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Introduction

Let Q be an exterior domain in R” (n = 3), 1.e.,, a domain having a compact
complement R”\ £, and assume that the boundary 6Q is of class C*** (0 < u < 1).
The motion of an incompressible fluid occupying £ is governed by the Navier-
Stokes equations:

—Aw+w-Vw+Vr=f in Q

divw=0 in Q,
(S)
w=0 on 0Q,
w(x) =0 as |x|— oo,
where w = w(x) = (w!(x),...,w"(x)) and = = n(x) denote the velocity vector

and the pressure of the fluid at point x e, respectively, while f=f(x)
=(fYx),...,f"(x)) is the external force. In [21], KozoNno & SoOHR
estabished the existence and uniqueness of solutions to the linearized equations
of (S), ie., the stationary Stokes equations having a finite L’-gradient
[alVw(x)|["dx < oo for n/(n — 1) < r < n. Based on their results with the aid of
the implicit function theorem, one can easily show that (S) has a smooth solution
with

(CL) we L"(Q), Vwe L"*(Q)

if n 2 4, provided the prescribed force fis sufficiently small and decays rapidly at
infinity. If n = 3, some investigation into the existence of solutions of (S) within the
class (CL) has been made by several authors (see, e.g., [9, 22]).

The purpose of this paper is to show the stability in L" of solutions of (S) in the
class (CL). If w is perturbed by a, then the perturbed flow v(x, t) is governed by the
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following non-stationary Navier-Stokes equations:

0 .
a—:—Av+v'Vu+Vq=f in Q,t>0,
divo=20 mn Q >0,
(N-S) v=0 on Q, t >0,
v(x,t) >0 as | x| — oo,
v(x,0) = w(x) + a(x) for xe Q.

In this paper we shall show that if the stationary flow w and the initial disturbance
a are both small enough in the class (CL) and in L*(Q), respectively, then there is
a unique global strong solution v of (N-S) such that the integrals

!glv(x,t) —w(x)]"dx forl<r< oo,
(D)

{1Vo(x, t) — Vw(x)|"dx for 1l <r<n
o

converge to zero with definite decay rates as t - oo . Let w and v be solutions of (S)
and (N-S), respectively. Then the pair of functions u = v — w, p = q — = satisfies

0
%—Au+w-Vu+u-Vw+u-Vu+Vp=0 in Q t>0,

(N-S") divu=0 in Q, t>0,
u=0 on dQ, t>0, u(x,t)—>0 as |x|— o0,

Uli=o = a.

Hence our problem on the stability for (S) can now be reduced to an investigation
into the asymptotic behavior of the solution u of (N-S'). For a three-dimensional
exterior domain, Heywoop [14, 15] and Masupa [25] considered an in-
homogeneous boundary condition at infinity like w(x) > w® as |x| —» oo, where
w® is a prescribed non-zero constant vector in R?. They showed the stability for
such solutions in LZ2-spaces. On account of the parabolical wake region behind
obstacles, their decay rates are slower than those of our solutions. To obtain
sharper decay rates in L"-spaces of the solutions of (N-S'), we need to establish
LP-L’-estimates for the semigroup e ", where L, is the operator defined by

Lu=Au+ P,(w-Vu+u-Vw).

Here P, is the projection operator from L"(2) onto L7(Q2) and 4, = — P,A denotes
the Stokes operator in L (£2).

In case w = 0, we have L, = A, and hence our problem reduces to obtaining
a global strong solution and its decay properties of the Navier-Stokes equations in
exterior domains. Since the pioneer work of KaTto [19] and Ukai [35], many efforts
have been made to get LP—L'-estimates for the Stokes semigroup e “** in exterior
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domains. There are mainly two methods: The first, due to Giga [11], GiGa & SoHr
[13] and Borcuers & MivAkawa [3] is to characterize the domain D(4}) of
fractional powers A? (0 < o < 1) and the second, due to IwasHITA [16], 18 to obtain
asymptotic expansion of the resolvent (4, + 4) ™! near A = 0. In our case, since L,
is an operator with variable coefficients, it seems difficult to apply either of these
methods to show that the asymptotic behavior of e """ is the same as that of e ™4
as t — o0. If we restrict our attention to the case 1 < r < n/2, however, then L, can
be treated as a perturbation of 4,, and for such r, we can get satisfactory
L?—L"-estimates of e ~**», which are enough for the global strong solution of (N-S').
Our proof needs neither estimates of the purely imaginary powers L¥(s € R) of L,
nor an asymptotic expansion of (L, + 4)~! near 4 = 0; we need only a resolvent
estimate of elliptic differential operators such as AGMoN’s [2].

Because of the restriction 1 < r < n/2, we cannot construct the strong solution
directly in the same way as G1GA & Mivakawa [12] and Kato [19]. Therefore, we
first need to introduce a mild solution which is intermediate between weak and
strong solutions (see Definition 3.1 below). Then we show the existence and
uniqueness of the global mild solution u of (N-S') in the class C([0, oo ); L% (€2)) with
the decay property |u(t)|, = O "**"?9) as t—> oo for n < g < . Using
a uniqueness criterion similar to that of SERrIN [30] and Masupa [26], we may
identify the mild solution with the strong solution. As a result, it will be clear that
the restriction on r causes no obstruction for our purpose. Moreover, if we assume
more rapid decay in space of the initial disturbance, such as a € L*(Q2)n L"(Q) for
1 <r < n/2, then we also get | Vu(t)], = 0@ "*)ast— .

In Section 1, we state our main results. Section 2 is devoted to L?—L -estimates
of e 7™ and Ve ~"r. The existence and uniqueness of the global mild solution is
established in Section 3. Finally in Section 4, we prove our theorems.

§1. Results

Before stating our results, we introduce some notations and function spaces and
then give our definition of strong solutions of (N-S'). Let C§ , denote the set of all
C* real vector functions ¢ = (¢%, . .., $") with compact support in €, such that
div¢ = 0. L} is the closure of C§,,, with respect to the L"™-norm || [,. (-,} denotes
the L? inner product and the duality pairing between L' and L", where
1/r + 1/ = 1. L" stands for the usual (vector-valued) L"-space over 2,1 <r < 0.
H{:% denotes the closure of C§, with respect to the norm

lollger = N&l, + VIl

where V¢ = (0¢'/0x;; i, j=1,...,n). When X is a Banach space, its norm is
denoted by ||*|lx. Then C™([t;,t,); X) is the usual Banach space, where
m=0,1,2,...,and t; and ¢, are real numbers such that ¢t; < t,. BC™([t;, t,); X)
is the set of all functions ue C™([t;,t,); X) such that sup;, <, ., | d™u(t)/dt™ | x
< o0. In this paper, we denote various constants by C. In particular,
C = C(*,...,x)denotes a constant depending only on the quantities appearing in
the parentheses.
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Let us recall the Helmholtz decomposition:
L'=L,®G" (direct sum), 1 <r< 00,

where G = {Vpe L*; p e L},.(Q)}. For the proof, see Funwara & Mormmoro [8],
Mivakawa [27] and SiMADER & SosR [31]. P, denotes the projection operator
from L’ onto L along G". The Stokes operator A, on LY is then defined by
A, = — P,A with domain D(4,) = {u e H>"(Q); ulso = 0} "L}, It is known that

(LL)* (the dual space of L) = LI, A¥ (the adjoint operator of 4,) = 4,,

where 1/r + 1/r' = 1.
Let us introduce the operator L, in L. To this end, we make the following
assumption on w.

