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Self-Gravitating Relativistic Fluids." 
The Formation of a Free Phase Boundary 
in the Phase Transition from Soft to Hard 

DEMETRIOS CHRISTODOULOU 

Communicated by C. DAFERMOS 

1. The Existence Theorem 

In [I] I introduced a relativistic fluid model with two phases, a soft phase, 
which holds when the density of mass-energy p is below a certain constant Po and 
in which the sound speed is zero, and a hard phase, which holds when p is above Po 
and in which the sound speed is equal to the speed of light. The model is of 
relevance in the study of the gravitational collapse of the degenerate cores of 
massive stars, the associated supernova explosions and the formation of neutron 
stars and black holes. The soft phase corresponds to degenerate stellar matter 
below nuclear density while the hard phase corresponds to homogeneous nuclear 
matter at supranuclear densities. The constant P0, which by an appropriate choice 
of units we set equal to unity, corresponds to the nuclear saturation density (see 
Section 2 of [I]). 

In [I] I began the study of the dynamics of the model in the spherically 
symmetric case. The problem then reduces to one on a 2-dimensional quotient 
space-time manifold Q. Starting with initial conditions which correspond entirely 
to the soft phase, we showed that predictions based solely on the soft phase break 
down beyond an achronal boundary ~J+(2(),  consisting of smooth spacelike 
segments Zi along which p = 1 and which form the spacelike part of the phase 
boundary, joined by pairs C~ +, C~-+ 1 of outgoing and incoming null segments (see 
Section 5 of [-I]). The end points N[  and N~- of the spacelike segment Zi at which 
E~ turns null, and which are, at the same time, the past end points of the null 
segments C~ + and C7+ 1 respectively, we called boundary null points. The data 
induced by the soft phase along the spacelike segments Zi, provide the initial 
conditions for a subsequent hard phase, determined in ~ § (s the future domain 
of dependence of Z~. In Section 6 of I-I], we studied the associated hard-phase 
Cauchy problem in the large and analyzed the behavior near the null points, which, 
as we showed, are analogous to the branch points of minimal surface theory. 

In J i l l  I began the investigation of the problem of extending the solution into 
the causal future of the boundary null points N~ +, N~-. I formulated the problems 
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of the formation and the continuation a free phase boundary and, after considering 
first the case of a vacuum free boundary I solved the continuation problem in 
general. I then turned to more global aspects of the free-boundary problem, in 
particular to the study of how a free phase boundary terminates. This led to the 
consideration of four cases, the last of which was proved to be non-generic, while 
the first corresponds to a spacelike transition from hard to soft with a null end 
point lying on the boundary of the causal past of the point of termination, the 
second case corresponds to a point of intersection with a spacelike transition from 
soft to hard, from which point the discontinuity propagates in the hard phase as 
a null shock, and the third case which corresponds to a point of intersection with 
a spacelike transition from hard to soft, from which point the discontinuity 
propagates as a contact discontinuity in the soft phase. 

In the present paper we shall solve the problem of formation of a free phase 
boundary in the phase transition from soft to hard, formulated in Section 1 of [II] .  
We recall the domain ~ defined by the soft phase solution (4.7a) of [II]):  

= {(~,z):z > 0, ~+(z) _-< ~ _-< ~(z)}. ( H a )  

The point r = Z = 0 is now the outgoing boundary null point N + (see Section 1 of 
[II]) ,  ~ = v+(Z) is the equation of C +, the outgoing null curve issuing from N +, 
while r = r is the equation of 0cr where, corresponding to the given soft-phase 
initial data, P(~,Z) along each flow line first becomes equal to 1 (see Section 5 of 
[I]).  We have 

v+ (0) = ~(0) = 0, (1.1b) 

&+ d~ 
e - ~ ~  ~ - z  (0) = e -~0  (0) = 1 (1 .1c)  

where coo = co(0,0). We cannot apply Theorem 3.1 of [ I I ]  to conclude the local 
existence of a solution to the formation problem. For, according to equation (6.48) 
of [ I ] ,  

where a_ o = a_ (0, 0); therefore, 

1 
~lu+ = (1.2a) 

a -  0 

/~(0) = - a -o ,  (1.2b) 
fflN+ 

R(O) 
~ ( 0 ) -  - 1. (1 .2c)  

a -  0 

In view of (lAb) and (1.2c), the hypotheses of Theorem 3.1 of [ I I ]  are not fulfilled. 
We shall construct a solution to the formation problem as a limit of a sequence, 

each element of which is the solution of a regularized problem of the continuation 
type. To define the sequence of regularized problems we begin by selecting a se- 
quence 

((ro,,,Xo,,):n = 1 , 2 , . . .  ) 
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of points in the interior of U tending to (0, 0) as n--+ oo. Joining each point 
(zo,,,,/o,.) to (0, 0) by a timelike geodesic, we define flo,. to be the velocity at (0, t3) of 
the corresponding geodesic relative to the flow lines, We then have 

0 < f l o , . < l ,  flo,.--+l asn-- ,~v.  

Let ~ = ~:+.(Z) be the equation of C ] ,  the outgoing null curve issuing from the 
point (%..,Xo,.). We define the domains 

~,, = {(z,X):Z > 7~o,., z+.(Z) < z < ~(X)}. (1.3a) 

The domains 7/] ~ "#~ are the images under the translations 

~-~ "c + ~o.,,, X ~-* Z + go,. (1.3b) 

of the domains 

~ = {('c,Z):(z + ~o,.,)~ + Zo.,,) e ~ } .  (1.3c) 

On the domains ~ .  we define the soft-phase solutions (r., co., p.) to be the corres- 
ponding pullbacks of the restrictions of the soft-phase solution (r,e),p) to the 
domains ~,:  

r , , (z ,Z)  = r ( z  + To,.,Z + Zo,~), 

ao,,(v, Z) = co(~ + ~0,., Z + Zo,.), (1.3d) 

p.(r,Z) = p(~ + ro,n,Z + Zo,.). 

Let us denote 

r o = r(0,0), r0,. = rn(0,0) = r('Co,.,Zo,.). (1.4) 

The initial data for the formation problem consist of the function R which 
defines r as a function of r along C *+ the incoming null curve issuing from N +. 
This function, which, for ~JN+ = 0, is defined on some closed interval starting at 0, 
was constructed in Section 6 of [ I ] .  We have 

&~lc . . . .  1, (1.s) 

and r, ( along C* § are given by equations (6.48), (6.49) of [ I ]  in a neighborhood of 
N +. To define initial data for the regularized problems, we set (see (4.5a) of [II-]) 

1 1 
Vo,. = ~ a 0(1 -/~0,.),  ~:0,. = ~aa_-~ (1 + rio,.). (1.6) 

For  each n = 1, 2 . . . .  , we define the positive constant c. to be the solution of 

R ( c . )  = ro - -  %, , ,Vo , . .  (1.7) 

We then define R,,, the initial data for the nth regularized problem, by 

z " a - o l ~ 2  4 ~ r 2 ) t .  R, ,(r)  = R ( t  + c~) + ro.. - ro + ro,,~Vo,~ + o,.,~o,~-~o t" o -- 1 + 

(1.8a) 
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Note that according to this definition, 

R,(O) = to,,. (1.8b) 

We shall show that the nth regularized problem satisfies the hypotheses of 
Theorem 3.1 of [IIJ,  i.e., 

~/.(0) : -  

at least if n is large enough. Here 

ko(o) 
- -  < 1 V n ,  ( 1 . 9 )  
a-o , ,  

a -o , ,  = a_,(0,0) = a (%,,,)~o,,). (1.10a) 

We have (see (4.29b), (4.34b) of [IIJ): 

Oa_ (0 ,0)= # o  2,0 
(1.10b) 

( 8 a _ _  o, o Z / )  1 (  # O l  a~ 4~zro 2) e ~ _ ( 0 , 0 ) = a _ o b o + - -  - - o -  
ro 2-  

where 
2 m  o 

# o =  , too=m(0,0) ,  
?'0 

b o =  ~ ( 0 , 0 ) > 0  (1.10c) 

(see Proposition 5.1 of [I]).  It follows that 

E( a) ] a - o , , -  a o = % . ,  ~ (0 ,0)+f lo , ,  e -~Sa-  (0,0) + O(z~,,) 

= %,, {~r~ + f l o , ~ [ a - o b o + l ( 1 - 2 - a 2 - o - 4 ~ r ( ~ ) l } + O ( ~ : 2 , , ) .  

(1.10d) 

According to (1.8a), 

k.(t)  = R(t + c~ + ~ o , ~  a-o  (aZ_o _ 1 + 4~zroZ). (1.11a) 
P0 

Let Z be the function which defines ( as a function of 4) along C* +. We have 

/~Z = - 1. (1.11b) 

Let us set 
Z ( c . )  - z ( o )  

~ o , .  - (1.11c) 
"CO,nYO, n 
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Then, since Z(0) = 1/a_o, we can write 

Therefore, 

Setting 

k ( c . )  = - a - o  
1 + Zo,nVo,na-o~o,n" 

& ( c . )  = - a - o  + ~ o , n V o , n a 2 - o ~ o , .  + O((%,.V0,.~0,.)2). 

A, = 1 - ?n(0), 

we obtain, by virtue of (1.10d) and (1.11e), that 

An = I-(1 - fio,n)eo,n + fio,,bo]ro,n + E,  

where 

(1.11d) 

(1.11e) 

(1.12a) 

(1.12b) 

1 - 1 [ (1 ~4rcr2) l  + #o 
eo, n = ~ a 2- o 40, n + 2ro La _ o a_ o J 2roa-  o (1.12c) 

(see (4.26c) of [ I I ] )  and 

E,  = O(z2, , )  + O((zo,,Vo,,~o,n)2). (1.12d) 

Now, r and ~ along C* + are given, in a neighborhood of N +, by equations (6.49) 
and (6.48) of [ I ]  respectively, in terms of the parameter h: 

1 e - ~ 1 7 6  b 0 
= - -  q- q+1/2 i l l / 2  q_ O ( f i ) ,  

~(fi, 0) a -o  a -o  
(1.13a) 

1 r(fi, 0) = ro - ~  e-~'~ + 0(fi 3/2) 

(see (6.39), (6.40) of [ I ]  for the definition of q +). In view of (1.7), it follows that the 
parameter value fin corresponding to c, according to 

~b(fi,,0) = c, (1.13b) 

is given by 

Thus, 

1 
e-~~176 = ro,nVo,n + O((7~O,nVO,n)3/2). 0 . 1 3 c )  

(1.13d) 
2bo 

q+ 1/2a3_/2 0 (T'O,n VO,n) 1/2 -}- O(("CO,n YO,n)3/2). 
1 

Z ( c . )  = + - -  

a o 

Consequently, by (11.1 l c), 

2bo 1 
= 

o,, q+a/2a3/2 ~ (.fO,nVO,n)l/2 

It follows that 

+ 0(1) ~ oo as n --* oo. (1.13e) 

Hence 

e o ,  n --~ o o  a s  F / ~  0(3. (1.13f) 

eo,, > 0 (1.13g) 
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and, by (1.12b), 

A ,  > 0 (1.13h) 

for all sufficiently large n. Consequent ly  (1.9) is satisfied if n is large enough. 
We can thus apply Theorem 3.1 of [ I I ]  to conclude that  there is a positive 

integer no such that  for each n > no the nth regularized problem has a solution with 
a maximal  existence interval ~, > 0. The corresponding free boundary  ~ ,  is on 
[0, ~,) a timelike curve of positive velocity/3,  relative to the soft-phase flow lines 
issuing from the origin and contained in the interior of ~/~,, 7, < 1 on [0, "~,). On the 
domain  qZ(~ ) \ I  + (~.), where 

ql(a) = { (u ,v) :u  ~ [0,a] ,  v e  [0,u]}, I+(a )  = {(a ,v) :v  ~ [0,a]}, a > 0, 

we have a genuine hard  phase: o-, > 1 in ~ ( ~ , ) \ 1  + (~,). The p roof  of the existence of 
a limiting solution depends crucially on the following lemma. 

