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Introduction 

Let 12 be an exterior domain in R" (n > 3), i.e., a domain having a compact 
complement R"\12, and assume that the boundary Or2 is of class C 2 +u (0 </~ < 1). 
The motion of an incompressible fluid occupying 12 is governed by the Navier- 
Stokes equations: 

(s) 

- A w + w ' V w + V r c = f  in f~, 
d i v w = 0  in fa, 

w = 0 on 0/2, 

w(x)--,O as Ixl--,oo, 

where w = w(x)= ( w l ( x )  . . . .  ,wn(x)) and ~ - -~ ( x )  denote the velocity vector 
and the pressure of the fluid at point x e l  J, respectively, while f = f ( x )  
= ( f l ( x ) , . . . , f " ( x ) )  is the external force. In [211 , KozoNo & SOHR 
estabished the existence and uniqueness of solutions to the linearized equations 
of (S), i.e., the stationary Stokes equations having a finite U-gradient 
~aiVw(x)l~dx < oo for n/(n - 1)< r < n. Based on their results with the aid of 
the implicit function theorem, one can easily show that (S) has a smooth solution 
with 

(CL) we  L"(~?), Vw e Ln/2(Q) 

if n > 4, provided the prescribed forcef is  sufficiently small and decays rapidly at 
infinity. If n = 3, some investigation into the existence of solutions 0f(S) within the 
class (CL) has been made by several authors (see, e.g., [9, 22]). 

The purpose of this paper is to show the stability in L r of solutions of (S) in the 
class (CL). If w is perturbed by a, then the perturbed ftow v(x, t) is governed by the 
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following non-stationary Navier-Stokes equations: 

(N-S) 

91) 
O - ~ - A v + v ' V v + V q = f  in (L t > 0 ,  

div v = 0  in s t > 0 ,  

v = 0  on ~ ,  t > 0 ,  

v(x , t )~O as ] x [ ~  oe, 

v(x, 0) = w(x) + a(x) for x s O. 

In this paper we shall show that if the stationary flow w and the initial disturbance 
a are both small enough in the class (CL) and in L"(f2), respectively, then there is 
a unique global strong solution v of (N-S) such that the integrals 

5[v(x , t ) -w(x) lrdx  f o r l < r <  oo, 
s 

(Dr) 

I V v ( x , t ) - V w ( x ) [ ' d x  for l < r < n  
o 

converge to zero with definite decay rates as t ~ oo. Let w and v be solutions of (S) 
and (N-S), respectively. Then the pair of functions u - v - w, p = q - zc satisfies 

c~u 
- -  - A u  + w ' V u  + u" V w  + u ' V u  + V p  = 0 in O, t > O, 
,~t 

(N-S') d i v u = O  in O, t > O ,  

u = O  on ~0, t > O ,  u(x,t)-~O as I x ] ~ o o ,  

U]t= 0 ~ a.  

Hence our problem on the stability for (S) can now be reduced to an investigation 
into the asymptotic behavior of the solution u of (N-S'). For  a three-dimensional 
exterior domain, HEYWOOD [14, 15] and MASUDA [25] considered an in- 
homogeneous boundary condition at infinity like w(x)--* w oo as Ixl-+ 0% where 
w ~ is a prescribed non-zero constant vector in R 3. They showed the stability for 
such solutions in L2-spaces. On account of the parabolical wake region behind 
obstacles, their decay rates are slower than those of our solutions. To obtain 
sharper decay rates in U-spaces of the solutions of (N-S'), we need to establish 
LP-L'-estimates for the semigroup e -tLr, where L~ is the operator defined by 

L,u =- Aru + P,(w'Vu + u'Vw). 

Here Pr is the projection operator from U(f2) onto L~(Y2) and Ar = - P,A denotes 
the Stokes operator in L](Y2). 

In case w =-- 0, we have L~ = Ar and hence our problem reduces to obtaining 
a global strong solution and its decay properties of the Navier-Stokes equations in 
exterior domains. Since the pioneer work of KATO [19] and UKAI [35], many efforts 
have been made to get LP-Lr-estimates for the Stokes semigroup e-tan in exterior 
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domains. There are mainly two methods: The first, due to GIGA [11], GmA & SOHR 
[13-1 and BORCHERS & MIYAKAWA [3] is to characterize the domain D(A~) of 
fractional powers A, ~ (0 < e < 1) and the second, due to IWASHITA 1-16], is to obtain 
asymptotic expansion of the resolvent (At + 2) - 1 near 2 = 0. In our case, since L~ 
is an operator with variable coefficients, it seems difficult to apply either of these 
methods to show that the asymptotic behavior of e-tLr is the same as that of e-tA~ 
as t ~ oo. If we restrict our attention to the case 1 < r < n/2, however, then L~ can 
be treated as a perturbation of A~, and for such r, we can get satisfactory 
LP-L'-est imates  of e-'L", which are enough for the global strong solution of (N-S'). 
Our proof needs neither estimates of the purely imaginary powers L~S(s ~ R) of L, 
nor an asymptotic expansion of (Lr + 2)-  a near 2 = 0; we need only a resolvent 
estimate of elliptic differential operators such as AGMON'S [2]. 

Because of the restriction 1 < r < n/2, we cannot construct the strong solution 
directly in the same way as GIGA & MIYAKAWA [12] and KATO [19]. Therefore, we 
first need to introduce a mild solution which is intermediate between weak and 
strong solutions (see Definition 3.1 below). Then we show the existence and 
uniqueness of the global mild solution u of (N-S') in the class C([0, oo ); L~ (f~)) with 
the decay property Ilu(t)l]q = O(t -1/2+n/2q) as t ~  oO for n < q < oo. Using 
a uniqueness criterion similar to that of SERRIN [30] and MASUDA [26], we may 
identify the mild solution with the strong solution. As a result, it will be clear that 
the restriction on r causes no obstruction for our purpose. Moreover, if we assume 
more rapid decay in space of the initial disturbance, such as a e L'(f2)c~ L"(f2) for 
1 < r < n/2, then we also get I[ Vu(t)/I, = O(t -1/2) as t --, oo. 

In Section 1, we state our main results. Section 2 is devoted to LP-U-estimates 
of e-,z~ and Ve-tLr. The existence and uniqueness of the global mild solution is 
established in Section 3. Finally in Section 4, we prove our theorems. 

w Results 

Before stating our results, we introduce some notations and function spaces and 
then give our definition of strong solutions of (N-S'). Let C ~ denote the set of all 0,o" 

C ~176 real vector functions ~b = (~b 1 . . . .  , ~b") with compact support in f2, such that 
div q5 = 0. L~ is the closure of C| with respect to the U-norm [I Irr. (',') denotes 
the L 2 inner product and the duality pairing between L r and L ~', where 
1/r + 1/r' = 1. L r stands for the usual (vector-valued) Lr-space over g2, 1 < r < oo. 

1,~' cO Ho.~ denotes the closure of Co,~ with respect to the norm 

II ~b IJ~l,, = II 4, II~ + II v ,p Pit, 

where V~b = (OqSi/Oxj; i, j = l . . . .  , n). When X is a Banach space, its norm is 
denoted by II'l[x. Then C"( [ t l , t 2 ) ;  X )  is the usual Banach space, where 
m = 0, 1,2 . . . .  , and t~ and t2 are real numbers such that tl < t2. BCm([q ,  t2);X) 
is the set of all functions u e cm([ t l ,  t2); X) such that suph < t< t2 ]1 d"u( t ) /d t "  I lx 
< o0. In this paper, we denote various constants by C. In particular, 
C = C ( * , . . . ,  *) denotes a constant depending only on the quantities appearing in 
the parentheses. 
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Let us recall the Helmholtz decomposition: 

L ' = L ~ , O G  * (direct sum), 1 < r <  oo, 

where G" = {Vp e U ;  p e L~oc(0)}. For the proof, see FUJIWARA 8r MORIMOTO [8], 
MIVAKAWA [27] and SIMADER & SOHR [31]. P~ denotes the projection operator 
from L * onto L~ along GL The Stokes operator A, on L~, is then defined by 
A, = - P,A with domain D(A~) = {u ~ H2"(O); uLoo = 0} c~L~,. It is known that 

(L~)* (the dual space of L~) = L~', A* (the adjoint operator of A,) = A,,, 

where 1/r + 1/r' = 1. 
Let us introduce the operator L, in L~,. To this end, we make the following 

assumption on w. 

Assumption. w is a smooth solenoidal vector function on if2 in the class w ~ L~ and 
Vw ~ L n/2 with w [aa --- O. 

For the existence of such solutions w of (S), see KOZONO & SOHR [22] and GALDI 
8Z PADULA [9]. Under this assumption, we define the operator B, on L~ by 

B,u =- P , ( w . V u  + u . V w )  with domain D(Br) = Ho,l"~. 

L,  is now defined by 

D ( L r ) =  D(A,), L~=- A, + B~. 

Applying the projection operator Pr to the both sides of (N-S'), we get formally 

du 
(E) d--[ + L ,u  + P,(u" Vu) -- O, t > O, 

u(0) = a. 

