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Summary. We evaluated three methods for the analysis of 
functional response data by asking whether a given method 
could discriminate among functional responses and whether 
it could accurately identify regions of positive density-de- 
pendent predation. We evaluated comparative curve fitting 
with foraging models, linear least-squares analysis using the 
angular transformation, and logit analysis. Using data from 
nature and simulations, we found that the analyses of pre- 
dation rates with the angular transformation and logit anal- 
ysis were best at consistently determining the '" t rue" func- 
tional response, i.e. the model used to generate simulated 
data. These methods also produced the most accurate esti- 
mates of t he"  true" regions of density dependence. Of these 
two methods, functional response data best fulfill the as- 
sumptions of logit analysis. Angularly transformed preda- 
tion rates only approximate the assumptions of linear least- 
squares analysis for predation rates between 0.1 and 0.9. 
Lack-of-fit statistics can reveal inadequate fit of  a model 
to a data set where simple regression statistics might erron- 
eously suggest a good match. 

Key words: Curve fitting - Density dependence - Func- 
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The functional response describes the rate at which a preda- 
tor kills its prey relative to the density of that prey. When 
the number of  prey killed is plotted against the number 
of prey available, a continuum of patterns may emerge from 
which ecologists delimit three types. These curves may rep- 
resent an increasing linear relationship (type I), a decelerat- 
ing curve (type II), or a sigmoid relationship (type III). 
These result in a constant (I), decreasing (II), or increasing 
(over a limited range of prey densities) (III) rate of prey 
killing and yield density-independent, negatively density- 
dependent, and positively density-dependent prey mortality, 
respectively. Demographers often wish to identify predators 
that impose positively density-dependent mortality on their 
prey, because such mortality schedules can regulate prey 
populations (Murdoch and Oaten 1975). They usually at- 
tempt to do so by comparative curve fitting, examining 
whether a type-III curve best fits the observed functional 
response. 

Statistical analysis of  such data is not straightforward, 
and recently several papers have proposed new methods 
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(Livdahl and Stiven 1983; Juliano and Williams 1985; Wil- 
liams and Juliano 1985). These papers have focused on the 
analysis of the number of prey killed per unit time relative 
to the number of prey available. This focus stems from 
theoretical and historical motivations rather than statistical 
ones. We argue that this focus may not always allow a 
demographer to determine the most appropriate general 
type of functional response for a given body of data. 

Specifically, we argue that some popular methods of 
analyzing such data can inspire misleading conclusions. The 
predation event is a discrete one; the number of prey killed 
can only take integer values bounded by 0 and the number 
of prey available. A natural probability model to use for 
such a situation is the binomial. This model is appropriate 
as long as the predation events included in the sample were 
independent, i.e., could justifiably be described as a random 
sample of predation events from the population of infer- 
ence. Nonetheless, most methods that have been employed 
for analyzing functional response data do not account for 
the specialized nature of these data. 

Several problems can arise when a discrete, binomially 
distributed variable is analyzed as if it were continuous 
and normally distributed (Anderson et al. 1980; Cox 1970). 
These problems can accumulate quickly, causing biases in 
the fit of models to data and inefficiency in tests used to 
discriminate among competing models. In this paper we 
evaluate three methods of analyzing functional response 
data. We show how some of the methods suggest functional 
forms that, in reality, do not fit the data and how competing 
models of differently shaped functional responses cannot 
always be distinguished. We also illustrate how misleading 
conclusions about the shape of the true functional response 
can be readily drawn from a standard procedure. Our goal 
is to find how functional response data are best analyzed 
in order to identify the correct shape of a curve and to 
identify correctly the region of positively density-dependent 
prey mortality. Juliano and Williams (1987) compare meth- 
ods for estimating parameters of foraging models of func- 
tional responses, once the correct shape of the response 
has been identified. It is that process of initial identification 
with which we are concerned. 

Methods and results 

Fitting mechanistic foraging equations to real data 

A common practice for the analysis of functional response 
data is to choose two or more theoretical equations that 
arise from foraging theory and that describe a functional 
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response and to fit them directly to data. These equations 
describe the number  of  prey killed as a function of  the 
number  of  prey available and one or more deterministic 
parameters. The protocol of  this approach invokes parsi- 
mony in accepting the equation that has the fewest biologi- 
cal assumptions yet adequately fits the data (Hassell et al. 
1977; Akre and Johnson 1979; Livdahl and Stiven 1983). 

Two typical equations are Rogers 's  (1972) random pre- 
dator  model, which describes a type-II response, and Has- 
sell et al.'s (1977) type-III  model. Roger 's  model is: 

Nha = NIl - exp{ -- a ' ( T -  ThNaa)}] (1) 

where: 
N is the number of  prey available, 
Nh, is the number of  prey killed, 
a' is the instantaneous seaching rate (the area covered by 
a searching predator in a given amount  of  time), 
Th is the handling time (the time spent dealing with each 
prey item), and 
T is the total time spent searching in a patch of  prey. 

