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Decay Theorems for the Broadwell Equations 

J. M. GR~ENBERG & L. L. AIST 

Communicated by R. MUNCASTER 

1. Introduction 

In this note we establish boundedness and decay theorems for finitely support- 
ed solutions to the Broadwetl equations with four velocity components. There is 
a vast literature on these and similar equations (for details see the survey of 
PLATKOWSKI & ILL~ER [1] and the references contained therein). The particular 
variant of them we examine seems new; though nonlinear, they are homogeneous 
of degree one. 

The basic quantities of interest are particle densities F, l, fi, and a~ Specifically 

F(~, ~, t)  represents the number of particles per unit area at (~, ~) at time ttravel- 

ling with velocity we 1. The densities I. fi, and dhave a similar interpretation except 
that the particles travel with velocities --we1, we2, and --we2 respectively. The 
evolution equations for the densities are 

(1.1) 
re + w~; = - % 

where the collision term cg is given by 

cg = K(fi d -- 7Y). (t.2) 

Most of the authors dealing with (1.2), or one of its generalizations, treat K as 
a constant. In what follows we let 

~(~, ~, ;) = (7 + 7+ ~ + d)(~, ~, b (1.3) 

be the number of particles per unit area at (}, }) at time 7 and model K by 

1 
K = e~(~, ~,----~ (1.4) 
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where e is a fixed relaxation time. With this choice of K, solutions of the full 
system and solutions of a reduced system analogous to the Euler equations have 
the same asymptotic structure as time proceeds to infinity. This connection is 
lost if one models K as a constant. For the details of this connection see Section 3. 

Under the scaling 

x = - -  y = - -  t = - -  (r, /, . ,  d) = (wE) 2 ( ~ : , ~ , d ) ,  (1.5) 
WE'  WE'  E 

the system (1.1), (1.2), (1.4) and (1.5) transforms to 

r t @ r x = (U d -  rl)lq, 

1, - / ~  = ( .  d -  rOlo~ , 
(1.6) 

u t q- uy = ( r l -  u d)/q,  

a t - dy = ( r l -  bl d u e  

where 
= r + l@ u + d (1.7) 

where again ~ is given by (1.7). 
and (1.8). 

The characteristic identities 

thus satisfy 

r x = (u d --  rl)l~, 

tx = (,, d -  H)le ,  

u t = ( r l -  u d)/~, 

4 = ( d  - u d) /e  

(y' ) r ( x , t ) = e x p  --  - 7 ( x - - t + 7 ' 7 )  drl r ( x - -  t ,O) 

-k . / e x p  --  - ~ - ( x - -  t + ~1, ,7)d~ ~ - ( x -  t + s, s ) d s ,  
0 

t 

- k f e x p  --  -~- (x  + t - -  r 1,7) dr] T ( x - k  t - -  s ' s )  ds' 
0 

u(x, t) = exp --  --~ (x, ~q) d~ u(x, 0) + J exp --  --~ (x, ~1) &7 --~ (x, s) ds, 
0 

(oi" ) / ( )"' d(x, t) = exp --  --~ (x, ~7) d~] U(x, 0) q- exp --  (x, ~) d~7 ~ -  (x, s) ds 
0 

at (x, y) at time t. Our results deal with solutions 

(1.8) 

Our interest is in nonnegative solutions of (1.7) 

is the number density of particles 
which are independent of y and 

rt + 

4 -  
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together with the fact that the integral operators defined by the right-hand side 
of (1.9) take nonnegative functions to nonnegative functions guarantee that non- 
negative initial data produce nonnegative solutions. This can be most easily seen 
by solving (1.9) iteratively, using the initial data as the starting guess. 

Our results deal with solutions to (1.7) and (1.8) generated by bounded, com- 
pactly supported initial data. If  the support of the data is the interval (--a,  a), 
then the procedure by which the solution is constructed guarantees that 

r ~ u ~ d ~ O  for x < - - a ,  

l t - l  x - - 0  for - - ( a + t ) < x < - - a  and t > 0 ,  (1.10) 

and 

l ~ u ~ d =~ O f o r  x > a, rt -~ rx = O fo r  a < x < a -4- t a n d  t > O , 

(1.11) 

and thus the interaction region is confined to the strip - -a  < x < a and t > 0. 
In general, x = --(a -t- t) is a jump discontinuity of the density l, x = a § t 
is a jump discontinuity of the density r, and the lines x = z~a are contact dis- 
continuities across which u and d jump, but r and l are continuous ~. 

