)). Then a l j-l(Q). By Lemma 1.1 with T = {a}, there 
is a prime filter P of M such that a E P and P &j-‘(Q). This implies that 
j*(Q) no,(u) # 8, i.e. that Q ~j*-‘(aL(u)). Finally, Q l j*(X(L)) if and only if 
there is P E X(L) such that P ~j-‘(Q), and by Lemma 1.1, the last condition holds 
if and only ifj-‘(Q) #8, i.e. if and only if j( 1) E Q. 

(v) j E $(L, M) is a homomorphism if and only if j* E 9(X(M), X(L)). For, 
suppose first that j is a homomorphism. For each Q E X(M), we have j*(Q) = 
(j-‘(Q)], because j-‘(Q) E X(L). Therefore j* E 9(X(M), X(L)). To prove the 
converse, suppose now that j* E 9(X(M), X(L)). Note first that this implies 
WW = dom(j*) = {Q E X(M) IAl) E Q}, i.e. j( 1) = 1. Let Q E X(M). There is 
PO E X(L) such that P ~j-l(Q) if and only if P E PO. In particular, P,, =j-l(Q). 
Suppose there is a ~j-‘(Q)\P,. Then we could apply Lemma 1 .l with T = P,, u {u} 
to prove the existence of a P E X(L) such that P,, c P ~j-l(Q), a contradiction. 
Therefore j-‘(Q) E X(L) for each Q E X(M), and it is well known that this implies 
that j is a lattice homomorphism. n 

REMARK. When X and Y are Boolean spaces (i.e. Priestley spaces in which the 
order relation is the identity), Priestley relations coincide with the Boolean relations 
defined by Halmos [9]. Note that a Boolean relation is functional if and only if R(x) 
is a singleton for each x in X, i.e., if and only if R is a function from X into Y. 

1.4. LEMMA. Let X and Y be Priestley spaces. For each R E 9(X, Y) and elements 
s, t of X, s 6 t implies R(s) E R(t). 

Proof. Suppose s < t and take y $ R(t). Since R(t) is closed and decreasing in Y, 
there is V E D(Y) such that y E V and Vn R(t) = 8. This last equality means that 
t # R -i(V), and since by condition (i) in Definition 1.2, R-‘(V) is an increasing 
set, we also have s $ R-‘(V), that is, Vn R(s) = 8, therefore y $ R(s). n 

Note that the composition of Priestley relations is a Priestley relation. Indeed, 
suppose R E 9(X, Y) and S E S( Y, Z). It is plain that the composite relation SR 
satisfies property (ii) in Definition 1.2. For each x E X, 

Wx) = MUW x Z) nS) = u {S(Y) 1 Y E R(4). 

Since by the remark following Definition 1.2, S is a closed subset of Y x Z, the first 
equality implies that SR(x) is closed in Z (cf. [ 10, (a) p. 165]), and the second one 
that it is decreasing. Therefore SR E 9(X, Z). On the other hand, for each 
R E S(X, Y), we have that R ax = R and ay R = R. Indeed, for each x in X, by 
Lemma 1.4 R a.(x) = u {R(t) 1 x 3 t> = R(x), and by (i) in Definition 1.2 
a,R(x)=U{(s] IsER(x)}=R(x). F rom these remarks we see that we can define 
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the category 9’ whose objects are the Priestley spaces and whose morphisms are the 
Priestley relations. The subcategory formed by the same objects but having the 
functional Priestley relations as morphisms will be denoted by B,,. It follows from 
Example 1.3 (ii) that 9,, is equivalent to the category of Priestley spaces and 
continuous monotonic functions. 

Our next task will be to show that B is naturally equivalent to the opposite of the 
category $. 

1.5. LEMMA. (i) For each R E g(X, Y), the correspondence U H R-‘(U) defines a 
join-homomorphism R * : D(Y) + D(X), and R*(Y) = dam(R). 