Assumption. w is a smooth solenoidal vector function on Q in the class we L and
Vw e L"* with w|yg = 0.

For the existence of such solutions w of (S), see Kozono & Sonr [22] and GavLpt
& Papura [9]. Under this assumption, we define the operator B, on L, by
B,u=P,(w-Vu +u-Vw) with domain D(B,) = H} ..
L, is now defined by
D(L,)=D(4,), L, =A,+B,.
Applying the projection operator P, to the both sides of (N-S'), we get formally

du
(E) dt
u0) = a.

+Lau+ P, (u-Vu)=0, t>0,

Our definition of a strong solution of (N-§') is as follows:

Definition. Let a € L} and let w satisfy the Assumption. A measurable function
u defined on 2 x (0, T') is called a strong solution of (N-S') on (0, T') if

(1) ue C([0,T); L) C* (O, T) Lj),

(2) u(t)e D(L,) forte(0,T)and L,ue C((0, T); L}),

(3) u satisfies (E) in L on (0, T).

Our results now read:

Theorem 1. Let ae L} and let w satisfy the Assumption. Then there is a positive
number ). = A(n) such that if
(1.1) lalla =4 Iwla+ [VWlla2 = 4,

there exists a unique strong solution u of (N-S') on (0, c0) with lim,. 4,
4 |u() |20 = O.



Stability of Navier-Stokes Flows 5

Moreover, for everyn < r < o0, thereis a positive number 5 = y(n, r) such that if
(1.2) Twls+ [Vwla2 1,
then the solution u has the following asymptotic properties:

(1) (uniform estimate) |u(t) ||, £ Ct~®W2DAm=ID for n <1 <7 with C = C(n, 1, 1)
independent of t > 0;
(2) (behavior near t = 0) lim,_, . o t™2 =101y (1) ||, = 0.

Theorem 2. (1) (i) Let 1 <p <n and let ae LEnL}. There is a positive number
N =2A(n, p) £ A such that if
(1.3) lals = A lwils + VWi, = 4,
then the strong solution u given in Theorem 1 satisfies
ue BC([0, o0 ); L2ZALE).

(i) In particular, if 1 <p <% fornz5andif1 <p £ 2 for n = 3, 4, then under the
condition (1.3),

t12Vu(-)e BC([0, oo ); L*?).

(2) (1) Let n =3 and 1 < p < n. Assume (1.3). Then for every r with p <r < 0,
there is a positive number 5’ = n'(n, p, ) < y such that if

1.4) Iwils + 1VWl2 =,

then u has the decay property

(1.5) lu() ;= 0@~ @PUP=I0) - forp<l<vr
ast— 0.

(i) Let n=3 and 1 <p<¥%, p<r<n (In case n=3,4, we may let also
1 <p £r £2) Assume (1.3). Then under the condition (1.4),

(1.6) IVu@)ll, = O~ W2WP=ID=12) for p< <7

ast— co.

Corollary. Let the conditions (1.1) and (1.2) hold. Then the solution u given in
Theorem I has the sharper decay property

1.7 lu@) ]l = o(t™W2UP=ID) for p<i<r

ast— oo.

Remark. (1) The behavior near ¢ = 0 in Theorem 1 is necessary for uniqueness of
mild solutions.

(2) In Theorem 2, it may happen that lim,,;A'(n, p) =0 and lim,.#’
(n,p,r)=0.

(3) The most important decay of || u(t)||, is for » = 2 and r = n. The former is
just the energy decay of weak solutions. When w = 0, WigGNER [37] and BORCHERS
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& Mivakawa [3] obtained the best decay rates in L2(R") and in L%(Q), respect-
ively. WIEGNER’s rate is optimal. On the other hand, the case r = n is closely related
to the scaling invariance of solutions. Even when w = 0 and when Q = R” our
decay rate (1.7) in L"(€) is sharper than any other result ([14, 15, 19, 25, 29, 357).

§2. L?-L'-estimates of the semigroup ¢~

Let us first recall some previous results on the Stokes operator 4, in LY, due to
Borciuers & Sonr [4] and Gica & Sonr [13].

Proposition 2.1 (BorcHers & SonR [4], Gica & Sonr [13, Theorem 3.1]). (1) Let
Z<w<n For every 1 <r < w0, the resolvent set p( — A,) of — A, contains the
sector X, ={AeC; |argl| < w} and there is a constant M, , depending only on
r and @ such that

1 1A, + 2 gy < Mool

holds for all L e X,,.

(2) If 1 < r <%, the following stronger estimate holds:
22 A ul, + ID?ull, < CI(A, + A)ull,

for allue D(A,) and all Ae X2, where C = C(r, w).

Remark. By (2.2) and the interpolation inequality, we have
23) | DMA + D rul, S CIATY M ), 1<r<%, k=0,1,2,
forallueL! and all le 2, where C = C(n, r, o, k).
Let us introduce the operator L, in L. We first define the operators B, and
B, by
D(B,) = D(B,) = Hy2( = D(4;?)),
Bau=P,(wVu+uVw), Bu= P,( —wVu+ ) ijuj>,
ji=1

where w is the function on Q satisfying the Assumption. L, and L; are then defined
by

D(L,)=D(L))=D(4,), L,=A+B,, L,=A4,+B,.
Since A¥ = A, (1/r + 1/#' = 1), it is easy to see
24 Ly =L,

where A¥* and L¥* denote the adjoint operators of 4, and L, in L, respectively.
Let us first investigate the behavior of semigroups e~ and e ~ 'L near ¢ = 0.
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Lemma 2.2. Let w be as in the Assumption. (1) For 1 <r< oo, — L, and — L,
generate quasi-bounded holomorphic semigroups {e "}, 50 and {e= "} 50 of
class C° in LY, respectively. Hence there is a constant B, > 0 such that (L, + f,)”?,
(L, + B,)" Y eB(L.) and such that the fractional powers (L, + B,)% (L. + B,)*
O0O<a<1) are well defined. Moreover, there are continuous imbeddings
D((L, + B,)*), D((L, + B,)*) = H**", with

Cll(Ly + Bl

ClI(Ly + B 1/

for all ue D(L, + B.))=D((L, + B,))O0 L o £ 1), where C = C(r, ) and H**"
denotes the space of Bessel potentials over Q.

(2) For every 1 <p<r< o and 0 < T < o0, there is a constant M, , 1 such
that
(2.6) le™*al,, le™* al, < M, , ¢t~ "PUP= 10 g,

2.7) Ve~ all,, [Ve™ " al, < M,,, pt~O2UP=UN=12 g
p.r, i P

Jorallae L and all t€(0, T).

(2.5) lull goer < {

Proof. (1) It follows from Gica [11] and Gica & Sonr [13] that D(A%) is
continuously imbedded into H?*" with

(2.8) lullgz=r < Cl(A, + 1)*],, 1<r<o, 02as]
for all u e D(A}) with C = C(r, a). Then we have
2.9) IBettllr = 1Prllgps oy (Wl Vel + I VW [12]lr)

= ”Pr ”B(L',Lf,)(“W“w + ”VW “oo)”u“Hl"
SClwle + VW) (A, + 1) 2ul,

for all u € D(B,). Hence B, is 4,-bounded with relative bound 0, and perturbation
theory (KATo [18, p. 500, Corollary 2.5]) states that — L, is a generator of a quasi-
bounded holomorphic semigroup {e "}, > o. Moreover, it follows from (2.9) and
Funwara [7, Theorem A in Appendix] that D{(L, + f,)*) = D{A¥) for0 £ a £ 1;
then (2.8) yields the desired estimate (2.5).

