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O. Introduction 

The problem of modelling body-environment interactions is a rather formidable 
one: neither is there a wealth of inspiring examples nor is the corpus of know- 
ledge in mathematical analysis such as to allow indiscriminate generalization of 
the few well understood cases. 

Primarily, the problem has a constitutive nature. In the traditional view, the 
object of a constitutive theory is the response of the body to deformation pro- 
cesses: modelling body-environment interactions demands per se that we assign 
the constitutive theory the extended task of formalizing our prejudices on the body 
and the environment under examination, both separately and together. 

However, the modelling process is rather inextricably conditioned and 
guided by the type of initial-value and boundary-value problems that one wishes 
to formulate, as well as by the mathematical techniques that one wishes to employ, 
or has to. For example, it is shown in [1] how the choice of admissible interactions 
is contained by the needs of a local bifurcation analysis by use of formal perturba- 
tion methods; on the other hand, paper [2] exemplifies well how that choice may 
be guided by mathematically reasonable requirements of well-posedness. 

In elasticity, the primarily constitutive nature of the modelling process is 
perhaps best brought about, as done in [3], by confining attention to equilibrium 
problems with conditions of traction on the entire boundary, in a variational 
format. The formulation of those equilibrium problems may be "formal", in 
the sense that a function space setting sufficient to clarify constitutive issues 
need not allow for, say, existence theorems. In this paper we adopt precisely 
such a "formal" variational format to arrive at well motivated choices of surface 
potentials describing the interactions taking place at the common boundary of 
a body and its environment. 

In elastic equilibrium problems, body-environment interactions are accounted 
for by prescribing a system of loads which are usually of the dead type, i.e., they 
do not depend on the displacement that the body undergoes. More realistic pre- 
scriptions of live, as opposed to dead, loads were first proposed for study of 
SEWELL [4], [5], under the heading of "configuration-dependent" loadings (vid. 
also [6], Chapters Q and R). 

Although it can be argued with only slight exaggeration that most loadings 
encountered in applications are of the live type, our subject has not been extensively 
studied so far. In the context of elasticity linearized about a given equilibrium 
placement under stress, live loads were considered by CAPRIZ & PODIO-GUIDUGLI 
[1], PODIO-GUIDUGLI & VERGARA CAFEARELLI [7], PODIO-GUloUGLI, VERGARA 
CAFFARELLI & VIRGA [8] and VERGARA CAFFARELL~ [9]. In finite elasticity, some 
results of uniqueness and continuous dependence in the presence of live loads 
have been obtained by SPECTOR [10], [11]. Remarkably, S~WELL'S paper [4], 
as well as the other papers just cited, have the "formal" character typical of the 
constitutively oriented approach to the matters alluded to in the preceding para- 
graph. At variance with this, the results of VALENT [!2] concerning local existence, 
uniqueness and continuous dependence for the case of hydrostatic loading are 
obtained in a precise function space setting. 

From a variational point of view, some body-environment interactions are 
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described by surface potentials, others by volume potentials, others by surface 
or volume potentials, alternatively. 

We here do not deal with genuine volume interaction potentials, for two 
reasons: first, they are sufficiently well understood from the mechanical point of 
view and, second:, their presence usually does not bring in any mathematical 
novelty, and sometimes even renders the matters mathematically easier. 

The surface interaction potentials we consider accomodate many types of 
live loads, 1 among which the two important examples of pressure loading and 
membrane loading; they have the form 

7"(]} = f ~(x, n, f ,  Vf) d (Srf), (0.1) 

with z ( x ) : =  ~(x, n(x),f(x), Uf(x)) interpreted as the energy stored per unit 
area, when a body undergoes a displacement f from a reference placement (2, 
at a point x of the boundary hi2 where n is the outward unit normal field. 

Our main concern here is precisely the constitutive problem of selecting the 
density mapping ~ for T; our approach is the same as in [3]: 

(i) We introduce the total potential 

F~lf ) : s ir  ) + r~f}, (0.2) 
with 

slY} = f #(x, v f )  d (Vol), (0.3) 
f2 

where the density tr(x) :=  ~(x, Vf(x)) of the body potential S is interpreted as 
the elastic energy stored per unit volume at a point of/2.  For S the stress field 

over ~ and s the surface load field over ~2, we say that the body has a conservative 
interaction with its environment (with respect to the reference placement /2) if 
the field pairs (S, s) and (~r, v) satisfy the variational condition 

~s{f}  [h] = .f S .  Vh ,  ~T l f  } ---- - f s . h (0.4) 
~2 OD 

for each f E 9 ,  the collection of all admissible displacements, and for each 
h E ~Ig, the space of  all admissible variations. 
(ii) We pose the variational problem 

extr {Elf} I f  E ~},  (0.5) 

and derive necessary conditions to be obeyed by each extremum ](0). 
(iii) As a selection criterion for § we choose to regard S as given and require that 

be such as to obey the necessary conditions for an extremum identically on the 
domain ~ of E. 

Our work is divided into two parts. Part I has three sections in which a number 
of preliminary results of algebra, analysis and mechanics having specific bearing 

Some interesting examples of live loadings, such as the pressure loading exerted 
on the inner wall of a deformable gas container [13], [14], escape our analysis here because 
of their non-local nature. 
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to the developments to come are collected; of these results, some are included 
so as to explain our notation carefully and make our paper reasonably self- 
contained; others are new or proved in a new w'ay. Part II begins with a general 
formulation of elastic equilibria as extremum problems (Section 4); it continues 
with a variational study of the two important cases of pressure loadings and 
membrane loadings (Subsections 5.1 and 5.2, respectively) 2, with the purpose of 
exemplifying the kinds of behavior we shall later incorporate in our general 
model of  interactions among a body, its surface, and its environment, and ends 
with two other sections, the bulk of this paper, of  the contents of  which we now 
give an extensive account. 

Section 6 is devoted to obtaining and discussing the equilibrium conditions, 
i.e., the necessary conditions on the extrema of the total potential E. 

We point out that the regions ~2 we consider have boundaries which consist 
either of  one smooth surface X with no self-intersections, or of two such surfaces 
Z'I and 272, with 2J 1 f~ $2 = 0, and their common boundary/1 ,  a closed simple 
curve with tangent t;  in the second case, the outward normal field has a jump 
a t / ' ,  and we further distinguish two subcases: (i) n~(x) 4= n2(x) for all x E/-'; 
(ii) (the cuspidal subcase) nl(x) - -  --n2(x) for all x E/1. The necessary con- 
ditions for extrema take different forms on the various parts of the body, namely, 
its interior part  ~2 and its regular and singular boundary parts 271 kJ 272 and F, 
respectively. Summarizing from Proposition 6.1, we have, as usual, that 

Div ~(0) = 0, ~(o) : =  8F~(0),3 (0.6) 

in the interior part, while on the regular part of the boundary both 

~(0) n = s(O), s(0) :___ _@(o)  + ~Div (~F~ (~ (0.7) 

and 
(oF~(~ n = o (0 .8)  

prevail; moreover, on the singular part of the boundary, where ~ )  and V~] (~ 
(o~ = l, 2 ) a r e  defined as the limits of ~(~ ~ and Vf(~ ~ for x--> 1' from Z~, 
either 

OF:.(o)r ,t r (0.9) ~1 k ~, " l , J  ' V l f  (0)) /12 -~- ~F~(20)( x '  n 2 '  f (0) '  V2f(0))  /11 = 0 

or, in the cuspidal subcase, 

[Oe~.~(x, n~ , f  (~ V J  (~ § ~F'?2(x, - -n~ , f  (~ V2f(~ (t •  = 0. (0.10) 

We take condition (0.7)2 to define the surface load mapping ~ in terms of 
for conservative interactions, just as condition (0.6)2 defines the stress mapping 

in terms of ~ for all f E @. The three remaining conditions (0.8)-(0.10) involve 
? only through the "membrane stress" ~r~. In Section 7 we find for what classes 
of  surface potential densities ~r one can expect the associated membrane stress 

z Our present analysis of pressure and membrane loadings has characters of greater 
generality and detail than the one presented in [3]; in particular, the pressure function 
may here depend Oil the displacement, as is the case, e.g., for hydrostatic loading. 

a We use an affixed (0) as a reminder for the operation of evaluation at j(o). 
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to satisfy (0.8), alone or else together with (0.9) and (0.10), for all admissible dis- 
placements f and all reference placements O occupied by the body. 

We observe that (0.8) is identically satisfied in ~ whenever the membrane 
stress is tangential, and we show by Proposition 7.1 that this is the case if and 
only if ~ does not depend on normal derivatives of f :  

~(x, n(x),f(x), V.r = ~(x, n(x),flx), 'Vf(x)), 'Vf :=  (Vf) (I - n | n), 

(0.11) 

for all (x ,f)E ~ 2 •  (here sVf is by definition the tangential displacement 
gradient). We call those surface potentials whose densitiessatisfy (0.11) tangential. 
Given a surface potential T as in (0.1), we introduce the associated tangential 
potential T~ub with density 

~sub(X,n,f,s~Tf) := inf{~(x,n,f,  sVf + y | n) l y ~ ) ,  (0.12) 

and show that under reasonable hypotheses on ~ (e.g., when ~ is rank-one convex, 
as in Proposition 7.5) the extremals of the total potential E = S + T are elements 
of the extremal set of the associated subpotential Esub = S § T~b. This result, 
together with the fact that both pressure loading and membrane loading admit a 
tangential potential, motivates us to restrict attention to tangential potentials for 
the rest of our paper. 

We then turn to the question of characterizing, among tangential potentials, 
those which are simple, i.e., correspond to surface load mappings ~ depending at 
most on tangential derivatives of the first order. 4 Restricting here attention to 
regular regions D, and therefore dropping the explicit dependence on the normal 
field n, we first obtain a representation formula for the density of a simple tangen- 
tial potential as a rank-one atfine function of the tangential displacement gradient: 

~(~,f, ~v/) = ~(x,]) + 6~(x,f). ~vf* + 6~(x,f). svf, (0.13) 

where ~Uf* denotes the cofactor of'Vf, while ~ and C~, C2 are arbitrary scalar and 
tensor-valued mappings, respectively (cfi Proposition 7.7). Secondly, we character- 
ize the class of  surface loadings alternatively described by surface or volume inter- 
action potentials by showing that, if T is a simple tangential potential, then there 
is a volume potential 

F{f) ---- f (o(x,f, F) d (Vol), (0.14) 

which is a null Lagrangian in the sense of [15], [16], such that, 

T~f) = F~f~ (0.15) 

for all displacements f E  ~ (and conversely; cf  Proposition 7.9). 