(ii) lfj E f(L, M) and k E f(M, N), then (kj)* =j*k*. 
(iii) If R E 9(X, Y) and S E 9’( Y, Z), then (SR)* = R*S*. 
(iv) Ifj E f(L, M), then for each a E L, j**(a,(a)) = a, (j(a)). 
(v) Zf R E W(X, Y), then for each x E X and each y E Y, (x, y) E R if and only if 

(Q(X), -+(Y)) E R**. 
Proof. (i) It is an immediate consequence of property (ii) in Definition 1.2. 
(ii) It is easy to check that j*k* E (kj)*. To prove the other inclusion, suppose 

(S, P) E (kj)*. Hence P zj-‘(k-‘(S)), i.e.j(P) c k-‘(S). Let bl, . . . , b, be inj(P). 
Then there are a,, . . . , ak in P such that b, =j(a,), i = 1, . . . , k. Since 
a=a, A*+ . n ak E P, we can apply Lemma 1.1 with T =j(P) to conclude the 
existence of Q E X(L) such that j(P) G Q E k-‘(S), and this implies that 
(S, P) Ej*k*. 

(iii) It follows from the well known fact that (SK)-‘(W) = K-‘(S-‘(W)) for 
each WE Z. 

(iv) By Lemma 1.1 with T = {a}, Q E a, (j(a)) is equivalent to the existence 
of a P E X(L) such that a E P ci-i(Q). This condition is equivalent to 
i*(Q) n CL(a) # 8, which in turn is equivalent to Q Ej**(o,(a)). 

(v) By condition (i) in Definition 1.2, (x, y) 4 R if and only if there is V E D(Y) 
such that y E V and V n R(x) = 0. This is equivalent to V E .sy (y) and R*(V) = 
R-‘(V) # &x(x), which is equivalent to V E sv( y) and Y 4 R*-‘(Ed), which is 
equivalent to (&x(x), sy(y)) # R**. n 

It follows from Example 1.3 (iv) and properties (i)-(iii) in the above lemma that 
we can define contravariant functors X: g +9 and D: 9-f by defining 
X(j) =j* for each join-homomorphism and D(R) = R* for each Priestley relation. 
Moreover, since for each bounded distributive lattice L, aL: L + D(X(L)) is an 
isomorphism in f, property (iv) means that the composite functor DX: $ +$ is 
naturally equivalent to the identity functor, the natural equivalence being given by 
the isomorphisms err. On the other hand, since for each Priestley space X, ax is both 
a homeomorphism and an order isomorphism from X onto X(D(X)), it follows that 
PX = R,, is an isomorphism in 8. Let us see that these isomorphisms define a 
natural equivalence from the composite functor XD to the identity functor in 9. We 
need to prove that for each pair of Priestley spaces X and Y and each R E 9(X, Y), 
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R**p, = pyR. Suppose (x, &v(y)) E R**pX. This means that there is t E X such that 
(xv ~~(0) E px and (~X(Oy MY)) E R **. It follows from the definition of px and 
Lemma 1.5 (v) that these conditions are equivalent to sX(t) < .sX(x) and (t, y) E R, 
and by taking into account that .sX is an order isomorphism and Lemma 1.4 we 
obtain that (x, y) E R. Since obviously (y, +.(y)) E py, we have (x, cy(y)) E pyR. 
Therefore R**px E pUR. A similar argument (which uses property (i) in Definition 
1.2 instead of Lemma 1.4) shows that p,R E R**p,. Thus we have proved the 
following: 

1.6. THEOREM. The categories 9 and B”P are naturally equivalent. More pre- 
cisely, the composite functors DX and XD are naturally equivalent to the identity 
functors of $ and 9, respectively. The corresponding natural equivalences are a 
and p. n 

In the above proof we have used the fact that R, is an isomorphism in 9’ provided 
that f: X + Y is both a homeomorphism and an order isomorphism. In the next 
proposition we show that all isomorphisms in B are of this form. 