Our definition of a strong solution of (N-S') is as follows: 

Definition. Let a 6 L~ and let w satisfy the Assumption. A measurable function 
u defined on f2 x (0, T) is called a strong solution of (N-S') on (0, T) if 

(1) u e C([0, T); L~)c~Cl((O, T); L~), 
(2) u(t) ~ D(L , )  for t e (0, T) and L , u  ~ C((O, T); L~), 
(3) u satisfies (E) in L~ on (0, T). 

Our results now read: 

Theorem 1. Let  a E L~, and let w satisfy the Assumption. Then there is a positive 
number 2 = 2(n) such that if 

(1.1) I[all.<;~, IfwfE.+ rlVwrl,2 <,~, 

there exists a unique strong solution u of  (N-S') on (0, ~ ) with lim~.+o 
t x/4 I[ u(t)li2~ - 0 
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Moreover,  for  every n < r < oo , there is a positive number tl = tl (n, r) such that i f  

(1.2) Ilwl[.  + rJVwll./2 <-_ tl, 

then the solution u has the following asymptotic properties: 

(1) (uniform estimate) [] u(t)Ill < Ct-("/2)(~/"-1/i) for  n < 1 <_ r with C = C(n, r, l) 
independent of  t > 0; 

(2) (behavior near t = 0) limt-, +o t("/2)(1/"- 1/~)II u(t)[[r = 0. 

T h e o r e m  2. (1) (i) Let  1 < p < n and let a e L~c~L~. There is a positive number 
2' = 2'(n, p) < 2 such that if  

(1.3) IJ a [In < 2', II W II,, + II Vw ]l_~ < ~' 

then the strong solution u given in Theorem 1 satisfies 

p n u e BC(],0, oo ); L~c~Lr 

(ii) In particular, i f  1 < p < ~ for  n >= 5 and i f  1 < p <= 2 for  n = 3, 4, then under the 
condition (1.3), 

t t / 2 V u ( ' )  e BC(]-0, oo); LP). 

(2) (i) Let  n >_ 3 and 1 < p < n. Assume (1.3). Then for  every r with p < r < oo, 
there is a positive number t l' = q' (n, p, r) < t 1 such that if  

(1.4) IlWtln Jr- IlVwlln/2 ~ /~ t  

then u has the decay property 

(1.5) I[U(t) Ill = O(t-(n/z)(l/p-1/t)) for  p < I <- r 

a s  t - -+ o o .  

(ii) Let  n > 3 and l < p < ~, p < r < n. (In case n = 3 , 4 ,  we may let also 
1 < p _< r < 2.) Assume (1.3). Then under the condition (1.4), 

(1.6) IEVu(t)l[~ = O( t  -(n/2)(1/p-1/l)-l/2) for  p < l <  r 

a s  t - -+ oO.  

Corol la ry .  Let  the conditions (1.1) and (1.2) hold. Then the solution u given in 
Theorem 1 has the sharper decay property 

(1.7) [ lu( t )  Ill = o(t-(n/2)(1/p-1/l)) for  p <_ 1 < r 

a s t ~  oo. 

Remark.  (1) T h e  b e h a v i o r  nea r  t = 0 in T h e o r e m  1 is necessary  for un iqueness  of  
mi ld  solut ions .  

(2) In  T h e o r e m  2, it m a y  h a p p e n  tha t  l imp_ ,12 ' (n ,p )=O and  l i m p ~ t q '  
(n, p, r) = 0. 

(3) T h e  m o s t  i m p o r t a n t  decay  of  N u(t) Ilr is for  r = 2 and  r = n. T h e  fo rm er  is 
jus t  the ene rgy  decay  of  weak  solut ions .  W h e n  w - 0, Wm~NER ]-37] and  BORCHERS 
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t~ MIYAKAWA [3] obtained the best decay rates in L2(R n) and in L2(~Q), respect- 
ively. WIEONER'S rate is optimal. On the other hand, the case r = n is Closely related 
to the scaling invariance of solutions. Even when w --- 0 and when [2 = R" our 
decay rate (1.7) in L"(f2) is sharper than any other result ([14, 15, 19, 25, 29, 35]). 

w LP-U-estimates of the semigroup e-tLr 

Let us first recall some previous results on the Stokes operator Ar in L~ due to 
BORCHERS & SOHR [4] and GIGA & SOHR [13]. 

Proposition 2.1 (BORCHERS t~ SOHR [4], GIGA • SOHR [13, Theorem 3.1]). (1) Let 
< o9 < re. For every 1 < r < ~ ,  the resolvent set p( - At) of - Ar contains the 

sector Z~ - {2 E C; larg2l < co} and there is a constant Mr, o~ depending only on 
r and co such that 

(2.1) II(& + 2) -1 IIB(LZ) <---- M,,~,I21-1 

holds for all 2 ~ So,. 
(2) I f  1 < r < ~, the following stronger estimate holds: 

(2.2) 12111uL + IlOZul[, --- Cll(Z, + ~ ) u L  

for all u e D(A,) and all 2 ~ S~, where C = C(r, co). 

Remark. By (2.2) and the interpolation inequality, we have 

(2.3) IlOk(Zr+2)-luL<CL2l-X+k/2llull~, l < r < ~ ,  k = 0 , 1 , 2 ,  

for all u ~ L~ and all 2 ~ Z,o, where C = C(n, r, 09, k). 

Let us introduce the operator L, in L~. We first define the operators B~ and 
B'~ by 

D(B,) D(B;) 1,~ = = Ho.,( = D(Alr/2)), 

B r u - P , ( w ' V u + u ' V w ) ,  B ' r u = P , ( - w ' V u +  ~ VwJuJ),  
j = l  

where w is the function on O satisfying the Assumption. L, and L', are then defined 
by 

D(L , )=  D(L;)= D(A~), L , -  Ar + B,, L i =  Ar + B;. 

Since A* --- Ar, (1/r + 1/r' = 1), it is easy to see 

(2.4) L* = L~,, 

where A* and L* denote the adjoint operators of A, and L, in L',, respectively. 
Let us first investigate the behavior of semigroups e -tLr and e - tv, near t = O. 
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Lemma 2.2. Let  w be as in the Assumption. (1) For 1 < r < oo, - Lr and - L'r 
generate quasi-bounded holomorphic semigroups {e-tr"}t __> o and { e - tL" } t >= 0 of  
class C O in L~, respectively. Hence there is a constant fl, > 0 such that (Lr + fir)- a, 
(L'r + fir) -1 eB(L~)  and such that the fractional powers (L, + fir) ~, (L'r + fir) ~ 
( 0 < ~  < 1) are well defined. Moreover, there are continuous imbeddings 
D((Lr + flr)~), D((L'r + fir) ~) ~ H 2''r, with 

(2.5) Ilulln .... < ~Clj(Lr + flYtlr 
= [CtI (L"  + fi~)~}lr' 

for all u ~ D((L, + fir) ~) = D((L'~ + flr)~)(O _< a < 1), where C = C(r, a) and H z~'r 
denotes the space of  Bessel potentials over f2. 

(2) For every 1 < p < r < oo and 0 < T < ~ ,  there is a constant Mp,,, T such 
that 

(2.6) 11 e-tLa I[r, II e - tL 'a  [It < mv,r, Tt -('/2)(I/p- a/r)I[ a lip, 

(2.7) IlVe-tl~allr, tIVe-tL'allr < m p ,  r, Tt-(n/'2)(llP-1/v)-l/21la][ p 

for all a e L p and all t ~ (0, T). 

Proof. (1) It follows from GIGA [113 and GIGA & 
continuously imbedded into H 2~' r with 

(2.8) IJufln .... < e l l ( A t + l )  ~][r, l < r <  ~ ,  

for all u e O(A~,) with C = C(r, ~). Then we have 

(2.9) IIBrullr -< IJPrllB(L,L~l(Jlwllo~ /IVuII, + IIVwlI~ Ilullr) 

< IIP~IIB(L,,L;)(rIWlI~ + IlVwll~)JlUllH 1,, 

< Cr(llwlloo + [IVwllo~)[l(ar + l)a/2ull, 

SOHR [-13] that D(A~) is 

0 ~ 1 ,  

for all u ~ D(Br). Hence Br is A:bounded  with relative bound 0, and perturbation 
theory (KATO [18, p. 500, Corollary 2.5]) states that - Lr is a generator of a quasi- 
bounded holomorphic semigroup {e-tzr}t _~ 0. Moreover, it follows from (2.9) and 
FUJIWARA [7, Theorem A in Appendix] that O((Lr + fir) ~) = D(A~) for 0 _< e < 1; 
then (2.8) yields the desired estimate (2.5). 

(2) By (2.5) and the Sobolev imbedding theorem, we have 

Ilullr < Cll(Lp + flp)'Uplp for u e D ( ( L p  + fl,)~), 

IlVullr <= Cll(Zp + fip)'+a/2U]lp for u 6 D ( ( L p  + flp)~+x/2), 

where ~ -- (n/2)(1/p - l /r)  and C = C(p, r). Taking u -- e-tZa(a ~ L p) in these es- 
timates, we get (2.6) and (2.7) by a standard argument for holomorphic semigroups 
(see, e.g., TANABE [33, Theorem 3.3.3]). Since 

IIB'ruHr < Cr(llVwl]~ + rlwPl~)ll(Ar + 1)l/2ullr 

for all u ~ D (B'r), the last argument holds also for L'r, so we get the desired result. 
This proves Lemma 2.2. [] 
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We next investigate behavior of e -tL~ and Ve-a'r as t ~ oo. To this end, we 
need to estimate the resolvent (Lr + 2)-1 near 2 = 0. In such an estimate, we 
impose restrictions on r and require the smallness of w in the class (CL). 