(2) By (2.5) and the Sobolev imbedding theorem, we have

lull, = CI(Ly + Bp)°ull, for ue D((L, + 5,)),

IVul, < CI(L, + Bp)** 2u|l, forueD(L,+ B,)**V?),

where o = (n/2)(1/p — 1/r) and C = C(p,r). Taking u = e ~""a(a € L?) in these es-
timates, we get (2.6) and (2.7) by a standard argument for holomorphic semigroups
(see, e.g., TANABE [33, Theorem 3.3.3]). Since

IByully £ C([VWllo + Iwllo) 1 (Ar + D2 ul,

for all u € D(B,), the last argument holds also for L}, so we get the desired result.
This proves Lemma 2.2. [
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We next investigate behavior of e "I and Ve " as t — o0. To this end, we
need to estimate the resolvent (L, + A)~! near 1 = 0. In such an estimate, we
impose restrictions on r and require the smaliness of w in the class (CL).

Lemma 2.3 (Resolvent estimate). For every r and w satisfying 1 <r < o0 and
2 < w < 7, there is a positive number g = u(r, w) such that if
(2.10) Iwlis + 1 VWla2 = 0,

then both resolvent sets p(— L,) and p(— L,) contain the sector X, = {ieC;
largA| < w} and the estimates

@11 N+ D7 gy ML+ 27 g < M, o117

hold for all A€ X, with a constant M, , depending only on r and w.
An immediate consequence of Lemma 2.3 is

Corollary 2.4. Let w e (%, ) be fixed arbitrarily. Under the condition (2.10), — L,
and — L, respectively generate uniformly bounded holomorphic semigroups
{e ™} >0 and {e~ "}, 5 g of class C® in LY,. Hence the fractional powers L? and
(L)*(0 <o £ 1) of L, and L;, respectively, can be defined.

Proof of Lemma 2.3. (i) Let us first consider the case 1 < r < %, for which it follows
from Gica & Sonr [13, Corollary 2.2, Theorem 3.1] that
(2.12) Ntlmrsn-2r) £ ClIVUillargn-ry S C| D*ull, < C|| A ul],
for all u € D(A,), where C = C(n, r). By Proposition 2.1, we have
(2.13) L+i=A4,+B +i=(1+ B4+ 1) )4+ 1)
for all 1€ X,. By (2.1), (2.12) and the Holder inequality,
1B, (A4, + )" tul,
SPw- V(A + )T ) [+ (P (A + 2) " hu V),
< 1Pl gy (W IV (As o+ D)7 o
+ (A + A7 g - 20 | VW y2)
S CUWI + [1VWlla2) | A (A + 4) " Tul,
S CA+ M, o )Uwha + 1VWln2) ul,

for all ue L), and all e X,, where C = C(n, r). Hence, by taking u = pu(r,0) =
12C(1 + M, ), under the condition (2.10), we have

(2.14) | B (A +2) Mgy, =4 forall Le 2,

Now an elementary consideration of the Neumann series yields (2.11).
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(i) We next consider the case (n/2)’ = n/(n — 2) < r < 0. In this case we have
1 <r =rfr—1) <%, and (2.4) yields
(2.15) (L, + )*=L,+2=A,+ B, + 1
= (1 + B;’(Ar' + z)_1)(~’4r’ + Z)

for all Ae X,. Since 1 <+ <%, the same argument as above works for A4, and
B, and hence we can choose a positive number y = u(r, @) such that the condition
(2.10) yields

| B (4, + 1)1 lgr < L forallleX,.
By (2.15) and this estimate, we find
o p(= L) Nt D7 gy = (L + D) gy S 2y 027

for all A€ X, which shows (2.11).

(iii) Now it remains to treat thecase § < r < (§) forn=3,4. Take 1 <ry <%
and (5) <r, < oo. We have 1/r =(1 — 8)/ry + 8/r, for some 0 <8 < 1. Let
u(r, w) = min {u(ry, o), p(r2, @) }. Now the above results (i), (ii) and interpolation
yield that

Zo < p(—= L), L+ D)7 g, S2MIEMY, A7 A€ Zo,

B(L;)
from which we obtain the desired result on L, for all 1 < r < co. It is easy to see

that the proof for L, is quite similar to that for L,, so we may omit it. This proves
Lemma 2.3. [

If we impose a restriction on r, we also get the estimates of derivatives for the
resolvent (L, + A) ™! near 1 = 0.

Lemma 2.5. (1) Let n = 3 and 1 <r < n/2. Then under the condition (2.10),
(2.16) |IDX(L, + A)~ ully, [ DXLy + A) " ull, £ CIAIT 2 u,, k=1,2,

forallue L} and all e 2, where C = C(n, r, w).
(2) Let n=3,4 and 1 <r £2 and let 5 < w <mn. There is a positive number
u = y'(r, o) such that if

(2.10) Iwl + VW2 = 1,

then the estimates

2.17) IV, + 2) " ule V(L + A7 Ml < CLAIT Y2 ull,

hold for all ue L}, and all A € X, where C = C(n, r, ®).

Proof. We only prove this lemma for L, because the proof for L, is quite similar.
(1) By (2.14) the operator 1 + B,(A4, + A) ™! is invertible in L’, with bound

(1 + B.(A4, + 1)~ Y~ <2 forall ieX,.

1
“B(LZ)
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Hence (2.3) and (2.13) yield
IDX(L, + A)"*ul, = | D*(4, + )71 (1 + B4, + H™H) " tul, £ CIAITV2 u],

for all ue L}, and all /€ X, where C = C(n, r, ®), and we obtain (2.16).
(2) If n =3, 4, we have § < 2 and make use of the quadratic form (L,u, u) on
L2. By the Sobolev inequality ||u|,mm-2) S C||Vul2(ue HE:2), we have

|(Bau, u)] = |(w-Vu, u)| + |(u-Vw, u)|
S iwlafVul, “u{IZn/(n—Z) + [[Vw Hn/z ”ullgn/(n—Z)
S Colllwlln + [ VW lla2) I Vu 3

for all ue H§:2, where C, = C,(n). Now take p'(2, w) = min{1/2C,, u(2, w)},
where y is the same number as in (2.10). Then under the condition (2.10"), we have

(Lau, u) = (Ayu, u) + (Byu, u)
2 (1= Cy(IWlha + [ VWly2)} 1 Vae |3 2 4 Va3
for all u e D(L,). Hence (2.11) with » = 2 yields
IV(Ly + )" 'ul|3 £ 2(La(La + A) " 'u, (Ly + ) ")
< UMy, o+ DM ol 47 u3

for all ue L? and all /€ X, from which we obtain (2.17) for r = 2.

For 5<r<2, we take 1 <r, <% and 0 <6 £1 such that 1/r =1 — 6)/ry
+0/2. Since (2.17) is true for ry, implied by (1), we may define p'(r,w) as
¢ (r, @) = min {u(ry, w), #(2, @)}. Then under condition (2.10'), the interpolation
inequality yields the desired result. []

In what follows, we fix w € (5, n) and regard p and g’ in (2.10) and (2.10') as
constants depending only on r.

