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Summary 
A theoretical analysis is presented of the mechanism of simultaneous flow 

of gas and liquid through a restriction at critical speed. The study shows 
that a relationship exists between the mass flows of gas and liquid, restriction 
size and upstream pressure. Comparison of this relationship with measure- 
ments showed a reasonable agreement. It  has therefore been concluded that 
a restriction can be used as a gas/liquid flowmeter with reasonably high 
accuracy, provided that the flow is a critical one. Further increase of accuracy 
seems possible by using a restriction especially designed for the purpose. 

§ I. Introduction. Restr ic t ions  th rough  which gas/l iquid mix tu res  
flow at  critical speed are widely used in oil field pract ice  in the  fo rm 
of well head  restrictions. G i l b e r t  1) presented  an empirical  corre- 
lation, based on oil field data ,  l inking liquid produc t ion  rate ,  gas/ 
l iquid ratio,  u p s t r e a m  restr ic t ion pressure and  restr ict ion size. 
Such a correlat ion offers the  possibil i ty of using a restr ic t ion as a 
f lowmeter ;  f rom its pressure readings the gas/l iquid rat io  can be 
calculated,  once the liquid flow ra te  is known,  and  vice versa.  
T a n g r e n  et al 2) presented  an analysis  of the  behav iour  of an 
expanding  gas/l iquid system.  In  this analysis  a "homogeneous"  
mix tu re  has been assumed,  in the sense t h a t  the  gas bubbles  are so 
small  and  un i formly  d is t r ibuted  in the liquid t h a t  the velocities of 
bo th  phases  m a y  be considered equal  during expansion.  This  
assumpt ion  seems reasonable  for sys tems  where the  liquid phase  
is continuous,  occurring when the vo lumet r ic  gas/l iquid ra t io  
is lower t han  abou t  1. However ,  when this rat io  exceeds 1, the 
opposi te  s i tuat ion is l ikely to occur. Then,  the  liquid phase  being 

- -  374 - -  
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the dispersed one, a difference in velocity of the phases is to be 
expected, causing energy losses due to slip. In accordance with his 
assumptions, these energy losses have been ignored in T a n g r e n ' s  
study. The intention of the present analysis is to extend T a n g r e n's 
s tudy to gas/liquid systems with a continuous gas phase and to 
develop a flowmeter formula for these systems. 

The analysis is based on the well-known energy balance which 
says that, for a fluid flowing uniformly and under stationary 
conditions between any two points, the sum of expansion energy, 
potential energy, kinetic energy and irreversible energy must be 
constant a): Thus, with the usual symbols 

2 

f ( V d p + g d h + d ( ½ v  2 ) + d W ) = 0 .  
1 

For a flowmeter, the value of the total mass flow is of interest. This 
mass flow follows from the area of the restriction throat, the throat 
density and the throat velocity. The latter can be determined after 
integration of the above equation from the kinetic energy term, 
once the other terms are known. The integration boundaries 1 
and 2 then apply before the restriction and in the restriction throat 
respectively. 

For single-phase flow, when the fluid velocity may be con- 
sidered uniform within each cross-section, this procedure offers 
no particular difficulties and results in the well-known flowmeter 
formula 3). Application of the procedure to the case of gas/liquid 
flow with a continuous gas phase, however, seems impossible, 
since generally the throat velocity of both liquid and gas will not 
be uniform, which means that the integration of the kinetic energy 
term of the above equation cannot be  performed. Furthermore, the 
relation between V and p is not known, while the contribution 
of the irreversible energy term is uncertain on account of the slip 
losses. Thus, the integration necessary for the development of a 
flowmeter formula cannot be performed for the general case of 
gas/liquid flow. 

Fortunately, the procedure can still be applied in certain cases, 
among others those for which it can be shown that:  

1. the throat velocity v2 may be considered uniform; 
2. the gas expands polytropically, resulting in a known V/p 

relationship ; 
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3. the potential energy term and part of the irreversible energy 
term, namely surface energy and wall friction, can be ignored; 

4. the remaining part of the irreversible energy term, namely 
the slip losses, can be determined. 

In the next section criteria will be derived and the correctness 
of the above points will be demonstrated for a specific case, charac- 
terized by table I, representing average oil field conditions. 