Lemma 1.1. 
lim inf ~, := ~ > 0. 

t l  ---~ o o  

Proof. Suppose on the contrary  that  there is a sequence (ni: i = 1 , 2 , . . .  ), n~ ~ oo 
as i ~ o% such that 

~,~ --. 0 as i ~ oo. (1.14) 

Given any a > 0 let us define the domains 

(l.15a) 

and their translates 

~F'~+ . . . . .  {(z,Z) e ~F~:v < a + %,.}.  (1.15b) 

According to (4.15a, b), of [ I I ] ,  we have 

inf r  = r  = 0, sup r  = r < ~.. (1.16) 

f f z  = Z. . (z)  is the equat ion o f ~ . ,  we have Z. .(z)  --* ~. as z --+ ~.. According to 
the proof  of Lemma 4.1 of [ I I ] ,  the supremum of the function r. on ~(~.)  is 
at tained on ~ .  and is therefore controlled by soft-phase solution ( r . , co . ,p . )  
corresponding to the nth regularized problem on ~/~e., or, equivalently, the original 
soft-phase solution (r, co, p) on ~ " +  ..... : 

sup r. < sup r. (1.17a) 

Also, the infimum of r. on og(~.) is at tained on I+(~.), and 

We have 

inf r. = min{r.(~.,O), r.(~., ~.)}. (1.17b) 
1+ (~,,) 

r . (~. ,? . )  => inf r (1,17c) 
~V~,,+Zo,. 
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and, in view of (1.16), 

r,(~,,0) > inf R,. (1.17d) 
[o,~.] 

Therefore, 

i n f r n > m i n ~  inf R,, inf r t .  (1.17e) 

By virtue of (1.14), as i ~ oo the right-hand sides of (1.17a, e) with n = n~ approach 
ro; consequently for all large enough i, 

inf r , ,  > , sup r , ,  < 2to. (1.17f) 
~# (~.? ~' (~.~) 

The proof of Lemma 4.1 of [II]  then yields 

f ON.,dv sup < C. 
~,u 6 . )  0V  

o 

(1.18a) 

Here N is the function 

o 

(1.18b) 

and C is a constant independent of n,. Since, in view of (1.16) and (1.11a), for all 
large enough n 

sup f , (u ,0 )<  sup I 1 ) 1 < C  (1.19a) 
. ~ [o.~.] t ~ [o,~.] / ~ t  

where C is a constant independent of n, using (1.18a) and following the proof of 
Lemma 4.2 of [ I I ]  we then obtain, for all sufficiently large i that 

sup f,,, < C (1.19b) 
(~,,~) 

where C is a constant independent of hi. The proof of Lemma 4.3 of [ I I ]  then yields 
in turn, for all sufficiently large i that 

sup (v,,, t%) < C, (1.20) 

sup m,  < C, (1.21) 

sup r/., __< C (1.22) 
~Z, (,:~ ~ ) 

where C denotes constants independent of ni. 
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According to Lemma 4.3 of [ I I ] ,  for each n > no, 7,(z) ~ ~, ~ (0, 1] as well as 
p . , ( z )  --* ft, ~ [0, 1] as z ~ ~,, and we have the following four cases to consider: 

Case 1. ft, < 1, ~, < 1. 
Case 2. ft, = 1, y, < 1. 
Case 3. ft, < 1, ~?, = 1. 
Case 4. ft, = 1, p, = 1. 
We shall show that  under  the hypothesis (1.14) each of the four cases leads to 

a contradict ion.  This would then establish the lemma. 
Case 2 is the easiest to dismiss for, according to the results of Section 4 of [ I I ] ,  

in this case 0 X  must  be non-timelike at (r,, ~,). But 0Yf is timelike in a neighbor-  
hood  of the null point  N + in J + (N + ), the causal future of N + and by (1.14), all but  
a finite part  of the sequence of points (~,,, 2 , )  is contained in this neighborhood.  

The remaining cases are treated with the help of the barrier function e. We define 
this function in general by 

e ~ + ~ r r  - ( 1 - 4 n r Z ) ~  +#-f2r 

where ~ is defined by (4.25c) of [ I I ]"  

Ou = v~. 

Then, in view of (4.25d) of ]-II], 

(1.23a) 

i.e., 
c~ = rff - ~b. (1.24b) 

This function satisfies (see (4.14b) of [ I I ] )  

~(u,v)e m" '~  = c~(u,O) - i ((~N+ )(u,v')eN("'~')tc(u,v')dv ' (1.24c) 
0 

0(7 V 
- -  = -  [ rq~ + (1 + 4xrZ~2)~t / -  (1 - #)~2]; 
~u r 

and at a point  where 0. = 1, 
00- 
~ = 2v~e. (1.23b) 

In particular,  at an end point  of the free boundary  ~ where ? = 1, the barrier 
function e reduces to the boundary barrier ~ defined by (4.26c) of EII]: 

1 2 ~ l [ d  _ (1 a 4n fz ) ]  // 
= a_  ( +  - -  + - - .  (1.23c) 

2Fd_ 

To  proceed we must  estimate the oscillation of ~ along outgoing null curves. 
Recall the function c~ defined by equat ion (4.14a) of [ I I ] :  

1 ~(r~) 
= - - -  (1.24a) 

V OU 
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where 

i.e., by (1.18b), 

1 ON 
N+ - ~c Or '  (1.25a) 

1 
N+ = - (# - 4for2). (t.25b) 

F 

We now define the function ~_ by 

We have 

1 0e 
c~ . . . .  . (1.26a) 

v 0u 

~_ = ,-{ - 2~. (1.26b) 

F r o m  (1.24c), using the fact that  

v(u, v) = v(u, O)e ~"'v~, 

we deduce the following equat ion  for ~ �9 

_ (u, v) = e-2ul,, v)c~_ (u, O) - ~(u, v)N_ (u, v)e-u(, ,  v) 

- i [~N+ + qS(N+ + N+N )](u,v')e2N("'o')-zN("'~)tc(u,v')dv '. (1.26c) 
0 

Here  
1 ON 

N _  - -  
v 0U' 

1 02N 
N + _  - -  

vtc 9uOv" 

Since N_ (u, 0) = 0, we can express 

v 

~(u,r , .  

N_(u,v) = f ~tJv+_~c)(u,v')dv' 
o 

= ( e u("'~ (N+_K)(u, v') dr'. 

0 

Also, f rom (1.18b), using equat ions  (6.5a) and (6.6a) of  [ I ]  we find 

N+_ = 2_~ _ 4rc~2( 1 _ 47cr2)" 
y 2 

Now,  by (1.17f), (1.19b), (1.21), 

sup ]N+,,I < C, sup [N+-,,t < C 
(L,) qz (§ 

(1.27a) 

(1.27b) 

(1.27c) 

(1.27d) 

(1.28a) 
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where C is a constant independent of hi. In view of (1.27c) and (1.20) it follows that 

sup IXn,[ <= C~,~, sup I ~ . , I  =< c~.,. (1.28b) 

Recalling (1.16) we then conclude from (1.26c) that 

sup ]a_,,(u, v ) - e x p ( -  2N,,(u, v))e_,,(u, 0)l < C~n,. (1.29a) 
(u. v ) ~ '  (§ 

In view of (1.26b) and the fact that 

s u p  [~n,(U,V ) -- exp(-- N,,(u,v))%(u,O)] < C~n, (t.29b) 
(u, v) e~(~n~) 

by (t.24c), we obtain 

sup ]~n,(U,V ) - -exp( - -  2Nn,(u,v))r < C~,,. 
(u, v) E ~' (~.,) 

Letting Z,  be the function which defines ~, as a function 
!~-(0) = {(u,0):u E [0,~,]}, we have 

where 

(see (1.16)). Also, 

which gives 

while by (1.1 lb), 

Since 

by (1.11a), we can write 

Hence, 

C.(~.,0)= - 2t~ ) (t.) 

(1.2%) 

of ~b, along 

(1.30a) 

t, = ~b,(~,,0) < ~, (1.30b) 

R ,Z ,  = - 1, (1.30c) 

Z,  = ~ ,  (1.30d) 

2 = ~5'  (1.30e) 

i~.(t) = i~(t + c.) (t.3of) 

z.(,o) = 2 ( , .  + m : "  + 
\ R,(6)  ) 

(1.30g) 

~.(~.,0) : i~(to + c.) k R.(t.) / 

Now, by (1.11a), the factor i~(t. + c,)/R,(t ,)  tends to unity for n = ni -~ oo. Also, 
/~(t, + c , ) ~ / ~ ( 0 ) = - a - o .  On the other hand, according to the results of 
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Section 6 o f [ I ] ,  q~ along C *+ is given, in a neighborhood of N +, in terms of the 
parameter  fi by 

l qS(fi,0) = a  e o,0fi + 0(fi3/2), (1.31a) 

while r and { are given by (1.13a). Equat ion (1.31a) implies that 

fi = 4e-~  + 0(t3/2). (1.31b) 

Consequently,  by (1.13a), 

1 
z ( t )  = - -  

a -  0 

2(0 bo 
a_oq+ l/2 

Equat ion (1.30h) then yields 

2bo 1/2 
t + O(t),  (1.32a) 

a_oq  + a/2 

- -  t - 1 / 2  _~_ 0(1). (1.32b) 

Cn,(en,, 0 )  - - ,  oO 

Hence, by estimate (1.29c), 

~-.,:= ~n,(~n,, ~n,)--' OO 

Consequently,  in view of (1.23c), 

In particular, 

as i --* oo. (1.33a) 

as i --, oo. (1.33b) 

en, ~ oe as i ~ oo. (1.33c) 

en, > 0 (1.34a) 

In view of (1.34c, d), the inequalities (1.34a, b) are contradictory. 
The only case remaining to be considered is Case 1. In this case there is a point 

({,, v.n), v . ,  e (0, {,), in the interior of the outgoing null segment I + (~,) (the future 
boundary  of ag(~,)), where ~n(~n, V.n) = 1, while an > 1 along the incoming null 

(1.34d) lim sup d?n (r) < _ m i n { ~ n ,  b,}. 

for all sufficiently large i. 
Since, 7,(~n) = 1, while 7n(z) < 1 for z < ~,, in cases 3 and 4, in these cases we 

must have 

lira sup dT, (~) > 0. (1.34b) 
~ dr = 

However, according to (4.30) of [ I I ]  in Case 3 we have 

d?n 
lira dzz (~) = - ~n, (1.34c) 

while in Case 4, according to Lemma 4.4 of [ I I ] ,  
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segment [ v , n ,~ )  x {v,~} c ~//(~). Thus, 

0a, (~n, V,,) < 0 (1.35a) c3u = 

must hold at (~,, v,,). Now, by (1.23b) at the point (~,, v , , )  we have 

~an 
~uu (~"' v , , )  = 2(v,~,e,)(~,, v,,). (1.35b) 

We have 

where 

~.(~.,0)=- ~ (t.) (1.36a) 

In particular, 

e,,(~,,, v , , )  > 0 (1.36g) 

for all sufficiently large i. In view of (1.35b), the inequalities (1.35a) and (1.36g) are 
contradictory. The proof  of the lemma is therefore complete. 