Lemma 2.3 (Resolvent estimate). For every r and co satisfying 1 < r < oo and 
< 09 < n, there" is a positive number # = #(r, co) such that if 

(2.10) {Iwll, + IIVwlf./2 < #, 

then both resoIvent sets p ( -  Lr) and p ( -  L'r) contain the sector So, = {2e C; 
[arg21 < co} and the estimates 

(2.11) II(Lr + 2) -1 liB(/4 ), II(L; + 2) - t  lIB(L;) < )~'~r, ol -)~1-1 

hold for all 2 e Z~ with a constant lfIr,,o depending only on r and co. 

An immediate consequence of Lemma 2.3 is 

Corollary 2.4. Let co ~ (~, n) be fixed arbitrarily. Under the condition (2.10), - Lr 
and - L ;  respectively generate uniformly bounded hoIomorphic semigroups 

- tL~ '}t > 0 in Lr Hence the fractional powers Lr and {e }t >= o and {e-tI~' of class C O ~ 
(L;y(0 < e <_ 1) of Lr and L' ,  respectively, can be defined. 

ProofofLemma 2.3. (i) Let us first consider the case 1 < r < ~, for which it follows 
from GIGA & SOHR [13, Corollary 2.2, Theorem 3.1] that 

(2.12) Jlull,,/(,-2,) _~ CllVullnr/(n-r) ~ CllD2uNr < CllArUjlr 

for all u E D(A~), where C = C(n, r). By Proposition 2.1, we have 

(2.13) Lr + 2 = Ar + Br + 2 = (i + B,(A, + 2)-~)(Ar + 2) 

for all 2 e So. By (2.1), (2.12) and the H61der inequality, 

< l[ Pr(w'V(A~ + 2)- 1 u)[lr + II P,((Ar + 2)- 1 u'Vw)II~ 

< I1P []B(L ~, L:)( 11W I[, II V(A, + 2)- 1 u [I ,,/(,- r) 

+ II(Ar + 2)-lull,~/(,-2r)IiVwll,/2) 

C(]]wl]. + ]lVwl[n/z)l[Ar(Ar + 2)-lUl[r 

< C(1 + Mr,~)(ilwll. + IlVwll./z)llull~ 

for all u e L] and all 2 e Zo~, where C = C(n, r). Hence, by taking # = #(r, co) - 
1/2C(1 + Mr, ~), under the condition (2.10), we have 

(2.14) IIBr(A. -}- 2)-I]IB(L:) ~ �89 for all 2 e S o .  

Now an elementary consideration of the Neumann series yields (2.11). 
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(ii) We next consider the case (n/2)' =- n/(n - 2) < r < oo. In this case we have 
1 < r' =- r/(r - 1) < ~, and (2.4) yields 

(2.15) (Lr + 2)* = L'~, + 2 = A~, + B'~, + i 

= (1 + B;,(A~, + i ) - a ) ( A r ,  + 2) 

for all 2 e So~. Since 1 < r' < ~, the same argument  as above works for A~, and 
B'~, and hence we can choose a positive number  # = #(r, ~o) such that  the condit ion 
(2.10) yields 

][B;,(A~, + ~)-1 jIB(L2 ) ~ 1 for all 2 E S~o. 

By (2.15) and this estimate, we find 

Xo ~ p( - L~), II(Lr + 2) -a IrB(c;) = II((L~ + 2)*) -a lIB(L:') < 2M,'.~,[2[ -1 

for all 2 e s  which shows (2.11). 
(iii) Now it remains to treat  the case ~ < r < (~)' for n = 3, 4. Take 1 < rl < 

and (~)' < r2 < oo. We have 1/r = (1 - O)/r 1 + O/rz for some 0 < 0 < 1. Let  
#(r, co) - min {#(r l ,  co), #(r2, co)}. Now the above results (i), (ii) and interpolat ion 
yield that  

So  = p( L~), II(L, + 2 )  -I[/B(LS) < 9 M l - ~ 1 7 6  --1, - = . . . . . . . .  ~.- . . . .  121 2 e 1;o~, 

from which we obtain the desired result on L~ for all 1 < r < oo. It is easy to see 
that  the proof  for L;  is quite similar to that  for L~, so we may  omit it. This proves 
Lemma 2.3. [ ]  

If we impose a restriction on r, we also get the estimates of derivatives for the 
resolvent (L~ + 2)-1  near  2 = 0. 

L e m m a  2.5. (1) Let  n > 3 and 1 < r < n/2. Then under the condition (2.10), 

(2.16) I[Dk(Lr + 2) - lu l l s ,  IID~(L'~ + 2) - lu l l r  ~ C[2]-l+k/211u][r, k = 1,2, 

for  all u ~ L'~ and all 2 E S~o, where C = C(n, r, co). 
(2) Let  n = 3, 4 and 1 < r < 2 and let ~ < co < 7c. There is a positive number 

#'  = #'(r, co) such that i f  

(2.10') IIwH, + IlVWlln/2 <= #', 

then the estimates 

(2.17) I] V(L, + 2) -*  ulj~, ] lV(L '~+2)- lu] l~<CI2[-1 /a l lu l]~  

hold for  all u ~ L'~ and all 2 e Zo,, where C = C(n, r, co). 

Proof.  We only prove this lemma for L~ because the p roof  for L'~ is quite similar. 
(1) By (2.14) the opera tor  1 + Br(Ar + 2) -1 is invertible in L~ with bound  

rl(1 + B r ( A ~ + 2 ) - I ) - I ] I B ( L ~  ) ~ 2 f o r a l l 2 ~ S o .  
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Hence (2.3) and (2.13) yield 

liDk(L~ + , l ) - lul lr  -- I]D~(Ar + ,~)- 1(1 + Br(Ar + ;,)-1)-1u L <- CI;q -1+~/2 Itullr 

for all u ~ L~ and all ,~ ~ So, where C = C(n, r, co), and we obtain (2.16). 
(2) If n = 3, 4, we have ~ < 2 and make use of the quadratic form (L2u, u) on 

1,2 L 2 . By the Sobolev inequality II u II 2./(.- 2) ~_~ C II Vu I1~ (u ~ Ho, =), we have 

I(B2u, u)l < I(w. Vu, u)[ + I(u.Vw, u)l 

~---< I[ W [[ n I[ V/g [I 2 It U l[ 2n/(n - 2) "]- I[ VW [I n/2 It U II 2./{.2 _ 2) 

<_- c , ( t lw l l .  + ItVwll./2)llVuLl~ 
1,2 for all u e Ho , , ,  where C .  = C.(n) .  Now take #'(2, co)~-min{1/2C, ,  #(2, co)}, 

where # is the same number as in (2.10). Then under the condition (2.10'), we have 

(L2u, u) = (A2u, u) q- ( B 2 u ,  u ) 

> {1 - C,( l lwl l .  + IlVwll./2)} IlVull~ ->_-~ IlVull~ 

for all u e D(L2). Hence (2.11) with r = 2 yields 

[IV(L2 + ~.)-tull2 < 2(gz (g2  + 2)-1U, (g2 q- )~)-lU) 

< 2(~rz, o, + 1)~r2,o,lXl-a lluLl~ 

for all u E L~ and all 2 s S~,  from which we obtain (2.17) for r = 2. 
F o r } < r < 2 ,  w e t a k e  l < r l < ~ a n d 0 < 0 < l  such that  1 / r = ( 1 - O ) / r l  

+ 0/2. Since (2.17) is true for rl ,  implied by (1), we may define #'(r, co) as 
/s co)= min{#(r! ,  co), #(2, co)}. Then under condition (2.10'), the interpolation 
inequality yields the desired result. []  

In what follows, we fix co e (5, 70 and regard # and #' in (2.10) and (2.10') as 
constants depending only on r. 

Lemma 2.6. (1) Let  1 < r < oo. Under condition (2.10), 

(2.18) IIe -~Z"a IJ~, Jl e - tL"a II, < M,  II a II, 

for  all a ~ L~ and all t > 0 with a constant Mr depending only on r. 
(2) (i) Let  n >= 3 and 1 < r < ~. Under  condit ion (2.10), 

(2.19) IlDke-'L~all~, IlDke-tC;a]]~ < M'rt-k/2[lall~, k = 1,2, 

for  all a ~ L~ and all t > 0 with a constant M'r depending only on r. 
(ii) Let  n = 3, 4 and 1 < r < 2. Under condition (2.10'), 

(2.19') IIVe-'L~all~, [[Ve-tr;all~ < M'rt -1/2 Ilal]~ 

for  all a ~ L~ and all t > 0 with a constant M'r depending only on r. 
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Proof.  Take fl such that  0 < / / <  co - 7c/2. Then under  the condit ions (2.10), (2.10'), 
we have 

e _ t L r  a ~ 1 ! e ta (Lr + 2)-  1 a d2, 

where F = F t w F z u / ' 3 ;  F t  = {2 = pe~("/2+a); 1/tsinfl < p < oo}, F 2 = {2 = 
e~~ - ~ -- fl < 0 < ~ + fl} and F3 = {2 = pe-i("/z+P); 1/tsinfi < p < oo}. 
Then  it follows from (2.11) and (2.16) that  

<__ C ~. eR~ Irallr 
F1 

= C  ~ e-ptsint3p-t+k/2dpllal]~ 
lfl sin fl 

(by changing the variable p ~ s = pt sinfl) 

= C(t sinfi)-~/2 S e-Ssk/2-1dsl]al]~ 
i 

<= C t - k / 2  II a II~ ; 

k l  
(2.21) D ~ ~r~ eta(Lr + 2)-1  ad2 

rc/ 2 + fl dO 
< C ~ e~~176 fl [la lit 

-~ /2  - p  

< c t - ~ / 2  II a I1~ 

for all a ~ L~ and all t > 0, where k = 0, 1, 2 and C = C(n, r, fl). As in (2.20), we 
obtain the estimate of the integral along Fs : 

k 1 ad2 (2.22) D f~irci ~r eta(L~ + 2) -1 < Ct-k/211all~. 