In Section 2 we outline the general theory of (1.7) and (1.8) for data of the 
type described above and discuss the corresponding long-time behavior. Our 
principal results are that in the interval - -a  < x < a: 

lim (r(x,  t) ,  l(x,  t) ,  (u d)  (x, t ) )  = (0, O, 0) ,  
t ,,- OO 

lim u(x ,  t) = max (u(x ,  O) - -  d (x ,  0), 0 ) ,  

lira d(x ,  t) : max (0, d(x ,  O) - -  u(x ,  0 ) ) .  

(1.12) 

(1.13) 

(1.14) 

In Section 3 we treat the more customary form of the Broadwell equations 

r t q-  r x = (c z - -  r l ) /~ ,  

It - -  lx = ( c  2 - -  rl) /q ,  ( 1 . 1 5 )  

c t = ( r l -  c2)]9 

where now 

= r + 2c + l. (1.16) 

The equations (1.7) and (1.8) reduce to this system on the manifold u ~ d aef c. 
We produce a one-parameter family of exact solutions to the system (1.15) and 
(1.16) with the structure described in (1.10) and (1.11). These solutions decay as 
e -~'' uniformly on (--a,  a); the decay rate 2 is completely determined by the 
length of the interval and is independent of the initial amplitude of the solution. 
We are also able to show that if a is less than two, the solutions to (1.15) and (1.16) 

1 For details see Section 2. 
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decay to zero as e -zt uniformly on ( - -a ,  a) for some 0 < 2 < �89 which depends 
only on a > 0. For this result to be valid, the initial data must satisfy certain 
shape constraints but the amplitude of the data is arbitrary. 

2. A-Priori Estimates and Decay Theorems for (1.7) and (1.8) 

In this section we sketch the general theory of the system (1.7) and (1.8) sup- 
plemented with the initial conditions 

(r, l, u, d) (x, 0) = (ro, Io, Uo, do) (x). (2.1) 

The data ro, lo, uo and do are nonnegative, bounded, and finitely supported in 
( - -a ,  a) and 9 = r -5 l + u + d. The procedure we use to solve this problem is 
outlined below. We first solve the initial boundary value problem (1.8) and (2.1) 
on the strip ( - - a ,  a) • [0, c~) subject to the boundary conditions 

r ( - - a  +, t)  ~- l(a- ,  t)  = O. (2.2) 

Granting for the moment  that (1.7), (1.8), (2.1), and (2.2) have a solution, we ex- 
tend it to the rest of  t > 0  as follows: For x < - - a ,  we set 

r ~ u ~ d (2.3) 

and extend 1 as the solution of  

(t - -  lx = 0 for x < - - a  and t > 0, (2.4) 

l(x,  0) = 0, for x < - -a ,  l ( - - a - ,  t) = l ( - - a  +, t)  for t > 0 (2.5) 

where l ( - - a  +, t)  is the solution to (1.7), (1.8), (2.1) and (2.2) previously constructed. 
For x > a ,  we set 

l ~ u =~ d (2.6) 

and extend r as the solution of 

r t @ r x = 0 for x > a and t > 0, (2.7) 

r(x,  0) = 0 for x > a, r(a +, t)  = r(a-,  t )  for t > 0 (2.8) 

where now r(a-,  t)  is the solution to (1.7), (1.8), (2.1) and (2.2). 
The resulting functions r, /, u and d satisfy (1.7) and (1.8) in the upper half 

space t > 0 and assume the initial data defined in (2.1). In general, the lines 
x = ~ a  are contact discontinuities across which u and d experience jump dis- 
continuities. The procedure outlined above guarantees that r and I are continuous 
across these lines. Lines of discontinuity of r are rays x = Xo q- t and those of l 
are the rays X = X o - - t .  