T A B L E  I 

L i q u i d  Gas  
U n i t  ( index l) . ( index g) 

U p s t r e a m  d e n s i t y  
T h r o a t  d e n s i t y  
H e a t  c o n d u c t i v i t y  

Speci f ic  h e a t  a t  c o n s t a n t  
p r e s su re  

Specif ic  h e a t  a t  c o n s t a n t  

v o l u m e  
Cr i t ica l  v e l o c i t y  

M a s s  f low pe r  un i t  mass  
f low of m i x t u r e  

P 

P 

C~o 

Cv 
Ve 

m 

0.8 
0.8 

7 x  10 -a  

0.58 

0.85 

10 x 10 -a  

5 X 10 -a 
7 x I0 -5 

0.56 

0.43 
35 000 

0.15 

Su r f ace  t ens ion  

U p s t r e a m  v o l u m e t r i c  
gas / l i qu id  r a t i o  

V o l u m e t r i c  gas / l i qu id  
r a t i o  in  t h r o a t  

(1 

R 

R* 

30 

= m g P ~ -  = 14  

mzpg 

- -  mePl -- 28 

m~pa 

T h r o a t  l e n g t h  L = 1 c m  

T h r o a t  d i a m e t e r  D ~-~ 1 c m  
Gas p h a s e  c o n t i n u o u s  

g / c m  3 

g / e m  a 
ea l / cm s °C 

ca l /g  °C 

c a l / g  °C 
cm/s  

d y n e / e r a  

§ 2. F l o w  m e c h a n i s m  m a restr ict ion.  2.1. F l o w  p a t t e r n .  The 
high velocities occurring with critical simultaneous flow of gas and 
liquid will cause dispersion of the liquid and result in mist flow. 
A part of the liquid, however, will travel as a film along the resLric- 
tion wall. The thickness of such a film b has been investigated by 
v a n  R o s s u m  4), who has obtained a Weber correlation 

W e  = pa*vo2~/(~ ~ 30. 

This correlation is valid for systems with a constant gas velocity. 
Assuming that  the correlation also holds for cases where the gas 
phase accelerates, substitution of the values of table I results in 

= 1.5 x 10 -4 cm. The velocity Of the liquid in this thin layer 
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will be very  small, so tha t  the liquid t ransport  will be negligibly 
small. All of the liquid m a y  thus  be reckoned to be t ransported as 
a mist. 

The max imum possible droplet diameter  in this mist  Dmax can 
be est imated using another  Weber correlation, given by  H i n z e  5) : 

W e  = pg*vc2Dmax/a ~ 20.  

The average droplet d i ame te r / ) ,  according to M u g e 1 e andE  v a n s 8) 
is ~-~ 0.3 Dmax, so tha t  

~'~ 6a/pg*Vc 2. (1) 

Subst i tut ion of the values of table I gives 

~ 3  X 10 -5 cm. (2) 

The liquid thus flows through the restriction predominant ly  in 
the form of extremely small droplets. 

2.2 M e c h a n i c s  in  r e s t r i c t i o n  t h r o a t .  The dispersion of 
the liquid takes place at  the en t ry  of the restriction. After dispersion 
the liquid droplets will have at  first a relat ively low velocity and 
will be accelerated by  the kinetic head of the gas. This will mainly 
occur in the restriction throa t  where both  the velocity and the 
densi ty of the gas are more or less constant.  

The friction force F exerted on a droplet accelerates it and thus  
reduces the velocity difference v g -  vl: 

a _ d(va -- v~) 
F = - - / ~ 2  ½pg*(vg -- v~)2Cw --  D a p~ , 

4 6 dt 

the friction coefficient Cw having a value of 0.43 or higher a). 
If 0.43 is subs t i tu ted  and pg* and vg are considered constant,  the 
equation can be integrated:  

4 pl D E I 1 1 
. _ _  j 

t = ~-  Pg* 0.4~- (vg -- vl) (vg -- v~)0" 

(vg --  vl)o being the initial velocity difference. 
The t ime required for passage of the gas t~ is equal to L/vg. 

Assume the initial liquid velocity to be zero; then, with vl/vg = 
and t/t~ = ~ the above equat ion becomes after solving for ¢: 

T 4 1 pz / )  
-- - - ,  with a -- (3) 

-]-a 3 0.43 pg* L 
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With the data from table I and equation (2) fo r / ) ,  the value of 
a becomes: a = 0.015. 

2.2a. Mechanical equilibrium. The velocity difference at 
the end of the throat vg -- vz is small, while the relationship between 
the mass flow and the kinetic energy of the mixture is practically 
unaffected by this remaining velocity difference. This appears 
as follows. 