Lemma 2.6. (1) Let 1 <r < 0. Under condition (2.10),
(2.18) le="ral,, |e~"al, < M,|all,

for all ae LY, and all t > 0 with a constant M, depending only on r.
(2) () Let n =3 and 1 < r < 4. Under condition (2.10),

(2.19) ID*e~"ral,, | Dke~*al, £ Myt~ *|al,, k=12,

for all ae L, and all t > 0 with a constant M, depending only on r.
() Let n=23,4 and 1 <r £2. Under condition {2.10'),
(2.19) |Ve~*ral,, Ve~ “al, £ Myt™"?|al,

for all ae L, and all t > 0 with a constant M, depending only on r.
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Proof. Take f such that 0 < § < w — 7/2. Then under the conditions (2.10), (2.10"),
we have

1

e rg=-——{e*(L,+ 1)~ " adi,
2mi y

where I'=T,ul',ul's; TI'y={A=pe™*™ P 1sinff<p< w0}, I={A=

ePtsinfl; —F— B <<%+ P} and I's= {4 =pe "D, {/tsinf < p < 0}

Then it follows from (2.11) and (2.16) that

1
k_t [ A -1
(2.20) l D 27”,;1 e (L, + )" tadl i
1
<o [le”[ | DXL, + 4) " tal.d]2]
27'[ Iy
SCJefeHaIm 2 dlal|af,
ry
=C j' e—ptsinﬂp*lJrk/de”a“r
1/tsin g
(by changing the variable p — s = pt sinff)
=C(tsinp) ™™ | e7*s"* " ds| al,
1
<Ct™|all,;
1
(2.21) D¥— [ e*(L, + A) " 'adA
2mi f, ,
<c " emomssingy-we 2y q)
< ecosO/sinBy oipy L .
—nj2—p tsinff
< Ct7al,

for all ae L and all t > 0, where k=0,1,2 and C = C(n,r, ). As in (2.20), we
obtain the estimate of the integral along I's:

(2.22) < Ct™"|al,

¥

1
D¥— [ e (L, + A) " 'adi
27ip,

Now (2.20)2.22) yield the desired estimates (2.18), (2.19). Based on (2.17), we can
prove (2.19') in the same way as above. This proves Lemma 2.6. []

The following LP-L’-estimates play an important role for our purpose.

Theorem 2.7 (LP-L%estimates). (1) Let n =3 and 1 <p <r < 0. There is a posi-
tive number x = Kk (p, r) such that if

(2.23) Iwla + 1VWla2 = x(p, 1),
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then

(2.24) le™"al., le”™ all, < My, t~ P72 | a],

for all ae Lt and all t > O with a constant M, , depending only on p and r.
(2) Letnz3and let 1 <p <%, p=<r<n. (Incase n=23, 4, we may let also
{ <p =r £2) There is a positive number k¥’ = k'(p,r) such that if

(2.25) wlls + IVWla2 £ «'(p, 1),
then
(2.26) [Ve™™al,, Ve ™™ al|, £ M, ,t~®e=nniz=1i2y 4\

for all ae LE and all t > 0 with a constant M, , depending only on p and r.

Proof. (1) Step 1. We first prove (2.24) for 1 <r <%. Consider the case
1+ —1 <1 <L Then by (2.19) and the Sobolev inequality we have

le™"alap-1m: < CiVe ™al, < CM,t~*?|a|,, aeL’ t>0

with C = C(n, p), provided that |wll, + [ Vwi{l,» < u(p). Under the same condi-
tion on w and Vw, we have by (2.18) that |le *Fa|, < M,|a|,. Since
7—7<+=<3 we have ;=219 +0(¢ 1), where 0=n(—1). Hence if
Wi, + VW2 < u(p), then by interpolation we obtain e ~*“ e B(L#, L") with the

e g, gy S (CMyt ™12 M}~ < Ce~tin=iniz,
We next proceed to the case that 2 <} —2<+ <11 Taking 1 <p; <% as
=+ —+%, we have = — 1 <+ <L Hence if
1wl + 1 VW2 < min{x(p, p1).x(r,p1)} = x(p,7),
then the above argument with p replaced by p, yields
le " all, = e~ a)],
< Mpi,rt_("/pi_"/r)/z He'%LaHI,i
< Mp:.rMp,pi t—@/pi—nr)j2 ¢~ (m/p—n/ps)/2 “ a Hp
= MplirMp’plt—(n/rn/r)/l I aHp

forall ee LZ and all ¢ > 0.
Proceeding in the case 2 < 1 <1 — 2 as above, within a finite number of steps,
we obtain (2.24)for l <p <r < %.

Step 2. We next prove (2.24) for 4 <r < . Let us take 7 and g such that
1 <F<4<r<q< . Then we have * =15% + ¢ for some 0 < 6 < 1. Defining
1 < p < p by the relation 3 =152 + &, we get 1 < p <7 < 4. Hence the result of
Step 1 states that if

Iwlls + VW2 £ €(B, 7),
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then L ~
le™ aly < Mzt =702 a5, ae L.

On the other hand, it follows from (2.18) that if

Wi + VW2 = p(g)

then
le *"all, = M,llall,, aeLi

Hence under the condition that |w|, + [[Vw|,. < min{x(p, 7), u(q)}, by inter-

polation we have e " € B(L2, L") with the bound

” “B(L" L') == (M’“ ~t*(n/p——n/r)/2)1 BMG M1 eMet (n/p— n/r)/Z

which yields the desired estimate (2.24) also for § <r < .
(2) (i) We first consider thecase n =23 and 1 <p <%, p=<vr <n.
Step I: T —+ <1 <1 1t follows from (2.19) with k = 2 and the Sobolev
inequality (2.12) that if wll, + | Vw2 < u(p), then

IVe ™ alujp-1m- £ CID*e "all, < CMyt ™ all,, aeLl,t>0,

where C = C(p). Moreover, under the same condition on w, we have by (2.19) with
k =1 that

Ve %al, < Myt~ |a, aeLl >0

Taking 0 <0 <1 as 0 =n(t—1), we have + =252+ 0(3 — 1), so the above
estimates and interpolation yield that Ve " e B(LZ, L") with bound

”VehtLHB(LgyLr (CM/t l)H(M/t 1/2)1 -6 COM/t (n/p—njr)/2— 1/2

provided |wl[, + [Vw],2 < p(p). This implies (2.26).
Step 2: + <+ <3 — +. Choosing s with £ =1 + %, we have by assumption that
p < s < 4. Henceit follows from (2.19) with k = 2, (2.24) and the Sobolev inequality
(2.12) that if
[wlla + VW (a2 < min{u(s), x(p,s)} = «'(p, 1),
then
Ve *all, < CID*e ™ all, = C|D*e~"* (e~ a)|
S CMt e P al,
< CM M, it~ 1t~ 0= g,
= CMM, ¢~ r=rn2=121q)  aeL2, t>0

with C = C(n, r), which implies (2.26).

(i) We next consider thecasen =3,4and 1 <p<r <2 For 1 < p <%, there
is a 0 €(0,1] such that  =15¢ + §. We also choose 1 <7 <r with + =152 4+ 4.
For such p and 7, we have 1 < § < %, p <7 < n, so that (i) yields

IVe™™als < Mzt =®P="DR=12 g5, aeLl,t>0,



14 H. KozonNo & T. OGAWA
provided that |w|, + [|Vw|,2 £ x'(p, 7). On the other hand, if [|w], + [ VW[,
< p'(2), then (2.19') implies that

Ve "a|, < Myt~ "*|a|,, aelL2, t>0.