Our primary goal is to obtain global estimates for solutions of  (1.7), (1.8), 
(2.1) and (2.2). These estimates are not only valid for the above problem but also 
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for the regularized problem 

r t @ r x = c} -ff 

l t - -  lx=c~ q_ 

(u d --  rl) 

r q - l + u + d '  

(u d - -  rl) 
r + l + u + d '  (1.8)~ 

(rI - -  u d) 
u t = d t - - ~  ff_ r + l q_ u q_ d 

together with (2.1) and (2.2). These estimates (which are independent of d), 
together with local existence results for (1.8)~, (2.1) and (2.2), and standard com- 
pactness results are sufficient to guarantee a global existence theorem for (1.7), 
(1.8), (2.1) and (2.2). 

The conservation identities 

(r q- u)t -~ r x = O, 

(r + d)t + rx ~- O, (2.9) 

(~ + u), - tx = o ,  

(l-}- d ) t - -  l x =  0 

together with the boundary conditions 

r(--a  +, t) = r( - -a- ,  t) = O, l(a-, t) = l(aG t) = 0 (2.10) 

imply that 

t x 

( r @ u ) ( e , t ) d e +  f r ( x , s ) d s =  f (ro+Uo)(e)de, - - a < x ,  (2.11) 
- - a  0 - - a  

x t x 

f (r + d) (~, t) de + f r(x, s) ds = f (to + do) (e) de, - -a  < x ,  (2.12) 
- - a  0 - - a  

t 

f (t + u) (e, t) de + f l(x, s) ds = 
x 0 

J f (z + d) (e, t) de + l(x, s) ds = 
x 0 

t 

f u(x - t + s, s) ds  < 
m i n ( 0 , t  --  (a  + x))  

? (lo -ff Uo) (e) de, x <  a, (2.13) 
x 

f" (Io + do) (e) de, x < a, (2.14) 
x 

x 

f (r + u) (#, t) de, - -a  < x, (2.15) 
- - a  

t 

f 
m i n ( O , t - - ( a +  x ) )  

x 

d ( x - - t  + s ,s)  ds<= f (r + d ) ( e , t ) d e ,  
- - a  

i u(x + t - s, s) ds < f (l + u) (e, t) de, 
m i n ( O , t - -  ( a - -  x))  x 

t 

f d(x + t -- s, s) ds G ~ (Z + d) (e, t) de, 
m i n ( O , t - - ( a - - x ) )  x 

- -a  < x, (2.16) 

x < a, (2.17) 

x < a. (2.18) 
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The identities (2.11)-(2.14) come from integrating (2.9) over the rectangles 
(--a, x)• t) or (x, a)• t). Inequalities (2.15) and (2.16) follow from inte- 
grating (2.9)1,2 over {(~, s) I x -- t < ~ < x -- t + s, 0 < s < t} and making 
use of (2.3), (2.11) and (2.12), while (2.17) and (2.18) follow from integrating 
(2.9)a,~ over {(#, s) I x + t -- s < ~: < x § t, 0 < s < t} and making use of (2.6), 
(2.13) and (2.14). Thus, for data of the type under consideration we see that r(x, ") 
and l(x, .) are in L1(0, oc) and we have the estimates 

where 

c o  o o  

sup f r(x, s) ds ~ mo, sup f l(x, s) ds <= m o (2.19) 
- - a < x < a  0 - - a < x < a  0 

f mo ~ (ro + Io q- Uo q- do) @) d~. (2.20) 
- - a  

u d - -  rl 
The evolution equations (1.18)~, together with the inequalities d q- r q- l + u q- d 

u q - d  rl r q - I  
< and < ~  imply that r, I, u and d satisfy 
-~ 2 ~ + r-+- l-+- u + d =  2 ' 

u + d  
rt q- r x <= ~ ,  (2.2l) 

u + d  
It + lx <= ~ ,  (2.22) 

u d  r + l  
u t + d + r + l + u  + d =  < ~ 2  ' (2.23) 

u d  r + l  
dt + d + r + l + u + d<= ~ (2.24) 