N o w  (2.20)-(2.22) yield the desired estimates (2.18), (2.19). Based on (2.17), we can 
prove (2.19') in the same way as above. This proves Lemma  2.6. [ ]  

The  following LP-U-est imates play an impor tan t  role for our  purpose. 

Theorem 2.7 (L~-Lq-estimates). (1) Let n >_ 3 and 1 < p < r < oo. There is a posi- 
tive number tc = ~c(p, r) such that if  

(2.23) Ilwjl, + IIVwl],/2 < tc(p,r), 
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then 

(2.24) [1 e - tL a I1~, [t e -rE' a I1~ < Mp, r t - {~/p -"/~)/2 ]t a I[p 

for all a E L~ and all t > 0 with a constant Mp,,  depending only on p and r. 
(2) Let  n > 3 and let l < p < ~, p < r < n. (In case n = 3, 4, we may let also 

1 < p _< r < 2.) There is a positive number ~c' = x ' (p , r )  such that if  

Itwll. + IlVwN./2 <= ~c'(p,r), (2.25) 

then 

(2.26) Iq V e - tLa  I1~, I1Ve - tZ'a  I1~ ~ M'p,~ t -  (~/p- ./~)/2 - 1/2 II a II 

for  all a ~ L~ and all t > 0 with a constant M'p, ~ depending only on p and r. 

Proof.  (1) Step 1. We first p rove  (2.24) for 1 < r  < ~ .  Consider  the case 
1 i i - ~ < 7 < ~. Then  by (2.19) and the Sobolev inequali ty we have 

II e - t g a  N(I/v- l/n) -~ ~ C II Ve - tLa  lie ~ C M ' p t -  1/2 I1 a lip, a s L{, t > 0 

with C = C(n, p), provided that  It w II, + II Vw II,/a < #(p). Under  the same condi-  
t ion on w and Vw, we have by (2.18) that  Iie-tLallv < M p j l a l I p .  Since 
1 1 1 < 1 l p 0  1 - ~ < ~ = ~ ,  we have ~ =  + 0 ( ~ - ~ ) ,  where 0 = n ( ~ - ~ ) .  Hence  if 
[[ w II, + II Vw [I,/2 </~(P),  then by interpolat ion we obta in  e- tL e B(Lg,  L~) with the 
bound  

) M y  <-- tle-~LIIB(L,,L5 / < (CM,pt-~/z o ~-o _ Ct-(n/p-n/r)/2. 

We next proceed to the case tha t  2 < ~ 2 < ! < 1 = ~  ~ ~ Tak ing  l < p l < } a s  
1 1 1 _ _ ~  p~ - ~ - ~, we have ~ < ~- < ~;. Hence  if 

Ilwll. + IlVwll./2 < min{x (p ,  pi),tc(r, p l ) }  - x(p, r), 

then the above  a rgument  with p replaced by p~ yields 

Ile-tLa ]lr = N e - ~ L ( e - ~ L a ) l i t  

< 

< 

for all a ~ L~ and all t > 0. 

Mp, , r t  -(nlp*-nlr)/2 t l e -  ~L a p, 

M ; ,  ,r My,p, t-C"lvl-n/')/E t-Ca/P-nlVl)/2 II a lip 

M p~,, Mp, pl t-c"lP-"l')12 II a lip 

Proceeding in the case 2 < ~ < 1 2 p - ~ as above,  within a finite n u m b e r  of steps, 
we obta in  (2.24) for 1 < p < r < ~. 

Step 2. We next p rove  (2.24) for ~ < r < oo. Let  us take i and q such tha t  
l < f < } = < r < q <  oo. Then  we h a v e X - -  r + ? l - 0  0 for  s o m e O < O < l .  Defining 
1 </~ < p by the relat ion xp = l~_~ + o, we get 1 < i~ =< f < ~. Hence  the result of  
Step 1 states that  if 
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then 
Il e-~L a lt~ < M~,~t - ("/P- ~/e)/e ll a llp, a e L~. 

On the other  hand, it follows from (2.18) that  if 

I1 w II. + It Vw II./~ < / 4 q ) ,  

then 
Ile-tLatlq < Mqllallq, a e L ~ .  

Hence under  the condi t ion that  1[ w II, + II Vw I],/2 < min {x(i~, 7), #(q)}, by inter- 
pola t ion we have e -tL e B(L~ p, L~) with the bound  

I[ e -tL IIB(Lg, g:) <= ( M L f t  - ("1~ - ~1e)12)1 -O M~ = M~,el -o Mq~ t -(nlp-n/r)/2 

which yields the desired estimate (2.24) also for ~ =< r < oe. 
(2) (i) We first consider the case n > 3 and 1 < p < ~, p < r < n. 

Step 1: ~ - ~ =< ~ =< • It follows from (2.19) with k = 2 and the Sobolev 
inequali ty (2.12) that  if I] w II. + II Vw lln/2 < ~(P), then 

I[ Ve - tZa  [l(1/v- 1/,)-~ < C t[ O:Ze-tLa ][p _--< C M ' v t -  1 l[ a [Iv, a ~ L~, t > O, 

where C = C(p). Moreover ,  under  the same condit ion on w, we have by (2.19) with 
k = 1 that  

II V e - t L a  lip < M'v t -  1/2 II a lip, a e L p, t > 0. 

1 J_ 1 l p O  Taking 0 < 0 < 1 as 0 -  n ( ~ -  r), we have 7 = - -  + 0 ( 5 -  ~), so the above 
estimates and interpolat ion yield that  V e - t / ~  B (L p, U )  with bound  

[J Ve - t L  H B ( L ~ ,  L ' )  ~-~ (CM'p t - 1 )o (M'p t - 1 / 2 ) 1  - 0 = COM,p t - ("/p-"/")/2 - 1/2 ,  

provided 1t w I], + J] Vw ][,/2 < kt(P) - This implies (2.26). 
Step 2: ~ < ~ < ~ - ~. Choosing s with ~ = ~ + ~, we have by assumption that  

p < s < ~. Hence it follows from (2.19) with k = 2, (2.24) and the Sobolev inequality 
(2.12) that  if 

]lwl[, + IIVwll,/2 < min{p(s),  ~(p,s)} = ~:'(p, r), 

then 
II Ve - tL  a 1t~ <= C tl D2 e:-tL a H~ = C II D2 e-t/2L(e-~/2L a) tls 

< CMst  -1 Ile-~/2Lalls 

<= CM~Mv,~ t -  1 t-(n/V-n/~)/2 [[ a lip 

= CM~Mp,  st-(n/P-"/r)/2-1/ZlJaJIp, a ~ L  p, t > 0 

with C = C(n, r), which implies (2.26). 
(ii) We next consider the case n = 3, 4 and 1 < p _< r _< 2. For  1 </~ < 2, there 

is a 0 e (0, 1] such that  ~ - -  1 - 0  ~.  1 1 ~0 O. + We also choose 1 < 7 < r with ~- = ~ + 
For  such/~ and 7, we have 1 </~ < 2,/~ ___< 7 < n, so that  (i) yields 

[[ V e - t L a  [1~ < M'~,Ft -(n/p - ~/~)/2 - 1/2 [ta [1~, a e LP~, t > 0, 
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provided that ][ w H, + ][ Vw I1,/z < ~'(p, r). On the other hand, if II w II, + ]1Vw H,/z 
</x'(2), then (2.19') implies that 

HVe-tLa[]2 ~ M'2t-1/ellall2, a ~ L  2, t > 0 .  

Hence under the condition that II w II, + [I Vw ]1,/2 =< min { ~:' (/~, 7), #' (2)} -= ~c' (p, r), 
we have by the above estimates and by interpolation that Ve-tL ~ B(L p, L') with 
bound 

I1Ve-tL IIB(Lr L') <= ( M'~,~t - (~/~ - ~/~)/2 - 1/2)1 -O ( M,  2 t -  1/2)0 

tM'- ,~l-~176 ' t > O, 

which yields (2.26). This proves Theorem 2.7. [] 

Lemma 2.8. Let  1 < r <= 2 for n -=- 3, 4 and let 1 < r < ~ for n ~ 5. Then under 
conditions (2.10) and (2.10'), 

(2.27) IIVL~e-tL~aH~, I]V(L;)~e-tL; a[[, < )fI,,~t-~-x/ZHa]l~, 0 < ~ < 1 

for all a ~ L~ and all t > 0 with a constant M,,~ depending only on r and c~. 

