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Abstract. A relationship is established between (partially) ordered sets of dimension 2 chosen randomly 
on a labelled set, chosen randomly by isomorphism type, or generated by pairs of random linear 
orderings. As a consequence we are able to determine the limiting probability (in each of the above 
sample spaces) that a two-dimensional order is rigid, is uniquely realizable, or has uniquely orientable 
comparabihty graph; all these probabilities lie strictly between 0 and I. Finally, we show that the number 
of 2-dimensional (partial) orderings of a labelled n-element set is (1 + o( l))n!*/(2&). 
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I. Introductiou 

In 1975 Kleitman and Rothschild [9] determined the asymptotic number of partial 
orderings of a labelled n-element set; their approach was to show that for large n 
nearly all such orderings look alike, then to count the look-alikes. In fact, Compton 
[2] recently showed that these partial orderings obey the “O-l law”, that is, every 
first-order property holds either in nearly all orderings or in hardly any. 

The situation for two-dimensional orders is radically different. Already in [lo] 
and [ 111 it was observed that when such orders are generated via random linear 
orderings, there are simple first-order properties with interesting limiting probabili- 
ties like 1 - l/e and 3/4. (One consequence of the results below is that the 0- 1 law 
fails also when each 2-dimensional order is weighted equally.) Hence the Kleitman- 
Rothschild approach is unworkable here; fortunately, the theory of random orders, 
plus a number of special properties of 2-dimensional orders, make the calculation 
feasible nonetheless. 

The number of unlabelled 2-dimensional orders has recently been computed by 
El-Zahar and Sauer [5]; unfortunately, since a significant fraction of these orders 
fail to be rigid, the labelled count cannot be directly deduced. We include our 
(independent) proof of the theorem of El-Zahar and Sauer along with the results 
listed in the abstract. 

l On leave from Emory University, Atlanta, GA. Research at Emory supported by ONR grant NO0014 
85-K-0769. 
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II. Two-Dimensional Orderings of a Labelled Set 

A (partially) ordered set P, with underlying set S, is said to be 2-dimensional (see 
Dushnik and Miller [4]) if it is not linearly ordered, but there are two linear 
orderings L and M of S whose intersection yields the order on P. Thus, x -C y in P 
iff x -C y in both L and M. The pair (L, M) constitute a realization of P. (A fine 
source for information on dimension is Kelly and Trotter [8].) 

Since L and M can be switched, it is immediate that the asymptotic number of 
2-dimensional orders on S = { 1,2, . . . , n} is bounded by n!2/2. However, the 
limiting probability that a large 2-dimensional random order has just the two 
realizations (L, A4) and (&f, L) turns out to be neither zero nor one. The somewhat 
surprising result is that the asymptotic number of 2-dimensional orders is a smaller 
constant multiple of n!*. 

THEOREM 2.1. For every c > 0 there is a number n(c) such that ifn > n(c), then the 
number of 2-dimensional orderings of S = {l, 2, . . . , n 1 lies between (1 - e)n!*/2& 
and ( 1 + &)n !2/2&. 

Prooj We begin with some definitions and general observations concerning 
2-dimensional ordered sets. 

For any ordered set P let G(P) be the comparability gruph of P, that is, the graph 
whose vertices are the points of P and whose edges are the pairs {x, y} such that 
x -C y or y -C x in P. If a graph G is G(P) for some ordered set P, it is said to be 
transitivezy orientable; if in addition it is G(Q) only for Q = P or Q = Pd (the dual 
of P) then G is said to be z.uziqueZy transitively orientable, or “UTO” for short. (See 
[7] for an excellent survey on the subject of comparability graphs.) 

We need only a few simple observations about comparability graphs. Let P be a 
(partial) ordering of S = { 1,2, . . . , n}, with comparability graph G = G(P). A 
subset A of S with I c ]A 1 -C n is said to be properly uutonomous (in P) if 

(1) every x in S - A is either greater than every element of A, less than every 
element of ,4, or incomparable to every element of A; 

(2) the subgraph of G(P) induced by A is connected; and 
(3) S - A does not consist only of isolated points. 

