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Summary 

The reciprocal  t h e o r e m  of B e t t i  and  R a y l e i g h  is ex t ended  to the rmo-  
elastic p roblems concerning t e m p e r a t u r e  d e p e n d e n t  proper t ies  of the  bodies.  
I l lus t ra t ive  examples  are solved concerning ex tens ion  and  Ilexural  ro ta t ion  
of a bar,  change of vo lume of a b o d y  w i thou t  and  wi th  a cavi ty,  and  the  
the rmoelas t i c  d isplacement .  

§ 1. Introduction. The reciprocal theorem of B e t t i and R a y 1 e ig h 
has been extended to thermoeleastic problems for isotropic bodies 
by  M a i s e l  1) and for anisotropic bodies by  N o w a c k i  2). Recently 
G o o d ie  r gave a new derivation of thermoelastic reciprocal theorem 
and deduced several simple formulas for overall thermoelastic 
deformation a). In these papers the elastic coefficients have been 
postulated as temperature independent. 

However, recent years have seen a rising interest in temperature 
fields of such intensity that the variation of mechanical and thermal 
properties of bodies, with changing temperature, cannot be ignored. 
Inasmuch as temperature dependenc e of elastic constants leads to 
differential field equations with variable coefficients, thus far only 
few solutions involving axially or polarly symmetrical case **) have 
been given. 

In view of the mathematical difficulties concerned, it seems there- 
fore expedient to generalize the integral theorem under consideration 
to elastic bodies exhibiting temperature dependent properties. Of 

*) This work has been sponsored by the United States Army under contract No. 
DA- 11-022-0 RD-2059. 
**) See, e.g., 4) or 5), where further references may also be found. 
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course, this provides information for the intensity of the elastic 
field, in general, of an imperfect character, still in some cases it may 
prove of considerable service. 

§ 2. Basic equation. Consider an elastic body occupying a region 
V with the boundary S. Let T(Q), F(Q) and P(Q) be the temperature 
field and the intensities of the body forces and surface tractions to 
which the body is subjected, with Q as a point in V + S and on S, 
respectively. Assume that the shear modulus # = #(T), Poisson's 
ratio v = v(T) and the coefficient of thermal expansion ~ = ~(T) 
of the body are functions of temperature and, consequently, of 
position in V q-S .  In indicial notation, and with reference to a 
rectangular cartesian reference frame x,, i = 1, 2, 3, we have 
throughout the body 

= - -  , ( t )  rij 2# eijq- 1 - - 2 v  e ~  1 Z 2 7  

rij, j -{- F~ = 0, 

and on the boundary S 
rijnj = Pi. 

Here ui, ei~, r,~ and n~ are the cartesian components of the dis- 
placement, strain, stress and the unit vector normal to S, respectively. 
Let u, be twice continuously differentiable functions of Q in the 
region V including its boundary. With no loss in generality suppose 
that  #, v and ~ are continuously differentiable functions of T or 
Q in V + S. Clearly, for T = 0, the quantities if, v, ~ take their 
usual (constant) values in ambient conditions. In this case the body 
becomes homogeneous. For T #- 0, owing to the temperature de- 
pendence of the properties, the substance of the body becomes 
heterogeneous, with #, v, and ~ being functions of position. 

Suppose, for the time being, that the thermal heterogeneity of the 
substance of the body represents its permanent property provoked 
by any factor, not necessarily by  the temperature. In other words, 
in the absence of the temperature rise, the body is supposed to 
possess an "inherent" heterogeneity identical with the thermal 
heterogeneity stated above. 

Consider two states of equilibrium of the heterogeneous body 
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concerned: one thermoelastic state with displacements ui due to the 
body forces Fl ,  surface tractions Pi  and temperature rise T,  and 
the other an elastic athermaI state with displacements u% due to 
the body forces F% and surface tractions P%, with T = 0. Name 

E ff (0) d0 
1 - -  2 ~  

the "hydrostatic thermal tension" in the thermoelastic state of the 
body (E denotes Young's modulus). 

The Betti-Rayleigh reciprocal theorem as generalized to elastic 
bodies with temperature dependent properties can be now expressed 
in the following form. 