Hassell et al.'s (1977) model contains the same three param- 
eters but allows a' to be a function o f  prey abundance, 
a' = bN/(1 + cN). 
This model can be written as: 

Nh,=N(N--Nha)[c log{(N--Nh,)/N}--bThNh,+bT ] (2) 

Equations 1 and 2 are implicit formulae requiring iterative 
techniques for solution. 

We evaluated the efficiency of  this approach by fitting 
equations (1) and (2) along with four others to several data 
sets and comparing the results with the use of  lack-of-fit 
statistics. Lack-of-fit statistics document the extent of  bias 
in the residuals produced by comparison of  the predicted 
values to the actual values. If  the errors are normally and 
independently distributed, the lack-of-fit test yields an F 
statistic that, when significant, indicates that the model in 
question does not adequately fit the data (Draper and Smith 
1981). A non-significant result is evidence that the model 
fits the data well. Ordinarily, such a test would result in 
rejection of  those models yielding a significant " lack of  
fit" and subsequent analysis of  the residuals of  the models 
that were judged adequate to determine which of  the "ade-  
quate"  models fit best. With binomially distributed data, 
the lack-of-fit statistic will only have an approximate F 
distribution. However, as a descriptive statistic the F value 
is still valid; larger values indicate poorer  model fit. Our 
goal is to evaluate how well the model-fitting method can 
distinguish among competing mechanistic models, not  to 
investigate the usefulness of  particular models per se. 

A common  practice in this protocol is to force the func- 
tional response equation through the origin (Akre and 
Johnson 1979). This practice is motivated by the observa- 
tion that, at zero prey available, no prey can be killed. 
However, in some cases the observed x intercept may be 
greater than zero (i.e. the y intercept is below the origin; 
see Fig. 3 of  van Lenteren and Bakker 1976). The biased 
predicted values that result from forcing an equation 
through the origin in this situation could lead to the unnec- 
essary rejection of  a model by the lack-of-fit statistic 
(Draper and Smith 1981, p. 112). We have not forced our 
curves through the origin unless required to do so in order 
to obtain a solution to a particular equation. 

We have analyzed four previously published data sets 
(Table 1 ; Fig. 1). In one case (Plea atomaria) only the mean 

Table l. Results from lack-of-fit analysis of models predicted by 
equations 1 through 6 to fit data sets taken from literature sources. 
Asterisk indicates that the iterative procedure failed to converge. 
F-literature are results of fitting parameter estimates (when avail- 
able from published sources, F-iteration are results from interative 
solutions 

Data Set Equa- F-liter- F-iter- df 
tion ature ation 

Aphelinus thomsoni preying 
on Drephanosiphus platanoidas 
(constant-time expt.): 
Collins et al. 1981 

Aphelinus thomsoni preying 
on Drephanosiphus platanoidas 
(variable-time expt.) 
Collins et al. 1981 

Plea atomaria preying 
on Aedes aegypti: 
Hassell et al. 1977 

Notonecta glauca preying 
on Asellus aquaticus : 
Hassell et al. 1977 

1 0.6 0.5 5,133 
2 0.8 0.3 4,133 
3 4.4 6,133 
4 1.2 6,133 
5 0.14 4,133 
6 0.08 4,133 

1 0.9 5,133 
2 0.8 4,133 
3 7.3 6,133 
4 1.2 6,133 
5 0.7 4,133 
6 0.7 4,133 

1 5.9 4.5 7,81 
2 18.7 * 6,81 
3 37.4 8,81 
4 5.8 8,81 
5 3.3 6,81 
6 2.3 6,81 

1 1.3 9,78 
2 1.0 8,78 
3 5.3 10,78 
4 ,6.2 10,78 
5 1.9 8,78 
6 1.1 8,78 

values of  the number of  prey killed were available, so we 
simulated the raw data by generating ten normally distrib- 
uted replicates at each prey density with a mean equivalent 
to the mean number of  prey killed at that density and a 
coefficient of  variation (cv) at that level equal to 20% of 
that mean. Our literature review revealed cv values from 
18% to 165%, with most  data sets ranging from 30% to 
90%. Our use of  a 20% value is conservative. In two cases 
(Aphelinus thomsoni) the observed standard errors were 
available and were used. In each of  these cases, sample 
sizes from 10 to 20 were apparently used at different levels 
of  number of  prey available. However, the specific samples 
sizes for each level were not given, so we used the largest 
sample sizes cited to simulate the raw data. In a fourth 
case (Notonecta glauca) the raw data were shared with us. 