Proof. We make use of the representation 

V L ~ e - t a " a =  V~n/!  ( - 2)~etX(L~ + 2 ) -1a  d2, 

where F is the same path in the complex plane as in the proof of Lemma 2.6. Hence, 
using the estimates (2.16), (2.17), we obtain the desired result in the same way as 
(2.19), (2.19'). [] 

w Global mild solution 

In this section, we construct a mild solution which is weaker than the strong 
solution. If u is a strong solution, then u satisfies the integral equation 

t 

(I.E) u(t) = e-tL a -- S e-(t-s)L p(u"  Vu)(s) ds. 
0 

Our definition of a mild solution is 

Definition 3.1. Let a e L~ and let w be as in the Assumption. Suppose that 
n < r < oo. A measurable function u on f2 x (0, T) is called a mild solution of (N-S') 
in the class St(0, T) if 

(1) u e BC([0, T);L~) and t(1-"/r)/2u(.) ~ BC([0, T); L~), 

(2) limt~ + 0 r -,/~)/2 II u(t)[1~ = 0, 
t 

(3) (U(t), q~) -= (e-tEa, 4) + ~ (u(s)" Ve -(t-~)L" (9, u(s))ds 
0 

for a l lqS~C ~ and a l l O < t < T .  0,o" 
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Taking fi = n/r, 
[lu(z) lJ,/6 < oo. Then 
r = n/(n - 1 - 6) that  

we have 0 < 6 < 1  and by 
it follows from (2.7) with 

(2), sup0 < ~ < r z('-6)/2 
p = n' =- n/(n - -1 )  and 

(3.1) 
i (u(s)" Ve - (t-~) L" r u(s)) ds 

--< i II u(s)It. II Ve - ('- ~) L'r l[./(._ a -6)II u(s)11./6 ds 
0 

< M.,,./(. 1 - 6 ) , T  sup ]lu(z)ll. sup ~(1-6)/2 ptu(v)rl./6 
O<~<T O<~<T 

t 
X ~ (t - -  s )  - (1  +6)/2S - ( 1 - 5 ) / 2 d s .  110 [In" 

0 

= M.,, ./(. _ a - 6), T B (~2-2~, 1@) 

x sup II u(z)[I,  sup z (1-6)/2 I1 u(z)l]./6"l[ r II., 
O<~:<T O<v<T 

for all 0 < t < T, where B (',-) denotes the beta function. Hence if u is in the class 
St(0, T), then the integral on the r ight-hand side of (3) in Definition 3.1 is well- 
defined. 

Concerning the uniqueness of mild solutions, we have 

Lemma 3.2 (Uniqueness). Let  a ~ L~ and let w be as in the Assumption. Suppose that 
n < r < co. Then the mild solution of(N-S')  is unique within the class Sr(O, T).  

Proof. Let u and v be mild solutions of (N-S') in St(0, T) with the same initial data  
a. Then as in (3.1) we have that  

I(u(t) - v(t), r 

= i {(u(s) ' Ve -(t-,)L' O, U(S)) -- (V(S)" Ve -(t-s)L' O, V(S)) } ds 

t 
___< ~ ]((u(s) -- v(s))' Ve -(t-s)L' r u(s))[ ds 

0 

t 

+ ~ I(v(s) �9 Ve-( '-~)L, r u ( s )  - ~ (s))l d s  
0 

B E 1 - 6  I+~A) Mn',nfln- l - 6 ) , T  ~ ,  

x (  sup S(l-6)/2[[U(S)[[n/6-} - sup S(l-6)/2['l)(S)[[n[6'[) 
O<s<t 0 < s < t  

x sup /[u(s) - v(s)]ln" IIr 
O<s<-_t 
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for all ~ e C ~ and all 0 < t < T, where 6 = n/r. Let us define the functions D(t) 0,o" 

and K(t)  on (0, T )  by 

D(t) = sup Ilu(s) - v(s)[I,, 
O < s < t  

K(t) - sup s(1-a)/atJu(s)ll./a + sup S(1-6)/21Jl)(S)lJn/3. 
O < s < t  O<s<=t 

By the last estimate and by duality, we have 

tl u(t) - v(t)]in < C ,  K(t) .  D(t), 0 < t < T, 

where C ,  = Mn',n/(n- ~-a),rB(�89 -- •),�89 + 6)). Since K( t ) 'D( t )  is a mono tone  
increasing function of t, we obtain that  

(3.2) D(t) < C , K ( t ) . D ( t )  for all 0 < t < T. 

Since K(t)  is a cont inuous function on [0, T) with K(  + 0) = 0, implied by (2) in 
Definition 3.1, we can choose a small positive number  tl such that  C , K ( t l )  < 1. 
Hence from (3.2), it follows that  D(tl)  = 0, which yields 

u(t) =- v(t) f o r 0 < t < t l .  

Next  we show that  u(t) =- v(t) for ti <_ t < T. Since t(1-a)/2u(.), t( i-a)/2v(')  e BC 
([0, T); L~/a), there is a constant  K ,  such that  

(3.3) sup [lu(s)[ln/a + sup LIv(s) tln/a <_ K , .  
ti < = s < T  tl < = s < T  

For  our  purpose,  it suffices to show the following proposit ion: 

Proposition 3.3. Let z be any point in [ t i ,  T)  and let ~ be oiven by 

(3.4) ~ =- 4Mn ' , / (n -1 -6 ) ,TK ,  

I f  u - v on [0, , ] ,  then u =- v on [0,~ + 4]. 

P roo f  of Proposition 3.3. Let  Di (t) =- sup, __< s < t J[ u(s) - v(s) IJn. By assumption,  we 
have 

(u(t) -- v(t), (b) = } ((u(s) -- v(s))" Ve-(t-*)L' dp, u(s)) ds 

t 

+ 5 (v(s)" Ve - ( , -s )v  4~, u(s) - v(s)) as 
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for all 05 ~ C~,~ and all v < t < T. Then it follows from (2,7) and (3.3) that 

t 

I(u(t) - v(t), 05)1 =< ~ II u(s) - v(s)If.  IJ Ve -(t-s)L' 05 I[,/(,- 1 -~)( II u(s)II./~ + II v(s)II./~) ds 

t 

< m . , . / ( .  _ 1 - al, r K .  D1 (t) ~ (t - s ) -  1/2-~/2 ds' lr  05 IJ.' 

< 2M,,, , /( ,  _ 1 - a ) , T K . D 1  (t)(t  - ~)~1 -a)/z.]t 4)j[,, 
= 1 - 6  

05~C ~ o,~, v < t < T. 

Hence by duality, we have 

]1 u(t) - v(t)]In < 2mn',n/(n - 1 - a), 7" K .  D1 (z + 4) ~(1 -~)/2 for all t E [z, z + r 
= 1 - •  

which together with (3.4)implies that D1 (~ + r < �89 + 4). Thus D1 (z + 4) = 0 
and u(t) =- v(t) on [0, ~ + ~]. This proves Proposition 3.3 and the proof of Lemma 
3.2 is complete. [] 

Our existence theorem for mild solutions is 

Theorem 3.4 (Global mild solution). (1) Le t  a ~ L~ and let w be as in the Assumption.  
There  is a positive number 2(n) such that i f  

(3.5) II a IIn =< ~(n), II W II. + It Vw II./~ =< ,~(n), 

then there exists  a unique mild solution u o f  (N-S') in the class $2,(0, o~) with the 
property  

(3.6) 

u(t)  ~ D(L~)  for  t > O, t~L~u( . )  ~ BC([0, oo ); L~) with lira t ~ I[ U u ( t ) I I ,  = O, 
t~+ o 

where 0 < ~ < �89 
(2) Moreover ,  f o r  every n < r < ~ ,  there is a positive number tl(n , r) such that i f  

(3.7) tlw][, + IlVw[I,/2 < tl(n, r), 

then the uniform est imate 

(3.8) II u(t)t l ,  <= c t  - (1  -n/l) /2,  n __< 1 __< r, 

holds for  all t > O, where C = C(n, r, 1). 

Remark .  For the decay of solution in arbitrary U-spaces (r > n), the smallness on 
the initial disturbance a does not depend on r. However, we need to make the 
stationary flow w relative to r. 
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Proof of Theorem 3.4. (1) Let us construct the mild solution according to the 
following scheme: 

Uo(t) = e- tLa,  

t 

uj+ l (t) = uo(t) - ~ e-( t-s)L p(uj" Vufl(s)  ds, J = O, 1, . . . " 
0 

Under the condition 

Itw II, + IlVw 11./2 = < min ~c(n, 2n), ~c' 2n -2  l ' n - - 1  ' (3.9) 

we have 

(3.10) sup t~/4[luj(t)ll2,<=Kj, j = O ,  1 , . . . ,  
0 < t < o o  

where ~c and ~:' are the same constants as in (2.23)-(2.25). Indeed, by (2.24), 

(3.11) ][uo(t)[[2 n = [le-tLat]2n <= Mn, znt -1/4 Hall,, t > 0, 

and hence we may take 

(3.12) Ko =- M2,,,  Hall,. 