The inequalities (2.21) and (2.22) imply that 

r(x, t) (2.25) 
t 

[ r o ( x - - t ) + � 8 9  for 0 < t < ( a q - x )  and x > - - a ,  

[ �89 (u + d) (x - t + s, s) ds for (a + x) < t and x > --a, 

l(x, t) (2.26) 

t 

[ lo(x + t) + �89 f (u + d) (x + t -- s, s) ds for O <  t <  ( a - - x )  and x < a, 

l�89 f (u + d) (x + t -- s, s) ds for (a -- x) < t and x < a. 
t - ( a - x )  
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Moreover, (2.25) and (2.26), together with (2.11)-(2.18), imply that 

sup r(x, t) <= ml, sup l(x, t) <= mt (2.27) 
- - a < x < a  - - a < x < a  

where 

ml = m o  -k sup [max (ro(x), lo(x), Uo(X), do(x))] (2.28) 
- - a < x < a  

and mo is defined in (2.20). The inequalities (2.23) and (2.24) along with (2.19) 
also imply that 

t 

u(x,t)  4- /" ud  �9 ~ (x, s) as <~ rnl, (2.29) 
0 

t 

d(x, t) + j ~ (x, s) ds <~ m, ,  (2.30) 
0 

and these in turn yield the following Loo-estimates for u, d, ut and dr: 

uGrna ,  d G m a ,  ]ut]<~2ma, id, i<=2ma. (2.31) 

The fact that u d = (6 4- 9) u d/(6 4- ~) ~ (4m~ 4- 0) u d/(0 4- 9), together with 
(2.29), guarantees that for each x, (u d) (x, .) is in La(0, co) and this, combined with 
(2.31), implies that (u d)t (x, .) E L~(O, ~ )  and thus that 

lim (u d) (x, t) = 0. (2.32) 
t - +  tz~ 

L~ estimates for the partial derivatives r t and l t are obtained by differentiating 
the first two equations of the system (1.8)~ with respect to t and by exploiting the 
previously obtained L~ estimates for r, I, u and d and the boundary conditions 
q(--a  +, t) ----- 0 and lt(a-, t) = 0. These estimates, along with (2.19), then yield 
the limit relations 

lim (r(x, t), l(x, t)) = (0, 0) for --a < x < a. (2.33) 
t - +  oo 

Noting that 

and that 

(u -- d) (x, t) ~= (Uo -- do) (x) for --a  < x < a, (2.34) 

(u § d)  2 (x ,  t)  - -  (Uo - -  do) 2 (x)  
u d = 4 (2.35) 

converges to zero as t--> 0% we see that 

l imu(x ,  t )  = �89 []Uo - -  dot (x) + (Uo - do) (x)], 

l t  f n  ~ d(x ,  t)  - -  ~ []Uo - -  dol (x)  - (Uo - do)  (x) ]  

(2.36). 

(2.37) 

for - - a ~  x <  a. 
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3. The Reduced System (1.15) and (1.16) 

We start with the observation that  solving the system (1.15) and (1.16) is equi- 
valent to solving 

~, + (evL = O, 
(gv)t q- (qm)x =- O, 

( 1+v2 ) 
(gm), -k (gV)x = ~ 2 m 

where 

q = r + 2 c + / ,  ~ v = r - - l ,  

Moreover,  solutions o f  (3.l) satisfying 

~>=0, - - m < ~ v < ~ m  

(3.1) 

and ~m = r + 1. (3.2) 

and 0 ~< m ~< 1 (3.3) 

generate nonnegative solutions o f  (1.15) and (1.16). The densities r, l and e are 
related to ~, m and v by 

~(m q- v) ~(m --  v) ~(1 - -  m) 
r - -  2 , 1 - -  2 ' c - - ~  (3.4) 

The system (3.1) is hyperbolic and supports  solutions with jump discontinuities. 
d X  

I f  x = X(t)  is the locus o f  such a discontinuity and ~ --  dt ' then across this 

curve 

o~[e] - [~v], o~[~v] = [~m], o~[~m] = [~v] (3.5) 

where for  any function f, [f] (t) = lira f ( x ,  t) --  lira . f (x ,  t). These 
�9 x ~ X ( t ) , x < X ( t )  x ~ X ( t ) , x > X ( t )  

are the Rankine-Hugonio t  equations for  the system (3.1). The identity (3.5) 
implies that o~ = - -  1, 0 or + 1. When ~ = --  1, we have [ o m ]  = [e]  = - Joy];  

when o~ = 0, we have [~m]  - -  [o r ]  - 0 ;  and when ~ = 1, we have [ q m l  = 