1.7. PROPOSITION. R E 9(X, Y) is an isomorphism in the category 9’ if and only 
if there is a homeomorphism f from X onto Y which is also an order isomorphism and 
such that R = R/ 

Proof. Let R E 9(X, Y) be an isomorphism. Since D is a (contravariant) functor, 
D(R) = R* is an isomorphism in f, i.e., a one-to-one homomorphism from D(Y) 
onto D(X), and by Examples 1.3 (v) and (ii), there is a continuous and monotonic 
g: X(D(X)) +X(D(Y)) such that-R** = R,. It is easy to check that g is in fact an 
order isomorphism and a homeomorphism. Therefore f = ey’gsX is an order 
isomorphism and a homeomorphism from X onto Y. By Lemma 1.5 (v), (x, y) 
E R if and only if (Ed, sy(y)) E Rg. This last condition is equivalent 
to y < E ; ’ (g(cx (x))), i.e., equivalent to (x, y) E R,. The converse implication is 
obvious. n 

REMARK. By Example 1.3 (v), the restriction X, of the functor X to the 
subcategory 9 is a contravariant functor of this category into B,,, and it is easy to 
check that the functors D and X, establish a natural duality between the categories 
D and 8,. Since, as noted above, 8, is equivalent to the category of Priestley 
spaces and continuous order-preserving functions, in this way we obtain essentially 
Priestley duality. 

We now turn our attention to the case in which Y = X. 

1.8. LEMMA. The following properties hold true for each R E 9(X, X) and 
UeD(X): 

(i) U E R*(U) if and only if R is reflexive. 
(ii) R*(R*(U)) E R*(U) if and only if R is transitive. 
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Proof (i) Each of the following conditions is equivalent to the next one: (1) 
(x, x) 4 R, (2) x 4 R(x), (3) there is U E D(X) such that x E U and U n R(x) = 8 
and (4) there is U E D(X) such that U $ R-‘(U). 

(ii) It is obvious. n 

2. Relations Associated with Sublattices 

In this section we continue to denote by L a bounded distributive lattice, and X will 
denote a Priestley space. 

For each M E L, define M” = {(Q, P) E X(L) x X(L) 1 P nM E Q} and for each 
RsXXX,~~~~~~R#=(LJED(X)IR-‘(U)~U}. 

REMARK. By Lemma 1.8 (i), if R is reflexive, then R + = {U E 
D(X) 1 R-‘(U) = U}. 

2.1. LEMMA. The following properties hold true for each M s L: 
(i) M # is a preorder ( = reflexive and transitive) relation on X(L). 
(ii) For each a E M, M# -‘(~~(a)) c aL(a). 
(iii) Zf M is a 0-1-sublattice of L, then M # -‘(~~(a)) c oL(a) implies a E M. 
Proof. (i) is obvious. To prove (ii), let a E M. If P E M# -‘(~~(a)), then there is 

Q E oL(a) such that Q nM G P. Since a E Q nM, we have a E P, i.e., P E aL(a). To 
prove (iii), take a 4 M. Let F be the filter of L generated by [a) n M. Since 
(a] nF = 8, by the Birkhoff-Stone theorem there is a P E X(L) such that 
[a) n M c P and a $ P. Let Z be the ideal of L generated by (L\P) n M. Since 
In [a) = 0, again by the Birkhoff-Stone theorem there is Q E X(L) such that a E Q 
and Q n M n (L\P) = 8. This shows that P E M # *(oL(a)) and P $ oL(a). n 

2.2. LEMMA. The following properties hold true for each R E X x X: 
(i) R # is a 0-1-sublattice of D(X). 
(ii) If(x,y) E R, then (+(x),+(y)) E RX#. 
(iii) Zf R satisfies the condition: (I) Given x, y in X such that (x, y) # R, there is 

U E R # such that y E U and x $ U, then (E,(X), sX( y)) E R # # imphes (x, y) E R. 
Proof (i) is very easy to check. To complete the proof, note first that 

(+C4 EX(Y)) 4 R # # if and only if there is U E R # such that y E U and x 4 U. 
Since this last condition implies y $ R(x), we have (ii), and (iii) is now 
obvious. n 

Motivated by (iii) in the above lemma, we introduce the following: 

2.3. DEFINITION. A lattice preorder on .X is a preorder relation defined on X 
which satisfies property (Z). 
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2.4. THEOREM. (i) For each M c L, M # # = aL(M) if and only if M is a 
0- l-sublattice of L. 

(ii) ForeachRzXxX,R##= {(%(x), h(y)) 1 (x, y) E R} ifand only ifR is a 
lattice preorder on X. 