Hence under the condition that [|wl, + | Vw |, £ min{x'(p, 7), ' (2)} = «'(p, 1),
we have by the above estimates and by interpolation that Ve " e B(LE, L") with
bound

” Ve~tL HB(Lg, I é (M;i,:t — (n/P ~ nff)/2 — 1/2)1 —H(M/z t 1/2)8

— (Mrﬁj)l—G(M/Z)Otﬂ(n/p—n/r)/Z—1/2’ > 0’

which yields (2.26). This proves Theorem 2.7. [

Lemma 2.8. Let 1 <r <2 forn=3,4and let 1 <r <% for n 2 5. Then under
conditions (2.10) and (2.10),

(2.27) |VLie "ral,, |V(L) e "al, < M, 07" al,, 0La<1

for all ae LY, and all t > 0 with a constant M, , depending only on r and o.
Proof. We make use of the representation
1
VLie Mra=V— (=)L, + 1) adl,
2mi T

where I is the same path in the complex plane as in the proof of Lemma 2.6. Hence,
using the estimates (2.16), (2.17), we obtain the desired resuit in the same way as
(2.19),(2.19). O

§3. Global mild solution

In this section, we construct a mild solution which is weaker than the strong
solution. If u is a strong solution, then u satisfies the integral equation

t

(LE) u(ty=e ta-— je“"s)LP(u-Vu)(s) ds.
0

Our definition of a mild solution is

Definition 3.1. Let ae L? and let w be as in the Assumption. Suppose that
n <r < oo. A measurable function u on Q x {0, T') is called a mild solution of (N-S')
in the class S,(0, T) if

(1) ue BC([0, T); L") and t* "2y (-)e BC([0, T); L%),

(2) limy) 4 ot "2 |u(®)]l, = 0,

() W0, ) = €74 §) + | (u(s) Ve~ g, u(s)ds
for all ¢ € C§, and all(()) <t<T.
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Taking 6 =n/r, we have 0<d<1 and by (2), supg<r<rptl 97?

lu(t)|lys < 0. Then it follows from (2.7) with p=n"=n/n—1) and
r=mnf(n — 1 — ) that

3.1) }(u(s)' Ve 9L ¢ u(s))ds

< f () i Ve-(t_S)L,(f’ Hn/(n~ 1-0)l u(s) lnss ds
0

= Mn’,n/(n —1-4), 7 SUp “ u(f) “n sup A Hu(r) ”n/&
0<t<T 0<:<T

t

X[ (t—s) T2 ds B,
0

=My wjn—1-0,7BEF, 5D

x sup Ju(0)ll, sup T2 u(@) s [l
0<1<T 0<t<T

for all 0 <t < T, where B(:,") denotes the beta function. Hence if u is in the class
S,(0, T'), then the integral on the right-hand side of (3) in Definition 3.1 is well-
defined.

Concerning the uniqueness of mild solutions, we have

Lemma 3.2 (Uniqueness). Let a € L}, and let w be as in the Assumption. Suppose that
n<r < 00. Then the mild solution of (N-S') is unique within the class S,(0, T ).

Proof. Let u and v be mild solutions of (N-S') in S, (0, T') with the same initial data
a. Then as in (3.1) we have that

|(u(z) — v(1), §)I

= }{(U(S)'Ve""_””@ u(s)) — (v(s) Ve T §, v(s))} ds
0

= } |((u(s) — v(s)- Ve~ 9% ¢, u(s))| ds
(]

t
+ [lw(s) Ve~ b u(s) — v(s))| ds
(4]
< My yn— 1 - 8,7 BCAT2159)

><< sup 5972 ufs) {5 + sup sV Hv(S)l!n/aH)

O<s=t O0<sst

x sup (u(s) —v(s) .l @l

O<s=st
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forall p € C§, and all 0 < t < T, where 6 = n/r. Let us define the functions D(t)
and K(t) on (0, T) by

D(t) = sup [u(s)— ov(s)lln,

O<s<t
K(t) = sup s u(s) s+ sup sUTV2u(s) |
D<s=t O<s=<t

By the last estimate and by duality, we have
lu@) — v}, = C, K®)-D(t), 0<t<T,

where Cy, = My pin — 1 — 5,7 B(3(1 — 6),3(1 + 8)). Since K(r)- D(t) is a monotone
increasing function of ¢, we obtain that

(3.2) D)< C,K(t)-D(t) forallO0<t<T.

Since K(t) is a continuous function on [0, T') with K(+ 0) = 0, implied by (2) in
Definition 3.1, we can choose a small positive number ¢; such that C,K(t;) < 1.
Hence from (3.2), it follows that D(#;) = 0, which yields

ut)y=v(t) for0st =<ty

Next we show that u(t) = v(t) for t; <t < T. Since t ~24(-), t*~¥2y(-)e BC
([0, T); L™?), there is a constant K, such that

(33) sup  fu(s)llys + sup  [v(s)llys £ Ky

HEs<T t£s<T
For our purpose, it suffices to show the following proposition: -
Proposition 3.3. Let © be any point in [ty, T') and let & be given by

< 1 _ 5 )2/(1—5)
T \4My -1 -6, 7Ky '

Ifu=voni0,1], thenu = von[0,7+ &)

(3.4)

e
i

[

Proof of Proposition 3.3. Let D,(f) = sup, < < |u(s) — v(s)]],. By assumption, we
have

@(®) — v(t), §) = [ (uls) — v(s)) Ve "9 ¢, u(s)) ds

t

+ [ (v(s) Ve "I ¢, u(s) — v(s))ds

T
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for all $ e C§, and all t < ¢ < T. Then it follows from (2.7) and (3.3} that

() — v(e), ) < [ Nuls) = v(s) a1 Ve™ ™ @ -1 -y ([ 4(8) s + [10(5) ls) ds

t
< Mn’,n/(n—l—5),TK*D1(I)§(t - s)~1/2—-5/2ds, “¢ ”n

2My pin 1 - 8),T -
é-———’i/(—_-a—-)—K*Dl(t)(t—t)(l D2\ bl
¢GC80,aaT §t<T

Hence by duality, we have

My o —1-
()~ o0 < LT K (o4 ) D2 forall te[g7 4 £,

which together with (3.4) implies that D (1 + &) < 4D (t + &). Thus D, (t + &) = 0
and u(t) = v(¢) on [0,7 + £]. This proves Proposition 3.3 and the proof of Lemma
3.2 is complete. [

Our existence theorem for mild solutions is
Theorem 3.4 (Global mild solution). (1) Let a € L and let w be as in the Assumption.
There is a positive number A(n) such that if
(3.5 lalls < A(), (wlls + [VWlly2 < An),

then there exists a unigue mild solution u of (N-S') in the class S,,(0, o) with the
property

(3.6)
u(t)e D(L]) fort >0, t*Liu(-)e BC([0, c0); L) with lim t*| L*u(t)|, = 0,
tl+0

where 0 < a < %.
(2) Moreover, for every n <r < oo, there is a positive number n(n, r) such that if

(3.7 Iwlls + IVWl2 S 0(n, r),

then the uniform estimate

(3.8) lu@lly < Ct=07"02 n<l<r,

holds for all t > 0, where C = C(n, 1, 1).