Suppose that (3.10) is true provided that condition (3.9) is fulfilled. Then by 
integration by parts and (2.26), 

I ( - i e-( t-s)L p ( u /  Vuj)(s)ds, cp ) 

' 4~,uAs))ds = (uj(s) Ve (t s)L . . _ _ t 

< i II uj(s)II 2. II Ve-(t-s)L'~ ~ x)ds 
0 

t 

<= M'2./(2~- 1), ~/(.- 1)K~ ~ (t -- s) - 3/4 s - 1/2 ds " 11 gb I1 z~/(2.- 1~ 
0 

t 1 1 2 - 1/4-  = M2n/(Zn-1),n/(n-1)B(g,-~)Kj t "H ~)H2n](2n-1) 

for all q~ ~ Co,,,~176 which by duality implies 

i e-~t-~)Lp(uj" Vuj)(s)ds  2, ' _ ~ ) K j  < M2n/(Zn_l),n/( n 1)B(1, 1 2 t -1 /4  
0 

for all t > 0. Hence (3.10) is true wi th j  replaced b y j  + 1, with 

r R'2 (3.13) Kj+I = Ko + v ,  . , j ,  
t 1 1 where C(, 1) =- mzn/(2n-1),n/(,-1)B(g,-i). If 

1 
(3.14) Ko < 4C(1~, 
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then the sequence {Kj}j~o is bounded with 

(3.15) Kj < 1 - x/1 - 4C(,1)Ko 1 
= 2C(n1) ~ k < 2C(t---5, j = 0, 1 . . . . .  

Now we see by (3.12) and (3.14) that  if II a II. < 1/8M2,,, C(, 1) and if (3.9) holds, then 
(3.15) holds. Defining vj =- uj - u j_ , (u_~  - 0), we obtain from a calculation sim- 
ilar to that  above that  

(3.16) IPvj(t)lI2, <= k(2C(,1)k)Jt -1/4, j = O, 1, . . . , t > O. 

Since uj = E]=oVi, (3.15) and (3.16) yield a limit u e C((0, oo);L 2") with t l / % ( . )  
e BC([0, oo );L~") such that  

(3.17) sup t l /~l fuj( t )  - u(t)Jl2,--,0 a s j ~  oo. 
O < t < o o  

Moreover,  under  the condit ion (3.9), we have by (2.18) and (2,24) that  

(3.18) 
sup t TM I[ e - tLa  rl2, 

0 < t < T  

_-< sup t l /41le-tL(a -- a) llz. + sup t l / 4 l l e - t L a H 2  n 
O < t < T  0 < t < T  

_-< M, ,a ,  ]l a - all, + M2, ]l all2, T1/4 

for all ~teL~c~LZ~" and all 0 < T < oo. Since (3.10)(3.15) hold with 0 < t < oo 
replaced by 0 < t < T for arbitrary T > 0 and since L~c~LZ~" is dense in L~, (3.15) 
with the aid of (3.18) yields 

(3 .19)  l i m  t 1/~ plu(t)112. = 0. 
t++o 

We next show u E BC([0, oo); L"~) provided 

= l ' n - - 1  

Indeed, from (2.18), (2.26) and (3.15), we obtain 

[t Uo(t)11, < M ,  II a II,, 

( ) - ~ e - ( t - s )Lp(u j"  Vuj)(s) ds, ~o 
0 

= i (uj(s)" Ve - ( t - ' )L ' r  uj(s))ds 
0 

t 

<= S II u/s)It 22. I1Ve-<'-')~'r II./(,- ~)ds 
0 

t 

M n / ( n  - 1), n/(n - 1)k2 ; ( t  - -  s )  - 1/2 s - 1/2 d s .  II q~ I[./(.  - 1) 
o 

r 1 1 k 2 .  oo = M . / ( . - ~ ) . . / ( . - 1 ) B ( ~ , ~ )  I1r C e C o , , , t > o ,  
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which yields 
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t 1 1 2 sup IIuj+l(t)ll. < M.  Ilall. + M./(.-1),./(.-1)B(y,g)k for a l l j .  
O<t<oo  

This uniform estimate with respect to j ensures that the limit u satisfies also 
u e BC([0, oo); L~). 

To see that such u is a mild solution in the class $2,(0, oc), we need to prove 
that 

for each q5 e C~,~ asj  --* oo. Indeed, by integration by parts, by (3.15) and by (3.17), 
we have 

= i {(uj(s)" Ve- ( t - ' )L '  4, u~(s)) -- (u(s)" Ve-( t -s)L '  4, u(s))} ds 

t 

5 (11 uj(s) I12n - I -  II u(s) i t  z.) II u>(s) - u(s)  II =. II V e  - ( t - , ) L '  q5 ]L./(. - 1) ds 
0 

< 2M'/ ( , , -1) , , / ( , - : )k  sup s :/4 lluj(s) - u(s)lie.  
O < s < o o  

t 

x ~ ( t  - s)- ' /Zs-1/Zds. II r  
0 

t 1 1 $ 1 / 4  = 2M, / ( , - x ) , , , / ( , - 1 )B (~ ,~ )k  sup IluM)-u(s)ltz,,ll(oLl./(._a) 
0 < s < :  oo 

~ 0  as j -+  oe (q~eC~,~), 

which implies (3.21). 
Now it remains to show that t~L~u(. ) e BC([O, cc ); L"~) with (3.6) for 0 < e < 1. 

To this end, assume moreover that 

(3.22) 

n ) 
II w II. + II Vw tl./2 -<_ 

for n > 5 ,  

for n = 3,4. 
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Then By Lemm a  2.8 and by (3.15) we have 

(-L~ie-(t-~)Lp(uj'Vuj)(s)ds, O) 

]i(uj(s) V(L)e  ( d p u j ( s ) ) d s , ,  -t-~)L" 

<= i U uj(s)II 2 i[ V(L,)~e - ( t - s )L"  ~) Nn/(n-- i[)ds 
0 

t 
~-~ ~ in / ( .  - 1), a k 2  j" ( t  - -  s )  - a  - 1 /2  s - 1 /2  ds" tl q~ II./(. ~) 

o 

_~. b2 B f  l ~./(._~),=,~ ~-~,�89 t > 0 ,  0 < c ~ < � 8 9  

for all r e C~, ~ and all j, f rom which it follows that  

sup t ~ tl L~uj+ 1 (t)I1, 
O < t < o o  

- 2 l < � 8 9  j 0,1 . . . . .  -< sup UltL~e-tgall,+M~/(,-1),~k B(~-~,�89 0<c~  = 
O < t < o o  

This uniform estimate for j asserts that  u(t)~D(L~) for t > 0  with UL~u(.) 
BC([0,  oo );L~), where 0 < ~ < �89 Since D(L~) is dense in L~, we can prove (3.6) 

in the same way as (3.18). N o w  it is easy to see that  the constant  2(n) in (3.5) can be 
determined by (3.9), (3.14), (3.20) and (3.22). 

(2) We show u(t) E L~(t > O) for all n < r < oo with 

sup t (1-"/')/2 It uj ( t )  - u(t)l ie ~ 0 as j  ~ o% 
O < t < o o  

provided that  condi t ion (3.7) is fulfilled. Taking r = n/fi, we have 0 < fl =< 1. 
Assume that  w is subject to the estimate: 

(3.23) II w I[. + II Vw 11./2 < r a i n  2(n), ~c n, , ~' = n - l ' n - 1  
Then it follows from (2.24)-(2.26) and (3.15) that  

Iluo(t)tl./~ < Mn,.t-(t-P)/2 Ilall., 

(i 

)} 

e-(t-s)Lp(uj'Vuj)(S) ds, O) 

' uj (s)) ds = ! (uj(s)'Ve-(t-')L'4), 

t 
< III u~(s)112, [I Ve-( ' -s)L '  q ~ [I,/(,-1) ds 

O 

t 

Mtn/n-f l ,  n/n -- 1 k2  ~ (t  - -  S) ill2 - 1 S  - 1 /2  ds" [1 • I]n/(n-fl) 
0 

=< M'~In_r �89 (o II./(.-n), ~b e C ~~ 
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from which we obtain 

(3.24) sup t(1-~)/2ltuj+l(t)[I,/p <-_Mn4[lalln + M'/~n_~),n/(,_l)B(~,l)k2 - kp 
O<t<oo 

for all j. It is easy to see that this uniform estimate for j ensures that 
t (1-P)/2u( ' )eBC([O, oo);L"~/P). Now the positive number t/(n, r) in (3.7) can be 
determined by (3.23), and we get the desired estimate (3.8) by interpolation. This 
proves Theorem 3.4. []  

If we assume a more rapid spatial decay for the initial disturbance, then we 
obtain the decay of Vu(t) as t ---> oe: 

Theorem 3.5. (1) Let  n ~ 3 and let 1 < p <= n. Suppose that a ~ LP~ ~ L~,. There is 
a positive number 2'(n, p) with ).'(n, p) <= 2(n) such that if  

(3.25) Halt, < 2'(n,p), Ilwll, + IlVwl4./2 _-< 2'(n,p), 

then the mild solution u given by Theorem 3.4 has the additional property that 
p n (3.26) u ~ BC([0, oo); L,c~L, ) .  