4 Simple surface loadings were introduced by SPECTOR [10], .[11]; they are easier 
to handle than nonsimp!e ones, basically because they lead to a boundary operator 
~(f) := S(Vf) n --w sVf) which, given that the field operator ~(f) 7~ ~Div S(Vf) 
is of order two, has the "right" order one (cfi [3], [7], [8], [9]). 
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Finally, we return to the extremum conditions (0.9), (0.10), to be obeyed on 
the singular boundary part F of ~ by the pair (~1, "~2), with ~ the (necessarily 
homogeneous) surface potential density on the boundary part S~ kJ F. We inter- 
pret (0.9), (0.10) as joint tangentiality conditions on the membrane stresses ~F~ 
and we seek a class of surface interactions such as to satisfy (0.9), (0.10), with 
Vlf(~ ~ V2ri~ identically in (9, the collection of all admissible domains.5 
By Proposition 7.13 we then show that, for two mappings ,b~, ~2 to compose 
a jointly tangential surface density pair, they must have the following re- 
presentation of the rank-one affine type: 

~ ( n , f ,  sVJ) -- {~(n, f )  = ~(J) | n . "Vf* + C(f) N .  ~Vf, 0r = 1, 2, (0.16) 

where N is the skew tensor associated with n; thus, not only do they induce a simple 
loading throughout the boundary, but also they are associated with an energetic- 
ally equivalent null Lagrangiam In particular, in the impo~ant special case of 
regular interactions, i.e., when ~1 = v2 = v, we find (Proposition 7.16) that the 
associated null Lagrangian F has density 

~(.f, F) = ~(f) det F + D(]).  F*, (0.17) 

with (~ and / )  depending, respectively, on ~ and C only, 6 and that (0.15) is paralleled 
by 

T{f} = F{.f} + of  b ~(n,])  d (Srf). (0.18) 

Part I. Preliminaries 

1. Algebra 

In this section we collect, mostly without proof, various results to be of use 
later; of these results, many are well known, the rest are taken freely from [17], 
where proofs here omitted may be found. 

Our notations are essentially those of [18], with minor variants and additions 
already introduced in [17] and [3]. As in [18], bold-face type denote vectors, if 
minuscule and second-order tensors if majuscule; greek letters are reserved for 
scalar quantities if minuscule, and for regions of space, if majuscule. Our use of 
parentheses, brackets and braces is completely standard, but we also use brackets 
to stress linear dependence on the enclosed variable, and braces to enclose the 
argument of a functional. 

5 That is to say, for each admissible choice of a curve F and two unit vector fields 
n~ defined over F itself, the latter interpreted as the limits of the outward normal field 
on the regular part of the boundary on going toward F starting from 27~. 

6 For pressure loading, a regular interaction, the densities are ~p(n,f, S~Ty)= 
~(y) (-f | n). sV-f* for the surface and ffp(-f, V f) = h(f) dct (V$) for the volume potential 
(rid. Proposition 5.1). 
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I . l  Collections o f  Second-Order Tensors 

In this paper, ~ is an oriented three-dimensional vector space over the real 
field R, equipped with an inner product denoted by �9 and a vector product denoted 
by •  

Lin is the set of all linear transformations of ~/" into itself (the space of  all' 
second-order tensors). In particular, I is the identity transformation; for A E Lin, 
A T is the transpose of A; for a, b E 3g', a | b E Lin, the tensor product of  a 
and b, is defined by 

(a | b) v : =  (b .  v) a for all v E ~//'. (1.1) 

The symmetric and skew subcollections of elements of Lin are denoted by 
Sym and Skw, respectively, so that 

Lin = Sym @ Skw (1.2) 

and, for all A E Lin, 

A = sym A + skwA,  
(1.3) 

2 sym A : =  (A § A T) E Sym, 2 skw A : =  (A -- A T) E Skw. 

Beside Sym and Skw, other subcollections of Lin to be considered here are 

Lin + :----- {F E Lin [ det F > 0}, Rot : =  {R E Lin ] R R  T = R T R  = I ,  det R = 1}. 

(1.4) 

AS is well known, Skw and ~/" can be set in one-to-one correspondence: 

Skw~ W*-~WEr Wv = w •  for all v E3v';. (1.5) 

it follows that 

and, more generally, for 
of Skw, 

I w l 2 - - 2 1 w l  2, 

w, z E 3~" and for IV, 

W- Z = 2w �9 z, 

Z the corresponding elements 

(1.6) 

where we have used the inner product  of Lin defined in terms of the trace function 
by 

A �9 B : =  tr (AB T) (1.7) 

and two bars [ [ denote the norm associated with the inner product of either 
or Lin, so that ~9~(1), the unit sphere of  #/', is defined by 

s e (1 )  t v -  v = I,,l 2 = 1). (1.S) 

For  w E ~ ( 1 )  and W the element of Skw associated to w by (1.5), we have 

- - W  ~ = I -  e ( w ) ,  (1.9)  

wi th  

e ( w )  : =  w | w (1.1o)  
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the orthogonal projector on the axis of iv. We record here for future use the follow- 
ing easy result. 

1.1. Proposition. Let AE Lin and wC6a(1)  be such that A w  = O. Then, 
for  W the skew tensor associated with w, we have 

A = BW,  with B =- - - A W  (1.11) 

(and conversely). 

Proof. It suffices to note that the following chain of implications holds: 

A w  = O ~ A = A ( I - -  w | w) ~ A = - - A W  2. [] (1.12) 

1.2 Cofactor and Determinant 

Let k be arbitrarily chosen in ~F', and let K be the element of Skw associated 
to k by (1.5). The eofaetor A* of A is the unique element of ][,in such that A*k  
is the vector associated to A K A  T by (1.5). It follows from this definition that, for 
(i, j ,  k} an orthonormal basis for "//', 

A*k  -= A i •  (1.13) 

A related definition of the determinant of A is 

de tA :---- A i x A j .  Ak .  (1.14) 

We now list some straightforward consequences of the first definition alone 
(rid. also [19] and Section 1.1 of [20]). 

1.2. Proposition. Let or ER;  a, b E~V'; A E Lin; W (  Skw be arbitrarily chosen, 
Then, 

(o~A)* =- ~2A* (in particular, (--A)* ~- A*) ; (1.15) 

I* = I; (a | b)* = 0; ( I - -  a @ a)* ---- a @ a; (1.16) 

W* ---- w | w. (1.17) 

Less elementary properties of the cofactor mapping follow by using also the 
definition of determinant. 

1.3. Proposition. Let A, B be arbitrarily chosen in Lin. Then 

A*A  T = ATA* = (det-A)I; (1.18) 

det (A + B) = det A + A* �9 B -k A �9 B* q-det  B. (1.19) 

Note that it follows from (1.17) and (1.18) that 

det W ~-- 0 for :all W E Skw. (1.20) 
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I t  also follows from (1.18) that 

A* -A = 3 d e t A  

and, moreover,  that 

F* = (det F) F -T  

so that, in particular, 

R* : R  

351 

for all A E Lin, (1.21) 

for all F E Lin +, (1.22) 

for all R E Rot .  ,1.23) 

Other properties of  the cofactor result f r o m  (1.19) and some well known 
properties of  the determinant, namely, 

det A ~-- det A T for all A E Lin (1.24) 

and  

det (AB) = (det A) (det B) for all A, B E Lin. 7 (1.25) 

We list these properties in the next proposition. 

1.4. Proposition. Let A, B be arbitrarily chosen in Lin. Then, 

( A B ) *  = A'B*; (1.26) 

(AT)* = (A*) T. (1.27) 

With (1.26), (1.16)3 yields a result that will be of  use later, when we deal with 
pressure interactions: foi all A E Lin and v E ~v', 

( A ( I -  v | v))* = A*v  | v .  (1.28) 

We now prove two formulae for the derivatives of  the cofactor and the deter- 
minant  mappings. 

1.5. Proposition. For all A,  B E Lin, 

~a det A - -  A*; (1.29) 
in addition, i f  A E Lin +, 

(det A) ~AA'~[B] = (A * " B) A* --  A *BT A *. 8 (1.30) 

Proof. A straightforward consequence of definition (1.14) is 

det (~A) = ~3 det A for all o~ E R and A E Lin. (1.31) 

7 These properties of the determinant are best proved by first restricting attention 
to invertible tensors and then appealing to a continuity argument to establish the desired 
result for all of Lin. 

8 Notice that, for all A E Lin, (detA) ~a A* is a symmetric mapping from Lin into 
itself, in the sense that, for all B, C E Lin, 

C-  (det A) ~aA*[B] = B .  (det A) ~aA* [C]. (:~) 

Of course, the symmetry of (detA) ~aA* is a consequence of the fact that, due to 
(1.29), OaA* is the second derivative of the determinant mapping. 
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With this and (1.15) we obtain from (1.19) t h a t  

det (A q- ocB) : det A q- o~A* �9 B q- or �9 B* -~ or 3 det B; (1.32) 

differentiation of the function 

er ~ det (A q- coB) 

yields (1.29). Next, we differentiate (1.18)1 and, using (1.29), get 

(SaA*[B]) A T -k A*B T :  (A* .  B) I;  9 (1.33) 

multiplying (1.33) on the right by A* and recalling (1.18)2 we have (1.30). [ ]  

We close this section by establishing a formula for the cofactor of the sum of 
two tensors. 

1.6. Proposition. For all A, B E Lin, 

(a -~ B)* ---A* + B* -~ 8aa*[B], with OAA*[B] = ~BB*[A]. (1.34) 

Proof. Having (1.29), for all A, B E Lin we obtain 

~a(det (A + B)) : 6n(det (A -k B)) : (A + B)*, 

so that, on recalling (1.19), we arrive at (1.34). [ ]  

2. Analysis 

Let go be a three-dimensional euclidean point space, whose associated trans- 
lation space we shall identify with the vector space ~ introduced in Section 1.1.1~ 

Throughout  this paper, f2 is a domain, i.e., an open bounded set of ~. We shall 
interpret ~2 as the region occupied by a continuous body, and study surface 
interactions between that body and its environment. Therefore, it is important 
for us to describe precisely what type of  boundary ~f2 we shall assign to f2. 
Although many of our developments do hold (oftentimes in an obvious fashion) 
under more general hypotheses, for simplicity and concreteness we shall assume 
hereafter that one of the following two situations occurs: 
(i) ~f2 consists of a single surface of class C 3, with no self-intersections; 
(ii) ~f2 = 27~ kJ 272 L//~, where both 271 and S2 are Ca-surfaces with no self-inter- 
sections, such that XI A Z' 2 = 0 and that their common boundary _P is a dosed 
simple curve of class C3; on P, the vector fields 

Pgx~-->n~(x)E~t/", with n~(s)E 6e(1) for or  1,2,  (2.1) 

9 Notice that we write OaA*[B] for the derivative of the cofactor mapping evaluated 
at A, a linear transformation of Lin into itself, acting on B. 

lo On occasion, havingchosen an origin o E 8 once and for all, we shall also tacitly 
identify a point x E ~ with the corresponding position vector (x -- o) E ~r 
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are well-defined as the limits of  the outward unit normal to 27~ on approaching 
x E / '  from 27~, and it is assumed that 

n l(x) 4 = n2(x) for all x E / ' .  (2.2) 

In case (ii) we shall call 27, VJ s a n d / '  the regular and singular parts of the 
boundary of ~2, respectively; in case (i) we shall consistenly say that ~ has a reg- 
ular boundary, or else that the domain ~2 is regular. If  at a point x E / '  

n~(x) 4= -nz(x), (2.3) 

then the unit tangent vector t(x) at x can be chosen so as to coincide with 

n~(x) x n2(x) 
t(x) -= tnl(x) • n2(x) t . (2.4) 

When condition (2.3) applies throughout _P (so that there are no cuspidal 
situations anywhere), we let the tangent field on _P be defined b3 (2.4) and choose 
the corresponding positive path orientation. 