Proof. (i) If M is a 0- 1-sublattice of L, it follows from (ii) and (iii) in Lemma 
2.1 that M # # = a,(M). On the other hand, by (i) in Lemma 2.1, M# is a 
preorder on X(L), and then by (i) in Lemma 2.2 it follows that M # # is a 
0- 1-sublattice of D(X(L)). Since CJ~ is an isomorphism, if M # # = a,(M), then M 
is a 0- I-sublattice of L. 

(ii) If R is a lattice preorder on X, it follows from (ii) and (iii) in Lemma 2.2 that 
R # # = ((Q(X), sx(y)) 1 (x, y) E R}. On the other hand, by (i) in Lemma 2.2, R % 
is a sublattice of D(X), and then by (i) in Lemma 2.1 R # # is a preorder on 
X(D(X)). Therefore, R # # = {(.+(x), .sX( y)) 1 (x, y) E R} implies that R is a pre- 
order on X, and since R # # satisfies (I) (see the proof of Lemma 2.2), it follows 
that R also satisfies (I). n 

Since for each family {R, : i E Z> of relations on X, U { Ri# : i E Z} E ( n (R, : i E Z}) # , 
it follows that the lattice preorders on X, ordered by inclusion, form a complete 
lattice, which will be denoted by O(X). We will denote by 9’(L) the lattice of 
0- 1-sublattices of L. 

Let M, N be in Y(L). It is obvious that M c N implies N # E M # . Suppose now 
that N# G M# and let a EM. By (ii) in Lemma 2.1 M#-‘(o,(a)) co,(a), and 
since N# -‘(~~(a)) E M# - ‘(o,(a)), by (iii) in the same lemma a E N. Hence 
M E N if and only if N # c it4 # . On the other hand, let R be a lattice preorder on 
X(L), and let M = a,‘(R “) = {a E L 1 R-‘(o,(a)) E aL(a)}. Since cL is an isomor- 
phism, by (i) in Lemma 2.2 M E Y(L), and by condition (I), M # = R. Therefore 
we have proved the following: 

2.5. THEOREM. The correspondence M H M# establishes an anti-isomorphism 
from the lattice Y(L) onto the lattice Q(L). n 

Note that 

S(M) = M# -‘\GxCLj = ((P,Q)EX(L)XX(L)IP~MEQ~~~P$Q} 

is the separating set of the subspace M introduced by Adams [ 11. The connection 
between S(M) and M was established by considering essentially the equivalence 
M’ = M # n M # - ’ (which is the kernel of the dual mapping of the inclusion 
M C, L) and showing directly that the quotient set X(L)/M’, endowed with the 
quotient topology and with the order induced on the equivalence classes by M # - ‘, 
is a Priestley space, order isomorphic and homeomorphic to X(M) (see [ 18, p. SO]). 

As particular cases of lattice preorders we can consider lattice orders and lattice 
equivalences. 
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2.6. THEOREM. The following propositions hold true for each M E Y(L): 
(i) M# is an order if and only if for each prime Jilter P of M there is exactly one 

prime jilter Q of L such that P = Q n M. 
(ii) M# is an equivalence if and only if M is a Boolean sublattice of the center 

of L. 
Proof (i) is obvious. To prove (ii) observe first that M is a Boolean sublattice of 

the center of L if and only if it is a Boolean algebra. Suppose now that M is a Boolean 
algebra and that (P, Q) E M # . Since Q n M and P n M are maximal filters of M, 
we must have Q n M = P n M, and (Q, P) E M # . Suppose now that M is not a 
Boolean algebra. Then by a well known theorem of Nachbin [3, III.6 Theorem 31 
there are prime filters p, q of M such that p c q. If P, Q are prime filters of L such 
that P n M =p and Q n M = q (see [3, III.6 Theorem S(ii)], we have that 
(P,Q)EM# and(Q,P)$M#. w 

REMARK. From (ii) in the above Theorem we obtain the well known correspon- 
dence between subalgebras of a Boolean algebra and equivalences on its Stone space 
satisfying property (1) (see [14, $8.21). 