We used the two mechanistic models formulated by 
Rogers (1972) and Hassell et al. (1977) (equations 1 and 
2 respectively) and four mathematical functions with no 
particular theoretical interpretation. These functions are: 

Nh, = NIl - -exp(--P1}]  

N~. = NIl - e x p { -  edN}] 

Nha = e l  e x p [ -  P2 exp{ -- P3N}] 

Nha = P1/[1 + P2 exp{ -- P3N}] 

(3) 
(4) 

(5) 

(6) 

where P1, P2, and P3 are parameters to be estimated. Equa- 
tion 3 generates type-I curves (Nicholson and Bailey 1935), 
and equation 4 produces type-II curves (Thompson 1924). 
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Fig. l A D .  Plots of raw data taken from published sources: A Collins et al. 1981, A. thomsoni constant-time experiment; B Collins 
et al. 1981, A. thomsoni variable-time experiment; C Hassell et al. 1977, N. glauca; D Hassell et al. 1977, P. atomaria. Closed circles 
indicate single points. Open circles indicate two overlapping points, open triangles three, and open squares four. Numbers  are plotted 
for respectively higher numbers of overlapping points 

Equation 5 is the Gompertz equation and produces a family 
of sigmoid curves that resemble type-III foraging. Equation 
6 is the logistic equation, which can also produce sigmoid 
curves. For equations 5 and 6 P1 is the asymptote, P2 deter- 
mines the position of the curve along the x axis, and P3 
determines the rate of approach of the curves to the asymp- 
tote (Draper and Smith 1981). The logistic curve has its 
inflection point fixed at the midpoint of the curve. The 
Gompertz curve, like equation 2, does not have a fixed 
midpoint. Thus the Gompertz curve should be the more 
flexible of our type-III "empirical" curves. 

The rationale for fitting these equations was to vary 
shape and number of parameters for competing descriptions 
of data. I f  two models with different shapes fit a data set, 
then the model-fitting method is not statistically powerful 
enough to determine the correct shape of the functional 
response. We use equations 5 and 6 in this context to pre- 
clude the possibility that we cannot distinguish among difo 

ferent shapes solely because of our choice of any one partic- 
ular model for a sigmoid shape. Our six equations also 
vary in the number of  parameters they contain. Equations 
3 and 4 are one-parameter models. Equation 1 has two 
parameters, and equations 2, 5, and 6 contain three parame- 
ters. We consider T in equations I and 2 as a constant. 
Comparing the success of one-, two-, and three-parameter 
models allowed us to evaluate further the power of  this 
method. I f  relatively higher-order models inevitably give 
a better fit to functional response data, regardless of  shape, 
then the reliability of  the curve-fitting approach is question- 
able. A three-parameter model will yield a better fit than 
a one- or two-parameter model by chance alone (Draper 
and Smith 1981). I f  one cannot objectively choose a sig- 
mold-shaped model over a type-II shape, then one cannot 
objectively say on the basis of the functional response alone 
that the predator has the ability to regulate the prey. 

We employed a n  iterative least-squares method 
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(BMDPAR: Dixon and Brown 1979) to estimate the pa- 
rameters that gave the best fit for each model to each data 
set. We set initial values for parameters from either the 
source of the data or from reasonable guesses. We set initial 
values for all but one parameter and solved for that remain- 
ing one. We ran each model with at least two sets of initial 
values to find the global minimum solution. In two cases 
we used published parameter values to fit our simulated 
versions of the original data and to compute lack-of-fit 
statistics in order to examine how precisely we reconstruct- 
ed the original data. 

The performance of the various models we fit to actual 
data sets is erratic (Table 1). Although the data on N. glauca 
can be adequately described by four models (F-values below 
2), the data on P. atomaria is not adequately fit by any 
model. The data on P. atomaria is, on the whole, not fit 
as well as the data on N. glauca (compare F-values). The 
A. thomsoni constant-time experiment data yield quite low 
lack-of-fit statistics for five of six models, and the variable 
time experiments are well fit by four of six models. Pub- 
lished parameter estimates yield fits close to those obtained 
by the iterative solution method, suggesting that we have 
adequately reconstituted the original data structure. 

Such differences among data sets in the capacity to be 
fit by a unique model, or any model, may be based in 
differences in the relative amount of variance in number 
of prey killed (y). The greater the variance in y, the less 
power we will have to distinguish among competing models. 
The lower the variance in y, the more likely we are to reject 
particular models. These principles are illustrated in our 
results: four models fit the N. glauca data adequately, 
whereas no models fit the P. atomaria data adequately. 
The coefficients of variation in y at the various numbers 
of prey available (x) range from 32% to 77% in the N. 
glauca data, 53% to 165% for the A. thomsoni constant- 
time experiment, and 31% to 138% for the A. thomsoni 
variable-time experiment, but are only 20% of the mean 
in the P. atomaria data. 