2.1. Remark. In the following, when we write SO it will be always clear from 
the context whether we refer exclusively to a regular region or rather to a region 
with either one of the two types of boundary above; whea we write Z~ kJ 272, 
we do so to stress exclusion of  the singular part /"  of #Y2, but the statement 
just made  will also apply as a rule, perhaps modulo some trivial changes, to cases 
when ~ is regular. [ ]  

2.1 Differential Operators on a Surface 

When the situation sub O) above occurs, it is well known that any scalar or 
vector field of class C 2 over ~ can be extended to an equally smooth field defined 

over an open set containing ~Q. Likewise, in the situation sub (ii), for or = 1 or 2 
one can regard 27~ as a part of the complete boundary of a regular domain ~ ,  
and extead any field defined over X~ to a corresponding field ovei a neighborhood 
of  X~. Consequently, the definitions of intrinsic differential operators on the reg- 
ular part of SO, such as the surface gradient and the surface divergence, can be 
obtained by restricting to Z'~ the corresponding differential constructs relative 
to appropriately extended fields defined over an open set containing X~. 

For  all points of Q where ~the outward unit normal n is uniquely defined, let 
N, P(n) be the skew tensor and the orthogonal projector associated to n by (1.5) 
and (1.10), respectively (note that 

NP(n) : P(n) N = 0). (2.5) 

The surface gradient sVv of a vector field v over ~z'2 is the tensor field defined 
over ~g2 as 

SVv : =  (Vv) ( I -  P(n)) = --(~Tv) N2; (2.6) 
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the surface divergence is 

~Div v :~- tr (~Vv) -~ (Vv) .  ( I  - -  P(n))  = --(Vv) �9 N 2. (2.7) 

Moreover, for  consistency with definition (2.6), the normal gradient of  v is the 
tensor field nVv over 8s defined by 

"Vv :----- Vv --  ~Vv = (Vv) P(n)  = ('By) | n ,  (2.8) 

where 

nOV :--~ (Vv) n (2.9) 

is the directional derivative of  v with respect to the normal n. 

2.2. Remark. In anticipation we remark here that, when we consider the gradient 
and divergence of fields defined over the image f(f2) of  s (or f(Of2) of  8D) under 

a deformation jr of ,Q, we shall denote the gradient by grad (or ~grad) and the 
divergence by div (or Sdiv). [ ]  

2.2 Some  Properties o f  Curl 

The  value at x E f2 of  the curl of a vector field v over f2 is defined to be the 
vector associated to the skew tensor field (Uv -- (7v) T) evaluated at x: 

(Curl v(x)) • u : =  iVy(x) --  (Vv(X)) T] u for  all u E ~//'. (2.10) 

2.3. Proposition. Let  v be a smooth vector f i eM over I2. Then, 

O) i f  v denotes the skew tensor f i eM associated with v,  

Curl v = - -Div  V; (2.11) 

(ii) i f  v(x)  ~ ~9~ for  x E 12, 

v • Curl v ~ --(Vv) v. (2.12) 

We omit the proof  of  this proposition, which amounts to straightforward com- 
putations. The proof  of  the next proposition is less trivial. 

2.4. Proposition. Let  w,  z be two smooth vector f ields over s with 1, I 1, and 
let W be the skew tensor f ie ld associated with w.  Then 

W .  V ( W z )  = - - W  2 .  V z  - -  (Div w) (w.  z). (2.13) 

Proof. Firstly, apply the identity 

A - V(Aa) = (AWA) �9 V a  + (Div (ArA) -- A r Div A) �9 a ,  (2.14) 

which holds for all sufficiently smooth tensor fields A and vector fields a, to the 
skew tensor field W and the vector field z, and obtain 

W .  V(Wz) ~- - - W  2 �9 V z  - -  (Div W 2 --  W Div IV). z. (2.15) 
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Secondly, observe that (1.9), (1.10), (2. I 1) and (2.12) imply that 

Div W 2 - -  W Div W ---- Div (w | w) + W Curl w 

= (Div w) iv + (Viv) iv + iv•  w = (Div iv) iv. (2.16) 

(2.15) and (2.16) together yield the desired result. [ ]  

2.3 The Surface Divergence Theorem 

Let 27 be a smooth oriented simple surface, ' with boundary 8Z a smooth, 
consistently oriented, Closed simple curve: in our present context, typically, 
27 ~ Z~ and 827 ~-/~. As is well known, for v a vector field over a neighborhood 
of  8S, Stokes' formula holds, namely, 

f ( C u r l v ) . n =  f v . t ,  (2.17) 
Z 0 

where of course n is the normal to 27, and t is the tangent to 827. 

2.5. Remark. Only tangential derivatives of v evaluated on Z occur in the left- 
hand side of Stokes' formula. Indeed, on the one hand by (1.5) and the 
definition (2.10), 

2 (Curl v)-  n ~ (Vv -- (Vv) T) �9 N -~ 2Vv- N; (2.18) 

on the other hand, (2.5) and the definition (2.6) yield 

Vv .  N = ( V v ( I - -  P(n)) �9 N = SVv. N; (2.19) 

in conclusion, 

(Cur ly ) .  n : SVv. N. [ ]  (2.20) 

Our next proposition, the surface divergence theorem, has manifold applica- 
tions in the following, e.g., when we deal with membrane loading. 

2.6. Proposition. Let Z be a smooth oriented simple surface of  normal n, having 
a smooth oriented closed simple curve of tangent t as its boundary OZ. Furthermore, 
let u be a vector field of class C ~, defined and tangential over Z: 

u .  n ~ 0 on  Z .  (2.21) 
Then 

f SDiv u -~ f u.  t •  (2.22) 
27 027 

Proof. Let u and n be interpreted as smooth extensions to a neighborhood of 
Z of the corresponding vector fields u and n defined over Z. With a view towards 
applying Stokes' formula to the vector field 

v = Nu ,  (2.23) 
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we observe tha t  (2.20), (2.5), (2.13), (2.21) and  (2.7) imply that  

Curl  ( N u ) .  n = S V ( N u )  . N = ~ 7 ( N u )  . N 

----- - - N  2.  XTu - -  ( D i v n )  ( n -  u) = SDiv u .  (2.24) 

But, 
v . t = N u  . t ~-  u . t •  (2.25) 

so tha t  Stokes '  fo rmula  directly yields the desired result. [ ]  

Le t  /2 be  a domain  as described under  (i) in the beginning o f  this section. 
Firstly, for  o~ and  v two sufficiently smooth  scalar and vector  fields over  8[2, we 
have  f rom (2.7) 

~Div (0w) = ~ SDiv v + ( ( I  - -  P ( n ) )  v )  | Vc~. 

Then,  choosing v ~ n, we see tha t  

SDiv (o~n) = ~ SDiv n .  (2.26) 

Wri t ing now 

v = e (n )v  + ( I -  e(n)) v,  

we deduce f r o m  (2.22) and (2.26) that  

f SDiv v = f (~Oiv n) n . v .  (2.27) 
0Q OQ 

Secondly, a tensor  field A over  8/2 is t a n g e n t i a l  if  

A n  = 0 on #/2; (2.28) 

using (2.7), we define the s u r f a c e  d i v e r g e n c e  of  such a field as 

SDiv A �9 v : =  *Div ( A T v )  - -  A �9 ~Vv, (2.29) 

for  each sufficiently smoo th  vector  field v over  8f2. I t  follows f rom (2.28) that  the 
vector  field u : =  A T v  is tangential  on a/2 for  each v E "F'. Thus,  for  each 
sufficiently smooth  vector  field v over  a/2, the surface divergence theorem implies 
tha t  

f SDiv A . v  = - -  f A "  ~ V v .  (2.30) 
0s 0Q 

Finally, let 8/2 consist  o f  two regular  pieces 271, 2:2 with a c o m m o n  bounda ry  
_P. Then  (2.30) mus t  be replaced by 

f ~DivA . v  = - -  f A . ~ V v +  f [ A , ( t •  -- A ~ ( t •  (2.31) 
ZIUZ'2 ~'iUZ': 2" 

where A~ (0r ---- 1, 2) denotes the limit va lue  o f  the tensor  field A on approach ing  
_P f rom X. .  
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2.4 The Weingarten Tensor 

For Z a smooth oriented simple surface of normal n, the Weingarten tensor 
field L over Z is defined to be the negative of the surface gradient of the normal 
field: 

L : =  --~Vn; (2.32) 

the trace of L is proportional to the mean curvature ~ of 27: 

z : :  �89 SDiv n .  (2.33) 

We now prove that the Weingarten tensor field has symmetric values, a 
classical result in the differential geometry of surfaces obtained here, in a fashion 
different from usual, as an easy consequence of Stokes' formula and the surface 
divergence theorem. 

2.7. Proposition. Let Z be a smooth oriented simple surface o f  normal n, and let 
Z be regarded as part o f  the complete boundary 8f2 o f  a regular domain f2. Then 

SVn(x) C Sym for  all x E Z .  (2.34) 

Proof. In place of (2.34), we shall prove the equivalent statement that, for every 
skew tensor field W of class C 1 over 8f2 

f *Vn. W = 0. (2.35) 
0Q 

To this end, we consider two smooth vector fields w and z over Z and the associated 
skew tensor fields W and Z, and observe that the differential identity 

V(Wz) = W Vz - z Vw 

yields 

SDiv (Wz)  = W . sVz -- Z . sVw.  (2.36) 

Choosing z -- n in (2.36) and integrating over 8f2 we obtain 

f sVn- W : an f sVw" U + f SDiv (Wn) .  (2.37) 

On the right-hand side of (2.37), the first integral is null by Stokes' formula and 
(2.20); the second one, as the vector field W n  is tangential, by the surface divergence 
theorem. [ ]  

3. Mechanics 

Let a regular domain f2 Q ~ as described in the opening of Section 2 be 
pointwise identified with a continuous body. Classically, a deformation of the 
body is the assignment of a displacement 

y :  D --~ g ,  y = f ( x ) ,  (3.1) 
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from the reference placement E2 into the Current placement J(D), with f smooth 
(say, of class C2(12)/~ C1(~)), injective and locally orientation-preserving in 
the sense that 

det Vf(x) > 0 a.e. in /2. (3.2) 

3.1. Remark. This notion of displacement fits our present needs for a quick, 
explicit account of the mechanical aspects of elastic equilibrium problems; of 
course, neither a general existence theory based on such a notion is available for 
such problems, nor do we propose it as a goal. [ ]  

Given a displacement f ,  we denote by 

F : =  Vf and F* : =  (Vf)* (3.3) 

the displacement gradient and its cofactor (cf. (1.22)). The ratios of the current 
to the reference volume and surface measures are expressed in terms of F and F* 
by 

d (vol) d (srf) 
det F = d (Vol) and [F*n [ = ct (Srf)' (3.4) 

respectively, (3.4)2 being a consequence of the formula of Nanson for the unit 
normal m to a point of the boundary 0f(f2) ~1 of the current placement: 

m d (srf) = F*n d (Srf). (3.5) 

Finally, at a regular point x E ~O, we shall denote by ~F and nF the superficial 
and normal parts of the displacement gradient F, with SF and nF defined by 
(2.6) and (2.8), respectively. 