For each j E $(L, L), let M, = (a E L Ij(a) < a}. It is easy to check that M, E 
Y(L), and thenj# = Mj# is a lattice preorder associated withj. The mappingj ~j # 
is neither one-to-one nor onto. Indeed, if k(a) = a v j(a), then Mk = 
{a~L~k(a)=a}andM~=M~.foreachn~l.IfL={O}LI(a}LIZ~,whereZ~ 
denotes the negative integers, a $ Z and II indicates ordinal sum, then 
M = L\(a) E Y(L) and there is no j E /(L, L) such that M = M,. 

In general j* ~j # . We are going to investigate under which conditions j # ~j* 
holds. We start by the following: 

REMARK. Let M E Y(L). It is easy to check that M”(P) is a closed decreasing 
subset for each P E X(L). Moreover, a simple compactness argument shows that 
M # ~ ‘(K) is a closed increasing set for each closed K E X(L). Therefore M # is a 
Priestley relation if and only $M # - ‘(oL(a)) is an open subset of X(L) for each a E L. 

Recall that an additive closure on L is aj E $(L) such that a <j(a) andj(j(a)) =j(a) 
for every a E L. The image ofj,j(L), is in Y(L), and for each a E L,j(a) is the smallest 
element in the set [a) nj(L) (see [ 3, II.4 Theorem 111). The set of all additive closures 
on L will be denoted by g(L). 

A quanttjier on L ([ 191, [5]) is an additive closure j such that j(j(a) A b) = 
j(a) A j(b) for all a, b in L. The set of quantifiers on L will be denoted by d(L). 

2.7. THEOREM. The following are equivalent conditions for each j E f(L, L): 
(i) j E W(L). 
(ii) j # E j*. 
(iii) j# = j*. 
(iv) j* is a preorder. 
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Proof. Suppose j E V(L) and let P nM, E Q. Since a <j(a) EJ’(L) = M,, 
P &j-‘(Q). Therefore (i) implies (ii). Since it was already observed that in general 
i*zj#, ( 1 ~1 ( ), d t ii im ies iii an i is obvious that (iii) implies (iv). Finally, suppose j* 
is a preorder on X(L). By Lemma l&j** E W(D(X(L))), and j = a,j**a;’ E V(L). 
Hence (iv) implies (i). n 

2.8. COROLLARY. The correspondence j w j* defines an anti-isomorphism from 
the lattice g(L) onto 0(X(L)) nB(X(L), X(L)), considered as a sublattice of 

~cw)). n 

2.9. THEOREM. Let M E Y(L). There exists j E W(L) such that M = Mj if and 
only if M # is a Priestley relation. 

Proof. If M = M,, with j E W(L), then by Theorem 2.7 j* = j # = M # . Hence 
M # E 9(X(L), X(L)). Suppose now that M # is a Priestley relation. Since it is a 
preorder, it follows from Lemma 1.8 that M # * E %(D(X(L))). Therefore the 
composition ai ‘M # *or, = j E V(L). Moreover, by (ii) and (iii) in Lemma 2.1, 
M # *((T&Z)) c cr.(u) if and only if a E M. Hence M = M,. n 

REMARK. Let L = (0) LIZ+ LIZ- and j: L + L be defined by j(x) = x for 
x~M={O}LIZ-andj(x)=x+lforx~Z+.Thenj~$(L,L),M=M~,butj# 
is not a Priestley relation on X(L). 

By taking into account Theorem 2.6(n) we have: 

2.10. COROLLARY. Let M E Y(L). Then M # is a Priestley equivalence if and 
only if M is a Boolean sublattice of the center of L and there is j E W(L) such that 
j(L) = M. n 

Note that a lattice equivalence E satisfies the condition: If (x, y) 4 E, then there are 
U, V in E # such that x E U, y $ U, x # V and y E V. An interesting class of 
equivalences satisfying a weaker condition was identified by Vrancken-Mawet 1201 
by the following: 

2.11. DEFINITION. An equivalence relation E on X is said to be a congruence 
provided (x, y) # E implies that there is U E E # such that x E U and y $ U or there 
is V/EE# such that x $ V and y E V. 