Remark. For the decay of solution in arbitrary L"-spaces (r > n), the smallness on

the initial disturbance a does not depend on r. However, we need to make the
stationary flow w relative to r.
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Proof of Theorem 3.4. (1) Let us construct the mild solution according to the
following scheme:

uo(t) = e "a,
t
i1 (t) = uo(t) — [ e 9P (u;-Vuy)(s)ds, j=0,1,....
0

Under the condition

(3.9) 1wl + VW [l < min {K(n, 2n), (2_,12{—1 %)}
we have
(3.10) sup ' u(O))0m 2K J=01,...,
O<t<w
where x and x’ are the same constants as in (2.23)+2.25). Indeed, by (2.24),
(3.11) o) 20 = lle ™ al2n £ My, 20t ™" alla, >0,

and hence we may take
(3.12) Ko =Mzuulals

Suppose that (3.10) is true provided that condition (3.9) is fulfilled. Then by
integration by parts and (2.26),

( — 3 e~ @OL P (u;-Vu;)(s)ds, qb)\

0

= i (uj(s) Ve I ¢ uy(s))ds

s f ||“;(S ”2n Ve~ =)L ¢Hn/(n—1)d5
0

13
= M’Zn/(Zn—n,n/(n—l)K%j (t— 5)_3/45_1/2 ds | @l 2mzn-1)
0

= M'Zn/(zn—1),n/(n—1)B(%,%)K%t_1/4‘ I @ ll2n12n-1)

for all ¢ € C$,, which by duality implies

t
e~ COLPp(y.-Vu;)s)ds _
£ (1 Vtj)(s) an < Mbyion— ynjn — y B 3)KF 714

for all ¢t > 0. Hence (3.10) is true with j replaced by j + 1, with
(3.13) Kjr1 =Ko+ C{VK?,
where C{V = M u2n- 1), nn— l)B(472) If

1

(3.14) Ko < g
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then the sequence {K;} %, is bounded with

- J1-4CPK
1= 1-4CPKy _, _

2CH - 20
Now we see by (3.12) and (3.14) that if | a||, £ 1/8M,, ,C and if (3.9) holds, then

(3.15) holds. Defining v; = u; — u;_;(u_; = 0), we obtain from a calculation sim-
ilar to that above that

(3.16) 10;(0) |20 < KQCPORY Y4 j=0,1,...,1>0.

Since u; = - ov;, (3.15) and (3.16) yield a limit u e C((0, 00); L2*) with '*u(-)
€ BC([0, o0 ); L2") such that

(3.15) K,

J

lIA

i=01....

(3.17) sup tM* | u;(t) — u(®) |, >0 asj— 0.

0<t<w

Moreover, under the condition (3.9), we have by (2.18) and (2.24) that

3.18
319 sup tY* e all,,
0<t<T

< sup t"*fle™™a—a) 2+ sup t'*]le d],,
o0<t<T 0<t<T
é Mn,Zn H a-— d“n + MZn “dHZnT1/4
forall e L:nL2" and all 0 < T < oo. Since (3.10)~3.15) hold with 0 < < o0

replaced by 0 < t < T for arbitrary T > 0 and since L%~ L2" is dense in L”, (3.15)
with the aid of (3.18) yields

(3.19) lim £ Jfu(t) {20 = O.
t1+0
We next show u € BC{[0, o0); L%) provided
(3.20) 1l + 1V gz < minse(), ' =, ) .
n—1n—1

Indeed, from (2.18), (2.26) and (3.15), we obtain
luo(®) s = My |l

l( — je“"s)LP(uJ-- Vu;)(s)ds, ¢)|
[4]

] (1405)- ™09 4, ) ds

t
< [l 3. 1Ve™ "9 ¢ llyu—1yds
0

t
wn = Dofin — K2 [ (€ = )T 272 s [ Dl pyia—1)
0

M
= M;/(n—l),n/(n—l)B(%a%)kz' (@ lnw-1y, P€CH 4 t>0,
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which yields

Sup Huj+1(t)”n é Mn ”a”n + M;/(n-—l),n/(n—l)B(%a%)kz fOI' all] .

0<t<ow

This uniform estimate with respect to j ensures that the limit u satisfies also
ue BC([0, o0); L2).

To see that such u is a mild solution in the class S,,(0, o), we need to prove
that

(3.21) ( - ie“‘_s)LP(uj-Vuj)(S)ds, d)) - i(u(s)-Ve_“_s)L/ ¢, u(s)) ds
0 0

for each ¢ € C§, as j » co. Indeed, by integration by parts, by (3.15) and by (3.17),
we have

l( je’(’ L P(u; Vu;)(s)ds d)) j(u(s) Ve 9L ¢ y(s))ds

= t {(uj(s)- Ve 9L ¢ ui(s)) — (u(s)- Ve " ¢, u(s))} ds

< [ lug() lan + () i2) 1408) = u(5) 20 | Ve ™" b Ly ds
0

1/4

ézM;:/(n—l),n/(n—l)k sup s Huj(s)—u(s) (P

O0<s<oo

13
X J(t—5)"2s7 2 ds | @ |- 1)
0

= 2M;t/(n~ 1ha/n— 1)3(%, %)k sup st [ u;(s) — u(s) | 2n | @ Hn/(n— 1)

0<s<owo
-0 asj— o0 (peCq,),
which implies (3.21).

Now it remains to show that t*L*u(-) € BC([0, co); L?) with (3.6) for 0 < o < 4.
To this end, assume moreover that
y( L ) for n 25,
n-—1

(3.22) Iwlls + 1VW a2 = "
,u’(n_ 1) for n=3,4.
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Then By Lemma 2.8 and by (3.15) we have

I< - L“} e O P(u;-Vu,)(s) ds, qb)’

I(u () V(L) e™ 79 b, uy(s)) ds

= f l Uj(s) [ 3n |IV(L,)°Le_(hS)L’(ls Hn/(n~1)ds
0

t
= Mn/(n~1),ak2j(t - s)—a~1/zs—1/2ds, i Hn/(n—1)
0

=Mn/(n—1),ak2B(%'_o‘s%)t_a'HqS”n/(n—l): t>0, 0<0(<%‘,
for all ¢ € C§, and all j, from which it follows that

sup t*| L*ujs 1 (8) |ln

0<t<a
:<: Sup ta ”Lae_tLa“n + Mn/(n—l),asz(% - OC,%), 0 <u <%) ]: 03 1; oo
0<t<oo

This uniform estimate for j asserts that u(t)e D(L:) for t >0 with t*Lju(-)
€ BC([0, o0); L"), where 0 < o < 4. Since D(L?) is dense in L”, we can prove (3.6)
in the same way as (3.18). Now it is easy to see that the constant /l(n) in (3.5) can be
determined by (3.9), (3.14), (3.20) and (3.22).

(2) We show u(t)e Li(t > 0) for all n <r < co with

sup ¢4 uy(e) —u()], >0 asj— oo,

0<t<m

provided that condition (3.7) is fulfilled. Taking r =n/f, we have 0 < § < 1.
Assume that w is subject to the estimate:

(3.23) Wl + VW] < rnm{l(n) ;c<n ”> ;c'(—»” L )}
B n—1n-—1
Then it follows from (2.24)-(2.26) and (3.15) that

4o (®) s < M, 5t~4 92| al,,

’( — i e L P(u;- Vuy)(s) ds, (j))

= f(uj(s)-ve““‘””a&, uj(s))ds

< [l () 13,1 Ve™ I ¢ -1y ds
0

t
n/n—lkzj‘(t — )2 lsT 2 s I @ lfwiin— s

M,,
M B.n/n— lB(gaé)kzt a=pz. ”¢”n/(n B)» d)eCO o

lIA

A
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from which we obtain

(324)  sup TR flupu () )y < Mn,% alls + Mug-g, w-1BGE, 1)k =k
O<t<owo

for all j. It is easy to see that this uniform estimate for j ensures that

tA=82y(-)e BC([0, o0); L"*). Now the positive number #(n, r) in (3.7) can be

determined by (3.23), and we get the desired estimate (3.8) by interpolation. This

proves Theorem 3.4. []

If we assume a more rapid spatial decay for the initial disturbance, then we
obtain the decay of Vu(t) as t — co:

Theorem 3.5. (1) Let n = 3 and let 1 < p £ n. Suppose that ae LE~L". There is
a positive number A'(n, p) with A’ (n, p) < A(n) such that if

(3.25) lall, = A(@mp) (Wl + [VWla2 = 2'(n, p)s

then the mild solution u given by Theorem 3.4 has the additional property that
(3.26) ue BC([0, oo);, LENLY).