For a given displacement f ,  the Piola-Kirchhoff stress field S over O and the 
corresponding Cauchy stress field T over f(/2) are related by 

S(x) = T(y)F*(x),  with y = f ( x ) .  (3.6) 

In terms of these stress measures the equilibrium equations are written as 

Div S = 0 in ~ and div T = 0 in f(l-2), (3.7) 

respectively. The traction boundary condition is 

Sn = s on ~Y2 (3.8) 

in terms of the Piola-Kirchhoff stress. 

3.2. Remark. In (3.8), we have left unspecified the functional dependence, to be 
chosen later, of the surface load s on the displacement J ;  consistently, we refrain 
from writing the corresponding formula in terms of the Caucby stress, which would 
be, rather than generic, vague at this stage. Suffice it to record here the aspect 
of such a formula in the easy case of dead loading, i.e., when 

~O 3 x ~ ~(x) E ~//', (3.9) 

~ Note that, under the present hypotheses, 0J(f2) = f(00). 
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and we have 

T m =  IF*n [-~ s, with s = g(f_l(y)), on .f(S~) U f(S2), (3.10) 

where use has been made of (3.5). [ ]  

Like s, the Piola-Kirchhoff stress S at a point x E/2 will be soon the subject 
of a constitutive prescription, whose general aspect is 

S :  f2 • Lin+---> Lin, S : S(x, A), (3.11) 

with 

S(x, A) A "r E Sym identically in ~ • Lin +. (3.12) 

Part II. Surface Interactions 

4. Variational Equilibrium Problems 

A stress field S over Q and a surface load field s over ~ are in equilibrium 
when they obey (3.7)~ and (3.8). Formally, those two equations are equivalent to 
the single condition 

f s -  Vh - -  f s -  h = 0 for all test functions h .  (4.1) 

The question is now to choose constitutive prescriptions for both S and s such as 
to yield (3.7)1-(3.8) and (4.1) as the strong and weak forms, respectively, of the 
Euler-Lagrange equation associated to a suitable total energy functional. 

We assume that such total energy functional E or, as we also say, the total 
potential, has two parts: a ' body potential S of density a and a surface interaction 
potential T of density 7: 

.:~--> El.f} = S{]} + T{]}, (4.2)~ 
with 

S = f ~ d (Vol) and T---- f v d (Srf). (4.2)2,3 

When the body undergoes a displacement f from the reference placement f2, a 
is interpreted as the elastic energy stored per unit volume at a point of ~ ;  v is 
interpreted as the elastic energy stored per unit area at a point of 8[2. 

As a domain for the total potential (the collection of all admissible displace- 
ments from f2), we select 

: :  ( f  E C2(K2 LJ Z' 1 L/22) A C~ ]]  injective & locally orientation- 

preserving; Vf bounded inO & lira Vf(x) :V~f(Xo)  for x-->xoE] ~ 
X-+Xo 

from 27~ (~ : 1,2)}. (4.3) 

We remark that the classical smoothness requirement on f ,  namely, f E  C2(D)/% 

Ca(O), which guarantees the possibility of  writing in its strong form the Euler- 
Lagange  equation associated to E in the interior part, is here adapted because 
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in some applications (e.g., membrane interactions) the surface load s depends on 
certain second derivatives o f f  on the regular part o f  the boundary, specifically on 
the tangential derivati~,es of V f  while on the singular part of the boundary 
equilibrium may require that f not be continuously differentiable. 

Obviously, the domain ~ is neither a fiat space nor a convex set. However, 
not only  does ~ agree with the classical notion of admissible displacement re- 
called in the beginning of this section, but also, and crucially for our further devel- 
opments, it allows for a calculus of variations in a sense made precise by the fol- 
lowing proposition. 

4.1. Proposition. For ~ defined as in (4.3), let Jog : =  C2(~) be the associated 
space of admissible variations. Then, for each f E ~ and h E ;/g, there is a strictly 
positive number eo, depending in general on s f and h, such that 

(y + eh) E ~ for all e E l--co, eo[. (4.4) 

We omit the proof, which amounts to a straightforward adaptation of part (b) 
in the proof of Theorem 5.5.1 on p. 223 of [20]. 

We now lay down the following 

4.2. Definition. A continuous body has a conservative interaction with its environ- 
ment (with respect to a reference placement ~) if  the field pairs (S, s) and (cr, ~) 
satisfy the variational condition 

OS{y) [hi = f S .  Vh, 0T(J} [h] = --  f s .  h for all yE ~ and all h E ;leg. 
s ~O 

(4.5) 

Whenever, given (S, s), densities (0, ~:)can be found for the functionals S 
and T such that (4.5) prevails, we say that the stress field S and the surfaceload 
field s admit, respectively, the body potential S and the surface interaction potential 
T, defined by (4.2)2 and (4.2)3.Given ((r, v), we regard (4.5) as a constitutive pre- 
scription for (S, s). Indeed, with (4.2), (4.5), the differential identity 

Div (Arv) -- Div A �9 v = A �9 Vv, (4.6) 

which holds for all smooth tensor fields A and vector fields v, and, finally, the 
divergence theorem, we conclude that 

OE[h] = f S .  V h  --  f s .  h = --  f Div S .  h + f ( s n  - s ) .  h (4.7) 
$2 ~s ~ 0 O  

for all h E ~r ~ Therefore, all solutions of the variational problem 

extr {E(.f) I f  E ~} (4.8) 

necessarily satisfy the associated Euler-Lagrange equation, in either one of its 
forms (3.7)t-(3.8) and (4.1). 

As to the density o f  the body potential, we adhere to common practice in  
elasticity and choose a smooth mapping 

: f2 • Lin + --+ lZ+, ~r = ~(x, A) (4.9) 
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which is spatially symmetric, i.e., such that 

b(x, RA)  = b(x, A) for all R E Rot  and all (x, A) E O • Lin +. (4.10) 

Setting the;1 

S ---- S(x, A) = Ba~r(X, A) (4.11) 

we see that (4.5)~ is satisfied identically in 9 .  

4.3. Remark. As is well known, (4.10) yields 

(~Ab(X, A)) A T E Sym f o r  all (x, A) E f2 • Lin +. (4.12) 

Thus, with (4.11), S satisfies (3.12). [ ]  

We defer our choice of  a surface interaction potential density of generality 
comparable with (4.9), (4.10) until after the discussion of the examples of pressure 
and membrane loadings. We here recall, however, that a dead interaction (cf. 
(3.9)) admits the potential dens i ty  

~" : 0$'2 •162 -+ 3%, ~ - ~ ( x , v ) = g ( x ) . ( v - - x ) ;  (4.13) 

with 
s = ~ ( x ) =  - - ~ ( x ,  v), (4.14) 

(4.5)z is satisfied identically in 9 .  

5. Examples 

In this section we take ~ to be a regular region in the sense of Section 2. 

5.1 Pressure Interaction 

By definition, a body has a pressure interaction with its environment when, 
given a pressure function 

~ : # - + R + ,  Jr = ~(y), (5.1) 

the traction boundary condition in telms of the Cauchy stress is 

T m  ~- --:rm on ~f(~2) (5.2) 

for all f E 9 .  In the reference placement, the corresponding boundary condition 
is 

Sn = --JrF*n, with re = ~(f(x)) ,  on CO, (5.3) 

where both (3.5) and (3.6) have been used; we shall call pressure loading the vector 
field 

x ~ sp(x) :=  - -~( f (x) )  F*(x) n(x) (5.4) 
over 0IL 
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5.1. Proposition. Pressure loading admits the surface interaction potential 

Tp~f) : f ~ ( f ) f .  (Vf)* n d (Sfr), (5.5)~ 
0Q 

with the mapping -~ from Y/" into F~ defined by 

1 

v }-+ ~(v) : =  f &(Vv) 72 dr  (5.5)2 
0 

Moreover, the volume potential 

P,(f} = f &(f) det (U f )  d (Vol) (5.6) 
f2 

is such that 
~ ( f )  = P.(I) for all y E 9 .  (5.7) 

P r o o f .  12 We find it expedient to prove (5.7) first, and then to show that 

~TAf ) [h] ---- ~e~(y) [h] = f s . - h .  (5.8) 
Or2 

We begin by observing that the successive use of the divergence theorem, the 
differential identity (4.6) and the fact known to Euler that the cofactor of the 
gradient is divergenceless: 

Div F* : 0, (5.9) 

imply that 

f ~y. F* .  = f F* .  v~y~. (5.10) 

Moreover, 
v(-~]) = ~F  + f | ~7~ and ~7~ ---- F T grad ~ ,  

so that, on recalling (1.18) and its consequence (1.21), we have 

F*-  V ~ ] )  = (3~ + f -  grad~)  det F.  

Finallyl differentiation of (5.5)2 yields 

grad ~ = (--3~ -k &)Ill  -2 f ,  

(5.11) 

(5.12) 

(5.13) 

22 In view of (3.4)1 and (3.5), for pressure loading the volume potential may be 
written as 

P.(f) = f ~(y) d (vol), (@) 

and the surface potential as 

Tp(J) = _.off) -~(y) y . re(y) d (srf), ( ~  @) 

with ~ and ~ related by (5.5)2. Of course, the appealing greater simplicity of these for- 
mulae is counterbalanced by the need of- taking variations of integrals with variable 
domain. Notice also that (5.1) and (5.7) imply that Tp~) > 0 throughout 9 .  
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so that, in particular, 

3~ + j ' .  g r a d ~  = ~ .  (5.14) 

With the use of  (5.12), and (5.14), (5.10) yields (5.7). 
In order to prove (5.8)2, it is sufficient to observe that, due to (4.6) and (5.9), 

(j ~ ~ det [h] f ((grad ~ -  h) det F + :~ Div ( F * T h ) ) ,  (5.15) 

But, by (1.18) and (5.11)2 with :~ in place of  ~, 

(grad ~ �9 h) det F = F *z h �9 F T grad ~ = F *T h �9 V~,  (5.16) 

Hence, in view of the differential identity 

Div (0r = ~ Div v + v �9 V~ (5.17) 

holding for each smooth scalar field 0~ and vector field v, w e  have 

(J ) 0 z~ det F [h] = f Div (:~F .7: h )  = 
/2 

which, by (5.6) and (5.4), establishes (5.8)2. [ ]  

f &F*n �9 h ,  (5.18) 

As to the last proposition, some comments are in order, for the purpose also 
of  putting our further developments into perspective. 