Recall that M E Y(L) is closed under relative complementation provided for each 
b E L, if there is a E A4 such that a v b E M and a A b E 44, then b E M. 

2.12. LEMMA. If E is a congruence on a PriestIey space X, then E# is closed under 
relative complementation. 
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Proof. By Lemma 2.2(i), E * E Y(D(X)). Let V E D(X) and suppose there is 
UeE# suchthat UuVcE# and UnV~E~.SinceAt+E(A)isaquantifieron 
the lattice of all subsets of X(L), we have: 

UuV=E(U)uE(V)=UuE(V) (1) 

and 

UnV=E(E(U)nV)=E(U)nE(V)=UnE(V) (2) 

and from (1) and (2) it follows V = E(V), i.e. V E E # . n 

2.13. LEMMA. If M E 9’(L) is closed under relative complementation, then 
M’ = MS nM # -’ is a congruence on X(L), and M’# = o,(M). 

Proof. Let M E Y(L). Since M’-‘(A) E M# - ‘(A) for each A E X(L), by 
Lemma 2.l(ii), Me-‘(a,(a)) G crL(a) for each a EM. Suppose now that a E L\M 
and let F=(~EMI a v b E M). Since F is a proper filter of M, the set F = 
{Q E X(M) 1 F E Q} ordered by reverse inclusion is inductive and non-empty, and 
by Zorn’s lemma there is a maximal element R in F. We are going to show that the 
following two properties hold, where [A) and (A] denote respectively the filter and 
the ideal of L generated by A G L: 

F’) n W\R) ” {a>1 = 8 (1) 

and 

[F u {a}) n (M\Rl = 8. (2) 

Suppose ( 1) does not hold, and let x E [F) n ((M\R) u {a}]. Then there are f E F and 
m E M\R such that f < x < a v m. This implies that f A (a v m) = f E M, and since 
f v a v m E M, we have a v m E M, i.e. m E F E R, a contradiction. The proof of 
(2) is similar. It follows from (1) and the Birkhoff-Stone theorem that there is 
P~X(L)suchthatF~P,a~PandPnMcR.SinceF~PimpliesFnM~F,we 
have P n M = R. Analogously, from (2) it follows that there is Q E X(L) such that 
a E Q and Q n M = R. Hence we have shown the existence of a P E CL(a) and a 
Q E X(L)\a,(a) such that (P, Q) E M’, which means that Me-‘(o,(a)) $ gL(a). 
Consequently, if M is closed under relative complementation, then M’” = or,(M), 
and this equality implies that M” is a congruence on X(L). n 

It follows from Lemma 2.13 that for members M, N of 9(L) closed under relative 
complementation, M E N if and only if N’ c M’. Moreover, it follows from 
Lemma 2.12 that if E is a congruence on X(L), then M = a,‘(E#) is closed under 
relative complementation in L, and that M’ = E. Therefore we have proved the 
following theorem, first established by L. Vrancken-Mawet in [20] by a different 
method: 
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2.14. THEOREM. The correspondence M H M’ establishes an antiisomorphism 
from the sublattice of 9’(L) f ormed by the elements closed under relative complemen- 
tation, onto the lattice of congruences on X(L). 

2.15. DEFINITION. A Q-congruence on a Priestley space X is a congruence E 
such that E(U) E D(X) for all U E D(X). 

It follows from [ 15, Lemma 2.51 that an equivalence relation E on a Priestley space 
X such that E(U) E D(X) for all U E D(X) is a Q-equivalence zf and only zf E(x) is 
closed for each x E X. Therefore, we have that a Q-congruence is a Priestley 
equivalence if and only zf E(x) is a decreasing subset of X for each x E X. 