T h e o r e m .  If an elastic body with temperature-dependent 
properties is subjected to two systems of body and surface forces, 
the first of these systems being, moreover, connected with a temper- 
ature rise T,  then the work done by the first system of forces Fi,  P i  

in acting through the displacements u' i  due to the second system 
of forces, plus the work done by the "hydrostatic thermal tensions" 
of the first system in acting through the dilatation of the second 
system, is equal to the work that  would be done by the second 
system of forces F%, P'i  in acting through the displacements u~ due 
to the first system, the scalar fields of/*, v and ~ being identical 
for both systems and related to the temperature rise T: 

Fiu'i d r  4- ~u i de; @ - -  o:(O) dO.  O' d r  = 
v) (s) v) 1 - -  2v 

f 2 F iu~ dr  q- P '  = ' iu~ d~, (3) 
(V) S) 

with an alternative equation 

f ry)  F'~u~ dr  + fts) P'~u~ da = f ( v )  r'ijeij dr. (4) 
Here E = 2/, (1 q- v) and 0' denote, as before, Young's modulus and 
dilatation e%/, respectively. 

The proof of the foregoing theorem is rather trivial and can be 
given most simply by the following formal reasoning. Using (1) 
write explicitly the identities 

F I ( u i ' Z  U t • 00' ]+Vfo 1 ~ u ' ~ , j  = 2# k~  ~ ,) T us,d ~,j ÷ 1 - -  2v 1 - -  2 v  a(O) dO0' , 

[ J ' ~ 0 0 '  . -~ ~ju~,j = 2/*' ½(u%,j + u'j ,  d u~,j + 1 - -  2v 
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Since by hypothesis # = / , ' ,  we obtain from (4) by  integrating over 
the region V: 

f( E f T  ,,.,,, - -  ~(a) dO'O'dr = ' . . . .  dr. (5) 
. . . . . .  u) 1 - - 2 v  0 

Bearing in mind that u, and rij (as well as the same quantities with 
primes) are continuously differentiable functions in V + S, we can 
use the Gauss-Green divergence theorem 

f(F) A~,~ dr = f(s)A~ul d~, (5.1) 

with A / a s  functions of position. Respecting the identity, e.g., 

-~@'~, j  = (~-~ju'~),j - " ~ m u ' ~ ,  (5.2) 

we transform (5) by virtue of the last equation (1) and of (2) into 
the form (3) which completes the proof of the theorem. 

It  results clearly from the foregoing dex/elopment that  in order to 
apply the reciprocal theorem to the thermoelastic problem involving 
temperature-dependent properties of the body, a related elastic 
problem for an "inherently" non-homogeneous body must first 
be solved. Of course, this requires, in general, a special investigation 
since to the present time only a few solutions to the latter problem 
have been found. However, some trivial solutions hitherto available 
will permit us to derive, for illustration, several simple formulae 
for overall thermoelastic deformation in the case of temperature- 
dependent properties of bodies. These formulae correspond to some 
of the known results given in the papers by  Chree  7) and by 
G o o d i e r  a) for athermal or temperature-insensitive cases. In what 
follows we find it expedient to depart from indicial notation and use 
x, y, z instead of xl(i = 1, 2, 3). 

§ 3. Applications. (a) E x t e n s i o n  of a bar .  Suppose that the 
z-axis of the x, y, z system is parallel to tile generators of a cylindrical 
bar and that there exists only a transverse temperature variation 
T = T(x, y), T being independent of the coordinate z. Hence 
E = E(x, y) and E' ---- E'(x, y). Denote by  A the area of a cross- 
section of the bar and define as the "reduced centroid" C* of a cross- 
section the point in that  cross-section for which 

f ( m E ' ( x , y )  x d A  =f (A)  E ' ( x , y ) y d A  ---- 0. (6.1) 
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With the notation 

the expression 

E* =f (A)E ' (x ,  y) dA/A,  

r'zz = P'E' /E*A (6) 

represents the tensile stress induced by  a force P '  applied at C* in 
the athermal case s). In fact, for other stress components equal to 
zero the stress system (6) satisfies the differential equations of 
internal equilibrium and is statically equivalent to longitudinal 
force P '  operative at C*. Furthermore, since 

e'zz = P'/E*A and e'xx = e'yy -- v'e'zz (7) 

are constant, the compatibility conditions are satisfied. Consequently 

p,  
0 ' - -  (1 - -  2~), (8) 

E*A 

and 

v'P' v'P' P' 
u ' z - -  E*A x, U ' v -  E*A y' u ' z -  E*A z. (9) 

The tensile force P' is formed from a distribution of tensile stress r'z~ 
(6) and the right hand member of (3) becomes the work of P' on the 
end displacement induced by the system F/, Pi  and T. If this work 
is written P'A1, then Al is.a mean thermoelastic elongation of the 
bar of length l. Thus (3) with (8) and (9) yields 

1i f ,  E-- v(Fxx + FvY) -/ Fzz~ dr + A1 = -E*A v) 

+ f(s) [ -  v(Pzx + P y y ) +  Pzzl d~ + f, v u f0 ~(e )d0 .d r} .  (10) 

Since for a given temperature field v, E, E* and c, are known functions 
of position in V + S, A1 can be found by  simple quadratures. 