The path xz, travelled by the droplet in a time t, is equal to 

f f " x z =  v l d t =  vg ~ d r =  r :  - - d r =  
a + r  

0 0 0 0 

=z[r-aln(1 

plA ]/2Ek Om 
- V _ 

At complete 
reduces to 

( my p l ) ~ m  z @1 
1+ ml pg* mt 

At the end of the throat x~ = L and thus r -- a in (1 + r/a) = 1. 
With a = 0.015, r takes the value 1.06 and the velocity ratio 
vl/vg = ~ = 0.987. 

At complete equilibrium ~----- 1. Any deviation of ~ from unity 
is of interest only in so far as the relationship between mass flow 
and kinetic energy per unit mass is affected, since it is the latter 
which will be determined from the energy balance. 

With q~m for the total mass flow, the volumetric flows a r e  mlq3m/pl 
and mfl)m/pg* for liquid and gas respectively. The cross-sectional 
area of the total flow thus is 

a = ( m '  + my_) 

mvl pg*v #m. 
The kinetic energy per unit mass is 

E~ = ½mlvz 2 + ½mgvg2. 

From these two equations, with ~ -- vdvy, it follows that  

ptA ]/2E~ 1 q~m 
V m l  m l  

+ ~2 
@ m l  pg* 

mechanical equilibrium $ = 1, and the equation 
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With the data from table I and ~ = 0.987 the discrepancy between 
the two equations becomes 1 °/o and may be ignored. In other words, 
the throat velocity v2 in the energy balance may be considered 
uniform. 

2.2b. S l i p  losses.  The energy withdrawn from the gas in order 
to accelerate the droplet is equal to 

t 

Eg = f Fvg dt. 
0 

Likewise, the energy supplied to the droplet 
t 

E~ = f Fvz dt. 
o 

The energy dissipation due to slip is thus equal to 

t 

E8 = Eg -- Ez = f F(vg -- va) dr. 
o 

The reduced energy dissipation, being the ratio between Es and 
E~, now appears nearly equal to one" 

t t 

f F(vg - -  vl) dt f (7r/4) D z ½pa*(vg--vz) ~ Cw(va--vl) dt 
Es o o 
Ez t - -  t 

f Fvz dt f (~r/4) D ~ 1 * -zPa (vg - -  vl) 2 Cwv~ dt 
0 0 

7 

f (1 -- C) 3 dr 
0 

f (1 - -¢ )2  ~dr  
0 

With ¢ -- r/(r + a) (see (3)), Es/Ea becomes equal to 1 +2a/r,  with 
2a/r ~ 1, thus E8 ~ Ea. The slip losses occurring with the accele- 
ration of a certain amount of liquid are thus nearly equal to the kinetic 
energy of that  amount of liquid. 

2.3 S u r f a c e  e n e r g y  a n d  w a l l  f r i c t i o n .  During the disper- 
sion of the liquid the surface area between both phases will in- 
crease, for which energy is required. This surface energy E amounts 
to 

E = ~Ae, 

Aa being the surface area of the droplets in the throat. (Before the 
restriction this area is negligibly small.) 
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Per unit mass of mixture the liquid volume Vl is given by  

For an average droplet diameter D the surface area then becomes 

V~ 6ra~ 
Aa . . . . . .  ~D 2 = 

~xDa DOz 

Substitution of (1) for D gives A e = pg*v2ml/(~p~, so that  E = ~A a = 
= pe*v%nz/pl. Comparing E with the kinetic energy ½v~" 

E 2pg l 
½v 2 pz 

With the values of table I the value of E/½v 2 becomes about 0.01. 
The kinetic energy thus far exceeds the surface energy, so that  
the influence of the latter on the energy balance can be ignored. 

The effect of wall friction can also be ignored if the restriction 
is short enough. With single-phase flow the pressure drop due to 
wall friction d P  is given by  AP = 4/½pv2L/D, L and D being the 
length and diameter of the throat and 4 /be ing  the friction coeffi- 
cient. At very high velocities (with correspondingly high values 
of the Reynolds number) 4/ becomes very small, of the order of 
10 -2 (ref. a)), so that with a short restriction (L --~D) A P  will be 
only about one per cent of {pv 2. The same will also hold for the 
case of gas/liquid flow, so that  the influence of wall friction may be 
neglected. 

2.4. T h e r m a l  e q u i l i b r i u m  a n d  gas  e x p a n s i o n  law. In 
the restriction entry a rapid decrease in pressure occurs. In the 
first instance the liquid temperature will not be affected, while the 
gas temperature decreases adiabatically. Thus a temperature 
difference arises, causing a heat flow from liquid to gas. This heat 
flow is so intense that the temperatures of liquid and surrounding 
gas may be considered equal during the expansion while the gas 
expansion law becomes a polytropic one. This appears as follows. 