Firstly, pressure loading sp depends only on the superficial part  ~ of  the dis- 
placement gradient F: indeed, one immediately sees from (1.28) that 

F * n  ---- (SF)* n .  13 (5.19) 

This observation suggests that, in generalizing from (5.5), one begin by considering 
surface interaction potentials of  the form ~4 

o n  

T~y) -~ f ~(f, ~Vf) d (Srf). : (5.20) 
~t2 

Secondly, recall that a null Lagrangian Is is, in our present context, a functional 

f~--> F(] )  ---- f ~(f, :7]) d (Vol) (5.21) 
12 

: :  C2(f2) A C1(~2 - )  (5.22) 

1 a Vid. [3] for a different proof of the fact that F * n  dependsupon surface derivatives 
alone. The mechanical relevance of this circumstance was first remarked by GURT~N 
in [21]. 

14 Here and henceforth in this section we silently fail to remark that the functionals 
we introduce may depend upon x. 

1 s Null Lagrangians are treated at length in [22] and [23], where appropriate reference 
to the papers by ERICKSEN [15], EDELEN [16], and others, is also to be found; an interesting 
paper on the subject, which has just appeared, is [24]. 
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for which a vector field x ~-~ v1(x ) over 8f2 can be found, in general depending 
functionally on the restriction of ] to 8~,  such that 

~F(.f} [h] = f v i �9 h d (Srf) for all f E ~ and h E o~r (5.23) 

In view of (5.8)2 and (5.6), we recognize in Pp a null Lagrangian of the form 
(5.21). Our general results in this direction are the contents of Proposition 7.9 
below. 

5.2. Remark. Comparing (5.20) and (5.23) in the light of (5.7) one is led to consider 
live loadings alternatively described by surface and volume potential densities v 
and q~ such that 

~f ~(f, sVf) = f ~(f, V f )  for all ] E ~ and parts H Q ~ ;  (5.24) 

for such loadings, invariance under change in observer might be assessed by re- 
quiring that ~ has the behavior usually postulated for constitutive functionals 
having the character of volume densities, thus circumventing the nontrivial task 
of choosing reasonable invariance assumptions for ~: or s. This suggestion has been 
put forward in [3], where it has been also shown that, if ~0 ---- ~(A), then (5.24) 
and the requirement that ~ be spatially symmetric in the sense of (4.10) are com- 
patible (if and) only if 

~(A)----Zo det A, with Z~o an arbitrary constant, (5.25) 

which is the case for uniform pressure loading. [ ]  

5.2 Membrane Interaction 

We think of a body having a membrane interaction with its environment 
as a body with an elastic membrane glued to it, !6 so that 

T m = - - 2 e o z m  on ~](D), (5.26) 

where eo > 0 is the material modulus of the membrane and, in view of (2.26) 
and (3.5), 

(Vy), n 
z = � 8 9  with m - - [ ( V f ) * n [ '  (5.27) 

is the mean curvature of the current boundary of the body. In analogy with 
(5.4), we call shall membrane loading the vector field 

x ~ sm(x ) := --2eoz(f(x)) F*(x) n(x) (5.28) 

over 8.Q. 

16 Or, alternatively, as a body acted upon by surface tension (el. [3] and [25], p. 153). 
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5.3. Proposition. Membrane loading s, n admits the surface interaction potential 

Tm[f} = ( ~ ~m(f, Vf) d (Srf), (5.29)~ 

with density 

~'m : ~9~215 r m :~ ,~ (u ,A)  : : C o  IA* u l ,  j7 (5.29)2 

and equals the surface divergence of  the (referential) membrane stress M:  

s m : SDiv M, M(u, A) : :  8a~m(U, A), (5.30) 

with the class C 1 tangential tensor fieM M over 8~  appearing in (5.30)1 given by 

M : ~m(I -- rn | m) F -T, (5.31) 

as a consequence of  definition (5.30)2. 

ProoL As preliminary, we recall that the absolute value mapping on "~ has 
derivative 

away from the origin of"//'. This, and the fact pointed out in Footnote 8 that the 
derivative of the cofactor mapping is a symmetric transformation of Lin into 
itself, allow us to write 

[ (vs) ,  .__ ] 
~T.,(f} [h] = eo ~olf ~ ](Vf)* n J [h] : ~o ,,~f coeF* [t (Vf)* n I | n - Vh. (5.32) 

Next, (1.30) and (5.31) imply that 

OTm{f} [h] = f M "  Vh. (5.33) 

Now, in view of (2.7) and because, 

Vh = (grad h) Vf, (5.34) 

we have 

M- Vh = I(VY)* n I Sdiv h.  (5.35) 

With (5.35), (2.27) implies that 

f M ' V h = e o  f ~ d i v h - ~ e o  f ( ~ d i v m ) m . h ;  (5.36) 

~7 Notice that, again by (5.19) and just as the pressure potential density, it follows 
from (5.29)z that ~m(f, Vf) depends on the displacement gradient through the first tan- 
gential derivatives only. 
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(5.36), with (5.26)-(5.28) and (5.33), is enough to prove that Tm is a surface inter- 
action potential for s m : 

f)Tm(f} [h] : - -  f s m �9 h .  (5.37) 
ds 

We observe that, in view of (3.5), the membrane stress M as given by (5.31) 
satisfies (2.28), i.e., is tangential. We can then apply (2.30) and obtain 

f M - V h  f M , S V h : - -  a f ~ D i v M - h ,  
0~2 a t2  0 

which, together, with (5.37), establishes (5.30)1. [ ]  

Define now the K i r c h h o f f  m e m b r a n e  stress K to be 

K : :  M F  T : % n ( I -  m | m ) .  (5.38) 

For  all xE f2 and J E  9 ,  and for all tEq/" such that t �9 m ( f ( x ) )  : 0, we have 
from (5.38) that 

K t  = zmt;  

thus K is a positive-definite multiple of the identity transformation of the tangent 
plane to ~f(O) at J(x) into itself. In addition, using among other things tile sym- 
metry of the Weingarten tensor (Proposition 2.7) one can show that 

Sdiv K : s m ~ -  SDiv M. is (5.39) 

Thus, as remarked in [3], on the one hand membrane loading cannot account 
for situations where compressive surface stresses are to be expected (rid. e.g. [27] 
and [28]): more general constitutive prescriptions than (5.28)2 are needed to cover 
those cases. On the other hand, s m involves the second derivatives of the displace- 
ment field f at the boundary, and therefore points to live surface loads more 
general than the simple loads examined by SVECTOR [10], [11], which by definition 
depend at most on first tangential derivatives. 1,9 

6. Properties of Extremals 

The examples of dead, pressure and membrane interactions together suggest 
that we consider general conservative interactions as those described by Defini- 
tion 4.2, with stored energy per unit volume 6 obeying (4.9), (4.10) and stored 
energy per unit area ~ defined by assigning two class C 2 mappings 

?~ : (27 LJ/~) • O~ • q/" • Lin --> R, ~ = ~ ( x , u , v , A ) ,  c~= 1,2,  (6.1) 

18 For a general treatment of continuous bodies having the form of elastic membranes 
rid. [26]. 

19 Notice that, as (5.4) shows, pressure loading sp does depend only on first tangential 
derivatives of f ,  and is therefore simple in the above sense. 
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and requir ing that  

: =  = 1 ,  2 .  

In  view of  (6.1) and (6.2), for  x E Z',  L; Z~, 2 and f E  ~ ,  
potentials  we consider have densities 

(6.2) 

the surface interaction 

x n(x)  y(x), F(x)). (6.3) 

I t  would be desirable to have at  our  disposal an a priori selection criterion for  
-~ playing for  (6.1), (6,2) the complement ing role played by (4.10) for  (4.9). Un-  
fortunately,  for  live surface interactions the spatial symmetry  issue has not  received 
yet  a t rea tment  as thorough as it deserves ;  n o  generally accepted fo rm such as 
(4.10) is presently available for  invariance requirements  under  change in observer  
applicable .to surface potentials.  2~ 

We then address ourselves to  deduce other  selection criteria for  admissible 
classes o f  consti tut ive functionals  T f rom the propert ies  tha t  the extreme points  
o f  the var ia t ional  p rob lem (4.8), with E chosen as just  explained, must  have:  in 
o the r  words,  we shall regard S as given, and require tha t  T be such as to  obey the 
necessary condit ions for  an ex t remum identically on the domain  ~ of  E. Our  next 
propos i t ion  lists all those conditions. 

6 '1 .  Proposit ion.  Let the total energy functional E be defined by (4.2), (4.3), (4.9), 
(4.10) and (6.2), and let J ~~ be an extreme point o f  E on its domain ~ .  Then, rio) 
satisfies the following conditions: 

(i) (equilibrium in the interior) 

Div (Or8 (~ = 0 in s (6.4) 

(ii) (equilibrium on the regular part o f  the boundary) 

(Or6 (~ n = _~.f~(o) + SDi v (~F~.(o?) on Z 1 U Z2; (6.5) 

20 Thus ~ is defined only over the regular part Zi  W 272 of the boundary of ~2. 
We remark that, as the normal field and the deformation gradient are in general 
discontinuous through the singular part F of ~O, for all J E ~ the scalar fields 

x ~ ;~(x, n(x),y(x), %y(x)),  ~, = 1, 2, 

are pointwise different on F even if ~l[r  and ~2[r a n d a r e  one and the same function 
from /" • ,9~ x ~F" x Lin into R: it would be difficult to imagine a situation of practical 
interest where a single-valued ~ could be defined over the whole of oO (of course, this 
is not the case if F is empty; rid. Remark 6.2 below). 

21 As an example of the invariance requirements that one may think of imposing, 
we recall that in [7] ~ was assumed to be spatially symmetric in the following reduced 
sense: for all fixed x E 271 kJ 2:2 and J E  ~ ,  let Rot (x,J)be the subgroup of Rot  con- 
sisting of all rotations about the: current normal rn at J(x); then ~ is such that, for all 
(x, u, V, A) E (271 kJ 272) • ~9~(1) • ~ • Lin and fo r  all f C , ~  

;(x, u, Rv, RA) = ~(x,u, v, A) for all R E Rot  (x~j), ( ~ )  
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(iii) (tangency on the regular part of  the boundary) 

(~v~ C~ n = 0 on ,St U 272 ; (6.6) 

Moreover, i f  the region O is such that 

nl(x)  q= --n2(x) for all x E 1", (6.7) 

then f(m satisfies the additional condition 

(iv) (equilibrium on the singular part of  the boundary) 

(6F~ ~ n2 -~ (~e~2 (~ nl  = 0 on I'.  (6.8) 

Proof. For f(o)E ~ an extremum of E, we have 

~E(f  (~ [h] = f ~e~ (~ Vh + f (~j~.(o). h + ~r~ (~ Vh) = 0 (6.9) 
g2 80 

for all variations h 6 .~ .  Taking firstly h[aa ~ 0 and applying (4.6) we have 
(6.4). In addition, in view also of definitions (2.6), (2.8) and (2.9) yielding 

Vh = sVh + n~h | n ,  
(6.9)2 reduces to 

~fa [(eea(~ + ~Y~(~ "h + erd ~ SVh @ (~e'~ (~ n .  ash] = 0. (6.10) 

But on the regular part of  ~D the variation fields h and nSh may be assigned 
independently. Thus we deduce from (6.10) and (2.28) that ~r~ (~ is a tangential 
field on 27, ~Y 272, which is (iii). At the same time, (6.10) and the consequence 
(2.31) of  the surface divergence theorem yield 

f [@rt~ (~ n + ~fi.(o) _ SDi v 8r~]" h 
2:,W272 

+ f [(0~ ~ ( t x n , )  -- (ev~2 (~ (t Xnz) ] �9 h = 0. (6.11) 
JV 

Now taking h i t  ~ 0  we have (ii), whereas (6.11) reduces to the line integral. 
In view of hypothesis (6.7) and (2.4), we have 

[n, xn21 txnl = n2 -- (nl " n 2 ) n l ,  In1 xn2I  t x n 2  = (nl "n2)n2  -- n~; 

thus the integrand in the line integral can be written as 

{[(SF~ ~ n 2 + (8F~2 (~ n,] --  (n , .  n2) [(SF~ ~ n, -k (~v~2 (~ n2]}" h = 0. 