(b) F l e x u r a l  r o t a t i o n  of a bar .  Choose the locus of the 
reduced centroid of a.uniform bar with transverse heterogeneity 
E ' =  E'(x, y) as the z-axis of the coordinate system, the x- and 
y-axes being the "principal reduced" axes of a cross-section. This 
has to mean that for these axes 

f (m E'(x, y) xy dA = 0, (11) 
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by definition. Then 
M'vE'(x ,  y) 

r'zz -- x (12) 
Jr* 

represents the only non-vanishing component of stress in the bar 
induced by a pair of bending moments M'  v acting in the plane zx. 
Here 

J*v = f (m E'(x, y) x 2 dA 

is the "reduced moment of inertia" with respect to the "reduced 
principal" y-axis through C*. In fact, r'zz in (12) does not provide 
any resultant force in the z direction since x is a reduced axis 
passing through C* and for such an axis Eq. (6.1) holds. Again 
by  virtue of (11) M ' ,  vanishes, and the moment of *'zz around an 
axis paralell to y yields - - M '  v. Furthermore, t h e  differential 
equations of internal equilibrium are satisfied as well as the com- 
patibility conditions, since the longitudinal elongation 

My 
e'= -- x, (13) 

J*v 

and two other unit elongations are linear functions of the coordinates. 
It is trivially seen that 

M y  
0 ' =  (2v -- 1)-j~7-y x. (14) 

Hence for a mean, purely thermal, fiexural rotation ~v in the plane 
zx of one end of the bar relative to the other, we obtain from (3) 

fo 1 E e(v a) dv~.x dr. (15) 
c P v -  J*v v) 

(c) C h a n g e  of v o l u m e .  Let us find the change of volume of 
the solid material in an arbitrary body with cavities, under the 
action of any temperature field. Choose as the second system the 
uniform normal traction p' distributed over all bounding surfaces 
of the body. Then 

a'x = a'v = a'z = p' and 0' = 3(1 -- 2v) p'/E. 

It  results now from the theorem (3) that  the change of volume V 
of the solid materials equals 

A V  = 3 f (v ) f~ '  ~(~9) dv~ dr, (16) 
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the contribution from the thermal stress being nil. This completes 
the results obtained by Good ie r ,  H i e k e  and  N o w a c k i .  

(d) C h a n g e  of v o l u m e  of a c a v i t y  cannot be found in a 
like trivial manner. To take a special case, consider a hollow sphere 
of radius a ~< r ~< b undergoing any polarly symmetrical temper- 
ature rise T(r). As the auxiliary system we take a non-homogeneous 
sphere acted upon by constant inner normal tractions P'i. Denoting 
by u' the respective radial displacement we obtain from the second 
eq. (I) the radial and the hoop stresses 

~ = E ' ( ~ )  - ~) u ' ,~  + 2 ~ -  , 

Here 
= v/(1 4- ~)(1 -- 2v) and fi = c~/v, 

(17) 

where Poisson's ratio is supposed to be temperature-independent 
in order not to complicate the resulting equations. From the di- 
vergence equation of stress we find the basic equation of the problem 

' - - E ' , r - -  = O, (18) u , r r 4 -  -¢- E'  E',r u ' # + 2  1 - - v  

which can be solved in closed form for specific forms of E'(r)  *) only. 
Suppose that u'(r) is known and that O' = U',r + 2u ' /r  can be found. 
Then from (3) we find the change of volume of the spherical cavity 

A V c  - -  1 - -  2~ E(r)  ~(O) dO'(r2u') ,r  dr. (19) 
C~ 

(e) T h e r m o e l a s t i c  d i s p l a c e m e n t  of a point of a temperature 
sensitive body can be directly obtained from the theorem (3) 
assuming F~ = Pi  = 0 and taking F'i  or P' i  (for a definite value 
of i) equal to unity (the remaining components of Fi, Pi being 
equal to zero). Hence for any point (~, ~, ~) in the region V + S we 
get a general formula 

f< E f [  u~(~, 7,  ~) = v) 1 - 2 ~  . ( o )  d e . O '  d~-, (20) 

*) See, e.g., ref. lo). 
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in which O'(x, y, z), however, has to be found solving the athermal 
problem for a non-homogeneous body acted upon by a concentrated 
unit force operative at the point 2, ~, ~ of V + S. Some particular 
solutions of the latter problem are known. 

Received 4th April, 1960 
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