In the arguments to follow we shall make use of 

Proposition 1.1. Let ~ ,  (r,m,v,~c,~,rl), defined on (~1,z2), {(u ,v) :u~(z l ,%) ,  
v ~ (z~, u]}, respectively, be a solution of the free-boundary problem corresponding to 
a soft phase solution (r, o~, p), such that 0 < fi < 1, p ,  < 1, whence also 0 < 7 < 1. 
Then at each r ~ (~1, z2), 

1 d7 
7 d~ - (1 - / ~ ) E  +/~B 

tn = ~bn(~,, 0) < ~n (1.36b) 

(see 1.16). As in equations (1.30a-h) we deduce 

~ , (~ , ,0 ) -  ~(t~ + c.) \ R.(tn) J " 
(1.36c) 

Since t,~ ~ 0 as i --+ oo by (1.36b), it follows in view of (1.32b) that  

~,,(%,0) ~ oo as i ~ oo. (1.36d) 

Hence, by the estimate (1.29c), 

~_,~(~,,,v,,,)~oo as i ~ o o .  (1.36e) 

Consequently, in view of (1.23a), 

eni(T,n, , V,n~) "-+ O0 as i ~ oo. (1.36f) 
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where E and B are the functions 

E = ~ ?a2_,r + y a _ , ~  

B = b *  + l [  r, - 1 ) +  

with 

(1 ~_ r . . ) | 4 ~ 7 + _ _  

a , d 

] (1 - p , )  , 
a _ ,  

q = 1 --  p , 7  2 ' ~ ) ~  ," 

2 r , a _ , '  

P r o o f .  S i n c e  

we have 

1 

? ~ , a_ ,  

l d ? _  d~, 1 da_. 
? dr a-*?  ~-z + - -  - -  a _ .  My 

(see (4.27) of [II]).  By (4.28b) of [II] ,  in view of equations (4.5a, d, e) of [II] ,  we get 

7 a - ,  ~ - ( 1 - - f l )  ~ ; m _ , ~ , + ~ r ,  7a_,x/q a _ .  j 

+ fi [ T a - , , ~ r ,  (1-_ 4_ff_~r,2) ] " a - *  d 

Also, according to equation (4.35a) of [II] ,  

a_-, ~ - ( 1 - f i ) ~ + f l  +r,a_,(1-a2-*-47cr*ZP*) " 

The proposition follows by substitution. 

Remark. In the limiting case 7 ~ ~ = 1 the function E reduces to the boundary 
barrier ~ (see (1.23c)). If also p .  ~ ~ = 1, the function B reduces to 5 (see Lemma 4.4 
of [II]). 

Now let ~ be as in the statement of Lemma 1.1. Take any "~ e (0, ~). Then ~, > "~if 
n is large enough. 

Lemma 1.2. There is a subsequence (ni: i = 1, 2 . . . .  ) with the following properties: 
1. The corresponding sequence of curves (~,~) converges uniformly on 1-0,'~] to 
a non-spaceIike curve ~ contained in ~'~. 
2. The sequence of functions (r,,, O,,,m,,) converges uniformly in ql(~) to (r, O, m), 
Lipschitz functions on ~(~). 
3. The sequence of functions ( N,,, K,,) converges uniformly in ~ ( ~ ) to ( N, K ), Lipschitz 
functions on ~ll(~). 
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4. The sequence of  functions ((.,, it.,) converges uniformly in ql(~) to (~, tl ), continuous 
functions on q.l(4). 

Proof. For  each n, N,  is a C ~ timelike curve: 

dz,n 
X = Z..(z), 0 < ft. := e ~*~ ~ - z  < 1, co..(z):= co.(z, )~..(z)) (1.37) 

contained in the domain ~ ~ ~U,. By the Ascoli-Arzel/t theorem we can select a sub- 
sequence (ni) such that X,,, converges uniformly on [0, ~] to a Lipschitz function 
Z,- Then, in view of(1.3d) and the fact that the domains ~/7~ converge as n ~ oe to 
the domain ~U ~, we have co,,,--,co, as i ~  oe uniformly on [0,~], where 
co,(z) := (z, Z, (z)). It follows that N, given by X = Z, (z), is a non-spacelike curve in 
the original soft-phase solution (r, co, p), contained in ~f~. Moreover, the functions 
r,,,, m,, , ,  p,,~, a_,,~ converge uniformly on [0, ~] to the functions r , ,  m,,  p , ,  a _ ,  
respectively. 

Consider next the sequence of hard phase solutions (r,, q~,, m,). In q/('~) we have 
bounds analogous to those of (1.17a, e): 

sup r, < sup r, (1.38a) 

i n f r , > m i n  t inf Rn, inf r}. (1.38b) 
~(~) {.[o,~] ~-~,, ~0,. 

Consequently, there is a constant C independent of n such that 

inf r. > -~, sup r. < Cro. (1.38c) 
~(~) t ~  ~(~) 

Now, each q~. is a time function, i.e., if u2 > ul, v2 > vl, then ~b.(u2, v2) > 
q~.(ul,vl). Also, for each n the function ~b.., defined by 

qL.(~) = r v ~ e  [0,~] 

satisfies 

dq~.. < 1 
dr - 

according to Proposition 4.I of [II] .  Consequently, 

0 = ~b.(0, 0) = inf  q~. < s u p  ~b. = ~b.(-~,-~) = ~b. . (~)  < "& (1 .39)  
qz (~) q~ (~) 

In view of (1.38c) and (1.39), it then follows, as in (1.19b), (1.20), (1.22), that 

sup (.  =< C, sup (v . ,  to.) < C, 
~(~) qb(~) 

sup rn. < C, s u p  t/. < C. 
~(§ ~(~) 

(1.40) 
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Here C denotes constants independent of n. Consequently, in view of equations 
(6.3a, b), (6.4a, b), (6.5a, b) of [I] ,  the functions (r., ~b., m.) and their partial deriva- 
tives are bounded on ~(~) uniformly in n. By the Ascoli-Arzel/t theorem we 
can extract a subsequence from the subsequence (n~) considered above, which 
for convenience of notation we still denote by (ni), converging uniformly in 
q/('0, to (r, ~b, m), Lipschitz functions on ~(~). Since the restrictions of (r.,m.) to 
{(z,z):z~ [0,'~]} coincide with the functions ( r . . ,m. . )  considered above, the 
restrictions of (r, m) to {(~, ~): z E [-0, ?] } coincide with the functions (r., m.). Also, 
the limit function q~ is a time function and q~., the restriction of q5 to 
{(z, v):v e [0, ?]}, has a Lipschitz constant not exceeding unity. 

Next, we consider the functions (N., K.). As in (1.28a) we have 

sup IN§ ~ C, sup IN+-.[ < C 
~6) ~/(~) 

where C is a constant independent of n. Since (see 1.27c) 

N.(u, v) = i N+.~cn(u, v')dv', 
0 

N_.(u, v) = i eN"("'r v') dr', 
0 

(1.41a) together with (1.40) implies that 

sup IN, I < C'~, sup IX-.I < C-~, 
~r (?) ~(?:) 

where C is a constant independent of n. 
The positive functions K. are given by (see (4.17b) of [ I I ] )  

u 

K.(u, v) = 4~ y (r.v.~)(u', v) du'. 
v 

Letting 

OK, OK. 
Ov Ou - v .K_. ,  = ~ c . K + . ,  

t~2 K.  

~u@v 

we have 

(1.41a) 

(1.41b) 

(1.41c) 

(1.41d) 

(1.42a) 

(1.42b) 

- v.lc.K+_n, (1.42c) 

K_ .  = 4~r. ~2, 

and using equations (6.3b), (6.6b), (6.7b) of EI], we find that 

K+_.  = 47~. [2t/. - (1 - 4~r2)~.]. 

Now, by (1.40), 
sup IK-.I  =< C 

(1.42d) 

(1.42e) 

(t.42f) 
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where C is a constant independent of n. Since 
u 

K.(u, ~) = ~ (K_.v.)(u', v) du', 
v 

(1.42f) yields 
sup K,  < C'L 

(~) 

Differentiating the equation K,(v, v) = 0, we obtain 

& + (v, v) = O, 

i.e., 
~c,.K+,~ + v~K_,, = O. 

Now, by equations (4.5b) of [-II], 

v * , _ a 2 , , ( 1 - f l ,  ~. 
to,, \1 + fi, J' 

hence (since ft, > 0), 

(1.42g) 

(1.42h) 

(1.42i) 

u 

K+,(u, v) = eK"("'V)K+,,(v) + [. eK"("'O-K"(u"O(K+_,V,)(U ', V) du'. (1.42/) 
v 

Substituting the estimate (1.42k) into (1.42/) we then obtain 

sup IK+,[ < C (1.42m) 
q~ (~) 

where C is a constant independent of n. 
By (1.41a, d), (1.42f, h, m), the functions (N,, K,)  and their partial derivatives are 

bounded on ~'('~) uniformly in n. The Ascoli-Arzelfi theorem then allows us to 
extract a subsequence out of the subsequence (ni), which for convenience of 
notation we again denote by (hi), converging uniformly in q/('~), to (N, K), Lipschitz 
functions on ~/('~). Also, N(u, O) = O, K(v, v) = O. 

yields 

v, ,  < a2 , , .  (1.42j) 
K , n  

In view of (1.42f), equation (1.42i) together with (1.42j) implies that the functions 
K + , ,  are bounded on [0,~] uniformly in n: 

sup IK+,,I  < C (1.42k) 
[o,~] 

where C is a constant independent of n. Integrating (1.42c) with respect to u we 
obtain 

u 

(~.K+~ v) = (~ . .K+ . . ) (v )  + S (K+_.v.~.)(u', v)du'. 
v 

Dividing this equation by 

~.(u,  v) = ~c. .(v)e -K"~"'v~ 
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Finally we consider the functions ((n, qn). According to (1.24c), the functions 
an = rn~n - ~bn satisfy 

c~n(u, v) = c~.(u, O) e - u"(n'~) - An(u,  v) (1.43a) 

where 
I) 

0 

By virtue of the results above, the functions An and their partial derivatives are 
bounded on ~'(2) uniformly in n. We can therefore select a subsequence from the 
subsequence (n~), which we again denote by (ni), converging uniformly in q/(2) to 
a Lipschitz function A on ~/(2). To prove the uniform convergence of %, ~,~, we 
consider the functions (n(',0) on [0,2]. From (1.30c), (1.11a, b) we have 

z(4.(u, o) + c~ 
~.(u, O) = Zn(O. (u ,  0)) = (1.43c) 

1 - l . Z ( O . ( u , O )  + c . )  

where In are the constants 

In = "CO,nNO,n a-0 (a2_o _ 1 + 4~roZ). (1.43d) 
r o  

Since Z is continuous and the functions qSn,(., 0) converge uniformly on [0, 2) to 
qS(., 0) while the constants cn, I. ~ 0, it follows that the functions ~ni( ", 0) converge 
uniformly on [0, 2) to if(', 0), a continuous function on [0, 2]. Setting 

= - r  

we then obtain 

c% --, ~:=c~(- ,0)e-N--A as i--.oo (1.43e) 

uniformly in q/(2). Consequently the ~n, also converge uniformly in ~(2) to 

r-l(  + 6). 