(6.12) 

We now observe that, passing to the limit in (6.6), we obtain 

@ F ~  0)) n 1 = @F'~2 (0)) 112 = 0 (6.13) 

identically on 1". Finally, (6.10, (ii), (6.12), (6.13) and the residual arbitrariness 
in the choice of h allow us to establish (iv). [ ]  
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6.2. Remark. As an example of the adjustments alluded to in Remark 2.1, we 
note that, for D a regular region, the normal field is of class C 2, and the dependence 
of ~ on n may then be safely absorbed into the dependence on x. Formally, (6.l) 
and (6.2) together should be read as 

~ : ~f2 x ~  x Lin ~--~ R, ~----- ~(x,v,A),  
and (6.3) as 

x ~ ~(x, f (x) ,  v/(x)); 
Proposition 6.1 would then consist of  the first three items only, with $1 L/272 
replaced by 0$2. [ ]  

6 . 3 .  R e m a r k .  I f  n j  ---- - - n  2 on / ' ,  the integrand of  the line integral in (6 .11 )  

vanishes, provided that V I f  (~ V2 f  (~ and 

7;1(x, n, u, A) = --7;2(x, --n, u, A) for x E F (6.14) 

(this is the case for a pressure interaction on the whole boundary but not for a 
membrane interaction); in general, however, (6.11) takes the form 

[0Fs (x, n l , f  (~ ~TJ  (~ + 0F~2(x, - - n l , f  ~~ ~72fc~ (t•  = 0 for 

a condition on minimizers replacing (6.8) in the cuspidal case. [ ]  

x E F .  

(6.15) 

6.4. Remark. Neither for pressure interactions nor for membrane interactions 
does the surface potential depend explicitly on the place x; when this is the case, 
we shall say that a surface interaction potential is homogeneous. [] 

In the light of (3.7)1 and (4.11), the equilibrium condition in the interior of 
g2 comes as no surprise. Likewise, the equilibrium condition on the regular part 
of  ~ simply suggests that, given a surface potential density ~, for x E 271 LJ Z'z 
and f E ~ we associate with ~ the live surface load 

x ~-~ J(x, n(x),f(x), P(x)) : =  (--Oj~" § 'Div ~F~) (x, n(x),f(x), F(x)). (6.16) 

Remarkably, all conditions (6.6), (6.8) and (6.15) involve exclusively the 
"membrane stress" OF~'. 

As to the tangentiality condition (6.6), we observe that both pressure and 
membrane potentials satisfy it identically. In the next section we stiall start from 
a scrutiny of (6.6), and move on to motivate further consideration of  densities s 
depending only on x, n, f and the first tangential derivatives of  the displacement 
fieldf, and then to discuss conditions such as to guarantee that ), too, shall depend 
at most on the first tangential derivatives. 

As to the equilibrium condition on the singular pa r t /1  of ~f2, in either one of  
its forms (6.8) or (6.15), we repeat that pressure interactions satisfy it whatever 
the region s and therefore the curve 1~, may be (provided Vf f (~  V2fc~ 
By Proposition 7.16 we shall characterize a class of homogeneous surface inter- 
action potentials which satisfy identically both (6.8) and (6.15). 
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7. Tangential Interactions 

We begin by establishing a preparatory result yielding an  equivalent version 
of  the tangentiality condition (6.6) for a surface potential density of type (6.2). 

7.1. Proposition. Let ~ be a smooth mapping from Lin into R.  Then, for each 
f ixed a E ~r 

(~a~(a)) a ~ 0  <=> ~(A) ~ ( A ( I - -  a | a)). (7.1) 

Proof. For fixed a E ~//', let 

~(A) ~ ~ ( a ( I -  a | a)). 

Then differentiation yields 

Oa~(A) ~ (Sa~(A(I -- a | a))) (I  --  a | a) 

and the leftward implication follows. To prove the converse, for a E ~ again 
fixed we define the real-valued mapping on Linxq/" 

~(Y, y) :---- ,~(Y + y | a). (7.2) 

Now, differentiating (7.2) with respect to y we have 

8 ~ ( Y ,  y) :-- (Sa~(A)) a for A : Y + y | a.  
If  

(Oa~3(A)) a---- 0, 

it follows that ~ actually depends on the first variable only. Writing now each 
A E Lin as 

A = A ( I - -  a @ a) + (Aa) | a, 

and taking 
Y - ~  A ( I - -  a | a), y --- Aa 

in (7.2), we have the desired conclusion. [ ]  

Now let ~ in (6.2) be tangential not only at an extreme point  of the total 
energy functional, as required by (6.6), but rather on the whole of 9 ,  as 
guaranteed by assuming that the membrane stress 8F~" be tangential in the sense 
of  (2.28), i.e., that 

(aA~(X, U, V, A)) u = 0 (7.3) 

for all (x, u, v, A)E (ZI W,S2)•  Putting then, for each fixed 
triplet (x, u, v) C (Z'l W Z2)x~(1)X~//",  

~(x, u, v, A)---- ~(A) for all A E Lin, (7.4) 

w e  conclude from (7.1) that (7,3) implies that 

-~(x, u, v, A)  ~-~ -~(x, u, v, a ( I  -- u | u)).  (7.5) 

Thus, for the surface interaction potential  densities of type  (6.2), assuming 
tangency in the sense of (7.3) is equivalent to restricting attention to the subclass 
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of  tangential potentials, namely, those having surface densities of the following 
type: 

x ~-~ ~(x, n(x), f(x), ~F(x)). (7.6) 

7.1 Subpotentials 

Beside the hint provided by the necessary property (6.6) of extremals, we shall 
here offer another reason for considering only tangential potentiels, so putting 
that choice into better perspective. 

We begin by recalling a notion of restricted convexity for functions defined 
on Lin (rid. [22], p. 43ff. and [23], Sect. 4.1.1). 

A smooth mapping ~ from Lin into R i s  said to be  rank~oneconvex if, for all 
A E Lin and a, b E "//', 

~(A q- o~a | b) =< (1 -- o~) ~(A) q- g~(A q- a | b) for all o~ E [0, 1]. (7.7) 

It is easily seen that ~ is rank-one convex if and only if  the function on [0, 1] 
defined by 

~ ~ (a  + ~a | b) (7.8) 

is convex for all choices of A, a and b. If  ~ is of  class C 2, another well known 
characterization of rank-one convexity is that ~ obeys (7.7) if and only if, foreac  h 
A E Lin fixed, the linear mapping 82~(A) from Lin into itself obeys the Legendre- 
Hadamard Condition: 

a @ b.  (82~(A)) [a | b] ~ 0 (7.9) 

for all choices of  a and b (rid. again [22] or [23], loe. cit.). 
If both ~ and - -9  are rank-one convex, ~b is said to be rank-one affine. For~3 

a rank-one atS_ne mapping there are two real numbers 71, 72 arid two tensors Ct, C2 
such that the representation formula holds: 

~ (a )  = 7x + ~'2 det A q- C~ �9 A* -}- C 2 �9 a .  (7.10) 

The following characterization of rank-one affine mappings of Class C 2 will be 
of  use later on. 

7.2. Proposition. A C2-mapping ~0 from Lin into F~ is rank-one affine if and only 
if, for all A E Lin, the mapping 82~(A) obeys the skew-symmetry conditions 

c | d -  (O2a~b(A)) [a | b] = - -c  | b .  (~2A~(A)) [a @ d] 

= - - a  | d .  (~z~b(A)) [c | b] (7.11) 
for all a, b, c, d E Y/'. 

Proof. In view of (7.7) and (7.8), we conclude that ~b is rank-one affine if and only 
if 

o~v-~ ~(A + o~a | b) ---- (1 --  o~) ~(A) + o~(A + a | b); 

differentiating this function twice, we conclude, under the hypotheses, that 
is rank-one affine if and only if 

a | b .  (~2a~(A)) [a @ b] = 0 (7.12) 
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for all a, b E~v" (of (7.9)); in turn, condition (7.12) is known to be equivalent 
to (7.11)~. 22 Finally, as for all fixed A E Lin the linear mapping O~(A)  of Lin 
into itself is symmetric in the sense of Footnote 8, (7.11)2 also follows. [ ]  

Consider now the mapping ~ defined by (7.2), and put 

~ ,b (Y)  : =  inf {~(Y, y) I Y E ~ } .  

Using the notation (7.4) again, we see that, for each fixed triplet 
(So kJZ2)•215 r,  the mapping 

~b(X, U, V, A) : =  ~,~b(A) for all A E Lin, 

is well defined. We then have grounds for the following 

(7.13) 

(x ,u ,  v) E 

(7.14) 

7.3. Definition. Given a surface interaction potential T with density ~ of type 
(6.1)-(6.3), the associated subpotential is the tangential functional 

Tsub{f) : =  f ~sub(X, n,  f ,  sF) d (Srf) (7.15) 

with density 

Likewise, 

~sub(X, n, r, sF) : =  inf (~(x, n, L ~Vf + y | n) I Y E ~ } .  

Es~b :----- S + Tsub 

(7.16)  

(7.17) 

is the subpotential associated with E. 

7.4. Remark. The terminology we use is inspired by the similar but different 
concept of  "subenergy" that ERICKSEY [29] has taken from FLORY [30] in order 
to model certain types of  phase transitions within the framework of thermoelas- 
ticity. [ ]  

7.5. Proposition. Let T be a surface interaction potential, with rank-one convex 
density ~, and let the associated subpotential Tsub be Gateaux-differentiable over 
~ .  Then, i f  J (~ is an extreme point of E jn ~ ,  it also renders Esu b stationary. 

Proof. Recall that, on confining attention to conservative interactions by means 
of Definition 4.2, we already stipulated that E is G-differentiable over ~ .  
Assuming now, in addition~ that it makes sense to write 

lim Esub(f + eh) -- E~ub(f) = : OEsub{f} [hi (7.18) 
e~-0 /3 

for all f E ~ and h E gtt o, we wish to show that 

t}Es~b{](~ [h] ---- 0 for all h E o~" (7.19) 

at each extreme point f(0) of  E. 

