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Abstract 

A new technique  is used to design die profiles which yield high process 
eff iciency dur ing ax i - symmet r i c  ex t rus ion  and wire drawing. These profiles 
have  a convex  shape. 

The  upper  bound  of the  average  ram pressure is ca lcula ted for the  prac t ica l  
range of reduct ions  and op t imal  die lengths. For  m ~ 0,1 where m is the  
cons tan t  fr ict ion factor,  and up to 55 per  cent  reduct ion  the  reduced ex- 
t rus ion pressure is the  same for this convex  die and the  op t imal  length  
cosine die. Above  55 per  cent  reduct ion  the  pressure is s l ightly higher  t han  
t h a t  for the  cosine die. Up  to a reduct ion  of 55 per  cent  the  op t imal  lengths  
for this one are s l ight ly shorter  t han  t h a t  of the  cosine die, while those 
values  for h igher  reduct ions  are a l i t t le  higher  for this  die. The efficiency 
of the  proposed die exceeds those of convent iona l  conical dies. 
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/~i + Es + Ee  = to ta l  ra te  of energy dissipat ion 
the  ra te  of energy dissipated wi th in  the  vo lume V of the  
deforming zone 
the  ra te  of energy dissipation due to shear or i r ic t ion along 
surfaces of ve loc i ty  d i scont inu i ty  
the  ra te  of energy dissipated along t rac t ion-prescr ibed boun- 
dary  
flow funct ion  
yield shear stress in simple shear 
axial  l ength  of the  die 
cons tant  f r ic t ion factor  along sj 
mean  ext rus ion pressure 
mean  drawing  pressure 
mean  en t ry  pressure 
mean  exi t  pressure 
f ract ional  reduct ion  of area ~ (R~ - -  R ~ ) / R ~  

- -  5 4  - -  



A NEW DIE PROFILE WITH HIGH PROCESS EFFICIENCY 55 

R1, R2 
s, sy(~= 1,2 , .  
St 

r i  
v 

Yr, VZ 

Vl, "0 2 

~j ( i  = l ,  2 . . . .  ) 

Y 
7", O, Z 

the  ini t ial  and final radius of the  bar  respect ive ly  
• .) bounda ry  surfaces 
the  surface of the  body  on which surface t rac t ion  Ti  is pre- 
scribed 
surface t ract ion,  prescribed over  st 
ve loc i ty  
vo lume of the  deforming zone 
components  of the  ve loc i ty  fields 
the  ent rance  and exi t  ve loc i ty  respect ively  
magni tude  of tangent ia l  ve loc i ty  discontinuit ies along sj 

yield stress in uniaxial  tension or compression = x/3k (Mises) 
cylindrical  coordinates 

~Iy, dr, 60, ~z, 9re components of s t ra in  ra te  fields 
(R1/R2)~- 1 

effective s train rate  
% percentage  efficiency 

Tj (j = 1, 2 . . . .  ) shear stress or frictional t ract ions  

§ 1. Introduction 

Extrusion is one of the youngest of the metalforming processes and 
was probably first developed at the end of the eighteenth century 
for the manufacture of lead pipes. In this process a slug or billet 
of metal is forced to flow, under high pressure, through a die shaped 
to give the required crossection to the product. In reducing the 
diameter of a bar through extrusion redundant deformation, in 
general, can not be prevented. Redundant work of deformation is 
the extra work required beyond the minimum value to achieve the 
final dimension of the product. The object of the present work is to 
obtain an optimum die profile which minimizes this redundant 
work in axisymmetric extrusion and wire drawing. 

Richmond and Morrison [1t, using the method of characteristics, 
have determined streamlined, frictionless wire drawing profiles 
which are believed to be the shortest possible for each reduction. 
Another die profile which eliminates as much redundant work as 
possible was obtained E21 in frictionless axi-symmetric extrusion by 
the use of the slip-line field technique. Using slip-line field method 
the present author E3~ proposed the solution for plane-strain 
extrusion through frictionless cosine dies, which almost eliminates 
redundant work for a rigid/perfectly plastic material. However, the 
achievement of friction-free die surfaces in actual forming opera- 
tions is of course impossible. We are therefore led to consider a die 



56 S. K. SAMANTA 

profile, which eliminates as much redundant work as possible and 
which takes into account the effect of friction. This resulted in a 
convex die with finite entrance and small exit angles. 

The material considered in this work is a rigid/perfectly plastic 
material obeying the von Mises yield criterion and its associated 
flow rule. 

§ 2. Method of solution 

This theoretical analysis deals with axi-symmetric extrusion of 
circular bars, whose initial and final radii are R1 and R2 respectively, 
see Fig. 1. To begin with, a detailed analysis for direct extrusion 
will be given but  the same approach may be applied to wire-drawing 
for calculating the final results. Anslysis can be applied equally well 
to indirect extrusion of circular rods. 

r 

ZONE I ZONE L K ZONE I l l  

Fig. I. Proposed die profile and its admissible velocity field. 