It follows in particular that 

1 
: (1.44) 

~*ni a_  ecni 

uniformly on [0, 2 3. 
According to equations (4.1%, b) of [II],  the functions ,/, satisfy 

(r . t l . ) (u ,  v) = e K"~"'~) [(r.nr/..)(v) - Jn(u, v)] (1.45a) 

where 

1 

, a _ ,  

! ! 

J . ( u , v ) -  e K"(""~)((1 t ~ . ) v . ~ . ) ( u , v ) d u .  (1.45b) 
U 

By virtue of the results above and in view of equations (6.6b), (6.7b), of I-I], the 
functions J. and their partial derivatives are bounded on ~#(2) uniformly in n. We 
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can therefore select a subsequence from the subsequence (ng), which we again 
denote by (ni), converging uniformly in ~(~) to a Lipschitz function J on ~//(r 
Thus, to prove the uniform convergence to q,, we must show that the functions 
r/,,, converge uniformly on [0, ~]. Now, according to equation (4.5e) of [ I I ]  we can 
express 

X/p,. + _ t/,, = a _ , ,  1 -- P,,7~ 
(1.45e) 

In terms of the variables 

we can write 

2 X . y .  
x, = 2 ( 1 -  p, ,) ,  y , = l - - N ,  z , -  , (1.45d) 

x, + 2y, 

1 - 2z, (1.45e) 
q , , = a _ , , ~ ,  q " -  1 - z , "  

By virtue of (1.44) we have 

(x,~, y,,) ~ (x, y) as i ~ oo (1.45f) 

uniformly on [0, 2]. Since ~, is bounded on og(~) uniformly in n, by (1.40), it follows 
that 

y, > g (1.45g) 

where e is a positive constant independent of n. Also, 7, < 1 and 0 < p , ,  < 1. Hence 

O < x ,  < 2, O < y ,  < t - e z, (1.45h) 

0 < x < 2 ,  0 < y < l - e  2. (1.45i) 

Now, the function 

f x y / ( x  + 2y) if ( x , y )  =t = (0,0), 
f ( x , y )  

o if (x, y) = (0, 0) 

is continuous on the closed positive quadrant. It follows that 

z , = f ( x , , , y , , )  --, f ( x , y ) : = z  as i ~ o o  

uniformly on [0, 2]. Moreover, 

0 < z _ < y < l - ~  2. 

We conclude that 

H e n c e  

1 - 2 z , , .  1 - 2z 

q"' ~ q :=  1 z 1 - z ,~ 
as i ~  or. 

q,,i ~ q * : = a - * ~  a s i - - , oo  

uniformly on [0, 2]. The proof of the Lemma is therefore complete. 

(1.45j) 

(1.45k) 

(1.45/) 

(1.45m) 
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To proceed further we must show that we can select a subsequence (n~) such 
that the corresponding functions [3,, converge uniformly on [0, ~]. This is accom- 
plished in two steps, the two lemmas which follow. According to equation (4.5c) of 
[II] ,  [3, is given by 

1 - 
[3" = 1 + 72 2 �9 (1.46a) 

- 2 7 .  p , ~  

In terms of the variables x,, y, we can write this in the form 

Now the function 

[3, = Y" (1.46b) 
(1  - y.)x. + y." 

g(x , y )  - Y (1.46c) 
( 1  - y)x + y 

is continuous on 0.~\(0, 0) where 

Q~ = { ( x , y ) : x  > O, 1 - ~2 > y > 0}, (1.46d) 

but is not continuous at the point (0,0). Therefore (1.45f) does not imply the 
uniform convergence of the ft,,. 

Let us first make the following general remarks. The functions [3, belong to 
C~ c L~[0 ,~ ]  and satisfy 0 < ft, < 1. By Alaoglu's theorem, BI(L~ [0,'~]), 
the closed unit ball of L ~ [0, ~] = L 1 [0, ~]*, is weak-star compact. We can there- 
fore select a subsequence from the subsequence (hi), which we again denote by (ni), 
such that the corresponding functions [3,, converge weak-star to a function 
[3 e Ba(L~ that is, 

[3,,f dz ~ [, [3f dz V f e  L~[0,~]. (1.47) 
0 0 

Since [3 ~ B I ( L  ~ [0, ~]), we have [3 < 1 almost everywhere. We shall show that also 
[3 > 0 almost everywhere..For, let 

N = [ 0 ,  < 0 } .  

Then 

N = U N m  
m = l  

where 

N m = { z ~ [ O , f ] : [ 3 ( z ) < - - l } .  

Let ZN~ denote the characteristic function of Nm. Setting f =  XNm in (1.47), we obtain 

1 
0 < ~ [3,, dr ~ ~ [3 dt < - -- meas N m. 

Nm u~ m 

Hence, meas N~ = 0 and N, being the countable union of sets of measure zero, is 
itself of measure zero. We conclude that 0 < [3 < 1 and we can adjust [3 on a set of 
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measure zero to achieve 0 =< fl =< 1 everywhere. Now, suppose that M is a measur- 
able subset of [0,'~] and suppose that 

ft,, --* fl pointwise on M. (1.48a) 

Then 

film = fi a.e. (1.48b) 

For, on one hand, by the dominated-convergence theorem, for any f e  L a [0, ~], 

f f t , , f  dr -~ I f i f d z ,  
M M 

while on the other hand, replacing f in (1.47) byf)~t,  where ;gM is the characteristic 
function of M, we obtain 

fi,, f d'c --+ 5 fl f d z . 
M M 

Consequently, 

( f i - -  f l ) f  d~ = 0 VfeLa[0 , '~ ] .  
M 

In particular, setting f = ZM(fi -- fl), we obtain the conclusion (1.48b). Thus we can 
adjust fi on a subset of measure zero to coincide with fi on M. In view of the fact 
that 0 < fl <_ 1, this does not affect our previous adjustment. 

As a consequence of the above, the functions 

1 1 
v , : =  ~ a _ , ( 1  - fi), to, := (1 + fl) (1.49a) 

2a_ ,  Z 

belong to L + [0, f ]  and we have 

V , n  i ---1" V , ,  

in the weak-star sense. We set 

~c,,, ~ ~c, (1.49b) 

v(u,v) = v,(u)e u(u'v)-u("'u), tc(u,v) = ~c,(v)e -K("'v) (1.49c) 

where N, K are the functions appearing in the statement of Lemma 1.2. We shall 
show that these functions are in fact given by 

;( +) N(u, v) = (# -- 4~zr2) r (u, v') dr', 

0 

u 

K(u, v) = 4~ f (rv~2)(u ', v) du'. 

1r 

The proof relies on the following lemma: 

(1.49d) 
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Lemma 1.3. Let (f,~) be a sequence of  functions in C~ conversing uniformly to 
a function f and let 

g,,(u,v) = i (f ,?G)(u, v')d 
0 

g(u,v) = i (f~c)(u,v')dv, 
0 

h.~(u,v) = i (L,v.,)( v)du; 
v 

i t t h ( u , v ) -  - ~ ( f v ) (u , v )du ,  
v 

Then 

g.~ ~ g, h., --* h uniformly on q.l(f). 

Proof. We demonstrate the conclusion for g,~, g. The conclusion for h,,, h is proved 
similarly. Let 

Since 

f,, =f , ,  e x p ( -  K,,), f = f e x p ( -  K). 0.50a) 

i LY,, -fl~,,~dv--,O uniformly on q/(~), (1.50b) 
0 

it suffices to show that 

where 

Note that 

0,~ ~ g uniformly on q/(f) (1.50c) 

0,~(u,v) i - ' ' ' = f (u , v  )~c,,~(v ) dr. (1.50d) 
0 

o ( u . v )  j ' ' ' = f (u , v )~c . ( v )dv .  (1.50e) 
0 

To prove (1.50c), given (Uo, Vo) ~ ql('~) and 6 > 0, let 

Qa(uo, Vo) = {(u, v)~ q/(~):lu - Uo] < 6, Iv - Vo[ < 6}. (1.50f) 

Also, let 

Ca:= sup ( s u P i  [o,~1 tg*n') ' C2:= suplfl~z(~) (1.50g) 

and, given 6 > 0, 

e(6) = sup {If(u, v) --f(uo, v)] :(u, v), (Uo, v) e ~#(-~) ). (1.50h) 
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Then for any (u, v ) e  Qa(uo, Vo) we have 

i v >c..,(v 

Vo 

IO.~(u, ~)  - 0.,(uo, ~o)f = 7(u,  ~ ' )~ .~  - I ,~(Uo, ' ')d~' 
0 

~~ ~ ' ' d r '  i ~ ' ' dr' < ~ I f (u , v ' ) - f ( uo , v ) l~c . . , ( v )  + If(u,v)l~c. . , (v)  
0 Vo 

< ~e(6)C1 + 6C2C1. (1.50i) 

Similarly, 

Ig(u, v) - g(Uo, Vo)t ~ (ge(a) + OC2)C,. (1.50j) 

Now by virtue of the weak-star  convergence of x . , ,  to K., given any (Uo, vo) e og(-~) 
and any ~/> 0 we can find a N((uo, Vo), q) sufficiently large so that  

1 
[0,,(Uo, Vo) -- g(uo, Vo)l < 5 q Vn < N((uo, Vo), rl). (1.50k) 

On the other  hand, given any t / >  0 we can also choose 6(t/) sufficiently small so 
that  

1 (1.501) (~g(a(~)) + a(~)C2)C1 < ~ ~. 

For,  it follows from the uniform continuity of Y that  a(6) ~ 0 as 6 --+ 0. Thus for all 
(u,v) e Qa(,)(uo,vo) and for all n > N((uo,vo),~/) we have 

]~,r -- g(u,v)] <= [,q,,(Uo, Vo) -- g(uo,Vo)] 

+ I?~.,(u,v) - O.,(uo, vo)[ + Ig(u, ~) - g(.o,Vo)[ 

1 1 1 (1.50m) _< g t / +  gq  +-g t / =  t/. 