For none of our data sets could we arrive at an unambi- 
guous, objective choice of a model. The P. atomaria data, 
as we have simulated them, have a high "signal-to-noise 
ratio," suggesting that, had a clearly appropriate model 
been among those tested, we should have been able to re- 
cognize it. However, our conclusion in this case must be 
tempered by the fact that we imposed an arbitrary variance 
structure on the data that was conducive to rejecting inap- 
propriate models. Other reconstructions could have differ- 
ent variance structures (within-level or "pure error" vs a 
lack-of-fit component) that might permit a choice of model. 
Each of the other three data sets, "noisier" than our version 
of the P. atomaria data, were fit well by several models, 
precluding an objective choice. Thus the model-fitting ap- 
proach was unable to help us discriminate objectively 
among functional response types and was thus inadequate 
for deciding whether predators could regulate prey. 

Fitting mechan&tic foraging equations to simulated data 

Would better data, with less variation or with a simple 
pattern of variation, allow more accurate discrimination 
of competing descriptions of functional responses, or is the 
protocol itself really inadequate? The " t rue"  functional re- 
sponse of data from nature can never be determined beyond 
doubt. We simulated data from predetermined functional 

responses to evaluate whether the model-fitting method can 
discriminate accurately among response curves and predict 
correctly the positively density-dependent regions. If  we can 
succeed with simulations where we could not with real data, 
then the problem lies in the way experiments are designed. 
If we fail with simulations, then the problem of discrimina- 
tion is certainly based in the protocol. 

We generated three pairs of functional responses, la- 
belled pairs A, B, and C (Fig. 2). One member of each 
pair was a type-II curve in which the " t rue"  number killed 
was generated with equation 1. The other member was a 
type-III curve in which the"  true" number killed was gener- 
ated with equation 2. We used parameter values for these 
models from Hassell et al. (1977, their Table 7) and set them 
to be as similar as possible for the members of each pair 
so that we had three pairs of functional response curves 
whose two members differed only in shape. Differences 
among the three pairs of curves reflected different parame- 
ter values. The three pairs were constructed to differ in 
the rate at which they approach the asymptote and in the 
height of that asymptote. As a result, the three pairs display, 
in general, different killing rates. Pair B curves show ex- 
tremely low killing rates, pair A curves show intermediate 
rates, and pair C curves show very high killing rates. Those 
curves identified as "2"  are all decelerating curves (type 
II), and " 3 "  are sigmoid curves (type III). The " 2 "  and 
" 3 "  versions of each curve (A, B, or C) are similar with 
regard to the rate at which they approach the asymptote 
and the height of the asymptote. We constructed the simu- 
lated data sets by generating ten normally distributed repli- 
cates whose mean equalled the value of the true functional 
response at each of several levels of prey abundance (9-11 
levels were used). The coefficient of variation of the number 
of prey killed was set at approximately 20% at all levels 
of prey abundance. 

We fit equations 3-6 to these six simulated data sets 
using the iterative-solution method. This procedure is the 
same as our previous analyses of real data, except that here 
we know the correct shape of the functional response. Thus 
we can evaluate the accuracy and precision of the iterative 
method visa vis curve shape. In addition, we "re-fit" equa- 
tion 1 to the data generated from equation I and "re-fit" 
equation 2 to the data generated from equation 2, using 
the usual iterative method. We compared the lack-of-fit 
statistics and parameter estimates from the "re-fitting" to 
the lack-of-fit statistics calculated from the true predicted 
values and the true parameters themselves. This procedure 
calibrated the accuracy of the model-fitting method visa 
vis alternative models of the same shape. 

The performance of our models with our simulated data 
was erratic (Table 2). Curves A2, A3, B2, and B3 were ade- 
quately described by both Gompertz and logistic equations 
(5 and 6 respectively). Thus the type-II and type-III versions 
of curves A and B are both fit well by the sigmoid, higher- 
order ad hoc equations. This result is not surprising because 
the extra parameter in these equations allows increased flex- 
ibility. For curves A3 and B3, the generating equation (2) 
fit as well as the two ad hoc equations with the same 
numbers of parameters. I f  these were real data, and our 
three equations all mechanistic foraging models, we would 
not be able to choose among them objectively. For curve 
A2, the generating equation has two parameters, yet it fits 
the data as well as or better than the three-parameter ad 
hoc models. This result represents a success for the curve- 
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fitting approach.  The si tuat ion is reversed for curve B2; 
the generating equat ion fits worse than ad hoc models.  Only 
the generating equat ion fit curve C2, another  success for 
the approach.  Curve C3 was fit well by its generating equa- 
tion (2) and by  equations 3 and 6. Equat ion  6 fit less well 

than equations 2 and 3 ; if  we consider pars imony impor tan t  
we might  choose equat ion 3 as the " c o r r e c t "  model  because 
it fits a lmost  as well with one paramete r  as equat ion 2 
does with three parameters .  A strict curve-fit t ing approach  
would thus fail here. 
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Table 2. Results from lack-of-fit analysis of true functional re- 
sponses, fit predicted by models used to generate data sets, and 
equations 3 through 6 to data sets generated by simulation. F-true 
are data for fit of true functional response, and F-iteration are 
results of iterative parameter estimation for indicated models 