(2) In particular, if | <p <% forn=5and if 1 <p <2 for n =23, 4, then also
(3.27) t12Vu(-) e BC([0, co); LP).

Proof. Let us first prove (3.27). Defining y =%, we have by éssumption that
2<y<nforn=5and % £y <nfor n=3, 4 We return to the approximate
solutions {u;(t)} 2, in the proof of Theorem 3.4 and show that

(328) sup £ | Vit ly < Lyy j=0,1,...
0<t<w

under the condition

. (nn , n n
(3.29) fwl, + HVW”n/Z = mln{x (;a;) K <}) n 1/2,;>},

where k’ is the same constant as in (2.25). Indeed, since a e L¥YnL”, we have by
(2.26) that

H V”O(t) “n/y = ” Ve—tLa ”n/y S M;l/v,n/yt_llz ”a”n/y

for all £ > 0 and we may define Ly, = My, ., la|;. Suppose that (3.28) is true for
j. Then it follows from (2.26) and (3.15) that

t
Ve 9L P(u;-Vuy)(s)ds
4]

njy

. .
S M. 1/2),n/yjl t— 5)_3/4 ll14;(5) || 20 | Via;(s) Il 7y ds
0

t
’ ~3/4 _—3/4
S My 2y, npp KL § (£ — 5) 73734 ds
[4]

= M+ 172,y B(&2)kL;t "%, £ >0,
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Hence (3.28) holds with j replaced by j + 1, and with
(3.30) Lisq = Lo+ CPkL;

where C'? = M}, +1/2).n, B(%. ). The linear recurrence identity (3.30) shows that
if

1
(3.31) k< E(y—[),
then the sequence {L;}2 is bounded with

Lo
1= CPk

lll

(3.32) LS i—gmp=lh j=01L...

By the standard argument, such a bound yields /> Vu(+) € BC([0, c0); L™"). Since
k is determined by (3.15), we can choose A(n, p) such that the condition
lall, < Z(n, p) yields (3.31). Then the positive number A'(s, p) in (3.25) can be
determined by (3.29) and this I(n, p), so we obtain (3.27).

We next prove (3.26). Let us first assume that p belongs to the same range as in
the case (2) above. Then under the condition

(3.33) (Wl + | Vls < min {ﬂ@ K(y_;l_/zg»

we have by (2.18), (2.24), (3.15) and (3.32) that

et 1 @) gy < N0 (E) gy + [ €™ 7% Pl Vity)(s) |y, ds

t
S Mol ally + Muji s 12y, m5 § & — 8) 74 1508) | 20 | Vit () 1y, ds
0

SMulialny, + Mg+ 12,0 B(3. %)k,

forallj=0,1,..., which yields u € BC([0, c0); L2).

It remains to prove (3.26)incase 2 < p < nforn = 3,4andincase < p < nfor
n=5 Insuchcaseswehave l £y <4forn=34and1 <y <2forn=35. Then
there is § such that 0 < f <1 and such that 1 <y+ <4 for n=23, 4 and
y+ f <n—1for n=5. Under the condition

(3.34) W+ VW2 < min{u(f), x(—’L——ﬁ—>}
Y n—yn—y—p

we have

(3.35) sup |u;(t)n, S Ky j=0,1,....

O0<t<am
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Indeed, for j = 0, we may define K, = M, ||all,;,. Suppose that (3.35) is true for j.
Then it follows from (2.26) and (3.24) that

’( - i e~ 79 P(u;- Vu;)(s) ds, 4))‘

§ (5(s)- Ve~ 9% b, uy(s)) ds

= (f) 11245() Ly 1 245(8) gy [ Ve ™7 G Ny y =y ds

t
S Moy pnin—y-m kg K3 f (¢ — 8)7P271257 0D ds || §
0
M

wn—).me-v-p B = B), 51 + BN ks K- [ llnym1»
$eCf,, t>0.

By duality, we see that (3.35) is true with j replaced by j + 1, with

j+1 = Ko + CP ks K,

where C® = M=), njn—y—p) BG(L — B), 3(1 + B)). This linear recurrence ident-
ity shows that if k; < 1/C$¥), then the sequence {K)}%, is bounded, so that
ue BC([0, oo); L™7). Since kg is controlled by | a|, (see (3.24)), we can also define
A'(n, p) in (3.25). This proves Theorem 3.5. [

§4. Proof of the theorems
4.1. Proof of Theorem 1

To identify the mild solution in Theorem 3.4 with a strong solution, we need the
following local existence theorem:

Theorem 4.1 (Local existence). Let a € L and let w be as in the Assumption with

(4.1) Iwiln + VW2 = p(m) ,

where p is the same number as in Lemma 2.3. Then there exist T, > 0 and a unique
strong solution u of (N-S') on (0, T.,) such that

42) C lim o Lu(®)], =0 for0<a< L.
t+0
If ae D(LE) for 0 < B < %, then T, may be chosen as
C
(4.3)

T, = ,
* (lalla + I LEal,)'"?
where C = C(n, ).
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Remark. In the same way as (2.5), under the condition (4.1), we have the continuous
imbedding D((L, + 1)*) =« H**" with |u||gz=- < C||(L, + 1)*ul, for all
ue D(L, + 1)*). Since H**" = L" for 1/r = 1/n — 2a/n (0 < « < 1/2), we obtain
from (4.2) that

lim (@2 y()|, =0 forn<r< .
tl+0
Hence Lemma 3.2 assures uniqueness of the strong solution u with property (4.2).
Theorem 4.1 deals only with the local solution, so its proof is standard and may
be omitted (see, e.g., Mivakawa [27] and Kozono [20]).

Proof of Theorem 1. Let u be the mild solution of (N-S') in the class S, (0, co) given
by Theorem 3.4. Then it follows from Theorem 4.1 and Lemma 3.2 that u coincides
with the strong solution on (0,T,). Since SUPp<i<s |ult)l, < 0,
SUPT, << oo | Lyu(t)], < oo for 0 <a <3, we conclude from (4.3) by a stan-
dard argument that u(f) is also a strong solution on [T, co). This proves
Theorem 1. [

4.2. Proof of Theorem 2

By virtue of Theorem 3.5, we need only show the asymptotic behavior (1.5) and
(1.6).