Finally, for each 6 > 0 a finite family 

{Q0(u~, vj):j = 1 . . . . .  re(a)} 

of sets Qa suffices to cover og(r Setting 

M(t/) = max N((uj, vj), ~1) 
j = l  . . . . .  m(a(n)) 

we then obtain 
sup I ~ . , -  91 =< ~ v n  > M(,I), 
~(~) 

and (1.50c) is proved. 
Applying Lem ma  1.3 to the cases 

1 1 (# _ 4z~r 2) f~'= 7~, (# ' -4r~r2) '  f = r  

and 
r 2 f,r = 47z ,,v,f,,, f =  47zrv~ 2 

(1.50n) 
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we obtain (the conclusion for 9,,, Y): 

N.. ~ ~ ( #  - 4~zr2)~dv uniformly on q/(4) 

0 

and (the conclusion for h,,, h): 

Kn, --~ i rv~2 du uniformly on ~(~). 
v 

Since N,, -~ N and K,, ~ K by Lemma 1.2, the functions N and K are thus given by 
(1.49d). It follows that v and t~ satisfy equations (6.6b) and (6.6a) of [I]  respectively. 

We may also apply Lemma 1.3 to the cases 

f.~ = 1 -  #.,, f = l - ~  
and 

f,, = 1, f = l  

to obtain (the conclusion for g,,, 9): 

r , , ( u , v ) -  r,~(u,O) --, i ((1 - I~)K)(u,v')dv', 
0 

rn,(U,V) -- r,n,(V) ~ -- i v(u" v)du'" 

Since r.,(u, v) - rn,(u, O) ---, r(u, v) - r(u, 0) and r.~(u, v) - r. . ,(v) ~ r(u, v) - r.(v) by 
Lemma 1.2, we have 

r(u, v) - r(u, 0) = i ((1 - ~ ) ~ ) ( u ,  v ' ) d r ' ,  
0 

r (u ,v)  -- r . ( v )  = - -  i v(u',v)cIu'. 
v 

Thus r satisfies equations (6:3a, b) of [I] .  
Applying Lemma 1.3 to the cases 

f,, = ,.~, f - - ~  
and 

f,, = ~,,, f = ( ,  

we obtain (the conclusion for 9,,, 9): 

and 

~. , (u ,v)  - r  --, i (~c)(u,v')clv',  
0 

r v) - (~.. ,(v) --, - i (~v)(u', v) clu'. 
o 
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Since O.,(u, v) - O.,(u, O) + ~b(u, v) - qS(u, O) and (o.,(u, v) - ~ . . , ( v )  --+ O(u, v) - ~ . ( v )  
by Lemma 1.2, we have 

V 

O(u, v) - O(u, o) = ~ (~c)(u, v') dr', 
0 

and 

r v) - r  = i (~v)(u', v) du'. 
V 

Thus q~ satisfies equations (6.4a, b) of [ I ] .  
In addition, we apply Lemma  1.3 to the cases 

f., = 2=r 2 It/. 2 + (1 -- #.,)], f =  27cr2[t/2 q- (1 -- #)] 

and 
f . ,  = - 2 x r # [ ( l  - # . , ) ( 2  + I ] ,  f =  - 27r  - -  #)~2 q_ i ]  

to obtain (the conclusion for g.,, g): 

m. , (u ,v )  - m.,(u,O) -+ 2~ i ( r2[r /2 q- (1 -- # ) ]  K)(U,V') dr' ,  
0 

and 
u 

m.,(u, v) - m . . , ( v )  -+ - 2~ ~ (r2[(1 - #)(2 + 1]v)(u', v)du' .  
V 

Since m.,(u, v) - m.,(u, O) ~ re(u, v) - m(u, O) and rn.,(u, v) - m. . , (v )  --+ re(u, v) - m . ( v )  
by Lem ma  1.2, we have 

m(u , v )  - m(u,O) = 2~ i ( r2[ t ]2  q- (1 -- #)']lg)(u,v')dv', 
0 

and 
U 

m(u ,v )  -- m , ( v )  = - 2re ~ (r2[(1 -- #)~2 + 1]v ) (u ' , v )du ' .  
v 

Thus m satisfies equat ions (6.5a, b) of [ I ] .  
Finally the application of Lemma 1.3 to the cases 

f =  1 [ t / -  (1 - 4r~r2)(] 
r 

i 
L, = ~ [t/.i - (1 - 4~r2)( . , ] ,  

, q  

and 

L i  = _ I  [ ( i  + 4 ,~#~ , ) ,7 . ,  - ( i  - m , ) G ] ,  

yields 

f = _ i  [(1 + 4~r2(2)q - (l - #)~] 
r 

G(u,v) G(u.O) f (~Dl., (1 , ,  ,) . . . .  4rcr2)~, ] ten (u ,v ' )dv '  

0 

I-t/ (1 4 ~ r r 2 ) ( ] t c ) ( u , v ' ) d v  ' 

0 
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and 
u 

4r2 2, ) - - m . ) r  (u',v)clu' ,7.,(u,v)-~..~(v)= [ ( 1 +  r~ .~~ . . . . .  

r [(1 + 47zr2~2)t/-- (1 -- #)~]v (u',v)du'. 
v 

Consequently, since t/,, ~ ~/and ~,, ~ ff by Lemma 1.2, 

Y,(u,v)-~(u,O)= r I t / -  (1 - 4~zr2)~]tc (u,v')dv', 
0 

~(u .  v)  - , ( v )  = f (  -1 [-(1 r + 47zr2~2)rl - ( 1 -  #)~]v) (u''v)du'; 

Since 
x = 2 ( 1 - - p . ) ,  y =  1 - 7 2  , (1.5!d) 

the subsets C1, Cz, C3, C4 correspond to Case 1, Case 2, Case 3, Case 4, respectively 
(see Section 1 and the proof of Lemma 1.1). The subset C1 is open and, by virtue of 
(1.45f) and (1.46c),/~,, ~/~ pointwise on C1 and 

0 </~lc~ < 1. (1.51e) 

The convergence is uniform in closed subsets of C1. Thus/~ is continuous on C1. By 
(1.45f) and (1.46c),/~,, ~/~ pointwise on Cz and C3, and 

/~lc2 = 1, /~1c3 = 0. (1.51f) 

Thus only on the closed subset 

c 4  = {~ ~ [ 0 . ~ 3  : ( x ( ~ ) . y ( ~ ) )  = (0.  0 )} .  

which corresponds to the point of non-continuity of the function 9 on 0~, does 
(1.45f) fail to yield pointwise convergence. The argument instead rests on 

hence the functions ~ and t/satisfy equations (6.7b) and (6.7a) of l-I] respectively. 
We conclude that (r, q~, m, v, ~c, ~, t/) is a solution of the hard-phase equations. 

Let us now define the closed subsets 

X = {z E [0,1]:x(v)  = 0}, (1.51a) 

r = {-c 6 [0,r = 0}. (1.51b) 

We then define the subsets: 

C~ =X~yc ,  C2=Xc~Y~, 
(1.51c) 

C3 = X ~ n Y ,  C4.=Xc~Y. 
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L e m m a  1.4. For  every 121 E (0, '~], there exists  a 12o E (0,121) such that 12o ~ C , .  

Proof.  Suppose on the cont ra ry  that  there is a ~i ~ (0, "~] such that  for all z e (0,121) 
we have 12 ~ C1, that  is, 

12e U c~. 

We m a y  assume that  121 is as small as we wish. 
Consider  first the case that  there is a ? e (0,%) such that  ? ~ C: ,  that  is, ? e X, 

~ yc. Since Y~ is open, there is an e > 0 and an interval 

I~:= [~ - e,~ + e] (1.52a) 

such that  I~ ~ (0,12~)c~Y c. Thus  I j ~ X  c = 0 because 

I e ~ X  ~ c (0,'Cl)~ Y c ~ X  ~ = (0,121)c3C1, 

and according to our  hypothesis  the last set is empty.  We conclude that  I~ c X; 
hence 

I~ c (0,121)()C 2 

also. I t  follows that  
p ,  = 1 on I~, (1.52b) 

and also that  

/L,--, 1 

which implies tha t  for any z', 12" ~ I~, 

Since 

uniformly on I~, (1.52c) 

2,,,(12") - Z,.,(12') = ~ e x p ( -  co,, ,)f l ,  dz --* y e x p ( -  co,)fldz. 

z , . . ( 12" )  - z , . . < )  - ,  z , ( 12" )  - x , ( ~ ' ) .  

Z, is cont inuously  differentiable in I~ and 

dz ,  
e ~* - - =  1. (1.52d) 

d12 

This means  that  the segment  of the curve ~ corresponding to the interval I= is null 
outgoing. On  the other  hand,  according to (1.52b), this segment  mus t  coincide with 
the corresponding segment  of  0 X .  However  the lat ter  is strictly timelike. 

Consider  next the case that  there is a ~ ~ (0,121) such that  ? ~ C3, that  is, ~ ~ Y, 
e X c. Since X c is open, there is an ~ > 0 and an interval I~ as in (1.52a) such tha t  

I~ c (0,121)c~X ~. We have I ~ n Y  c = 0, because 

I~c~ Y c c (O, rl)c~Xcc~ Y ~ = (O, zl)c~C1, 

and according to our hypothesis the last set is empty. We conclude that I~ c Y; hence 

L ~ (O, z O n C 3 .  
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It follows that 

and also that 
7 = 1 on I~ (1.53a) 

ft,, ~ 0 uniformly on I~. (1.53b) 

According to Proposition 1.1 we can express 

~+a 

7,,,("} + e)  - 7,,,( '} - s )  = - .[ 7 , , , [ (  1 - flni)En, Jr- f ln,~n,]  d'c. ( ] . 5 3 C )  

Now, by (1.53a) the left-hand side tends to zero as i ~  oo. Consequently, in 
conjunction with (1.53b), 

~+a 

lira ~ e , , , d v  = 0. (1.53d) 
i~ao ?_~ 

Here e,,~ is the restriction to N,~ of the barrier function (1.23a) corresponding to the 
n~ solution: 

1 z ~ 1  Ia-*"' (1 ~47zr~,,) l + /~,,, 
e. , ,  = -~ a_ . . ,~ . ,~ ,  + , . . ,  a-,hi J 2r..,a_..,  

onle.  