22 N o t e  that (7.11)1 can be written equivalently as 
((82aQ(A)) [a | b]) c = --(@2~3(A)) [a | c])b for all a, b, c E ~//'. 
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First, it follows fi'om the very definitions of E and Esu b that 

E{J) >= E~ub{f) for all f E 9 .  (7.20) 

A less obvious fact is that, under the hypotheses, 

E ( f  ~~ = Esub{f (0)) (7.21) 

at each extreme point f ~~ of E. To see this, recall that, at f(o) (6.6) requires that 
-~ is such that 

(eF~ <~ n = 0. (7.22) 

Moreover, if ~ is rank-one convex, i.e., if the mapping ~ defined by (7.4) is rank- 
one convex for each fixed triplet (x, u, v)E (Z1 W271)•215 then 

b ~ ~(svf(~ + b | n) 

is a convex mapping whose derivative at b = nef0) equals (~F~ ~~ n and there- 
fore vanishes because of (7.22); but then this mapping has at ng, f(o) an absolute 
minimum, and tfius, in view also of definition (7.16), 

z~ob) = ~(o), (7.23) 

which implies (7.21). With this and (7.20), we have 

Esub(Y (~ + eh} --  Esub(f (~ ~ E{f (~ -~ eh) -- E{f(~ 

so that 

lim Esub{f(~ + eh} --  Esub{f ~~ ~ 0 (7.24)~ 
e-+O + e 

and 

lim Esub{f(~ -~- eh} --  Esub{f (~ => 0. (7.24)2 
e - + O -  e 

(7.19) then follows from (7.24) and the assumed differentiability of E~b. [ ]  

The last proposition shows that, for reasonably general assignments of  surface 
interaction potentials depending in principle on the entire displacement gradient, 
the extreme points of the resulting total potentials integrate a subset of the 
extremal set of  an associated functional so constructed as to give to normal 
derivatives the least weight possible in the minimization process. 

7.2 Simple Potentials 

Here and henceforth we restrict attention to tangential potentials 

T(f}  = f ~(x, n , f ,  sF) d (Srf). (7.25) 
aa 

As is clear from (6.16), these potentials correspond in general to surface loads 
depending on first and second tangential derivatives. Our goal in this section is 
to characterize a class of  surface potentials such that the corresponding surface 
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loads are sinmple, i.e., depend at most on first derivatives. Interestingly, the total 
potentials featuring simple surface interactions may be thought of as defined over 
a domain larger than 9 ,  as second derivatives are not assumed to exist at 
points of  Z'l L/~2. 

7.6. Definition. A tangential potential T with density ~ is simple if  it gives rise to 
a simple surface load ~, i.e., i f  

s ---- --Ss~(x , n , f ,  ~F) + SDiv 8F~(X, n , f ,  SF) ~-- g(x, n , f ,  SF). (7.26) 

7.7. Proposition. A tangential potential T is simple i f  and only i f  its density 
admits the following representation formula: 

~(x, u, v, A) = ~3(x, u, v) + (fi(x, u, v) | u) �9 A* + (~(x, u, v) U . A .  (7.27) 

Proof. Observe first that, by (7.26)1, the part of s containing Second derivatives 
o f f  vanishes identically on Z'l k/272 if and only if ~2~(x, u, v, A) has the skew- 
symmetry property (7.11)1 for all (x, u, v))E ($1 U Z 2 ) x 6 e ( I ) x ~ / ' ,  i.e., in 
view of  (7.4) and Proposition 7.3, if and only if the mapping 

A ~ f ( a )  = ~(x, u, v, A) (7.28) 

is rank-one affine. Secondly, by Proposition 7.1, if T is tangential we may replace 
A with A ( I -  u @ u) in the representation formula (7.10); the result is 

~(A) = 7~I + CI . ( A ( I - -  u | u))* + C2 . A ( I - -  u | u) 

or rather, by (1.28), 

~(A) = 7t -F (Ctu  | u) . A* -F C z ( I - -  u @ u) . A; 

from this, with the notations 

71 ----:71, Ctu  = :  c and - - C 2 U = :  C (cf. (1.11)), 

(7.27) follows, r-] 

Resuming now the developments at the end of Subsection 5.1 in the present 
more general context, we turn to characterize those simple surface loadings that 
are alternatively described by surface and volume interaction potentials. As our 
attention is restricted, for the rest of  this subsection, to bodies comprising 
regular regions ~ ,  we shall drop the explicit dependence on the normal n to 0 ~  
in the expression of  surface interaction potentials (cf. Remark 6.2). 

We state without proof  a proposition where some results Of [15] and [16] are 
rephrased. 

7.8. Proposition. A functional 

F{I} ---- f @(x,.L v$) d (Vol) 
t/ 



o n  

mapping 
(X, u, A) ~ ~)(x, u, A),  

obeying the skew-symmetry condition 

(Oa03(x, v, a ) .  b)) a = --(~a0)(x, v, A) .a)) b (7.30) 

for  all a, bE~t r and for all f ixed (x~ u, A) E ~•215 such that 

~(x , f (x) ,  V/(x))  = Div f~(x,y(x), VJ(x)) (7.31) 

for all x E ~ and f E C2(~). 

We are now in a position to state our announced Characterization. 

7.9. Proposition. Given a simple tangential potential 

T{J) ---- f -~(x, f ,  SF) d (Srf), (7.32) 
0s9 

there is an associated volume potential 

Fly } = f (o(x,.f, F) d (Vol) (7.33) 

such that 
T(f} = F{f} for oil f E C2(~); (7.34) 

F is a null Lagrangian. Conversely, i f  a volume potentiol F as in (7.33) is a null 
Lagrangian, then there is a simple tangential potential T as in  (7.32) such that 
(7.34) holds. 

Proof. Given ~', for (x, u, A) E ODx~// '• we consider the vector-valued 
mapping defined by 

b(x, u, A) : =  ~(x, u, A) n(x) --  (Sa~(x, u, A)) T An(x) .  (7.35) 

We observe first that, because T is tangential, 

(~A(x, u, A)) n(x) ~ O, 
so that 

~(x, u, A) . n(x) = ~(x, u, A).  (7.36) 

Secondly, differentiating ~5 with respect to tke third argument, we see that 

(Oa03 �9 b)) a ~- - - [ (a .  n) (0a~) b -- (b .  n) (Oa~) a] -- ((~2a~) [Fn | b]) a.  (7.37) 

On the right-hand side of (7.37), the addend within square brackets is obviously 
skew-symmetric with respect to the interchange of a and b, whereas the other 
addend is likewise skew-symmetric because T is simple and hence, by Proposi- 
tion 7.7, ~ obeys (7.1 I)1; consequently, b satisfies (7.30). 23 As g2 is by assumption 

2a It can be shown that the most general fi obeying (7.30) and (7.36) has the form 
fi(x, u, A) = ~(x, u, A)n(x) -- (ea~(x , u, g))  T An(x) + (c~(x, u) + A T C2(X , U)) X n($), 
with cx(x, u), c2(x, u) two arbitrary vector-valued mappings. 

Surface Interaction Potentials 375 

C2(~) is a null Lagrangian i f  and only i f  there is a smooth vector-valued 

(7.29) 
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of  class C a, ~ as in (7.35) can be extended to a class C 2 mapping over ~ • ~ • Lin; 
the direct assertion then follows by defining ~ as in (7.31). 

A proof  of the converse begins by constructing ~ from the vector-valued 
mapping 13 associated with a given null Lagrangian density ~ by Proposition 7.8: 

~(x, u, A) :---- ~(x, u, A) . n(x). (7.38) 

It remains to verify that such a ~ is both tangential and simple. But, ~ is tan- 
gential because, by (7.38) and (7.30), 

(dA)  n = (8~(~ . n ) ) .  = 0, 

so that (7.6) follows from appealing to Proposition 7.1; -~ is simple because, by 
(7.33) and (7.31), 

~F{]} [h] = f (SF~(x,J', F)) n .  h d (Srf) 

and thus the corresponding surface loading 

= --(SFq3) n 

depends only on first derivatives. [ ]  

7.3 Regular Potentials 

Let (9 denote the collection of  all domains 12 described under (ii) in the be- 
ginning of  Section 2; moreover, for 12 chosen in (9, let the mappings -~ (c~ = 1,2) 
define through use of  (6.1)-(6.3) a surface interaction potential density ~. 

O11 the singular part F of 812 the equilibrium condition (6.8) reads: 

(8iA:~(x, nl(x),f~~ V J(~ n2(x) § (dr~2(x, nz(x),f(~ Vz/(~ n~(x) =~ 0 
(7.39)~ 

at each extremum point ](o) E ~ of the underlying total energy functional, when 
(6.7) applies; otherwise, if _F is everywhere cuspidal, i.e., if n~ = --n2 on F, 
(7.39)1 is replaced by 

[Sr~l(x, nl(x),f(~ V J(~ + 8r:c2(x, --nl(x),  ](~ V2f(~ ] (t(x) • 

0 (7.39)2 

(cf. Remark 6.3). On the other hand, the companion equilibrium condition 
(6.6) prevailing on the regular part of 812 can be split into separate tangentiality 
conditions for the individual ~ :  

(Sr~(x, n(x), ](0), Vf(0)) n(x) ~ 0 on X~, ~ : 1, 2. (7.39)a 

Comparison with (7.39)3 suggests that we regard (7.39)1,2 as conditions of joint 
tangentiality on the pair (~t, ~2), prevailing at extrema. We may ask whether there 
are surface interactions such as to satisfy all conditions (7.39) identically in (9 
and ~ with ~71f~-V2f.  
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Just as the analogous question which led us to consider potentials with density 
of type (7.6) obeying condition (7.39)3 identically in ~ ,  this question is constitutive 
in nature. 

In order to answer it, we begin by noting, that, as far as condition (7.39) is 
concerned, the choice of an element f2 E r amounts to choice of  a class C 3 
closed simple curve f f  and two class C 2 normal fields n~ -~ n~(x) over/1. If  they 
have to satisfy (7,39) whatever / '  may be, the mappings 5~ cannot depend 
explicitly on the place x. We then introduce the following definition. 

7.10. Definition. A pair (51, 52) of class C 2 mappings 

5~ : 5a(1) x 3e" x Lin ---~ R, z = ~ ( u , v , A ) ,  c~---- 1,2, 

is jointly tangential if, for all (v, A)E ~/" x Lin fixed, the following two condi- 
tions hoM: 

Oa51(ul, v, A) u2 + Oa~2(u2, v, A ) u l  = 0 for all us, u2E~9~ (7.40)1 

#aS~(u, v, A) u ---- 0, or = 1, 2, for all u E ~9~ (7.40)3 

7.11. Proposition. I f  (51, 52) is a jointly tangential pair, then for both the asso- 
ciated membrane stresses OaS~ one and the same representation formula holds: 

9aSa(u, v, A) ~-- ~a52(u, v, A) = B(v, A) U (7.41) 

for all (u, v, A) E b~ x~V'xLin, with B a class C I mapping from ~//'x Lin into 
Lin, and U the skew tensor associated to u by (1.5). 