For the analysis the bar has been devided into three zones (see 
Fig. 1). Zones I and III  are assumed to be rigid and the deformation 
zone II is plastic. In the rigid zones I and II I  the velocity is uniform 
and the incompressibility gives rise to the relationship 

v2  - -  v l ( t e l / t e 2 )  2. 

We shall find the kinematically admissible velocity field for 
which the principal directions of the rate of deformation tensor are 
the axis of the cylindrical coordinate system, r, O, z, i.e. 

1 ( ~  ~v~'~ 
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The incompressibil i ty condition for the axi-symmetr ic  case is 

div v = __aVr __Vr Ovz __ 
ar 4- r + & 0 (2) 

where Vr and vz are the r and z components  of the velocity,  re- 
spectively. 

The set of equations (1) and (2) is the hyperbolic one. I t  possesses 
the following general solution: 

1 

vr(r, z) = f ¢(z  - -  r + 2rt) 

0 

1 

+ f ¢ ' ( ~ -  
0 

1 - -  2 t  
, _ d t  + 

(1 -- 2t) in C2rl(1 -- t)] 
r 4- 2rt) x/t(1 -- t)' dt - -  

f dt 1 ¢(z r 4- 2rt) ~/t(l t) (3) 
Y 
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f * v & , z )  = ¢ ( z - -  r ~- 2rt) ~/t(1--#)  
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4- 

In [2rt(1 -- ¢)] 
, h ( :  - t) 

+ f $ ' (z  - -  r + 2rt) dt 

where 6(x) and •(x) are arbi t rary  functions, and ¢'(x) = d ¢ ( x ) / d x  
and ~(z - -  r + 2rt) = ~(x) J,_ , - r  + 2rt. 

The above solution can be found in the following way. We shall 
satisfy trivially the equat ion (1) looking for velocity field in the 
form of the flow function /, 

1 a f I a /  
v ~ -  , v , -  (4) 

r & r ~r 

Subst i tu t ing (4) in (1) and changing the independent  variables 

x = z - r ,  y = z + r  (5) 
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we get the following, so called, Euler-Darboux equation 

a~/ a / /a .  1 a/ 
- - - I -  - - 0  
axay 2(. --  y) 2(x - y )  ay 

This equation has the following general solution [5] 

1 

( / . ,  y )  = (x  - y)~ I ¢ [= 
0 

1 

+ (. - y) f ¢;[x 
0 

+ (y - x)tl , / ~  - ~) dt + 

-]- (Y--x) t l  (2 t - -  1) 

1 

+ (x -y)2  fCa[X + (y - 
0 

x)¢l x/t(1 -- l) In It(1 --  t)(y -- x)] dt -k- 

f 1 + ¢oEx + (y - -  x ) t l  ,,/t(1 -- t) dt 
0 

(6) 

(7) 

where r = rD(Z) is the equation of the die. I t  can be shown tha t  for 
a given die profile the conditions (8) are sufficient to determine the 
unique velocity field in the zone II ,  Fig. 1. We shall t ry  to find 
such die profile for which we can assume ¢ = 0, i.e. we assume 
tha t  ¢ = 0 in the whole region II .  

Taking into account tha t  the boundary  conditions for z = 0 and 
z = L are constant  we shall t ry  to find the equat ion of the die 

Vr/Vz = d r D / d z  for r = rn(z) 

vz = v l ( R 1 / R 2 )  2 for z = L  
(8) 

Vr = 0 for r = 0 

v z = v l  for z = 0  

If  we now change the independent  variables, perform the operation 
(4) and subst i tu te  ¢;  ~ ¢, the equat ion (7) reduces to (3). 

Our problem is to determine the kinematical ly  admissible velocity 
field Vr and Vz, i.e. by  satisfying the following boundary  conditions: 
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assuming 
¢(x) = Gx + H (9) 

in the deforming zone II ,  Fig. 1. 
Equa t ion  (3) with the aid of (9) and the condit ion ~h ~ 0 leads to 

Vr = - -  ½rcrG, Vz =- 7:(Gz + H)  (10) 

F rom the equat ion (10) and the first two bounda ry  conditions we 

h a v e  

G = vl~/r:L,  H - vl/~: 

where ~ • (R1/R2) z 1. 
Thus 

7) r = - - V l O ~ - ~ L -  , 7)2: = 191 1 + ~L-~ (11)  

Hence we get the equat ion of the s t ream lines 

d f  fc~ 

dz 2(zo~ + L) 
or (12) 

r2 = q(zo~ + L)  -1 

where q is a constant .  Now subst i tu t ing  r = R1 for z = 0 we get 
q = R ~ L  and the equat ion of our proposed die profile in the me- 
ridian plane is 

R1 
rD(Z) --  (13) 

The kinemat ical ly  admissible s t rain-rate  components  in the de- 
format ion  region are 

Vl Vl Vl 

2L 2L L 

and ~)r~ = 0. 
The effective s train-rate  ~, is 

Vl 

L 
(14) 
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§ 3. Upper-bound for average extrusion pressure 

Mathematically consistent solutions of axi-symmetric plastic flow 
problems are very difficult even for rigid-perfectly plastic materials. 
Approximate solutions are thus important E4]. Of all approximate 
methods, the upper bound method E6] is most powerful. 