[~v] = M -  
The same procedure which led to (2.3)-(2.8) implies that if the initial data 

satisfy (3.3) and vanish outside o f  ( - -a ,  a), then for  a < x < a + t they satisfy 

v : :  m := 1, and ~t q- 9x = 0, (3.6) 

whereas for  - - ( a  q- t) < x < - - a  they satisfy 

v ~ --1,  m ~ I, and ~t - -  ~x = 0. (3.7) 

Across the lines x : i a ,  the jump conditions (3.5) imply that  

~(--a-,  t) = - -~(- -a  +, t) v(--a  +, t), m( - -a  +, t) q- v(--a +, t) = 0, (3.8) 

~(a +, t) : 9(a-, t) v(a-, t), m(a-, t) -- v(a-, t) = 0, (3.9) 

and that  ~ 0  for x - ~ ( - - a - -  t , a + t ) .  
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Associated with the system (3.1) is the reduced system obta ined by solving 

and  replacing (3.1)a with 

~, + (evL = 0, 

(ov)t + (gm)x = o 
(3.10) 

1 + v  z 
m -  ~ (3.11) 

This system with the quasistatic approx imat ion  (3.11) bears the same relation to 
the full system as the Euler  equat ions of  hydrodynamics  with an equat ion 
of  state based on a local Maxwell ian do to the Bol tzmann equation.  Moreover ,  
this reduced system is the same if  the r ight -hand side of  (3.1)a is replaced by 
92( '1 -~" v2 ) 

2 m . The latter case is what  obtains if  we model  the factor  K in (1.2) 

as a constant .  The  identities (3.6)-(3.9) also obtain  for  the reduced system, but  in 
this latter case (3.8) and (3.9) imply  tha t  

m ( - - a  +, t) = - - v ( - - a  +, t) = 1, (3.12) 

re(a-,  t) = v(a-,  t) = 1. (3.13) 

We note  tha t  the reduced system has a part icularly simple set o f  exponential ly 
decaying solutions 

9(x, t) = ~o e-t/a, 

x 
v(x, t) = - - ,  (3.14) a 

1 + (x/a)  z 
re(x, t) - -  2 

for  - - a < x < a  and t > 0 .  
Our  goal is to show tha t  the full system supports  solutions which are separable  

on ( - - a ,  a) and are of  the fo rm:  

9 = e-~t s(x), v = v(x), and  m =re(x) ,  - - a  < x < a.  (3.15) 

Fo r  a < x < a + t  they satisfy 

v ~- m ~ 1 and Ct + 9, = 0, (3.16) 

whereas for  - - ( a  + t) < x < - - a  they satisfy 

v ~ - -1 ,  m ~ 1 and Qt - -  9, = 0. (3.17) 

Across  the lines x = 4-a ,  the j u m p  condit ions (3.5) imply that  

9( - -a- ,  t) = - - e  -zt  s ( - -a  +) v(--a+) ,  m ( - - a  +) + v( - -a  +) = 0, (3.18) 

9(a +, t) = e -~t s(a-) v(a-) and re(a-) - -  v(a-) = 0, (3.19) 
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and these, when combined with (3.16) and (3.17), imply that  

I s (a- )  v(a-) e -'~(t+a-x) for  a < x < a + t, 
O(x, t) (3.20) " 1  

[ - -s ( - -a  +) v(--a +) e -~(t+a+x) for  - - ( a  -k t) < x < - - a .  

For  x4{ ( - - ( a  -k t), a + t), the density ~ is identically zero. 

We note that  no such solutions exist if  the interact ion te rm ~2 m 
2 

is used in (3.1)a, and recall that  this is the te rm we obtain if we model  K i n  (1.2) 
as a constant.  This observat ion is an a-posteriori justification for  our  choice of  K 
in (1.3). 