7.12. Remark. A straightforward, but important, consequence of  (7.41) is that 

~A~I(U, V, A) + ~a52(--u, v, A) = 0 for all u E b~ (7.40)2 

Thus, if (52.52) is jointly tangential and if, for each ~ in (9 and f E C2(~), we 
define the class C 2 tensor fields 

x ~ B(f(x),  Vf(x)) N~(x)t~vr , oc ----- 1, 2, (7.42) 

with N~,(x) the skew tensor associated to n~(x), then, as (7.40)i reflects the constitu- 
tive significance of (7.39)i for i ~-- 1, 2, 3 in the order, the fields (7.42) satisfy 
all conditions (7.39) identically in (9 and ~ .  [ ]  

Proof of Proposition 7.11. Let the variables (v, A) be fixed in ~//" x Lin (for con- 
venience, the arguments v, A will not be displayed in the following developments). 
As 5~ satisfies (7.40)3, we conclude from (1.11) in Proposition 1.1 that, for all 
u E ~e0) ,  

~AS~(U) ----/~(U) U, (7.43) 

with U the skew tensor associated to u by (1.5) and 

/~(u)  : =  --OaS~(u ) U. (7.44) 
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We then rewrite (7.40)1 a s  

Bl([ul  [-1 Ul) Ulu2+/~2([u21-1 u2) Ulu2 = 0, (7.45) 

this time for all u l ,  u2 E ~F ~. Differentiating (7.45) with respect to u l  and u2 
in the direction of h l  and h2,  iespectively, we have 

(e,~(Bl(t ul  l =1 u 0  Vl) [hal) h2 + (~,2(B2(I u2 [,1 Us) V2) [h2]) h i  : 0 

identically in u l ,  u2 and  hi ,  h2.  It follows that there exists a linear mapping B 
from Y/~ into Lin, with B depending at most on (v, A), such that 

(B[hl]) h~ :=  (~.,(~1(] ul  1-1 m )  Vl) [hl]) h~ 

: --(8,,~(/~2(I u2 [-1 u2) U2)[h2]) h i .  (7.46) 

Integrating (7.46)1 we obtain 

/~,([u 1 [-1 ul)  U1 ---- B[ul] -k C, (7.47) 

where C also depends at most on (v, A); but, by multiplication of (7.47) on the 
right by u l ,  we see that 

o = ( B [ u d )  ul + Cul, 

so  that, as u~ is here arbitrary, 

(B[hl]) h 2 = --(B([h2] ) h 1 for all h i ,  h2 E ~ ,  C = 0. (7.48) 

(7.43), (7.47) and (7.48) yield 

~a~(u)  = ~A~(u) = B[u] 

for all u E 5~ moreover, due to (7.48)1, the condition 

B[u] = B U  for all uE~V" 

uniquely determines the second-order tensor B in terms of B. 24 [ ]  

Proposition 7.11 indicates that the mappings ~1, ~2 cannot differ much from 
each other if ('~,, ~2) has to be a jointly tangential pair. Actually, an even more 
stringent result than (7.41) is valid. 

7.13. Proposition. I f  (~l, ~2) is a jointly tangential pair, then there are two class C 2 
mappings 

~3~ : 5a(1) • ~ -+ R, ~ -- ~(u ,  v) (7.49) 

such that the following representation formulae hold: 

~(u ,  v, A) -- ~,(u, v) = (b(v) | u ) -  A* + C(v) U" A, 0~ = 1, 2. (7.50) 

24 To detail the algebra, we note that, in view of (7.46)1, B can be repesented as 
B = b | IV, with b E ~V" and W E Skw, so that in turn B has the representation B = 
b | w, where w is of course the vector associated with W. 
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Proof. Recall that, in view of (7.41), the membrane stress 8a~,(u, v, A) depends 
linearly on u: 

8a~,(u, v, A) = B(r, A) U (7.51) 
for o~----1 or 2. 

Our first step is to prove that ~ is rank-one altine, i.e., that, for all (u, v, A) E 
6a(1) x~e" x Lin, 

c | d .  (~2~(u, v, a ) ) [ c  | d] ---- 0 (7.52) 

for all c, dEq/" (cf. (7.12)). We begin by noticing a consequence of (7.51): 

(~2a~(u , v, A)) [H] = 8A/}(V, A) [H] U for  all H E Lin, (7.53) 

and by writing 

c | d .  (Sza~(u , v, A)) [c | d] = c" (gAB(v, A) [c | d] U) d 

= --c | u .  (Oa/~(v, A) [c @ d] O) ---- --c | u "  82~(d, v, A) [c @ d], 

(7.54) 

where repeated use has been made of (7.53) and D is the skew tensor uniquely 
associated with d. We notice next that, as 8za~,(u, v, A) is symmetric, 

#2A~(U, V, A) [H] ---- 8a(Sa~,(u, v, A)" 1t) for all H E Lin, (7.55) 

so that in particular, for H ---- c | d, 

~za~,(u , v, A) [c @ d] = 8A(C " 8a$&(U, V, A) d).  (7.56) 

Combining then (7.54) and (7.56), and recalling tha t -~  is tangential: 

~a~, (u ,v ,A)  u = O  for all ( u , v , A ) E  Sa(1)x~t"xLin,  (7.57) 

we establish (7.52), as 

--c  | u . 8zany(d, v, A) [c | d] ---- --c | u " SA(C " Oa~,(U, V, A) el) = O. 

Our second step consists in adapting in the obvious way the argument in the 
proof of Proposition 7.7 to conclude that ~ ,  being rank-one affine and tangential 
(and being, moreover, homogeneous with associated membrane stress linear in u 
as (7.51) requires), must have the form 

~o,(u, v, A) = ~ ( u ,  v) + (~,(v) @ u) �9 A * / -  6~,(v) U . A ,  (7.58) 
with 

C~(v) U § ~aA*(A) [6~(v) | u] = B(v, A) U, or ---- 1, 2. (7.59) 

Finally, from (7.59) we deduce that, for each fixed v E ~//', 

[C~(v) -- C2(v)] U.  A + 2(~(v)  -- ~z(V)) | u .  A* = 0, (7.60) 

identically in u and A. 2s Exploiting the arbitrariness in the choice of A, we see 

25 To arrive at (7.60) we have made use of the fact, following from the symmetry 
of 0AA* , (1.18), (1.21) and (1.30), that 

eaa*[a] = 2A*. 
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with the use of (1.15) that (7.60) is equivalent to 

[Cl(v) -- C2(v)] U = 0 and (~(v)  -- ~2(v)) | u : 0 

identically in u, or rather, to 

Cl(v) : C2(v) and bl(v) : b2(v) for all v E ~//'. 

(7.58) and (7.61) together then yield the desired conclusion. [ ]  

(7.61) 

In the light of the above proposition we see that, given a jointly tangential 
pair (31, 32) and a domain /2 E (9, one can construct an associated homogeneous 
and tangential surface interaction potential T with density 

3 : 6e(1)• ~ = 3 ( u , v , A )  = ~(u,v) -5 (?.(v) @ u) .a*  Jr C(v) U .A ,  

by requiring that, for all J E  C2(~), 

~,(n(x),f(x))lx ~ : =  ~(n(x),f(x))lx~, ~ = 1, 2. (7.62) 

As such a T is simple, it is obvious from Proposition 7.9 that one can also con- 
struct a null Lagrangian 

F{f} : f ~(f,  F) d (Vol) (7.63) 
~2 

such that 
T { f } = F { f } +  f ~ ( n , J ) d ( S r f )  for a l l J E C a ( ~ ) .  (7.64) 

oo 
Conversely, given a null Lagrangian density ~ as in (7.63) and two mappings 

93~ : 5~ • ~ -+ R, ),~ = ~ ( u ,  v), 0c = 1, 2, (7.65) 

it is not difficult to construct a jointly tangential pair of mappings (~1, ~2) such 
that the homogeneous tangential potential T defined by (7.64) be regular with 
respect to (~1, 32). 

In this way, surface interactions obeying all conditions (7.39) identically in (9 
and N are characterized as those whose surface densities are specified by a jointly 
tangential pair of mappings, and an answer to our original question is thereby 
provided. Without great loss of generality, as Proposition 7.13 makes clear, we 
finally turn to consider interactions specified by one density mapping, rather than 
two. In this connection, we introduce a definition which parallels strictly Defini- 
tion 7.10. 

7.14. Definition. A class C 2 mapping 

3 : 60(1) x ~ x Lin --> R, z = 3(u, v, A), 

is regular /f, for all (v, A) E ~V" X Lin fixed, the following condition holds: 

8a3(ux, v, A) u2 q- ~a3(u2, v, A) u 1 : 0 for all ul ,  u2 E o~176 (7.66) 

7.15. Remark. 
reduces to 

Clearly, for 31 ~ 3 2  (7.40)1 reduces to (7.66); moreover, (7.40)3 

(Oa3(u, v, A)) u = 0 for all u E ~9~ (7.67) 
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and taking ul  = u2 = u in (7.66) we see that a regular ~ satisfies (7.67); finally, 
again as a consequence o f  the linearity of Oa~ (cfl Remark 7.12), we see that a 
regular ~ also satisfies 

~A~(U, V, A) + ~A~(--U, V, A) = 0 for all u E 5e(1), (7.68) 

which is the form presently taken by (7.40)2. [ ]  

In view of Proposition 7.13, a regular ~ admits the representation 

~(u, v, A) ---- 7~(u, v) q- (~(v) | u ) .  A* -t- C(v) U . A .  (7.69) 

For each Y2 C (9 fixed, we say that the homogeneous tangential potential 

T(f} = f ~(n, f ,  sF) d (Srf), (7.70) 
Or2 

with density ~ given by (7.69), is a regular surface interaction potential. Regular 
interactions can be regarded as a generalization of a pressure interaction on the 
entire boundary, whose density is (el  (5.5)1) 

~p(u, v, A) -= ~z(v) (v | u)" A*; (7.71) 

they are characterized by our last proposition. 

7.16 Proposition. A tangential potential T as in (7.70) is regular i f  and only i f  
there is a null Lagrangian F as in (7.63) and a mapping 

: ~e(1) •  -+ R ,  r = ~(u,  v) ,  

such that (7.64) holds. 

Proof. At this stage, it suffices to show how to construct the density q3 of F from 
the density ~ of T (and conversely). To this end, given ~ as in (7.69), for each 
f C ~  we write 

~(n,f,  F) --  ~(n, f )  = r F) .  n,  (7.72)1 
with 

13(f, F ) .  w : =  F*T~(I) �9 w -- FTd(J)  �9 W (7.72)2 

for all w E ~ and W the skew tensor associated with w. By virtue of divergence 
theorem, (7.72) yields 

~(f, F) : Div 13(y, F). (7.73) 

Moreover, it is not difficult to give ~ the canonical form of a null Lagrangian 
density [15], [16]: performing the differentiation indicated in (7.73) we obtain, 
with the use of  (4.6) and (5.9), 

~(f ,  F) = ~(]) det F + /)(f)  �9 F*,  
with 

8(1) :=  div ~(y), 3b(y) .  a | b :=  - -b-  curl (~(1) b) 

(7.74)1 

for all a, b E ~//'. I-7 

(7.74)2 
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