For a yon Mises isotropic, rigid-perfectly plastic material, which 
also obeys Levy-Mises stress-strain rate relation, the rate at which 
work has been performed may be represented by  [7]: 

E = Ei 4- Es 4- Ee -- J Y~ d V 4- J ~-jv; dsj -- J T,v~. dst (15) 
I~ 8J 8t 

and for direct extrusion [6] 

8J 

where Pex stands for the average prescribed pressure at the exit. 
The rate of energy dissipated within the volume of the deforming 

zone is given by  

/~i = 27~Yv1R12 I n  (R1/R2) (17) 

Now if Es = Ee = 0, equations (15), (16) and (17) lead to 

¢/Y = 2 in (R /R2) 
which is the same as in the homogeneous frictionless ideal case. 

The rate of energy dissipations due to the velocity discontinuity 
along Sl is given by, 

f f n Yvlo~R~ ES1 - k v;1 (18) 

and along sa 

Es3 - (19) ---- k v;  ds~ 3x/3 L 

Assuming with Shield [8] that  the shear stress is proportional to 
the friction stress, i.e. r = ink, where 0 ~< m ~< 1, the rate of 
energy dissipation due to friction along the material-die interface 
s2 has been calculated as 

Es=ffmkv ,ds2= 

4~Yvl L F(R~ ) R~o~2 (R~ 1)? (20) 
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The total rate of energy dissipation is given by, 

s = =Y~R~ 2 in ~ T  + 2,/5 cR~ (R~ + R~) + 

IfR  ) 
+ 34~ RI~ U, R~ -- 

R~°~2 f R~ -- I)l} + 2 \ R~ (21) 

so that  the relative mean extrusion pressure ~/Y is 

Y \R~/ 345z, R~ 

) )l 
The first term of equation (22) is attributed to the ideal energy of 
deformation, the second term is attributed to the redundant energy 
of deformation due to velocity discontinuities near the entrance 
and the exit and the last term is due to the effects of friction 
stresses mjh between the rigid die and the extruded material. 

§ 4. Results and discussion 

The optimum length of the die is obtained by minimising the rate 
of energy dissipation, ~E/OL = 0. The optimum length of the die 
is given explicitly by 

L--  2R~ 1 @-~,R3 I_R~ (23) 

A finite optimum length exists at which the extrusion pressure is 
minimum. This is shown in Fig. 2 for m z 0.1 which is a reasonable 
value for extrusion and wire drawing. 

The optimal die length for various reductions are compared in 
Fig. 3 with the same for the cosine dies [4]. It seems for the above 
results that  for m = 0.1 and up to a reduction of 55 per cent the 
optimal lengths for the proposed die are slightly shorter than that  
for the cosine die, while those values for greater reductions 
(R/> 55%) for the proposed die are a little higher. If friction could 
be neglected, the required extrusion pressure is equal to its mini- 
mum value of ideal deformation as L/R1 --> co. 
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Fig. 2. The  effect of die length  and percent  reduct ion  on reduced ext rus ion 
pressure, ~/Y, ii1 ex t rus ion  th rough  proposed die, Pex = 0, m = 0.1. 

Fig. 3. Comparison of die length  for cosine and proposed die. 
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Fig. 4. The  effect of reduc t ion  and fr ic t ion oi1 reduced ext rus ion  pressure, 
l~/Y, ill ex t rus ion  th rough  proposed  die, Pex = 0. 

EMect o/jriction on extrusion pressure. The reduced mean  extrusion 

pressure for m = 0.1 and Pex = 0 are shown in Fig. 4. For  m = 0.1 
and up to 55 per cent reduct ion p / Y  is same for this die and the 
op t imum cosine die. For  higher reduct ions the op t imum length 
cosine die yields slightly bet ter  results. The results for m ----- 0.01 
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and for ideal deformation is also included in Fig. 4 for comparison. 
The available solutions for conical dies cover only the effect of 
cone angle and reduction on reduced extrusion pressure as com- 
puted by Avitzur [9] for # = 0.03 and semi-cone angle 30 ° is 
shown in Fig. 4. The results show that  the proposed die is better 
than the conical die within the range of available solution. 

§ 5. Upper  bound  for average  drawing  s t ress  

Our previous discussion was restricted to extrusion only, although 
it holds for wire drawing too. For wire drawing, the rate of energy 
dissipation along the boundary on which the surface tractions are 
prescribed is that  incident to the stress exerted on the wire at the 
entrance of the die, while for extrusion it is that  incident to the 
pressure exerted on the extrusion at the exit of the die. 

Hence the relative mean drawing stress, Pa/Y is 

4mL F(R~ ) R~o~2IR ~ 1)]} (24) 
+ 3 , / 5  l_\ - 1 4L2 \ - 
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