Data Set Equation F-true F-iteration df 

A2 1 1.2 1.2 9,99 
3 41.9 10,99 
4 20.2 10,99 
5 1.1 8,99 
6 1.3 8,99 

A3 2 1.2 1.0 8,99 
3 10.3 10,99 
4 12.3 10,99 
5 1.5 8,99 
6 1.3 8,99 

B2 1 6.4 6.4 7,81 
3 9.1 8,81 
4 42.5 8,81 
5 0.8 6,81 
6 0.6 6,81 

B3 2 2.4 1.8 6,81 
3 9.1 8,81 
4 42.9 8,81 
5 1.6 6,81 
6 1.0 6,81 

C2 1 1.5 0.4 9,99 
3 5.8 10,99 
4 2.4 10,99 
5 3.5 8,99 
6 2.3 8,99 

C3 2 0.8 0.5 8,99 
3 0.9 10,99 
4 11.4 10,99 
5 2.8 8,99 
6 1.4 8,99 

These results illustrate the potential inadequacies of the 
curve-fitting approach for distinguishing among competing 
models. In the two cases that represented moderate to high 
killing rates and a type-II curve (A2 and C2), the curve- 
fitting approach performed as one would hope, distinguish- 
ing the "correct" model from all others. In the two cases 
that represented very low to moderate killing rates with 
a type-III curve (B3 and A3), the curve-fitting method 
found the correct shape but did not allow an objective 
choice to be made among three similarly shaped descriptors. 
In the difficult case of very low killing rates and a type-II 
response (B2), only the incorrectly shaped curves appear 
to fit well. This data set displayed a positive x intercept; 
our stochastic realization of this curve "killed" no prey 
at the lowest densities, and the left-hand tail of a sigmoid 
curve fits this pattern very well. This observation (positive 
x intercept) also explains the unlikely-appearing lack-of-fit 
values for the generating equation. On the whole, this exam- 
ple illustrates the problems for the curve-fitting approach 
that can be produced by a binomial random variable 
(number killed) when the probability of success is very 
small. This situation will arise often in experiments designed 
explicitly to minimize the level of exploitation during a trial 
(e.g. Akre and Johnson 1979). In the other difficult case 
(C3), that of high killing and a type-III response, different 
shapes fit equally well, and parsimony might have led us 

to choose the incorrect shape. This example illustrates in 
some sense the problem that is the converse of that of B2. 
In case C3, the high killing rates, along with the variance- 
mean dependence, produce such a scatter at the high densi- 
ties that the curve-fitting approach loses power to distin- 
guish among shapes. Increased sample sizes at each level 
might have enhanced our power; alternatively, our 110 
"trials" in this case (11 levels of prey density x 10 replicates 
per level) represent the upper end of what can usually be 
accomplished in a real experiment. 

The simulation results show that our inability to fit the 
P. atomaria data with any equation was not due only to 
a low cv or the problem of our inability to pinpoint a 
pure error term. Four of our six simulated data sets were 
fit by three equations, despite having cv's similar to that 
of the P. atomaria data. The low cv values increase our 
ability to detect a significant lack of fit (Draper and Smith 
1981) and should allow us greater power to discard an inap- 
propriate model. If  we had used higher cv values, we would 
have had to accept more models as fitting adequately, and 
consequently have been unable to choose among them ob- 
jectively. If the model-fitting approach is inadequate for 
distinguishing among models of very different shapes at 
low cv values (equations 2, 3, and 6 with curve C3), it 
will be grossly inadequate at the higher values more typical 
of real data. It seems clear that the curve-fitting approach 
will be inadequate for many types of data sets that are 
encountered. 

Those equations that adequately fit our 6 artificial data 
sets did not necessarily predict correctly the range and loca- 
tion of the regions of prey density in which the predation 
rate is positively density-dependent (Table 3). No equation 
predicted the narrow positive density-dependence mani- 
fested in the"  observed data" in data set A2. The Gompertz 
model came the closest to predicting correctly the density- 
dependent regions and did so perfectly in one of the three 
cases, curve B3 (Table 3). In the remaining two cases, how- 
ever, it underestimated the range of the density-dependent 
region. Because the actual observations were generated by 
Monte Carlo methods, the observed average proportions 
killed often deviate from the " t rue"  functional response. 
The inaccuracies in predicting the density-dependent region 
do not necessarily correspond with instances where, by 
chance, the " t rue"  and observed density-dependent regions 
do not correspond (Table 3: curves A2, A3, B2). 