Note that if A is properly autonomous then 2 < \A \ < n - 2. The following lemma 
is derivable from results in [7] or directly from Gallai’s original paper [6]. 

LEMMA 2.2. G is UT0 $ and only $ there is no subset A of S which is property 
autonomous. 

Fix S={l,2,..., n} and let (L, M) be a pair of linear orderings of S. Put 
P = L n M and P* = L n Md; note that the comparability graphs G(P) and G(P*) 
are complementary. We say that P is uniquely reulizable (UR for short) if 
P = LfnM’ implies that either Lf = ~5 and M’ = M, or L’ = M and M’ = L. The 
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relevance of unique transitive orientability to our counting problem is made clear 
by the following lemma: 

LEMMA 2.3. There is a one-to-one correspondence between realizations of P and 
transitive orientations of the compIement of its comparability graph. In particular, P 
is UR IY and only lj- G(P*) is UTO. 

ProoJ If P = L’ n M’ is a realization of P then L’ n A4’d will be a transitive 
orientation of G(P*); conversely if Q is a transitive orientation of G(P*) then the 
linear orders P u Q and P u Qd constitute a realization of P. Since these transfor- 
mations are inverses of each other, the lemma follows. 0 

The random orders P(n), introduced for general dimension in [lo], are random 
variables defined by choosing L and A4 randomly and independently from among 
the n! linear orderings of S, and letting P(n) = L n M. For each k 2 1, let Rk(n) be 
the probability that P(n) has exactly k realizations; then, for example, R,(n) = l/n! 
since just n! of the n!’ pairs (L, M) have L = M. 

For k > n! we have Rk(n) = 0, since L n A4 = L n A4’ implies A4 = M’. Hence, 
the number of two-dimensional orderings of S is exactly 

Since the random variable P*(n) given by intersecting L with Md has the same 
distribution as P(n), Lemma 2.3 above implies that R,Jn) is also definable as the 
probability that G(P(n)) has precisely k transitive orientations. In view of Lemma 
2.2, therefore, the next order of business is to characterize the properly autonomous 
subsets of S. 

A suborder Q’ of an ordered set Q is convex if whenever x and z are in Q’ and 
x<y<z, then y is also in Q’. A convex suborder of a linear order is simply an 
interval. 

LEMMA 2.4. If a suborder A of P = L n&f isproperIy autonomous then A is convex 
both in L and in M. 

ProoJ Let x E P - A. If x > A then x lies above all of A in both L and A4, and 
dually if x c A. If x is incomparable to the elements of A, then there must be a 
partition A = A, u A2 such that x lies above A, and below A2 in L, but below A, 
and above A2 in A4. But then everything in A, is incomparable to everything in AZ, 
so by connectivity, either A, or A2 is empty, It follows that every x E P - A lies 
above or below all of A in L, and similarly in A4, proving the lemma. 0 

To select a pair (L, M) containing a properly autonomous subset of size t we may 
thus first seIect t elements of s, then order them in both L and h4, then choose their 
position in L and in M, and finally order the rest of S in L and in M. Hence, the 
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number of such pairs is at most 

0 ; t!Z(n - t + l)$ - t)!2. 
It follows that if C(n) is the probability that P(n) has an autonomous set of size t, 
then Ct(n) < C;(n), where 

c;(n) = (n - t + l)%!(n - t)!/n!. 

We are now in a position to show that we need not worry about properly 
autonomous sets of size greater than 2. 

LEMMA 2.5, With probability approaching 1 as n + ~0, there are no properly 
autonomous subsets A of P(n) with iA 1 > 2. 

ProoJ In view of the above remarks it suffices to show that 

To see this note first that 

which is less than 1 for t < n/2 and greater than 1 for t > n/2. Thus the sequence 
G W, GW, . . . , CL-,(n) is upside-down unimodal, i.e. falls and then rises. Now 

C:(n) < 24/n2 

and 

CLp2(n) c 36/n* 

so that 

n-1 n-2 

z Ci (n) = C;(n) + 1 Ci (n) + CL - , (n) < 6/n + (n - 5)( 36/n2) + 4/n + 0 
t=3 t=4 

proving the lemma. 0 

A two-element properly autonomous subset of P = L n M consists merely of what 
we call a reversible edge, that is, a pair (x, y) such that y covers x both in L and in 
M. It turns out that the distribution of the number of reversible edges in P(n) is 
asymptotically Poisson, with mean 1. We have indicated briefly in [lo] how this is 
proved (en route to a 0- 1 law counterexample) but since the result is critical here, 
an explicit argument is warranted. 
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LEMMA 2.6. Let X(n) be the number of reversible edges in P(n). Then for any E > 0 
there is an n(E) such that for any n > n(e) and any integer s > 0, 

Pr(X(n) = s) - $ < e. 