The heat exchange in the restriction may be approximated 
by  the following model: the spherical liquid droplets with uniform 
diameter D are distributed in the gas phase according to a hexagonal 
equidistant pattern. The droplets are then surrounded by  gas 
bodies, the shape of which is roughly spherical. Suppose that 
complete expansion takes place in an infinitesimally short time. 
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The gas sphere then will attain a uniform temperature A To lower 
than the uniform liquid temperature, and heat flow by conduction 
starts. At the interface the discontinuity in temperature disappears 
instantaneously, so that  the temperature difference A T~ between 
the centre of the liquid sphere and the interface is at maximum and 
likewise A Tg between interface and outer surface of the gas. The 
time required for these temperature differences AT to disappear 
may be found from the theory of heat conduction for this model v). 

Any reduced temperature difference tiT/AT0 is a function of the 
Fourier number ~, defined as 

Practical equilibrium A T/ATo = 10 -2 is attained for e ~ 1 for 
each phase. 

For the liquid phase the equilibrium time h becomes, with sphere 
radius R~ ~-~ 1.5 × 10-a cm (see (2)) and the values of table I for 
At, Cpl and p~: 

h~'~2 X 10 -Ts. 

For the gas phase, the sphere radius Rg is given by:  

Rg ~ R 1  ~/R*@ 1; with R~ ~-~ 1.5 x 10-5 cm, 

and with the values of table I for tg, Cpg, pg and R* the value of 
tg becomes: 

tg ~ 1 0  - 7  s .  

Whichever time is longer, h or tg, determines the time tm required 
to attain practically uniform temperature throughout, thus: 

t m ~ 2  × 10-7 s. 

On the other hand, the passage time is given by  tp ~-~L/ve. 
With throat length L ~ 1 cm and vc ~ 36 000 cm/s, t~ is in the 
order of 3 × 10 .5 s, which far exceeds the thermal equilibrium time 
tm of the model. The mixture will thus have a uniform temperature 
in the throat and most probably also during the expansion before. 

This uniform mixture temperature, however, will decrease 
during the expansion. This expansion is governed by  the thermo- 
dynamics of irreversible processes in mixtures. The latter is rather 
complex and will not be used here. Instead, a simplified description 
of the expansion of the mixture will be given, showing that the gas 
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expansion can be approximated by  a polytropic expansion law. To 
that end the mixture expansion process, including effects of irre- 
versible energy losses and velocity differences between the phases, 
is enclosed between two imaginary processes, i.e. a process where 
both irreversible energy losses and differences in velocity are 
assumed to be zero, and a second one where both irreversible 
energy losses and velocity differences are assumed to have their 
maximum possible value. 

The first process is adiabatic since, the passage time being very 
short (tp ~-~3 × 10 -5 s, see above), heat transfer between wall and 
mixture must be negligibly small, while furthermore irreversible 
energy losses according to the assumptions are zero. Then, the first 
law of thermodynamics becomes 

dQ = dU + p dV = ml(dUz + p dVz) + mg(dU a + p dVg) = O. 

With dU~ = Cvl dT, dUg = Cva dT and dVl = 0 (incompressible 
liquid), the above equation becomes 

dT(m~Cv~ + maCvg ) + mgp dVg = 0. (4) 

The equation of state for the gas phase may be approximated by  

pvg = RT = (Cpg - -  C v g ) T .  

Differentiation of the last expression, elimination of dT with (4) 
and integration then leads to a relation between p and Vg: 

mg(C~,g - Cvg) 
p Vg n = constant, with n = 1 + 

mzCvz + mgC~g 

This expression has already been found by  other investigators 2). 
T h e  value of n becomes, with the data from table I: 

n = 1.035. 

The second process with liquid velocity zero and irreversible 
energy losses at maximum, i.e. kinetic energy also zero, is in fact 
a throttling process of the gas flowing at low velocity through a 
packed bed of non-moving liquid droplets. Then, the enthalpy of 
the gas phase remains constant; that  is, with the usual symbols 

dH = d(Ug + pVg) = Cvg d r  + d(pVg) = 0. 

This equation, together with the differentiated equation of state 
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for the gas phase, gives dT = 0; thus T = constant (isothermal 
expansion), that  is n = 1. 