(2) In particular, if I < p < ~ for n >_ 5 and if 1 < p < 2 for n = 3, 4, then also 

(3.27) t l /2Vu(" ) e BC([0, oo); LP). 

Proof. Let us first prove (3.27). Defining V -  ~, we have by assumption that 
2 < 7 < n for n > 5 and ~ < ~ < n for n = 3, 4. We return to the approximate 
solutions {uj(t)}[=o in the proof of Theorem 3.4 and show that 

(3.28) sup t a/2 II Vuj(t)II./~ < L~, j -- 0, 1 . . . . .  
O<t<oo 

under the condition 

mln~c  " ~ ,/'n_ _n'~ ( n n ) }  
(3.29) tlw[I, -I" I[VW]ln/2 "< ~'~,~),1s 7 +  1/2'~ ' 

where x' is the same constant as in (2.25). Indeed, since a e L"jrc~ L"~, we have by 
(2.26) that 

II Vuo(t)II. /~ = II Ve-rLa II./~ _-< M',/~,,/r t -  1/2 II a II./~ 

for all t > 0 and we may define Lo - M',/~, ,/~ II a ][,/r. Suppose that (3.28) is true for 
j. Then it follows from (2.26) and (3.15) that 

V i e-(t-~)I 'p(uj.  Vuj)(s)ds ./~ 

t 

< M',/(~ + 1/2), ,/~ ~ (t -- s) - 3/4 II us(s) II 2, II Vuj(s)II,/~ ds 
0 

t 

<_ M',/(~ + 1/2), ,/~ kL~ ~ (t - s)-  3/4 s -  3/4 ds 
0 

' B r• •  t - l I e  ~- M n I ( ~ +  l le ) ,n /~  t 4 , 4 - J ~  j , t > O. 
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Hence (3.28) holds with j replaced by j + 1, and with 

(3.30) Lj+I =- Lo + C~2)kLj 

= , B • where C~ 2) Mn/(~+a/2),,,/~ (4, �88 The linear recurrence identity (3.30) shows that 
if 

1 
(3.31) k < C(2), 

then the sequence {La}y%o is bounded with 

Lo 
(3.32) L j <  -=ly, j = 0 , 1 ,  

= 1 - C~2)k . . . .  

By the standard argument, such a bound yields t 1/2 Vu(') e BC([0, oo); L"/~). Since 
k is determined by (3.15), we can choose ~(n,p) such that the condition 
Ilall, < ~(n,p) yields (3.31). Then the positive number 2'(n,p) in (3.25) can be 
determined by (3.29) and this/T(n,p), so we obtain (3.27). 

We next prove (3.26). Let us first assume that p belongs to the same range as in 
the case (2) above. Then under the condition 

(3.33) If w II. + II Vw II./z < min  /t , 
= + 1/2' ' 

we have by (2.18), (2.24), (3.15) and (3.32) that 

II uj+ 1 (t)Iln/~ <- II Uo(t)II,/~ + i II e-(t-s)r P(uj" Vuj)(s)II,/~ ds 
0 

t 

<= Mn/, II a II./, + M./(, + 1/2~, ./, ~ (t - s)-  a/4 II uj(s)[t 2. II Vuj(s)II./, ds 
0 

3 1 < m,l~ tl a ]1,/~ + M,I(r+ 1/2),n/7 B(~, z)kl~ 

for a l l j  = 0, 1 . . . . .  which yields u e BC([0, oo);L~). 
It remains to prove (3.26) in case 2 < p < n for n = 3, 4 and in case ~ _< p < n for 

n > 5 .  I n s u c h c a s e s w e h a v e l < 7 < ~ f o r n = 3 , 4 a n d l < 7  < 2 f o r n > 5 . T h e n  
there is fi such that 0 < f l < l  and such that l < 7 + f l _ _ < ~  for n = 3 ,  4 and 
7 + fl < n - 1 for n >_ 5. Under the condition 

n - y  n - 7 -  
(3.34) 

we have 

(3.35) sup II uj(t)II./, ~ g ) ,  j = 0, 1 . . . . .  
O < t < o o  
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Indeed, for j  = 0, we may define K'o ~ M~/~ II a Jln/~. Suppose that (3.35) is true forj. 
Then it follows from (2.26) and (3.24) that 

I (  - i e-('-~)L p(uj'Vuj)(s)ds, 4)) 

= ~ (uj(s)" Ve-(t-s)L'4~, uj(s))ds 
0 

< i II uj(s)It~/, [I uj(s)/I./~ IL Ve -(t-s)L' ~ II~/<o-~-p)ds 
0 

t 

_-< M'. /~.- ,>, . /~n- ~-,> k,K) ~ (t - s ) - " / 2 - 1 / 2  s-CX-e>/~ds.tl  4)II./~.-,> 
0 

1 = M./(._y),./(._,_,) B(~(1 - /3) ,  �89 + fi))keg}'[I 4 I1~/(o-,), 

q~eC ~ o,~, t > 0. 

By duality, we see that (3.35) is true with j replaced by j + 1, with 

t " (3 )  b Tg'r 

where C~ 3) = M'~/(,_~),,/(~_7_,) B(�89 - fl), �89 +/3)). This linear recurrence ident- 
ity shows that if ke < 1/C~ 3), then the sequence {K}}j%o is bounded, s o  that 
u e BC([0, o0); Lj~). Since kp is controlled by II a I]~ (see (3.24)), we can also define 
2'(n, p) in (3.25). This proves Theorem 3.5. [] 

w Proof of the theorems 

4.1. Proof of Theorem 1 

To identify the mild solution in Theorem 3.4 with a strong solution, we need the 
following local existence theorem: 

Theorem 4.1 (Local existence). Let a ~ L~ and let w be as in the Assumption with 

(4.1) Ilwlln + IlVwlL~/2 _-< t*(n), 

where # is the same number as in Lemma 2.3. Then there exist T ,  > 0 and a unique 
strong solution u of(N-S') on (0, T , )  such that 

(4.2) l ira t ~ II L~,u(t)II. = 0 for 0 < c~ < 1. 
t$+0 

I f  a e D(Le,,) for 0 < fl < �88 then T ,  may be chosen as 

C 
(4,3) T ,  = (]lalt" + Ng~aHn)e/,, 

where C = C(n, fl). 
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Remark. In the same way as (2.5), under the condition (4.1), we have the continuous 
imbedding D ( ( L , + I ) ~ ) ~ H  2~'n with IlUllH .... <Cll(Ln+l)~uIln for all 
u ~ D((Ln + 1)~). Since H 2"'" c L ~ for 1/r = 1/n - 2a/n (0 < a < 1/2), we obtain 
from (4.2) that 

lira t c~-"/~)/2 II u(t)][r = 0 for n < r < oo. 
t~+0 

Hence Lemma 3.2 assures uniqueness of the strong solution u with property (4.2). 
Theorem 4.1 deals only with the local solution, so its proof is standard and may 

be omitted (see, e.g., MIYAKAWA [27] and KOZONO [20]). 

Proof  of Theorem 1. Let u be the mild solution of (N-S') in the class S2n(0, oo) given 
by Theorem 3.4. Then it follows from Theorem 4.1 and Lemma 3.2 that u coincides 
with the strong solution on (0, T,) .  Since supo<t<~ollU(t)]In < 0% 
SUpT, = < t <  ~ ][L~u(t)l]n < oo for 0 < c~ <�89 we conclude from (4.3) by a stan- 
dard argument that u(t) is also a strong solution on [ T , ,  oo). This proves 
Theorem 1. [] 

4.2. Proof of Theorem 2 

By virtue of Theorem 3.5, we need only show the asymptotic behavior (1.5) and 
(1.6). 

(i) Let ? = ~ and 3 = ~.n Then we have 1 < 7 < n and 0 < 6 < 1. Without loss 
of generality, we may assume 0 < 6 < �89 Let us take e and 7' such that 0 < e < 6, 
1 < 7 ' < 7  and 1 + 6 - e < 7 ' < 1 + 6 .  Then 1 < 7 ' < n - 1  and � 8 9  
�89 - 6) < �89 By (3.26) we have 

(4.4) sup Ilu(t) lln/~, <= k~, < oo, 
O<t<oo 

where k~, is a constant depending only on 7'. Choose fi such that 

0 < f l < l ,  � 8 9 1 8 9 1 8 9  7 ' + f i < n - 1 .  