Proof. For positive integers m and r let (m)r denote the product 
m(m - l)(m - 2) . . . (m - r + 1). The rth factorial moment of a random variable X 
is defined to be the expected value of(X)?. It follows from classical results (see, e.g., 
Bollobas [ 11, Theorem 20, p. 23) that if the factorial moments of a sequence of 
non-negative integer valued random variables approach the factorial moments of a 
Poisson random variable X, then the sequence approaches X in distribution. If in 
particular X is Poisson with mean 1, in which case &(X) = 1 for every r > 0, it 
follows that to establish 

lim E((X(n))r) = 1 
?l+m 

for each r 2 0, suffices to prove the lemma. 
Clearly (X(n))r counts the number of r-tuples of distinct reversible pairs in P(n). 

Since the existence of reversible pairs is not dependent on the labelling of P(n), we 
may assume that the linear ordering L is the identity and that kf is given by a 
random permutation 0, in the sense that the height of i in kf is cr(i). In that case 
a reversible pair may be identified with a number i, necessarily less than n, such that 
o(i + 1) = o(i) + I. Let us temporarily call such a number reversible. 

Fix n and select an r-tuple (i,, . . . , i,) with 1 < iI -C iz c . . . -C ir -C n. If p is the 
probability that all these 4’s are reversible in P(n), then 

where p, is the probability that iI is reversible and for each j > 1, pj is the 
probability that 4 is reversible given that i,, . . . , $- , are all reversible. 

Let us imagine that u is chosen by first selecting o(i,), then o(i, + l), then o(&) 
(if not already done), then g(i* + l), then o(iJ (if not already done), and so forth 
up to o(ir + 1); the rest of the values of fl are of course irrelevant. When rr(& + 1) 
is chosen there is at most one value available which allows 4 to be reversible, and 
at most 2j - 1 values of c have already been assigned; hence pj < l/(n - 2j + 1) and 
therefore 

1 
p ’ (n - l)(jj - 3) . . . (n - 2r + 1)’ 

On the other hand, let ((,) < $czj < . * * < hcVj be the subsequence consisting 
exactly of those G’s, including i,, for which 4 # b-, + 1. Let us first choose 
ej(,)h . . . 3 o(&~~~); then with probability at least (n - r)(n - 3r)(n - 5) * * * (n - 
(2v - l)r)/(n)“, no range [k, k + r - l] contains more than one of the values c(z&) 
and the range [n - r + 1, n] contains none at all. Should this occur, when we now 



334 PETER WINKLER 

choose the values ~(4 + l), 1 <j < r, each is guaranteed to have a value available - 
out of the at most n -j unchosen values - which makes 4 reversible. It follows that 

~ ~ (n - r)(n - 3$(n - 5r) . . . (n - (2r - l)r) 

Wrb - l)r 

Now the number of r-tuples of distinct elements of { 1, 2, . . . , n - 11 is of course 
(n - l),, hence 

(n - r)(n - 3r)(n - 5r) . . . (n - (2r - 1)r) 

Wr 

Since for fixed r the bounding quantitites approach 1 as n -+ CQ, we have 
E((X(n))r) + 1 as desired, and the lemma is proved. 0 

Let us suppose now that P = P(n) has exactly s reversible edges, but no properly 
autonomous subset of size greater than 2. Then the points involved in the reversible 
edges are all distinct, so each such edge can be oriented independently; hence P has 
precisely 2s+ ’ transitive orientations. This means, of course, that P* has just F+ ’ 
realizations. It follows that if N(n) is the total number of two-dimensional orderings 
of S, then 

proving the theorem. 0 

III. Probabilities among 2-Dimensional Orders 

It is now useful to define an additional ordered-set-valued random variable Q(n) in 
such a way that each 2-dimensional ordering of S occurs with equal probability, 
and all other orders with zero probability. If (D is any statement about orderings of 
S, then we let @[PI (respectively @[Q]) represent the limiting probability (if it exists) 
that @ holds in P(n) (respectively in Q(n)). 