The difference between the two expansion coefficients is very 
small. Thus, it would seem reasonable to assume polytropic gas 
expansion for the real process, with the expansion coefficient 
following from linear interpolation on the basis of dissipated energy. 
The latter equals the liquid's kinetic energy (see § 2.2b and § 2.3), 
which for equal gas and liquid velocity is the fraction mt of the 
mixture's kinetic energy and the fraction rod(1 + mz) of the ex- 
pansion energy (see § 3.1). The result is (see fig. 1) 

n = l @  
1 m g ( C ~ g  - Cvg) 

1 -~- mz mtCvz + mgCvg 

With the values of table I, n becomes n = 1.019. 

r~ 

1+A 

i I 
I I 
i I 

r n t  1 dissipated energy 
l+m[ exponsmn energy 

Fig. 1. The e x p o n e n t  n in the  relat ion p v g  n = cons tan t  as a funct ion  of 
the  f rac t ion of expans ion  energy dissipated.  

§3. Development o/ /ormulm 3.1. G e n e r a l  f o r m u l a .  I t  has 
now been shown that  of the irreversible energy term dW only the 
slip losses have some influence on the energy balance. These losses 
appeared to be equal to the kinetic energy of the liquid, so that  

2 2 
f dW -~ fmz  d({v2), 
1 1 

rnl being the mass of liquid per unit mass of mixture *). Furthermore, 

*) This relationship has been derived on the basis of a continuous gas phase, since it 

had been shown that this situation occurs with flow through a restriction for the con- 

ditions of table I, comprising a high gas/liquid ratio R. At low R-values (R < I), however, 

the opposite situation will occur. Then a chain of discussions can be presented, similar 
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at critical flow conditions, the potential energy term g dh is 
negligibly small compared with the other terms, so that the energy 
balance simplifies to 

2 

f IV dp -}- d(½v 2) + ml d(½v2)J = 0, 
1 

from which the uniform throat velocity v2 can be established. 
The polytropic expansion of the gas gives 

p ( V -  V~) n = Constant, (5) 

the term Vz being the liquid volume, incorporated in one unit of 
mass of mixture. 

Elimination of V from the above equations and integration give 

n 

n - - 1  
- -  (V1 - -  Vl ) /51  -~- Vl~bl -~- 1v12(1 + ml)  : 

(V2 - V~) P2 + vzp2 + ½v22(1 + mr). (6) 
n - - 1  

The restriction throat area is usually much smaller than the area 
upstream of the restriction so that  v2 >~ Vl and the latter may be 
neglected. 

The total mass flow q~m follows from the throat velocity v2, the 
throat area A, the mixture density in the throat l/V2 and the 
discharge coefficient C : 

¢~ = ACv2/V2, (7) 
C being a correction for all neglected phenomena. 

Combination of (5), (6) and (7) gives 

V R  n-2--- (1-- x ('-1)1'~) + (I-- x) 

q~ = A C  ~ 2pl R x - I / n  + 1 (8) 

In this formula *) the dimensionless total mass flow ~0 defined above 

to those g iven  above  and  wi th  the  same  resul ts ,  excep t  t h a t  in  th is  case the sl ip losses 
are equa l  to the  k ine t i c  ene rgy  of the gas  phase.  Thus,  

2 2 
f dW = f m~ d (½re). 
1 1 

Since R < 1, mg will  be v e r y  smal l  compared  wi th  u n i t y  and  the  t e r m  d W  can  be ignored  
in the ene rgy  balance.  T h_e~l (3) wil l  also change :  the  t e r m  1 + m~ m u s t  be o m i t t e d  

Isee also ref. 2)). 
*) S.ee prevLou~ foot-n_ot¢, 
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is related to the pressure ratio x = P2/Pl, the volumetric gas/liquid 
ratio before the restriction R = ( V 1 -  V~)/V~ and the polytropic 
expansion coefficient n. 