(i) Lety=2%and é =%. Then we have 1 <y <nand 0 < J < 1. Without loss
of generality, we may assume 0 < § < 4. Let us take ¢ and " such that 0 <¢ < §,
1<y <y and 1+46—e<y <1+46. Then 1<y <n—1 and (1 —¢) <
1y — 6) < 1. By (3.26) we have

4.4 sup [ u(t)|layy £ Ky < 00,

0<t<cwo

where k.. is a constant depending ounly on y". Choose f such that

O0<B<1, 3y —6)+3p<4% y+B<n—1

[l + 1V 2 < min{ﬁ/(n,%), “'<n oy e /)}

then it follows from (3.24) and (4.4) that

If

i (u(s)- Ve 9 ¢, u(s))ds

< FHuls) g 10(5) g 1 Ve ™" E @ = — ) ds
0

t
—_ ’ _5 — _— —_
< Mooy, win—v —py kg [ (¢ — 5) 0 TP OR2g=ADI2 s | b ]n—s)
4]

= M, nim -y -p Ky kg BGL+ 06—y — ), 3(1 + B))t =@ =92 O lnjin—s)
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for all ¢ € C§, and all ¢ > 0. Thus by duality we obtain
(4.5) () lns S Mgy, msll @yt ™72 4 Ct=0702 < Cpm (792

for all t = 1, where C = C(n, y, §).
To obtain sharper decay rates for [ju(t)|,s as ¢t - oo, we make use of the
representation

(4.6) (u(®), §) =(e”“"Dtu(T), ¢)+i(u(S)-Ve“"’”L'dJ,u(S))d& ¢eCo.,
T

forall t = T =2 0. By (2.26) and (4.5), we have
(47) j‘ (M(S)' Ve—(t~s)L'¢, M(S)) dS
T
t
S JHu) s 1Ve™ 9 @ |- 20y ds
T

t
= CM;:/(n—a),u/(n—za) j(t - 5)_5/2-1/25_2(1/2%/2)‘15' I ¢||n/(n—a)
T

S CTO- 9272422 b sy, GECT,
forall t > T = 1. Since
He—(t—T)Lu(T)Hn/é é Mn/y,n/ésup0<s<co HU(S) Hn/y(t - T)~(y—&)/2
for all t > T, we have by (4.6), (4.7) with T = t/2 that
Ju®)s < Cle™07 4 10 P2-2012702)
for all £ = 2. Substituting this decay result into (4.7) again, we have

Hu(t)”,,/,; é C(t-—(y—é)/l + t(l—5)/2+(1—5)—4(1/2—8/2))

for all t = 4. Now iterating this procedure m times, we obtain
() |s < C@ o2 4 (A= oL (Y27 - 27(1/2 — ¢/2))

= (L~ P2 4 -2 G-a-(- 92y

for all m=1,2,..., and all t 2 2", where C = C(n,y, 8, m). Since ¢ < J, this
estimate assures (1.5).

(ii) Finally, it remains to prove (1.6). In the same way as above, let us define
y and 6 so that y = n/p and & = n/r, respectively. Then the assumption that
l<p<w2p<r<nfornz3isequivalentto2 <y <n, {1 < < y(rn=3). The
alternative assumption that 1 <p=<r<2 for n=23, 4 is equivalent to
n/2 £6 £y <n(n=3,4). We treat the former case. The latter can be handled in
the same way.

Let us first assume that y —1 <8 =<7y. We choose 0 < ff <1 such that
y—1+B<d=y. I wl, + VWl £ ®'(n/(y + B),n/d), then it follows from
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(2.26), (3.24) and (3.32) that

|

t
Ve ¢ P(u-Vu)(s)ds
0

n/o
t

< M;/(y+ﬁ),n/5§ (t— S)_(y+ﬁ_5)/2_1/2 (| u(s) ”n/B I Vu(s) “n/y ds
0

< MiygopmsBGO +1 =y — B), 1) kgl e~ 0702712

for all t > 0, which yields (1.6).
We next proceed to the case that y —3 < § <y —3. Taking y with
y —1 <y’ <y —3%, we have by last result that

(4.8) V() [y, < CE=071V27120 450,

Since y — 1 < 4, there is a fe(0,1) such that y' — 1 + f < 4. Hence if |w],
+ VW2 < ' (n/(y’ + B),n/6), then we have by (3.24) and (4.8) that

t
Ve I P(u-Vu)(s)ds

T

n/é

t
=< M;t/('y’+ﬂ), n/d .[ (t— S)—(y'+p~a)/z~ 12 [ u(s) Hn//i | Vu(s) ”n/y' ds
T

t
<Cf@- §) (B O2= 12 g8y =21 g
T
< CT-0-92-1/2
forall t > T = 1. Since

HveA(t_T)Lu(T)”n/é = M;l/v,n/é sup HM(S) ”,,/y(t - T)"(y—é)/Z—l/Z

0<s<ow

for all t > T, we obtain from the last estimate with T = t/2 that
[Vu@) s < Ce072712 ¢t 22,

Iterating this procedure to the case d <y — 1, within a finite number of steps
we can cover all exponents 6 with 1 <d <y and obtain the estimate
[ Vu(t)|lys < Ct~~92712 for sufficiently large . This proves Theorem 2. []

4.3. Proof of the Corollary
Let the conditions (1.1) and (1.2) hold. Set U, = {ae L};|lall, < A(n)}. By
Theorem 3.4, we can define a map F by
F:ae U, u=FaeBC([0, o0); L}),

where u is the unique mild solution of (N-S') in the class S,,(0, ) with u(0) = a.
Then we have the following key lemma:
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Lemma 4.2. The mapping F is continuous from U, into BC([0, co); L%).

2
Proof. Let [[wil, + [Vw|y2 = min{;c(n, n), K’ (n’,ﬂ—z—g)}. Since the number
k in (3.15) is determined by the size of ||a|,, we may take A(n) so small that
49 sup tY4I(Fa)(t) |1, <
( ) 0<t£)oo N( )()“2 _4M;1,2n/2n—3B(%: %)

holds for all ae U,;. Now for a,be U,, set u = Fa, v=Fb and we have by
Definition 3.1 and Theorem 2.7 that

|(u(t) — (), §)I
<l(e "a—e b, )|

1

+ | {u(s) Ve 9§, u(s)) — (v(s) Ve =9 ¢, v(s)) } ds

0

<l(e™* a—b), ¢)l

+ )E [(u(s) — v(s))- Ve~ 7§, u(s))| ds
0

# [106) Ve~ guuts) () d
< e Ha— Bl Il

L 106) = o) V™ 6 a9 2+ 16
< Myola—blalgl

+M;1’,2n/(2n—3)< sup 51/4|[“(S)”2n+ sup SIM””@)HM)

0<s<ow 0<s<ow

x sup |lu(s) — ov(s) |,

0<s<w

t
X [ (£ = 5) AN R Mk g g
0

=Munlla=bl.l¢l

+M;',2n/(2n-3)3(%,%)( sup s'*|lu(s)on + sup S”“llv(S)llzn)

0<s<ow 0<s<a

x sup {u(s) = v(s) [ln @l

O<s<ao
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for all ¢ € CZ, and all 0 < ¢ < oo. Hence it follows from (4.9) and from a duality
argument that

sup [u(s) — v(s) e < Mynlla=blla+% sup |luls) = v(s)]

O<s<a 0<s<oo

This implies that supo <s< o |u(s) — v(s)|l. = 2M,, ,||a — b, and we get the desired
continuity. []

Proof of Corollary. Let u be the strong solution given by Theorem 1. Since Cg, is
dense in L” and since the mapping F is continuous, for any ¢ >0, there is
de U,;nCy, such that

sup [u(®) — (FO)(O). = sup [(Fa)t) ~(Fa))l, < e

0<t<w O<t<w

On the other hand, by (1.5) in Theorem 2, we see
l(Fa)®)l,—»0 ast— oo

Then it follows that

limsup lu(®)ll, < limsup ||u(t) — (FA)(®)], + limsup | (Fa)D) ]|, = &

120 t— 00 > o0

Since ¢ > 0 is arbitrary, we conclude lim,, ., | u(¢) ||, = 0 and the desired result {1.7)
is a consequence of the uniform estimate (1) in Theorem 1 and the interpolation
between L” and L. This proves the Corollary. [
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