F r o m  (3.1) we find that  in ( - - a ,  a) the funct ions s, v and m must  satisfy 

d 
d---x (sv) = 2s, (3.21) 

d 
-J-s (sm) = 2sv, (3.22) 

(sv) = 2sm-k  s 1 + v 2 2 m . (3.23) 

Moreover ,  (3.21) and (3.23) combine  to yield 

(1 - -  2 2 + v 2) 
m --  2(1 - -  2) (3.24) 

The boundary  condit ion (3.19), when combined with (3.24), yields 

v2(a - )  - -  2(1 - -  2) v(a-) -k (1 - -  22) = (v(a-) -- 1) (v(a-) -- (1 - -  22)) = 0. 

We choose the boundary  condit ion v(a-) = (1 - -  22). A similar a rgument  also 
yields the boundary  condit ion v(--a +) = --(1 - -  22). Using the algebraic relation 
(3.24) to eliminate m, we find tha t  (3.21) and (3.22) reduce to the following equa-  
tions for  v and s: 

dv 2(1 - -  22) (1 - -  v a) 
d---x= ( 1 - - v  2 - 2 2 )  ' - - a < x <  a, (3.25) 

ds --222vs 
- - a  < x < a. (3.26) 

dx  (1 - -  v 2 - -  22) '  

Equat ion  (3.25), a long with the boundary  conditions, may  be integrated to obtain 

[1 + v] 
v - - 2 1 o g [ l _ v ]  = 2 ( 1 - - 2 2 )  x '  - - a < x < a  (3.27) 

where 2 and a satisfy 

log (-~-~ ---~] = 2 ( 1 -  2 2 ) a .  (3.28) 1 - -  22 
\ ,~ / 
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1 
The fact tha t  the m a p  2 --~ 8(2) a~f 2 

creasing on (0, �89 and satisfies 

(1 - -  22~ l o g  is mono tone  de- 

fi(0 +) = 4- 0% h(�89 = 0 (3.29) 

guarantees that  for  each a E (0, oo) there is a unique Z E (0, �89 such that  (3.28) 
holds. I t  is this number  we choose to obta in  the separable solution. 

The density s is expressible in terms o f  v by 

s(x) = So(1 - -  vZ(x)) l-2z (3.30) 

where 
bounda ry  condit ions 

e_~  ~ = e_Zt s(m + v) 
2 " 

s(1 - m) 
• 2 are given by 

So > 0 is arbi trary.  There are no solutions to (3.25) consistent with the 
We also note  tha t  r = 

~ S  0 

v( - -a  +) = - - 1  and v ( a - ) =  1. 

l = e -~t ~ = e -zt s(m - -  v) 
2 

2 
(1 - -  v2(x))'-2x 

and c = e - z t  c~ ~ e - , ~ t  

~ S  0 

4(1 - - 2 )  

2 
( 1  - v2(x))l-'-~ 

(v(x) 4- 1) (v(x) + (1 - -  22)), 

i f = S o  

40 -a) 
I - - 2  

(1  - -  / )2 (X) )1 - -22  

4(1 - - 2 )  

(v(x) - -  1) (v(x) - - ( 1  - - 2 2 ) ) ,  (3.31) 

On the basis of  numerical  evidence we conjecture, but  have not  succeeded in show- 
ing, tha t  the separable solutions are the limiting wave forms on ( - - a ,  a) where the 
interactions take place. 

We now prove  the result  on exponential  decay alluded to in the introduct ion.  
c 2 - -  rl c 

Equat ion  (1.15), a long with < -  implies that  r and l satisfy 
r 4 - 2 c  4- I~-- 2 

Since 

we also have 

C C 
r t 4 - r  x < - ~ -  and l t - - / ~ < - - .  (3.32) 

= " = 2 

r l - -  c 2 r + 1 c ( r - -  l) z 

r 4 - 2 c 4 - 1 - -  4 2 4 ( r 4 - 2 c 4 - 1 ) '  (3.33) 

r + l  c 
ct < - -  (3.34) 

= 4 2 "  
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Lemma. Suppose ~ ,  s and ~ satisfy 

cg cg ~ + L~ cg 
~ t  + ~.~ -- -~ ,  ~ ,  -- ~q~x = - ~ ,  and c g , _ ~  2 (3.35) 

in --a < x < a and t > O, the boundary conditions .~(--a +, t) = O and 
s t) = O, and the same initial conditions as the solution to (1.15) and (1.16). 
Then, N ~ r, 5r >~ I and ~r >~ c in --a < x < a and t > 0 .  