Analysis of predation rate 

Predation rate is the ratio of number of prey killed per 
unit time to number available. The slope of the predation 
rate relative to prey abundance can be used to discriminate 
among the three functional response types. A positive slope 
observed over any range of prey abundances is indicative 
of positive density-dependent prey killing, no slope indi- 
cates type-I responses, and a negative slope type-IL More 
critically, the predicted values from a regression analysis 
of predation rate would reveal immediately the regions of 
positive density-dependent predation without recourse to 
diagnosis of curve shape. 

There is no real danger with a ratio correlation per se. 
The danger in some situations lies in improperly interpret- 
ing a ratio correlation as due to some biological mechanism 
rather than due to independence. In our case independence 
of number of prey killed and number of prey available 
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Table 3. The "true", observed, and predicted proportions of prey 
killed relative to number of prey available for simulated data. Pre- 
dicted proportions reported for all models yielding adequate fit 
of data. Asterisks mark density-dependent portions of curves 

Number "True" Ob- 
avail- served 
able 

Models 

Logistic Gom- Logit Angular 
pertz anal- trans- 

ysis form 

Curve A2 

5 0.340 0.260* 0.402 0.369 0.392 0.334 
7 0.321 0.329* 0.323 0.311 0.343 0.301 

10 0.297 0.320 0.270 0.270 0.295 0.270 
15 0.262 0.260 0.231 0.238 0.245 0.234 
20 0.234 0.200 0.214 0.220 0.214 0.210 
25 0.211 0,196 0.203 0.206 0.191 0.192 
30 0.192 0.197 0.193 0.193 0.174 0.177 
45 0.150 0.151 0.160 0.157 0.141 0.148 
60 0.123 0.135 0.129 0.127 0.121 0.127 
80 0.099 0.099 0.099 0.099 0.103 0.108 

100 0.083 0.079 0.080 0.080 0.091 0.095 

Curve A3 

5 0.298* 0.300* 0.428 0.377 0.349* 0.316" 
7 0.345* 0.329* 0.387 0.375* 0.374* 0.35l* 

10 0.381" 0.430* 0.371 0.382* 0.381" 0.367* 
15 0.385* 0.387 0.371 0.381 0.367 0.364 
20 0.358 0.380 0.361 0.359 0.341 0.347 
25 0.322 0.324 0.334 0.327 0.314 0.326 
30 0.287 0.267 0.299 0.293 0.288 0.301 
45 0.209 0.200 0.212 0.212 0.222 0.237 
60 0.161 0.163 0.160 0.161 0.172 0.181 
80 0.123 0.134 0.120 0.121 0.126 0.123 

100 0.099 0.097 0.096 0.097 0.094 0.080 

Curve B2 

5 0.045 0.000 0.005* 0.001" 0.004* 0.000" 
7 0.044 0.000" 0.008* 0.006* 0.011" 0.002* 

10 0.043 0.020* 0.020* 0.024* 0.021" 0.013" 
15 0.040 0.053* 0.051" 0.048* 0.035* 0.028* 
20 0.038 0.050 0.054* 0.051" 0.042* 0.035* 
25 0.036 0.040 0.045 0.045 0.043* 0.038* 
30 0.034 0.033 0.038 0.039 0.042 0.039* 
45 0.030 0.024 0.025 0.026 0.031 0.031 
60 0.026 0.025 0.019 0.020 0.020 0.022 

Curve B3 
5 0.044* 0.000" 0.065 0.040* 0.016" 0.000" 
7 0.058* 0.014" 0.061" 0.049* 0.032* 0.012" 

10 0.072* 0.090* 0.064* 0.063* 0.055* 0.044* 
15 0.084* 0.087 (*) 0.075* 0.081" 0.081" 0.079* 
20 0,086* 0.095* 0.085* 0.089* 0.091" 0.093* 
25 0.084 0.080 0.089* 0.089 0.092* 0.096* 
30 0.079 0.080 0.086 0.084 0.088 0.092 
45 0.063 0.071 0.065 0.065 0.067 0.068 
60 0.050 0.048 0.049 0.050 0.048 0.042 

Curve C3 

5 0.313" 0.260* 0,638 0.721 0.243* 0.243* 
7 0.381" 0.343* 0.638 0.615 0.343* 0.349* 

10 0.455* 0.460* 0.638 0.551 0.447* 0.453* 
15 0.535* 0.533* 0.638 0.528* 0.543* 0.547* 
20 0.586* 0.575* 0.638 0.541" 0.595* 0.597* 
25 0.620* 0.612" 0.638 0.566* 0.624* 0.628* 
30 0.643* 0.637* 0.638 0.594* 0.642* 0.646* 
45 0.678* 0.680* 0.638 0.661" 0.662* 0.668* 
60 0.683* 0.693* 0.638 0.686* 0.661 0.669* 
80 0.665 0.606 0.638 0.665 0.647 0.658 