We shall show that, if'q is sufficiently small, which, as we have remarked, can in the 
present context be assumed without loss of generality, then, in fact 

lim (inf e_,,.~ > 0, (1.53e) 
i-*~\ 1o '/  

contradicting (1.53d). For, it can be shown that, as in (1.29c), 

sup I#-.,(u,v)- exp(-  2N,) (u ,V)~n , (u ,O) l  < C r , ,  (1.53f) 
(u,v)e~ (vl) 

while (see (1.30a-h) and (1.43d)) 

Hence 

inf ~,,(u,0)= inf ( Z.,,(t)'] 
, ,~[o,~,] ,~[o,,~.,(,~,~l a.,(t)/ 

, ~ E , o , ~ , , , ( , , ~ + c . l  - -  ~ \R(0 + l,,, ' 
(1.53g) 

Since ~b(rl,0)--, 0 as rl ~ 0, it follows, in view of (1.32b) that 

liminf(,~ k~[o,~,]inf ~ , , ( u , O ) ) ~  as z loO.  (1.53i) 

i . . . .  I o .~ , ]  " ' t~ [o , r  \ R(t)] 
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In conjunction with (1.53f) this yields 

l i m i n f (  inf e _ , , i ] ~ o o  as zl ~ 0 ,  (1.53j) 
i~oe \ [O,~t] / 

which, if zl is small enough, implies (1.53e). 
The preceding development leads to the conclusion that (0, zl) c C4. Then for 

any closed interval I~ c (0,~1) we have 

p ,  = ? = 1 on I~ (1.54a) 

and (1.53c) holds. Therefore, considering the remark at the end of Proposition 1.1, 
since the left-hand side of (1.53c) tends to zero as before, we obtain 

~+e 

lim ~ [(1 - fi,~)e,,,~ + fl~,b,J dz = 0. (1.54b) 
i~co .}_~ 

Now, the left-hand side of (1.54b) is not less than 

2e l imin f ( in fmin{e- ,~ , ,b , , , }  I ,  

and, as we have shown, (1.53e) holds, while by Proposition 5.1 of [I] ,  in view of 
(1.54a), b,~ ~ b, uniformly and 

inf b, > 0. 

We have therefore again reached a contradiction and the proof of the lemma is 
complete. 

Next we show 

Lemma 1.5. I f  ~ is sufficiently small, then C1 coincides with (0, ~3. 

Proof. Let I be a component of the open set C1. It suffices to show that the right 
end point of I is included in I. The proof of this depends on showing that 7 is 
continuously differentiable in 1 and applying Proposition 1.1. The continuous 
differentiability of 7 in I in turn reduces to that of ~,. 

For any interval J c F0, "~], we define the domains ~'J-, ~)- ~ ~', by 

~r = {(u, v):u e J, v ~ [0, u]}, (1.55a) 

~ 2  = {(u,v):v e J, u E [v,~]}. (1.55b) 

That p is continuous and takes values in (0, 1) on I and that the convergence of 
fi,~ to /? is uniform in any closed subinterval J c I, imply that v, and ~, are 
continuous on I and the convergence of v,,~ and ~c,,~ to v, and ~c, respectively is 
uniform in any closed sub-interval J c I. It follows that v is continuous in ~ ' [  and 
~c is continuous in ~ [  and the convergence of vn, to v is uniform in ~ ,  while the 
convergence of •,, to ~c is uniform in ~)-, for any closed subinterval J c I. It follows 
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that in a#[ c7~[ ,  v, ~ are continuously differentiable with respect to v while t~, 1/are 
continuously differentiable with respect to u. Also, r, ~b,m are C a functions in 
~+ c~/-. 

To prove that ~ is also continuously differentiable with respect to u in a#[, we 
consider the functions ~_,,. We can write (see (1.26c)) 

c~_,,(u, v) = e x p ( -  2N,,(u, v)) e_,,(u, O) - A_, ,(u,  v) (1.56a) 

where 

A _,,(u, v) = ~:(u, v)N_,,,(u, v) e x p ( -  N,~(u, v)) 

+ i [(.,N+~ + 4. , (N+-~ + N+,,N_,~)](u,v')  
0 

x exp(2N,,(u, v') - 2N.,(u, v)) ~c.,(u, v') dr'. 

We apply Lemma 1.3 to the case 

f,, = exp(N,,) N+_,,, 

where (see 1.27d) 

2 # , ~  47r~a( 1 _ 4rcr~), 

to obtain (the conclusion for g,,, g): 

where (see 1.43c) 

f = exp(N) N+_ 

2# 
N+_ := 7g - 4~(2(1 - 4zcr z) 

(1.56b) 

v 
N_ (u, v):= j e N('' r V)(N+_ic)(u, v') dr'. 

0 

We then apply Lemma 1.3 once again, this time to the case 

fn, = [(,,?4+, i + q~.~(N+_~ i + N+,,N_~,)] exp(2N, i), 

f =  [-(N+ + q~(N+_ + N+N_)] exp(2N) 

where (see 1.25b) 

N+~ := 1 ( # , ,  _ 47rr2), N+ := 1 ( #  _ 47crZ) 
' rn i r 

to obtain (the conclusion for g,,, g): 

A_,,--+ A_ uniformly on ~('~) (1.56d) 
where 

A_(u , v )  = c~(u,v)N_(u,v)e -N(",v) 

+ i [(N+ + ~b(N+_ + N+N_)](u,v')eaN(u,r '. (1.56e) 
0 

N-n,--+ N_ uniformly on 0g(f) (1.56c) 
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Moreover, as in (1.29a) we deduce that 

IA I<C~.  sup _,, = 

Hence 
sup tA ] < C?. (1.56f) 

6 ) 

Next we show that the sequence of functions ~,,(-, 0) is uniformly convergent in 
any closed subinterval J c I. We have (see (1.30a h) and (1.43d)) 

~,,(u,O) = -  ( ~ )  (q~,,(u,O)) 

0) + c . , ) .  0) + 
,- . (1.57a) 
R(O,,(u, 0) + %) \R(O,~(u, O) + %) + l,, / 

Proposition 4.1 of FII] implies (see (1.39)) that 

0 = qS,~(0, 0) < ~b,~(u, 0) < qS,,(u, u) < u. (1.57b) 

For any closed subinterval J c I, inf,~j 4,,(u,O) is in fact bounded from below by 
a positive constant independent of i. For, there is a closed interval J0 on the left of 
J such that Jo c Ca. Since sups~ fl < 1 and hence infj o v. > 0 (see (1.51a)), it follows 
that on J0 x {0} the functions v,~ are uniformly bounded from below by a positive 
constant. Since the same is true for the functions f,~ and we have O0,~/Ou = v,,f,,, it 
follows that 

i n f ( i n f ~ u ' ) : = ~ o > O . ~  \"~Jo (1.57c) 

Consequently 
inf q~,~(u, 0), inf ~b(u, O) > eolJol- (1.57d) 
u ~ J  u ~ J  

Since Z(t) is continuous away from t = 0 (see (1.32h)), we conclude that the 
sequence ((~,(', 0)) converges uniformly in J to 4( ' ,  0), where 

2(r 0)) 
~(u, 0) - k(~b(u, 0)) (1.57e) 

is a continuous function in I, extending continuously to the right end point "cl of I. 
Hence the sequence (c~_,~(., 0)) converges uniformly in J to c~_ (-, 0) = r(.,  0)~(', 0) 

- 2~(.,0). In conjunction with (1.56d) this allows us to conclude that 

~_,~ ~ ~_ uniformly in d#+ (1.57f) 

where 
c~_(u,v) = e-ZN("'v)c~ (u,0) - A_(u,v) (t.57g) 

is a continuous function in ~ [ ,  extending continuously to its future boundary 
{zl } x [-0, z 1 ]. Consequently, 

r --* ~ := r 1-(e_ + 2() uniformly in 9./+ (1.57h) 
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for any closed subinterval J c I. Thus, for any ul,/12 ~ I and any v e [0, min {ul, u2 }], 

~(u2, v) - ~(ul, v) = lim (~,,(u2, v) - ~,~(ul, v)) 
/--+co 

= lim (v,,{,,)(u,v)du = (v~)(u,v)du. 
i >  co ul  

Hence ~ is continuously differentiable with respect to u in ~#[ and 

a~ <. 
au 

In view of the continuous differentiability of ~ with respect to v in qg[ c ~ -  
established previously, we conclude that ~ is a C ~ function in q/[  c~~ and hence 
( ,  and ~ are C ~ functions in I and Proposition 1.1 applies. 

We are now ready to prove that the end point zl of I is included in I. For, 
suppose on the contrary that ~, ~I. Then 

4 

z l e  U ci. 
i=2  

Now ~1 e C2 is impossible, for according to the results of Section 4 of I-I], this 
would imply that a J (  is non-timelike at the point (zl, Z1 := Z, (~,)), contradicting, 
when g is small enough, the fact that ~?Y is timelike in a neighborhood of the null 
point N + in J + (N+) .  On the other hand, if zl e C3wC4, then 7(zl) = 1 while 
7(z) < 1 for all z e I. Hence, 

lim sup d7 . . . .  dz (~) > O. (1.58a) 

However, by virtue of Proposition 1.1 we have 

if z e C3, while 

i f  "(1 ~ C 4 .  Here, 

d7 
lim )7 (r) = - el (1.58b) 
~ -+z  1 

lim sup dd--Tz (z) < - min{ei,  bl } 0.58c) 

1 z 1 I (1 - 4rrr~l)] 
el = ~ a - , i ~ , i + 2 r , - - 7  a - , i  - - - -  + a - , 1  j 

is the boundary barrier function at the point z 1 and 

#,1 
2r, l a _ , l  

bl ~ ~ ('el,X1). 
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N o w  the p roof  of  L e m m a  1.4 shows that  in fact el > 0 if ~ is small enough. 
Consequently,  (1.58b, c) and the fact that  ba > 0 when va e C4 (Proposi t ion  5.1 of 
[ I ] )  imply that  

lim dY (v) < 0, 
~ d-c 

in contradic t ion to 1.58a. The  p roof  of  the l emma  is therefore complete.  

We are now ready to prove  

Theorem 1.1. Let (r, co, p) be a soft-phase solution corresponding to smooth initial 
data and let ?U be the domain 

< : { (~ ,z ) : z  _-> 0, ~ + ( z )  _-< ~ _-< ~(z)}  

where (0,0) = N + is an outgoing boundary null point, z = r+(X) is the equation of 
C + the outgoing null curve issuing from N +, while ~ = {(Z) is the equation of OYif, 
where, corresponding to the given soft-phase initial data, p(z, Z) along each flow line 
first becomes equal to 1. Let R be a function defined on an interval [0,5]  and 
representing r as a function of O along C* +, the incoming null curve issuing from N +. 
Then there is a ~ > 0 and a solution to the problem of formation of a free phase 
boundary such that ~ is a C 1 curve: [0 ,{ ]  ~ ~//', v ~-~ X,(Z), issuing from N +, which 
has positive velocity fi relative to the soft-phase flow lines, is strictly timelike (fl < 1) 
and contained in the interior of ~ / in (0, {], becoming null outgoing at N + (fi(0) = 1). 
Also, r, m and ~ are C i functions while v, to, ~, r 1 are C o functions on ~(~), defining 
a solution corresponding to genuine hard phase, except at N + where a = 1. 