3.2 C r i t i c a l  p r e s s u r e  r a t io .  When for a given mixture 
composition and upstream restriction pressure Pl the total mass 
flow #m is determined as a function of the throat pressure P2 using 
(8), it appears that  #m first increases with decreasing p~ and sub- 
sequently decreases. This behaviour is illustrated in fig. 2, where 
the dimensionless mass flow ~ is plotted against the pressure ratio 
x. The maximum value ~c of 9 occurs at an x-value which is defined 
as the critical pressure ratio Xc. Experiments with single phase gas 

/ 
E 

f 
Xc 1 

-----~- Xb ~ p@ 

P2 
Pl 

Fig. 2. Dimensionless mass flow 9 against pressure ratios x and Xb for given 
R and n values. 

flow (R --- co), however, showed that  with decreasing back pressure 
Pb the value of ~ closely follows (8) for Pb > xcpl, but that  for 
Pb <-- Xcpl, ~ is constant and equal to ~Ve. Apparently the throat 
pressure P2 is equal to the back pressure Pb for Pb > xcpl, while P2 
remains equal to xcpl for Pb <- Xcfll. In the latter situation the 
throat velocity is equal to the velocity of sound 2) and apparently 
independent of the value of the back pressure Pb. Hence, the 
unbroken horizontal line in fig. 2 represents the cp/xb relationship, 
where x~ refers to Pb/Pl. 

The critical x-value is determined by ~q)/Ox = 0 for x = xc. 
Differentiation of (8) gives with x = xc and ~o/~x = O, 

-n-- xe(n-1)mtR + xcl/~)2=RI R 2  n - -  (I__Xc)(n__I)/~_{_(t__Xc)~.(9) 
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3.3. C r i t i c a l  d i m e n s i o n l e s s  m a s s  f l ow  9e. To determine 
the critical value ~c of cp, Xe should be solved from (9) and the 
result substituted in (8). This procedure, however, cannot be per- 
formed analytically because of the implicit character of (9). Fortu- 
nately, it is possible to derive fairly accurate explicit approximations 
for ~0c. 

3.3a. R > 0.6. When (9) is evaluated, it appears that for a given 
n the xc-value is practically constant in the range R > 0.6, see fig. 
3. Thus, it is possible to approximate xc by a constant value x~ 
chosen between the extreme values of Xc encountered in the R-range. 

X c 

1 

0.5 

0 I t I I 

10-t 1 10 10 z 10 3 

R 

Fig. 3. Critical pressure ratio Xc against volumetric gas/liquid ratio R for a 
constant n value. 

Substitution of xn in (8) now introduces only a small error, since 
the ~-value is nearly independent of x for x-values aroundxc (&y/~x = 
-- 0 for x = x,). The resulting expression then has the form 

C I ~ / R  + C2 

~c - -  R -4- C a  ' 

in which the values of C1, C2 and Ca depend on n. These dependences, 
however, are nearly linear ones and thus can in turn be approximated 
by:  C1 = a + bn, etc. The resulting ~c-approximation becomes 

(0.2905 4- 0.1381¢) ~ / R  4- (0.6903 4- 0.0651¢) 
5Oc = (10) 

R 4- (0.4778 4- 0.076n) 

The discrepancy between this expression and (8) is smaller than 0.7 %. 
3.3b. R < 0.6 *). In this range, the mass of gas per unit mass of 

mixture mg will usually be very small, resulting in an n-value nearly 

*) See previous foot-notes. 
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equal to one. Then ~0e will be a function of R only. This relationship 
can be approximated by 

~e = 1 -- ~/2R + (0.777 -- 0.488 log R)R. (11) 

Comparison of (11) with (8) shows a discrepancy smaller than 0.04%. 

§ 4. Discussion. The flowmeter formula (8) has been checked on 
a number of oil field data dealing with critical gas/liquid flow 
through well-head restrictions. Any discrepancy between reality 
and the assumptions on which the theoretical formula is based will 
show up in the value of the discharge coefficient C. According to (8) 

~m ~ Vt(1 + m~) 
C - -  A~ve - 2pl 

9c being given by (10). Substituting values, deduced from the 
basic and field data, C appeared to have a value of: C =  1.06 ~ 0.12 
for R > 1. For the restriction shape in question, i.e: a cylindrical 
channel with a slightly rounded edge (see fig. 4), a C-value of 
about 0.95 is to be expected. Comparison of this figure with the 
measured C-values shows the discrepancy to be rather small so that 
the theoretical analysis would seem fairly justified. The standard 
deviation of 0.12 can probably partly be ascribed to inaccuracy 
in the field data. 

i 

Direction of fkow 

Fig. 4, Restriction shape. 

This standard deviation, however, is too big to allow application 
of (8) to flowmetering. Possibly the accuracy of the flowmetering 
procedure can be increased by making tests using a restriction 
specially designed for the purpose. Experimental results of other 
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investigators point in this direction: T a n g r e n  2) investigated a 
gas/water mixture flowing at critical speed through a nozzle. From 
the results a C-value of 1.04 :t= 0.02 can be deduced, of which the 
standard deviation of 0.02 is remarkably small. 
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