The next theorem follows at once from 52 in [5]: 

2.16. THEOREM. Let M E Y(L). There is j E Q(L) such that j(L) = M if and only 
if M’ is a Q-congruence on X(L). n 

REMARK. Let M E Y(L) be closed under relative complementation. The existence 
of j E q(L) such that j(L) = M does not imply that M’ is a Q-congruence, as the 
following example shows: Let K be the three-element chain 0 < a < 1, L = K x K 
and M = ((0, O), (a, 01, (La), (1, I>>. w 

Appendix 

It was shown in [7, Proposition 3.31 that when L and M are Boolean algebras, the 
homomorphisms from L to M are the minimal elements in the set $(L, M) with the 
pointwise order. This result plays an important role in the proof of a general 
selection theorem for Boolean relations [7, Theorem 6.21, which in turn is used [7, 
Corollary 9. lo] to prove a generalized version of a theorem of A. Monteiro [ 151 on 
extension of homomorphisms on Boolean algebras (see also [2]). 

In general, for distributive lattices L and M there are no connections between 
homomorphisms and minimal elements in j(L, M). We are going to present in this 
Appendix a particular case, which is connected with a generalization of Monteiro’s 
theorem to distributive lattices given in [4]. 

In what follows, L will denote a bounded distributive lattice and C a complete 
Boolean algebra. For each m E A(L, C), f,(L, C) = G E %(L, C) 1 m(a) <j(a) for 
each a EL), endowed with the pointwise order, and %,,,JL, C)= 

(k E ,9-m& Cl p G>. 

A.l. LEMMA. Each minimal element in $,(L, C) is a homomorphism. 
Proof For each j E $,(L, C) and each c E C, define mappings j, and j” from L 

into C by the prescriptions: 

.L@) = (jG.4 A 1 m(c)) “Aa A 4 
and 

j’(u) = (j(a) A i j(c)) v j(a h c). 
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It is plain that j, E %,(L, C) and that j, <j. Hence j, =j for each minimal j in 
%,(L, C). In particular, the following holds true for each minimal j in fm(L, C) 
and each pair a, c of elements in L: 

j(u) A m(c) =j(a A c) A m(c). (1) 

It is also plain that jc E $(,5, C) and that j’ <j. Let j be minimal in $,(L, C). It 
follows from (1) that j’(u) A m(a) = m(u). Therefore jc E /,,,(L, C) and jc =j. 
Consequently, given a minimal j in fm(L, C) and elements a, b in L: 

j(u) A j(b) = ((j(u) A 1 j(b)) v j(u A b)) A j(b) =j(u A b) 

and since 1 = m( 1) <j( 1), j is a homomorphism. n 

REMARK. When C is the two-element Boolean algebra, the above lemma reduces 
to the well known fact that the maximal elements in the set of ideals of L which are 
disjoint from a given jilter are prime. 

Let p E A’(L, C) be defined by the prescription p( 1) = 1 and p(u) = 0 for a E L\{ l}. 
From the above remark and Nachbin’s theorem we can easily obtain: 

A.2. PROPOSITION. If every h E 9(L, C) is a minimal element in fp(L, C) = 
$(L, C), then L is a Boolean algebra. 

Consider the following three statements: 

(i) Given m E A!(L, C) and j E bm(L, C), there are minimal elements in 
frnJ(L~ 0 

(ii) Given m E A?(L, C) and j E f,(L, C), there is h E 9(L, C) nfmJ(L, C). 
(iii) Given m E A(L, C), j E $(L, C), S E Y(L) and h E 9(S, C) such that the 

following condition holds: 
(C) For a, b in S and d, e in L, if a A d < b v e, then h(u) A m(d) < 

h(b) v j(e), 
there exists h, E 9(L, C) n y&L, C) such that h,(u) = h(a) for all a E S. 

REMARK. It is plain that condition (C) is necessary for the existence of h, 
satisfying the requirements given in statement (iii) (cf. [4]). 

A.3. PROPOSITION. Statement (i) is equivalent to the axiom of choice (assuming 
the other axioms of Zermelo-Fruenkel set theory). 