We can now move from probabilities involving P(n), which are often easy to 
compute, to probabilities involving Q(n). (We regard the random variable P(n) as 
the more natural one, but the mere fact that Q(n) has uniform distribution justifies 
interest.) 

Note first that a reversible edge in P* corresponds to what we shall call a “twin 
pair” in P, that is, a pair (x, JJ) such that y covers x in L but x covers JJ in M. It 
is easy to see directly (without considering P*) that twin pairs create extra 
realizations for P, since the order of x and y can be switched in the two linear 
orderings. 
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THEOREM 3.1. Let (D be uny statement about ordered sets, let Y(n) be the number 
of twin pairs in P*(n), and suppose that for each s > 0 there exists a real number rS 
such that 

rs = lim Pr(P(n) satisfies @ given Y(n) = s). 
n+m 

Then 

Proof From the previous section, we have that the number of two-dimensional 
orderings of S which satisfy @ is c(n)n!*, where c(n) is asymptotic to 

dividing n!‘c(n) by the total number n!z/2,,/e of two-dimensional orderings gives the 
result. 0 

COROLLARY 3.2. Any statement with limiting probability strictly between 0 and 1 
in P(n) also has nontrivial limiting probability in Q(n); in particular, the 0- 1 law fails 
also in Q(n). Further, any statement with limiting probability 0 or 1 in P(n) has the 
same limiting probability in Q(n). 

EXAMPLE 3.3. Let 0 be the statement “there exists a pair (x, y) of elements with 
x maximal, y minimal, and x and y incomparable.” This statement is shown in [ 111 
to have limiting probability 3/4 in P(n); moreover, its truth depends entirely on the 
behavior of the (at most) four elements at the top and bottom of the two linear 
orderings. Thus it is asymptotically independent of the statement “Y(n) = s” for 
any fixed s, and so @[Q] = 3/4 also. 

EXAMPLE 3.4. Let @, be the statement “the order is uniquely realizable” and let 
@z be the statement “the comparability graph is uniquely transitively orientable.” 
The two statements are dual with respect to the correspondence P(n) +.+ P*(n) and 
each has ai [P] = l/e % .368. For (I+, we have that r0 = 1 and rs = 0 for all s > 0, so 
@,[Q] = l/2& = .303. However, since reversible edges are not twin pairs, (I)1 is 
asymptotically independent from the events Y(n) = s and we have $[Q] = l/e. 

IV. Isomorphism Types 

The isomorphism types of two-dimensional orderings of an n-element set were 
counted (asymptotically) by El-Zahar and Sauer [ 51; we give an independent 
computation which, in combination with previous results, gives additional informa- 
tion about probabilities. 
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To study the isomorphism types of two-dimensional orderings of S, we introduce 
the random variable U(n) whose values are these isomorphism types, each taken 
with equal likelihood. We denote the isomorphism class of a particular ordering P 
of S by [P]. 

An order P is said to be rigid if it has no non-trivial automorphisms; in that case 
the class [P] contains a full complement of n! orderings of S. If P is not rigid then 
one of its non-trivial automorphisms 0 can be applied to a realization (,C, M) of P, 
yielding a new realization (CJ& CM); hence there would appear to be a relation 
between rigidity and unique realizability. The following examples, however, show 
that this relationship is perhaps more subtle than expected. 

EXAMPLE 4.1. Let n = 4 and take P to consist just of the relations 1 -C 2 and 
3 c 4. Then P has a non-trivial automorphism, namely cr = ( 1, 3)(2,4), but is 
uniquely realizable (by the orders 1 -C 2 -C 3 -C 4 and 3 -C 4 -C 1 < 2). 