Proofi By virtue of L e m m a  1.5, v is cont inuous  in 

~U~,~j =~U(O\ (0 ,0  ) 

and ~c is cont inuous  in 

Since 

~U~o,~l = ~u (e ) \ ( [ 0 , e ]  x {0}). 

the functions v, ~ are thus cont inuously  differentiable with respect  to v while the 
functions ~:, q are cont inuously  differentiable with respect to u in ~ , ~ l .  Also, the 
functions r,(a,m are C 1 functions in ~(~,~l. We now show tha t  fi(v) ~ 1 as ~ --*0. 
This would imply that  v ,  and ~c, (see (1.51a)) extend cont inuously  to ~ = 0 and 

1 
v,(0) = 0, ~c,(0) - , (1.59a) 

a o 

which would in turn imply that  v extends cont inuously  to the point  (0, 0) where it 
vanishes, ~c extends cont inuously  to [0 ,{ ]  x {0}, the past  bounda ry  of q/(~), the 
part ial  derivatives of the functions v, ~ with respect to v and of the functions ~c, t/ 
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with respect to u extend cont inuously  to [0, ~] x {0}, while the functions r, m and 
~b are C 1 on the whole of 8g('~). 

F r o m  the expression (see (1.45d), (1.46b)) 

Y x = 2(1 - p , ) ,  y = 1 - 72 (1.59b) 
- (1 - y ) x  + y '  

we see that /~  ~ 1 as r ~ 0 is equivalent  to 

X 
- ~ 0  as z ~ 0 .  (1.59c) 
Y 

For,  since p , ,  ~, are cont inuous  and  p , (0)  = 1, ~,(0) = 1/a_ o, we have x, y --* 0 as 
~ 0. N o w  (1.59c) would  follow if we show tha t  

1 - p ,  , 0  as ~ --+ 0, (1.59d) 
"G 

~ o  \ - - 7 ~  > 0 "  (1.59e) 

By Propos i t ion  5.1 of  [ I ]  we have Op/~?z > 0 a long ~3~, the future b o u n d a r y  of ~ .  
Consequent ly ,  if ;gl is sufficiently small, the m i n i m u m  of p a long the segment  of the 
flow line Z = ZJ lying in ~U is a t ta ined on C +, the past  bounda ry  o f ~ .  Lett ing p+ be 
p as funct ion of r a long C +, i.e., letting 

p + (z) = p(~, Z + (r)) (1.59f) 

where Z = X+(z) is the equa t ion  of C +, this implies that  

1 - p(z) < 1 - p+(r) .  (1.59g) 

N o w  

For,  C + is tangent  at N § to 0 S ,  the level set of  p cor responding  to the value 1. 
Therefore,  

1 - p+(z) = o(z) (1.59i) 

and,  in view of (1.59g), the limit (1.59d) is proved.  To  prove  (1.59e) we apply  
Propos i t ion  1.1. Since 7 ,P ,  ~ 1 as r --, 0, we obta in  

Here  e ,  is the b o u n d a r y  barr ier  function: 

~ a _ , ~ , l  2 =--1 [ a _ ,  ( 1 - _ 4 ~ r 2 ) ]  # ,  
e ,  = + - -  (1.59k) 

+ 2 r ,  a_, j 2r,a ," 
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The proof of Lemma 1.5 shows that ~ is a continuous function in ~(~)\(0, 0) and 
(see (1.56f)) 

I~(u, v) - e -  2N(u, V)~(U, 0)l < Cu. (1.59/) 

Since {(u,0) is given by (1.57e), q~(u, 0)-~ 0 as u ~ 0, while according to (1.32b), 
Z(t) + oo as t -+ 0 (and/~(t) --+/~(0) = - a-0 by (1.2b)), we have 

~(u,0)~ oo as u-+0. (1.59m) 

Hence, in view of (1.590 and (1.59k), 

e , ( z ) - - ,  oo as T ~ 0 .  (1.59n) 

In conjunction with the fact that lim~_,0b,(z) = bo > 0, this yields, through (1.59j), 
the result (l.5%). The conclusion fi(v) --+ 1 as ~ ~ 0 follows. 

It remains to be shown that the solution obtained in og(r corresponds to 
a genuine hard phase. More precisely, it suffices to show that we can find 
a ~' e (0, r such that the restriction of the solution to q/(~') satisfies a > 1 except at 
(0, 0). We shall do this with the help of the (interior) barrier function e of (1.23a). 
Now, on (0, ~] we have a ,  > 1 (see (4.20a, b) of [II]). Thus if, on the contrary, such 
a 2' cannot be found, then for every ~ e (0,r the set 

#(~1) := {(u, v) ~ q/(~,)\(0, 0):a(u, v) _-< 1} (1.60a) 

is not empty; consequently, there is a { E [-0, zl) such that #(z,) has a non-empty 
intersection with the incoming null segment 

I ( (v ) :=  Iv, r1] x {~}. (1.60b) 

Suppose that ~ > 0. Then since a,(~) > 1, there is a first point, (fi, {) along I~({) at 
which a = 1: 

= sup{u :a (u ,~ )  > 1}. (1.60c) 
Thus, 

~u (u, v) __< 0 (1.60d) 

must hold. However, by (1.23b), 

and (1.59/, m) imply that 

c~a (fi, ~) 2(vfe)(fi, ~) 
~u 

(1.60e) 

inf e > 0 (1.60f) 
~('q) 

if % is sufficiently small. It follows that { = 0; hence g(271) C I~ (0)\(0, 0) and, by 
continuity, a = 1 on o~('q). Consequently, either there is an open segment 
(Uo,Ul) x {0} c I~(0) not intersecting E(Vl) such that its future end point (ul,0) 
belongs to g(T1) or there is a T0 ~ (0, T1] such that #(zl) coincides with I~ (0)\(0, 0). 
However, according to the first alternative, a > 1 on (Uo, ul) x {0} and o-(ul, 0) = 1, 
whence (•a/Ou)(ul, 0) < 0, while according to the second alternative a = 1, whence 
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aa/Ou = 0 on I~ (0)\(0, 0). Consequently both alternatives contradict (1.23b) in 
conjunction with (1.60f). The proof of the theorem is therefore complete. 

2. The Local Form of the Free Phase Boundary in a Neighborhood of the Null point 

In the present section we shall derive the local form of the free phase boundary 
in a neighborhood of the null point, for any solution of the problem of formation 

of a free phase boundary in the phase transition from soft to hard, as formulated in 
Section 1 of [II] .  Specifically, we shall assume that N is a C 1 curve: [0,{)~-+ u/; 
z ~-+ X,(z), issuing from N +, which has positive velocity fi relative to the soft-phase 
flow lines, is strictly timelike (fi < 1) and contained in the interior of ~U in (0, {). It 
then follows that 7 is continuous and 0 < y < 1 on (0, {), and also that N becomes 
null outgoing at N--, that is, fi(0) = 1. Moreover, we shall assume that ? ~ 1 as 

-+ 0, which follows from the continuity of the hard-phase solution, in particular, 
the function ~, at N + = (0, 0). 

The uniqueness of the solution of the formation problem will be established in 
the next section; the proof relies on the results of the present section. 

We shall show that in the limit ~ ~ 0, the variables 

x := 2 ( 1 -  p,) ,  y : = l - 7 2  (2.1) 

satisfy a closed system of ordinary differential equations. 
We introduce the following notation. If f and g are two continuous functions 

on (0, ~) and g is positive, we write f ~ g if f ( z ) / g ( z )  --+ 1 as ~ --+ 0. 
The variables x, y are continuous and positive on (0, {) and x, y + 0 as z ~ 0. We 

have 

Hence, 

f l -  Y +1 a s ' c ~ O .  (2.2a) 
(1 - y ) x  + y 

X 
- ~ 0 as v --, 0, (2.2b) 
Y 

l - f l -  (1 - y ) x  x 

( 1 - y ) x + y  y" (2.2c) 

We first derive an equation for x. We have 

d x  _ 2 d p ,  _ 

dr  d ,  

In terms of the functions 

b : -  ~ ,  C'-- 0p e-  ~~ ~p & 0Z (2.3a, b) 
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defined by the soft phase solution, we can write 

dx 
d-7 = 2tic, - 2(1 - fl)b,. (2.4) 

As usual, the subscript �9 denotes the restriction to the phase boundary. That C + is 
tangent at N + to 03U, the level set of p corresponding to the value 1, is expressed by 
the condition 

c,(0) = 0. (2.5a) 

We have 

dr ~ + fie-~~ ," 

In particular (in view of 2.2a), 

dc,& ( && -~ ac ~ 
(0) = ,  + e ~-ZZ) (N+)" (2.5b) 

Now, since c is a continuously differentiable function defined on the domain of 
definition of the soft phase solution, the right-hand side of (2.5b) can be evaluated 
by taking the limit at N + along the fixed phase boundary Z c O f  (see Section 5 of 
[I]). Letting ~b = ~b,(z) be the equation of Z, we have 

p(O,(z),z) = 1. 
Hence, differentiating implicitly with respect to ;g, we obtain 

d~, . (e-~ "] 
e -~ dz .=6= \ @/& ) ,  

(see equation 5.13 of [-I]). Thus, in terms of the functions b,c we can express 

1 - 6 - c, (2.5c) 
b," 

The function q along Z defined by equation (6.39) of [-I]: 

d6 
q = e - ~ * -  (2.5d) 

dz' 

is given by 

(O(c/b)~ (O(c/b)~ (2.5e) 
q = 6 \  Or J, +e ~o,\ ctz )*" 

In particular, at N+, since c(N § = 0 and 6(N +) = 1, the quantity q+ := q(N § is 
given by 

q+ 1( c e_o c) 
= bo \ &  + ~ (N+). (2.50 
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Therefore, in view of 2.5b we have 

d c ,  
d~ (0) = boq + 

From (2.5a, g) it follows that  

c ,  ~ boq + z. 

By virtue of (2.5h) and (2.2c), we conclude from (2.4) that  

dx 
=A -f2 

where 
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(2.5g) 

(2.5h) 

(2.6a) 

1 a 2 0 ( 1  _ f i ) ~ , .  (1  - f i ) e ,  ~ 

Now according to (1.57e), 

~(u,O) - 

From (1.13a) and (1.31a) we obtain 

2@(u, o)) 
R ( 4  (u, o))' 

ro - r (u ,0)  = a-o4(u,O) + O((O(u,O)?/2). 

Also 
R ( ~ ( u ,  0)) = - a - o  + O((~(u,  0))1/2). 

Moreover,  according to (1.32b), 

2 @ ( u ,  0))  - - -  

Substituting yields 

bo 
a_oq+ 1/2 (qS(u, 0))- 1/2 _~ 0(1). 

x / r o  - r(u,O)~(u,O) - bo a3_/~q + 1/2 + O((O(u, 0))1/2). 

In view of (1.591), this implies that  

bo 
x~00 -- r(z, O)~,('c) a3_/gq+l/z. 

(2.8a) 

(2.8b) 

(2 .8c )  

(2.8d) 

(2.8e) 

(2.8f) 

(2.8g) 

To proceed we must  investigate the limiting form of the product  (1 - f i ) e ,  as z ~ 0. 
First, we note that  (see (1.59k)) 

(2.7) 
~2d 
-~  ~ 2[(1 - fl)e,  + bo]. 
dr 

X 
A := 2 t i c ,  ~ 2boq+z, f2 := 2(1 - f l ) b ,  ~ 2bo- .  (2.6b) 

Y 

Next, we derive a limiting equation for y. By Proposi t ion 1.1 and the fact that  
x, y --, 0 as "c --, 0, we obtain 
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Hence, by (2.8a) and (2.2c),. 