100 0.630 0.639 0.638 0.611 0.627 0.641 

would induce a negative correlat ion o f  predat ion  rate with 
prey density, analogous to a case of  negative al lometry in 
morphometr ics  (Mosimann and James 1979). This result 
could also be proper ly  (and perhaps  impor tant ly)  inter- 
preted as a negative density dependence (al though we recog- 
nize that  this is not  the meaning used by biologists in this 
context). The problem would arise only if  the negative den- 
sity dependence were considered to be due to some causal 
factor  other  than the independence of  number  killed and 
number  available. To continue our  morphomet r ic  analogy,  
positive density dependence is akin to positive al lometry,  
and ra t io-corre la t ion methods  are quite powerful  for detect- 
ing this pa t te rn  (Mosimann and James 1979). 

The preda t ion  rate (p) can be analyzed as a function 
of  prey density using weighted regression analysis of  angu- 

larly t ransformed values (arcsin l /p) .  This technique is not  
effective over all ranges of predat ion  rates and densities. 
The angular  t ransformat ion  approximates  the binomial ly 
distr ibuted variance of  a discrete variable as 1/(4n). The 
true binomial  variance is given by p(1-p)/n. Thus the angu- 
lar t ransformat ion  is effective when n is large (Cox 1970). 
When  n is small, the approx imat ion  overestimates the vari- 
ance; the severity of  the problem increases as p deviates 
from 0.5. F o r  example,  n =  5 yields a variance estimate of  
0.05 for the angular  t ransformat ion,  whereas the true value 
ranges f rom 0.018 to 0.05 as p goes from 0.1 to 0.5. The 
angular  t ransformat ion  also loses informat ion at  extreme 
values o f p  ( P < 0 . 1 0  or  P > 0 . 9 0 )  (Cox 1970). 

The most  desirable method  o f  analysis should behave 
similarly at  all levels of  predat ion  rate and prey density. 
Logit  analysis is a statistical technique formula ted  for the 
analysis of  the relat ionship between a d ichotomous  depen- 
dent  variable and a cont inuous independent  variable.  I t  
uses the logit t ransformat ion to expand the range of  poten-  
tial values taken by the dependent  variable from a range 
of  0 to 1 to a range of  - oo to + oe and provides an exact 
est imate o f  the binomial  variance. It does not  lose informa-  
t ion at  extreme values of  p. Thus, it  is appropr ia te  for all 
values of  p and n. The statistical model  employed by logit 
analysis is: 

where p is the p ropor t ion  of  available prey killed. This 
model  may  be fitted to da ta  with maximum likel ihood tech- 
niques ( B M D P L R ,  Dixon and Brown 1979, and SPSS X, 
Nie 1983, include this method)  and evaluated with a valid 
lack-of-fit  test. An  alternative method for the use of  this 
model,  called empirical  logistic regression, is to use logit- 
t ransformed values of  predat ion  rate as the dependent  vari- 
able in weighted least-squares regression on prey density. 
The logit t ransform is: 

where Rj is the number  of  prey killed at  the j th  level of  
prey available (Nj). The weights are NJ(Rj (Nj-R~)). Empir-  
ical logistic regression requires repeated observations at  
each level of  the independent  variable. Where  Rj is 0 or 
Nj, the logit t ransform must  be modif ied to (Snedecor and 
Cochran  1980: 429): 

[ Rj+  q 
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and used with weights: 
Nj+I 

(Rj +�89 (Nj - Rj +~)" 

When many zeros are present, this transformation can lead 
to incorrect conclusions and it is wise to use a maximum 
likelihood method instead of a weighted least-squares re- 
gression. 

We used the BMDPLR package to analyze our simu- 
lated data sets (curves A, B, and C) with the logit regression 
model via maximum likelihood. In this procedure, we used 
logit-transformed predation rates as the dependent variable 
and the log-transformed prey density as the independent 
variable. We began with a model whose highest-order term 
was the log of prey density cubed and used backward elimi- 
nation of the highest order term until the lack-of-fit statistic 
became significant. We then selected the model with the 
fewest terms that gave a non-significant lack-of-fit chi- 
square statistic. This procedure invokes parsimony to de- 
cide among competing models that fit the data and general- 
ly results in selecting the "worst  fit" of all models that 
"do  fit" (because higher-order models tend to fit better 
than lower-order models). We used a similar procedure with 
angularly transformed predation rates for comparison. In 
this case we employed lack-of-fit F tests. The flexibility 
of these statistical models ensures that one can almost al- 
ways get an adequate fit. One can evaluate their perfor- 
mance by examining whether they predict correctly the re- 
gions (if any) of positively density-dependent mortality. 