Proof. The fact that r, 1 and c satisfy (3.32) and (3.34) along with the fact that N, 
Sr and cg satisfy (3.35) imply that the differences 

Dx = .~ -- r, Dz = s -- l, Dz = cg __ c (3.36) 

satisfy 

Dlt @ DI~ > D3 Da > D 1 + D2 
~_ - - - f  , O2t + h2x ~ "~-, D3t = 4 -- - -  

D~(--a +, t) = O, Dz(a-, t) = O, 

D~(x, O) ~ O, h2(x, O) ~ O, and Da(x, O) >= O, 

These inequalities are equivalent to 

DI(x, t) = Pl + { 

t 
O~(x -- t, O) -~ �89 f D3(x -- t + ~1, ~) d~l 

0 
t 

�89 f D3(x--t+V,~)dn 
t--(a+x) 

0 3  
2 ' (3.37) 

(3.38) 

- - a < x < a .  

(3.39) 

for O < t < a + x, 

for t > a + x,  

(3.40) 

I t 
D2(x + t, O) + �89 d O 3 ( x  @ t - -  ~], ~]) d~] for t < a -- x, 

D2(x, t) = Pz + [ t 

�89 f D 3 ( x + t - - % ~ l )  d~ ] for t > a + x ,  
t--(a--x) 

(3.41) 

t t 
Da(x, t) = P3 + D3(x, O) e -  ~ + 1 f e - ( t - , J ) / Z ( D 1  @ D2 ) (x, ~]) dB (3.42) 

0 

where p~, P2 and P3 are nonnegative functions on t > 0. Since these equations 
are solvable by iteration and since at each stage the iterates are nonnegative we 
conclude that the limit functions are endowed with the same property and this 
concludes the proof. [ ]  

It is straightforward to verify that for any positive constant Oo and 0 < 2 < �89 
the following functions are separable, exponentially decaying solutions to (3.25) 
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on (--a,  a): 

Here 

= 6~ ~1/1 + 22 -- 422 

[ l /  22(1 -- 22) 
5Y = 60 e - ~ t ~ V 1  "~ } 2 - " --4-2 = 

doe -*t g 2 2 ( 1 -  22) 
g (1 -- 22) 1 + 22 -- 422 

cosh zx § sinh z x ) ,  

cosh ~x -- sinh gx ) ,  

(3.43) 

(3.44) 

cosh ~x. (3.45) 

V2(1 + 2 2 -  422) 
z, = 2(1 -- 22) ' (3.46) 

and the boundary conditions 
satisfy 

/ 2 2 ( 1  -- 22) 

~ ( - - a  +, t ) =  ~ ( a - ,  t ) =  0 imply that 2 must 

_ tanh ( V  2(1 + 2 2 -  422) ) 
2(1 -- 22) a . (3.47) 

It is easily checked that if 0 < a < 2, then (3.47) has a unique solution 2 = 2(a) 
in (0, �89 and ~ ,  ~ ,  and ~g are positive on (--a, a), with this choice of 2. 

Our comparison lemma now implies that if for some 6o > 0, the data 
(to, lo, Co) for (1.t5) satisfy 

) to(X) ~ 6o 1 ~- 2Z 52 ~-22 cosh ~x -k sinh ~x , 

( I /  2 2 ( 1 -  2~.) ) 
lo(x) <= (3o \ i / 1  ~-2X--7-~2z cosh ~x -- sinh ax , 

C o ( X )  < - -  
~o 

(1 - -  22)  "1  § 22 -- 422 cosh zx 

(3.48) 

with e given by (3.46) and with 2 the unique solution to (3.47), then the solution 
to (1.15) with this data decays at least as fast as e -zt  in (--a,  a). 
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