EXAMPLE 4.2. Let n = 5 and let P consist of the relations 1 c 2, 3 c 4 and 1 -C 4. 
Then P is rigid but nonetheless has two essentially different realizations, 
(1<2<3<4<5,5<3<1<4<2)and(5<1<2<3<4,3<1<4<2<5). 

Hasse diagrams for the two examples are pictured in Figure I below. Notice that 
Example 4.2 incorporates a properly autonomous set of size greater than two, a 
rare occurrence. In Example 4.1, the reason that the automorphism g fails to 
produce a new realization is that it merely switches the orders L and M, i.e. 
CL = M and CM = L. We show that this is also a rare event. 

THEOREM 4.3. With probability approaching 1 the number of realizations of P(n) 
is exactly twice the cardinality of its automorphism group. 

ProofI Let the automorphism group of P(n) consist of the permutations 
fJlY~2,. . ., CJ~ with cri equal to the identity. We begin by showing that with 
probability approaching I, the realizations (c&, g,iV) and (gZM, oiL), 1 < i < k, are 
all different. 

9 0 & 

1 cl 

Fig. 1. 

4 2 

3 I 
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If two of these realizations are the same then we must have 0J. = cr,M and 
cr,L = ciM for distinct i and j. Let r be the permutation defined by M = 7L; then 
-r = a, - ‘cr, and T*L = rM = L, so that r is an involution. 

Since L and M are random and independent; T is a priori equally likely to be any 
of the n! permutations of S. The number of involutions is only 

so we have that with probability approaching 1, there are at least two realizations 
per automorphism. 

On the other hand, from Section II we know that P(n) nearly always has precisely 
2’+ ’ realizations, for some s > 0, traceable to s twin pairs (x,, y,), (x2, y2), . . . , 
(x~, JJJ where the xi’s and yZ’s are all distinct. If oZ is the automorphism which 
switches X~ with JJ~ and leaves the other elements fixed, then the cri’s generate a 
subgroup isomorphic to Z; within the automorphism group of P(n). Thus with 
probability approaching 1 there are at least half as many automorphisms as 
realizations. cl 

COROLLARY 4.4. The limiting probability that a random 2-dimensional order is 
rigid is l/e with respect to P(n), and l/(2&) with respect to Q(n). 

Now let I(n) be the total number of realizations of the isomorphism class [P(n)], i.e. 
the number of pairs (L, i%f) such that L nj~! is isomorphic to P(n). If P(n) has i 
automorphisms and j realizations, then I(n) =j(n!/i) which by Theorem 4.3 above 
is nearly always equal to 2n!. From this we can deduce that the number of 
isomorphism classes is (1 + o( l))n!/2. 

THEOREM 4.5 [S]. Fro every E > 0 there is an n(c) such that if n > n(c), then the 
number of isomorphism classes of n-element two-dimensional ordered sets lies between 
(1 - e)n!/2 and (1 + &)n!/2. 

From the fact that nearly all pairs (L, &f) generate an isomorphism class with 
exactly 2n! realizations, and the fact that every isomorphism class has at least n! 
realizations, we can deduce that nearly all isomorphism classes have 2n! realiza- 
tions. It follows that the random variables U(n) and P(n) are asymptotically 
equivalent with respect to isomorphism-invariant statements. Put formally: 

THEOREM 4.6. Let @ be an isomorphism-invariant statement about two-dimen- 
sional orders which has a limiting probability either in P(n) or in U(n). Then a limiting 
probability exists in the other case as well and the two probabilities are equal. 

Relationships among the random variables P*(n), P(n), Q(n) and U(n) are indicated 
schematically in Figure 2 below. 



338 PETER WINKLER 

1 

twm pair 

0 

twin parrs 

P*(n) 

‘- 

Pig. 2. 

V. Problems 

0 
twin pairs 

1 

twm pair 

P(n) 

The obvious problem is to extend these results in some manner to higher dimen- 
sion. However, much of the above relies on special properties of dimension 2; at 
the moment we do not even know how many realizations an antichain has in 
dimension 3 or higher. (See [3] for some general results on realizations.) The 0- 1 
law fails also in higher dimensions [ 121 but determination of probabilities seems 
much harder. 

One further problem is open for all dimensions d > 2: does every first-order 
statement in the language of partial orders have a limiting probability? 
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