Proof. Suppose first that the axiom of choice holds. Let {kn : 1 E A} be a chain in 
2,,,,(L, C). For each a E L, n {a,(k,(a)) : 2 E A} = w(u) is a closed subset of X(C), 
and since C is a complete Boolean algebra, the interior of W, B@, is clopen (see, for 
instance, [3, Chapter V, $1, Theorem lo]). It is proved in [7, Theorem 6.41 that if 
S, Tare closed subsets of X(C) with closed interior, then (S u T)’ = So u T“. Hence 
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if we define k(a) = a;‘(W(u)O), then k E %(L, C) and k < kA for each I E A. 
Moreover, since a&z(a)) c W(a) and a&(a)) is open, o&z(a)) c W(a)‘, and k 
is a lower bound of {k, : 3, E A} in f&L, C). Now an application of Zorn’s 
Lemma completes the proof. Suppose now that statement (i) holds for each 
bounded distributive lattice L and each complete Boolean algebra C. As 
in the remark following Lemma A.1 we can see that this implies the existence 
of maximal ideals in each bounded distributive lattice, and by a result of 
Klimovsky [ 131, this property implies the axiom of choice (see also [3, Chapter 
111, §41). w 

Since a minimal element in fm,JL, C) is also minimal in ym(L, C), it follows 
at once from Lemma A.1 that statement (i) implies statement (ii). But it was 
shown in [2, Theorem 3.11, that statement (ii) is equivalent to Sikorski exten- 
sion theorem [3, Chapter V, 591, and to our knowledge it is still an open 
problem whether this theorem implies the axiom of choice. On the other hand we 
have: 

A.4. PROPOSITION. Statements (ii) and (iii) are efictiuely equivalent. 
Proof. Suppose first that statement (ii) holds true. For each (a, b, d, e) E 

SxSxLxLlet 

~(a, b, d, e) = h(u) A m(d) A 1 h(b) A 1 j(e) 

and 

~(a, b, d, e) = 1 h(u) v 1 m(d) v h(b) v j(e). 

Now, for each c in L define 

U(c) = {(a, b, d, e) E S x S x L x L 1 a A d < b v c v e} 

ml (4 = V {+, b, d, 4 1 (a, b, 4 4 E W9) 

V(c) = {(a, b, d, e) E S x S x L x L (a A c A d < b v e> 

and 

h (4 = A (~(a, b, 4 4 1 (a, b, 4 4 E W>}. 

Suppose (a,, b,, d,, e,) E U(c,), i = 1,2. Then: 

((al A %), (h v bd, (4 A dd, (e, v ez>) E W A cd 

and 

u(a,, b,, 4, el> A 4% bZ, 4, ed Gm,(c, ~‘4. 
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Since C is a complete Boolean algebra we have: 

utal,h,d,,e,) *m,tc2)=V{u(a,,b,,d,,e,) 

* u(a2, b2, d2, e2) 1 (a,, b2, d2, e2) E WC,)) 

G W(Cl * c2) 

and then 

Moreover, it is easy to check that m(c, A c2) < m(c,) A m(cz) and that m( 1) = 1. 
Consequently, m, E J(L, C) and in an analogous way we can prove that 
j, E f(L, C). Let (a,, b,, d,, e,) E U(c) and (az, b,, d2, e2) E V(c). Then (cf. [4, 
t5>-(9)l): 

a2 A d2 A a, A d, G u2 A d2 A (b, v e, v c) 

=(a2Ad2A(bl ve,)) v(u2Ad2hc) 

< b, v e, v b, v e2 

and by taking into account condition (C), we obtain: 

uh, b,, 4,eJ * 1 4a2, b2, d2, e2) = 0 

and this implies that m,(c) <j,(c). Hence we have shown that j, E f,,(L, C), and 
by Theorem A.2 there is h, E 9(L, C) such that m,(c) < hI (c) Gj, (c) for each c E L. 
Let a E S. Since (a, 0, 1,0) E U(a) and (1, a, 1,0) E V(a), we have 

h(u) < ml(u) <j,(u) < h(a). 

Therefore h,(a) = h(u) for all a E S, and to complete the proof of (ii) implies (iii) 
note that since ( 1, 0, c, 0) E U(c) and ( 1, 0, 1, c) E V(c), m(c) < m, (c) and j, (c) G j(c) 
for all c E L. Suppose now that (iii) holds true, and let S = (0, l}. It is easy to check 
that if m(u) <j(u) for all a E L, then the only element in 9(S, C) satisfies condition 
(C). Therefore (iii) implies (ii) (see [4]). n 
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