The statistical models using the angular transformation 
and logit analysis gave similar predictions (Table 3). This 
result was not unexpected; the proportion of prey killed 
was generally between 0.1 and 0.9 for data sets A and C. 
In two cases (A3 and C3), the density-dependent regions 
and predicted values estimated by the logit analysis corre- 
spond to the " t rue"  functional responses as well as or better 
than the predictions derived from the subset of equations 
3-6 that actually fit the data (Table 3). In one case (B3), 
the Gompertz equation performed best. In data set A3, 
the logit's prediction missed the "tlnae" range by one level 
of the independent variable; however, the observed average 
predation rate also declined at this point and the logit's 
prediction matches the observed region of density depen- 
dence perfectly. In data sets B3 and C3, the logit's predic- 
tions also missed the " t rue"  and "observed" ranges by 
one level of  the independent variable, but its incorrect pre- 
dictions are only tenths of a percentage point in the wrong 
direction. 

The logit and the angular transform did a poor job 
of predicting predation rates for curve B2, in which " t rue"  
predation rates were very low. The "incorrectly shaped" 
Gompertz equation performed well on this curve. This para- 
dox arises because the "observed"  values display a positive 
x intercept (Fig. 2). The Gompertz model passes through 
the origin, and its left-handed tail provides a good mimicry 
of the zero predation rates at low densities. Had we 
"shif ted" the start of our Gompertz model to the x inter- 
cept of the data, the fit would have been very poor, and 
the logit and angular transforms would have out-performed 
the Gompertz. 

Discussion 

We have tried to show that curve-fitting methods can per- 
form poorly on some kinds of functional response data. 

By "perform poorly" we mean that one often cannot use 
these methods to distinguish among competing models of 
similar shapes, and one can inadvertently select an incorrect 
shape for some data. Although it may appear amusing to 
be unable to choose between a legitimate theoretical model 
(equation 2) and a "nonsense equation" (equation 3), it 
is by no means amusing to be unable to distinguish between 
competing legitimate models of different shapes. I f  one 
wishes to identify a predator or parasitoid that can regulate 
a prey population, one wants to be able to recognize posi- 
tive density dependence when it occurs. We argue that logit 
analysis of predation rate using maximum likelihood is the 
best way to do so. This method performs reliably, especially 
at lower levels of  prey density (Cox 1970), and does not 
depend on any particular foraging model. Logit analysis 
should be used as the primary tool for diagnosing a func- 
tional response possessing a region of positively density- 
dependent prey mortality. Retention of a quadratic term 
in the regression (log prey density squared) could be used 
as the diagnostic for distinguishing between type-II and 
type-III shapes if an investigator wishes to use that termi- 
nology. 

Although our results were equivocal concerning the su- 
periority of  logit analysis over least-squares with the angu- 
lar transform, we suggest that logit analysis will be a superi- 
or method. Functional response data meet the assumptions 
of logit analysis more closely than least-squares analysis 
with the angular transform. Although we did not generate 
data for which incorrect results were obtained by use of 
the angular transformation, functional response experi- 
ments frequently generate predation rates on the order of  
10% (Murdoch and Oaten 1975), a region in which the 
angular transformation loses its effectiveness, especially at 
lower prey densities. 

We did not use either weighted least squares or a maxi- 
mum-likelihood method of curve-fitting to fit each model 
to each data set. The heteroscedasticity of nearly all func- 
tional response data violates assumptions of least-squares 
analysis and would seem to require one of these two alterna- 
tive approaches. These methods are not generally employed 
in practice (see list of studies in Juliano and Williams 1987). 
We argue that logistic regression is best suited statistically 
to functional response data, is easy to use, and performs 
at least as well as the methods currently in use. Thus we 
evaluated the performance of curve-fitting methods as they 
are commonly used. It is possible that non-linear maximum- 
likelihood methods or the use of  weighted non-finear least 
squares would cause the curve-fitting method to perform 
more accurately. We suspect that they will not outperform 
the logit method consistently, and the simplicity of the logit 
method relative to the others favors its use. 

Our results suggest that very high levels of replication 
may be necessary in situations in which observed killing 
rates are less than 10%. In data set B2 the observed killing 
rate increased over a range of prey densities when the 
" t rue"  rate did not. This result arose because the " t rue"  
killing rate was very low, and at low prey abundances (e.g. 
5), the number of prey killed was usually zero. As the abun- 
dance of prey increased, the probability of a predation event 
did not change, but the increased number of " tr ials"  (po- 
tential prey) produced an increase in t he"  observed" killing 
rate. Stochastic effects produced a predation refuge at low 
prey abundance and density-dependent predation at higher 
abundances. High levels of replication will be necessary in 
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such instances in order to diagnose the correct functional 
response. Even those models that fit these data yielded poor 
predictions; in addition, the supposed "good f i t"  of the 
Gompertz  model in such a case (B2) shows how misinfor- 
mative simple curve-fitting techniques can be. 
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