If 

Nwl l .+ l lVwl ln /2  < r a i n  2' n, '~:' n - - 6 ' n - -  - - 7 '  ' 

then it follows from (3.24) and (4.4) that 

i (u(s)" Ve-(t-s)L' 4, U(S)) ds 

t 

< ~ H u(s)I],l," JI u(s)II,l~ H Ve -(t-s}L'r [[,/(n-~'-~') ds 
0 

t 

< M',/C,-~), n/(n-, ' - ,)k, ,k,  .[ (t -- s ) - ( "  +,-~)/2-1/2 s-(1 -fl)/2 ds. H ~)IIn/(n--6) 
0 

= M ' n / ( . - o ) ,  h i ( . -  ~'-,) k~, kp B(�89 + 6 -- 7' -- fl), 1( 1 + fl)) t-(7'-~)/2.  ]l 4 ) ]l./(n-~) 



26 H. KozoNo & T. OGAWA 

for all q5 e C~, ~ and all t > 0. Thus by duality we obtain  

(4.5) Ilu(t)ll,/a < M,/>,/allall,/Tt -~-~)/2 + Ct -c~'-a)/2 < Ct -(1-~)/2 

for all t > 1, where C = C(n, ~, 6). 
To obtain sharper decay rates for Ilu(t)ll./6 as t -+  oo, we make use of  the 

representation 

for all t > T > 0. By (2.26) and (4.5), we have 

(4.7) t 
(u(s)" Ve -(t-,)L" ~, U(S)) ds 

T 
t 

< ~ II u(s)II 2/a II Ve -~t-,)L' ~b IL,/(, - 2a) ds 
T 

t 
< C M b ~ . - ~ ) , . / ~ . -  2~) ~ ( t  - s)  - ~/2 - 1/2 s -  2 ~l/z -~/~)ds. II q~ II./~.- ~) 

T 

< C T  ~  II ~ II./~.-a), ~ ~ Co~ 

for all t > T > 1. Since 

II e-~'-  T)Lu(T)II,/~ < M,/~,,/a sUpo <~<~ l[ U(S)II,/~ (t -- T ) - ~ -  a)/z 

for all t > T, we have by (4.6), (4.7) with T = t/2 that  

IlU(t)]ln/a -~ C( t - (y-~)/2  -k t (1-6)12-2(1/2-e/2)) 

for all t > 2. Substituting this decay result into (4.7) again, we have 

I[ u(t)[[n/a ~ C(  t-(~-O)/2 + t(1 -~)/2+(1 -&)-4(1/z-e/2)) 

for all t >__ 4. N o w  iterating this procedure m times, we obtain 

I] u(t)[I./a ~ C(t-i~-a)/2 -I- t 0 - 6)ZT='(1/2)2J-* - 2 ~ ( 1 / 2  - -  ~/2)) 

= C( t - ( y -a ) /2  + t - z  "~ *(a-~)-(1-a)/2) 

for all m = 1,2 . . . .  , and all t >= 2 m, where C = C(n, 7, a,m). Since e < 6, this 
estimate assures (1.5). 

(ii) Finally, it remains to prove (1.6). In the same way as above, let us define 
and 6 so that  y = n/p and 6 = n/r, respectively. Then the assumpt ion that  

l < p < n/2, p < r < n for n > 3 is equivalent to 2 < y < n, l < a < y(n > 3). The 
alternative assumption that  1 < p  < r _ < 2  for n = 3, 4 is equivalent to 
n/2 < 6 < 7 < n (n = 3, 4). We treat the former case. The latter can be handled in 
the same way. 

Let us first assume that  y - l < a < y .  We choose 0 < f l < l  such that  
? - 1 + fl < 6 < 7. If  I[w[[, + [IVW[ln/2 <~ ~:'(n/(7 + fi),n/6), then it follows from 

t 
(4.6) (u(t), dp) = (e-~'-T)Lu( T ), alp) + ~ (U(s). Ve-~t-s)L' ~, u(s)) ds, c~ ~ Co~ 

T 
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(2.26), (3.24) 

vi 
< 

< 

and (3.32) that  

e -  (t-,)L p (u" Vu)(s) ds ,/a 

M'./(~+~),./a i (t -- s) -(~' +p-a)/2-1/2 II u(s)II./e II Vu(s)II., ds 
0 

1 M.ic~+p),.ioB(~(6 + 1 - 7 -- fl), �89 t-c~-a)/2-1/2 

for all t > 0, which yields (1.6). 
We next proceed to the case that  7 - 3 < 6 < 7 - � 8 9  Taking 7' with 

7 - 1 < 7' < 7 - �89 we have by last result that 

(4.8) HVu(t)H,/~, <= Ct -(~-~')/2-1/2, t > O. 

Since 7 ' - 1  < 3, there is a fl e(0, 1) such that  7 ' - 1  +/3 < 6. Hence if Jlwll. 
+ II Vw 11,/2 < #(n/(7 '  + fl), n/&), then we have by (3.24) and (4.8) that  

V i e - ('- ~)L p (u" Vu) (s) ds 
?1/r 

t 

< M',/(~,+p), ,/a Y (t - s) -( /+p-e)/2-1/z II u(s)rl./p II Vu(s)Pt./~' ds 
T 

t 

_<__ C ~ (t - s)-(7'+P-a)/2-1/2s(~+~'-~)/2-1 ds 
T 

< CT-C~-a)/2- a/2 

for all t > T __> 1. Since 

It V e - ( t -  T)Lu(T)Hn/6 ~ m'./~,./a sup II u(s)I[./r(t -- T)-(~-a)/2-  a/2 
O<s<oo 

for all t > T, we obtain from the last estimate with T = t/2 that 

IIVu(t)tl./a < Ct -<'-a~/2-1/2, t => 2. 

Iterating this procedure to the case 6 < 7 - 1, within a finite number  of steps 
we can cover all exponents 6 with 1 < a < 2 and obtain the estimate 
IlVu(t)ll,/a < Ct -(~-a~/2-~/2 for sufficiently large t. This proves Theorem 2. []  

4.3. Proof  o f  the Corollary 

Let the conditions (1.1) and (1.2) hold. Set U z -  {a~L~;l la lr .  < 2(n)}. By 
Theorem 3.4, we can define a map F by 

F : a ~  U~ ~ u = F a ~  BC([O, oo);L~), 

where u is the unique mild solution of (N-S') in the class Sa.(0, oo) with u(0) = a. 
Then we have the following key lemma: 
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L e m m a  4.2. 
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The  mapping F is continuous f rom  Uz into BC([0,  oo); L~). 

{ ( 2,, ) } Since the number Proof.  Let II w I[. + It V w  ll./2 < min ~c(n, n), ~:' n', 2n - 3 

k in (3.15) is determined by the size of Ilalt., we may take 2(n) so small that 

1 
(4.9) O<t<oosup t TM lt(Fa)(t)112. ~ 4M'., 2n/2n_3B(�88 �88 

holds for all a ~  Ua. N o w  for a, b ~ Ua, set u = Fa, v = Fb and we have by 
Definition 3.1 and Theorem 2.7 that  

[(u(t) - v(t), q~)[ 

<= I(e -*La - e -tLb, 49)1 

+ i {(u(s)" Ve-C'-~)L'49, u(s)) -- (v(s)" Ve -r 4,  v(s))} ds 

< ](e-tL(a -- b), 49)1 

t 

+ S I((u(s) - v(s))" Ve  -(t-~)z '  49, u (s ) ) lds  
0 

t 

+ ~ I(v(s)" Ve-( ' - ' )L '  49, U(S) -- v(s))[ds 
0 

<= IL e - tL(  a -- b)II. II 49 I1.' 

+ i I] u(s) - v(s)[I. [I Ve -  ('- s)L" 49 I[ 2./(2.- S)( II U(S)]j 2, + 1I V(S)II 2.)ds 
0 

< M. , .  ll a - b ll. l14911., 

+ MZn'.2n/(zn-3,( sup s TM[[u(s)[`2.+ sup s TM`,v(s)i,z.~ 
\ O<s<ao O<s<oO / 

x sup II u ( s )  - v ( s ) I1 .  
O < s < ~  

t 

x S(t - s) - ("/:)("'-(2"- 3)/2")- 1/2 s - * ' a s  IL 4 It., 

0 

= M. , .  II a - b 1t. II 4 It. 

, ~ 3 ) (  
+ M n , , 2 n l ( 2 n _ 3 ) B ( - 4 , ~  s u p  

O<s< O0 
sl/4ltu(s)[I2" + o<~<oosup sl/41lv(s)ll2.) 

x sup tl u(s) - v(s)I1~ II ~ L' 
O<s<oo 
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for all ~b e C ~ and  all 0 < t < oo. Hence  it follows f rom (4.9) and  f rom a duality 0,  o" 

a rgumen t  that  

sup [[ u(s) - v(s)[I, <- M , , ,  l[ a - b It, + �89 sup It u(s) - v(s)I/,. 
O < s < o O  O < s < ~  

This implies that  supo <s< | [J u(s) - v(s)H. =< 2M. , .  H a - b ]In and  we get the desired 
continuity.  [ ]  

Proof of  Corollary.  Let  u be the s t rong solut ion given by T h e o r e m  1. Since Co~ is 
dense in L ]  and  since the m a p p i n g  F is cont inuous,  for any e > 0, there is 

e Ua cn C~, ~ such that  

sup I[u(t) - (Fd)(t)II. = sup I[ (Fa)(t) - (F~)(t)tl. < e. 
O < t < c o  O < t <  co 

On the other  hand,  by (1.5) in T h e o r e m  2, we see 

II (Fgl)(t)[1. ~ 0 as t -~ oo. 

Then  it follows that  

l imsup  ]]u(t)]l. =< l imsup  Itu(t) - (F~)(t)}). + l imsup  II (FgO(t)[I. <= e. 

Since ~ > 0 is arbi t rary,  we conclude limt_, go II u(t)tl. = 0 and the desired result (1.7) 
is a consequence of the uniform est imate (1) in Theo rem 1 and the in terpola t ion 
between L" and  L r. This proves  the Corollary.  [ ]  
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