(1 -- fl(,c))e,(,c) 

Let us define a new variable z by 
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2q ~/ro - r(,c, 0)" 

2 ~1/2 
= - -  , / t o  - r ( , c , o ) .  

\ a - o /  

Then (2.8h) becomes 

(1 - -  f i ) e ,  ~ - -  

Substituting this into (2.7) yields 

bo x 
(2q+) 1/2 yz" 

d~ ~ 2bo 1 + (2q~)1/2 . 

(2.8h) 

(2.8i) 

(2.8j) 

(2.8k) 

f ~  g. (2.1 lc) 

F o r ,  (2 .11a)  means that there is a positive continuous function h such that 

d f  _ h dg (2.11 d) 
dz dz 

f(0) = g(0) = 0 (2.11b) 

df dg 
d~ ~ d~ (2.11a) 

implies that 

together with 

Now, 

Since 
Or 
~u (% O) = - v(r, 0) (2.9a) 

and since (1.49c), (1.49a) and (2.2c) imply that 

v(r,O) = ~ a_,(r)(1 - fl(,c))e -s*(~) ~ ~ a -o  (,c), (2.9b) 

the variable z satisfies 
dz x 

(z(0) = 0). (2.9c) 
dr 2yz 

The limiting equations (2.6a, b), (2.8k), (2.9c) constitute a complete system of 
limiting equations for the variables x, y, z. By virtue of (2.9c), the limiting equation 
(2.8k) reduces to 

dy ~ d {2b0 [,c + (2/q+)l/2z]}. (2.10) 
d,c d,c 
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and h(27) --* 1 as r --* 0. Integrating yields 

f= ~g 
where 

(2.11e) 

~ = l  

Thus g is a C 1 
mean-value function of h relative to the measure dg. Consequently, ~ is continuous 
and positive and ~(27) ~ h(0) = 1 as r --, 0. Condition (2.11c) follows from (2.11e). 

Applying these considerations to the case 

(2.11f) 

strictly increasing function and, according to (2.11f), ~ is the 

d~ ~ 4boz[r  + (2/q+)~/Zz]" (2.13b) 

This means that there is a za > 0 and positive continuous functions ha, h2, h3 on 
(0, r l  ), tending to 1 as r ~ 0, such that the variables x, z satisfy on (0, zl) the system 
of ordinary differential equations 

dx hzx 
dr 2b~ + zhl (2.14a) 27 + (2/q+)l/2z ' 

dz h3x 
d27 4boz[r + (2/q+)a/2z] (2.14b) 

Also, 
x , z > 0  on(0,271), and x(27),z(27)--*O as~-- ,0 .  (2.14c) 

We shall derive upper and lower bounds for x. Equation (2.14a) implies that 

dx 
- -  < 2boq+ 27hl. (2.15a) 
dr = 

Integrating this, we obtain the upper bound 

x < boq+272h4 (2.15b) 

where 

h4 = 2 7 - 2  i 227'hl (27') d27' (2.15c) 
0 

y ~ 2bo[z + (2/q+)l/Zz]. (2.12) 

Therefore, we can eliminate the variable y and reduce the system (2.6a, b), (2.9c), to 
the following system for the variables x, z: 

dx 
= f l  - f 2 ,  f l  ~ 2boq +~, 

dz x 

X 
f2 ~ + (2/q+)~/2z, (2.13a) 

we conclude that 

f =  y, g = 2bo[-Z + (2/q+)a/2z], 
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is a function which is posit ive and cont inuous  on (0,r l) ,  tending to 1 as r ~ 0. To  
obta in  a lower bound,  we remark  that  since z > 0, equat ion  (2.14a) also implies that  

i.e., 

X 
dx > 2boq+77h 1 _ h2 - ,  
dr 77 

d(rx)  > 2boq +.c2hl + (1 - h2)x. (2.15d) 
dr = 

Now,  by the upper  bound  (2.15b), 

(1 - h2)x = o(r2). 

Hence  (for r l  sui tably small) (2.15d) m a y  be writ ten in the form 

d(rx)  > 2boq + r2h5 (2.15e) 
dr = 

where h5 is a positive cont inuous  function on (O, r l) ,  tending to 1 as r ~ O .  
In tegra t ing  (2.15e) we obtain  the lower bound  

2bo + 2 
x ==_ -~-- q 77 h 6 (2.15f) 

where 

h6 = r -3 j" 377'Zhs(r')d77 ' (2.15g) 
0 

is again a posit ive cont inuous  function on (0,r l) ,  tending to 1 as r - +  0. 
Equa t ion  (2.14b) can be writ ten in the form 

d(2boz z) h3x 

d'c r + (2/q+)l/2z" 

The sum of this equat ion and (2.14a) is 

(h3 - h e ) x  d(x + 2boz 2) = 2boq+rhl + (2.16a) 
dr r + (2/q+)l/az" 

Since h3 - he --+ 0 as r --+ 0, by virtue of  the upper  bound  (2.15b) we have 

]h a - h z l x  < ] h 3 - h 2 [ x  
77 + (2/q+)l/2z = r 

< h4[h3 -- h2lboq+r 2 = o(z). 

Hence (2.16a) m a y  be writ ten as 

d(x + 2bo z2) _ 2boq+rh7 (2.16b) 
dr 
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where h7 is a positive cont inuous function on (0,z~), 
Integrating this equat ion yields 

where 

x + 2bo z2 = boq+z2h8 

tending to 1 as r ~ 0 .  

(2.16c) 

By (2.16e), 

where 

h9 = 3hs - 2h6 (2.16f) 

is, for r l  suitably small, a positive cont inuous function on (0, r~), tending to 1 as 
r--* 0. By virtue of (2.16e), the function q+r  2 - 2z 2 is positive on (0, ~1), provided 
that  zl is taken suitably small; consequently,  equat ion (2.16c) can be writ ten in the 
form 

x = h l o b o ( q + r  2 - 2z 2) (2.16g) 

h l 0 = l +  
q+rZ(h8 - 1) 

q + r z _ 2z 2 �9 
2.16h) 

where 

Ih8 - 11 
Ih~o - 11-<_ (2.16i) 

1 - (h9/3)' 

Therefore,  if r~ is taken suitably small, hlo is a positive cont inuous function on 
(0, z 1), tending to 1 as z --* 0. Finally substituting (2.16g) into (2.14b), we reduce the 
limiting system to a single limiting equat ion for the variable z: 

d z  hq + ('c - (2/q+)l/2z) 
- -  = (2.17a) 
d r  4 z  

Then (2.17a) assumes the form 

d2 E2,? + h(2 - 1)] 
r d z  22 

h = h 3 h l o  

is a positive cont inuous function on (0, r l) ,  tending to 1 as r --* 0. 
We set 

(2.17b) 

(2.18a) 

(2.18b) 

where 

h8 = "c- 2 ~ 2 r ' h7  (r ')  d z '  (2.16d) 
0 

is again a positive cont inuous  function on (0, r l) ,  tending to 1 as r ~ 0. Substituting 
in (2.16c) the lower bound  (2.15f), we deduce that  

q+ 
Z 2 ~ ~ -  r2h9 (2.16e) 
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The roots  of the quadrat ic  in the numera to r  are 

We have 

- h +  ~='x/h z+8h 2_ - h - x / h  2+8h 
2+ ( 2 . 1 8 c )  

4 ' 4 

2 + ( z ) ~ 2 + ( 0 ) = � 8 9  2_(z)--> 2 _ ( 0 ) = - 1  

and we can write (2.18c) in the form 

We assert that  

as v ~ 0, (2.18d) 

d , t  - 2 +  - 
- -  = - (2.18e) 
& 2 

1 2(t)  ~ 2+(0) = 2  as ~ 0 .  (2.18f) 

For,  if the contrary  holds, then there is an e > 0 and sequence (~,: n = 2, 3 , . . .  ) 
c ( 0 , v l )  decreasing to 0 as n--*oo, such that  the corresponding sequence 
(2(z,):n = 2, 3 . . . .  ) is contained in (0, 2 + ( 0 ) -  e ] u [ 2 + ( 0 ) +  e, oo); therefore, at 
least one of the intervals ( 0 , 2 + ( 0 ) -  e], [ 2 + ( 0 ) +  e, oo) contains infinitely many  

Suppose first that  the interval ( 0 , 2 + ( 0 ) -  e] contains a subsequence (2(%): 
i = 1, 2 , . . .  ). Now, there is a 6 > 0 such that  

sup 2_(4) < 0, (2.19a) 
~e(O,6) 

inf 2+(~) > 2+(0) - -  (2.19b) 
~(o,~) = 2" 

Also, there is an 1 such that r,~ < 6 for all i > 1. Take  any i > 1. Then, in view of 
(2.19a, b), equat ion (2.18e) implies that  for all ~ e (0, z,,) 

d2 e 
~ > 2+ - 2 > ~ (2.19c) 

For,  (2.19c) is true at z,, and if it is true for all ~ e (~,%],  then we have 

2(?) < 2(z,,) <= 2+(0) - e (2.19d) 

which by (2.19b) and (2.18e) implies that  (2.19c) is true at ~. Thus (2.1%) follows for 
all v e (0, ~,,] by cont inuous induction. However,  integrat ion of (2.19c) on [v, ~,,] 
yields 

e .  //r,,'~ 
2(v) < 2(%) - ~ log ~-~-), (2.19e) 

according to which as r is decreased from the value r,,, 2(r) and therefore z(v) 
become 0 at a positive value % of r. By (2.9c) we conclude that  x vanishes 
identically on (0, %): a contradiction.  
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Suppose "next that  the interval [2+ (0) + e, oo) contains a subsequence (2(T,~): 
i = 1, 2 , . . .  ). There  is a 6 > 0 such that  

sup 2+(r)  > 2+(0) + ~  (2.20a) 
~(O,a) 

and (2.19a) holds, and again there is an I such that  r,, < 6 for all i > I. Take any 
i > I. Then  in view of (2.19a) and (2.20a), (2.18e) implies that  for all ~ e (0, ~,~) 

d2 e 
r d~ ~ < - (2 - 2+) < 2" (2.20b) 

For,  this is true at -c,, and if it is true for all ~ e ({, %],  then we have 

2('?) > A(v,~) > 2+(0) + e (2.20c) 

which by (2.20a) and (2.18e) implies that  (2.19c) is true at {. Thus (2.20b) follows for 
all r e (0, z J  by cont inuous  induction. However ,  integration of (2.20b) on [v, r , ,]  
yields 

~'~(~,) ~ .)u(r?li) -~- ~ l o g  . (2 .20d)  

Thus  2 ( ~ ) +  oo as r--+ 0, in contradict ion to the estimate (2.16d), according to 
which (see (2.18a)) 

,~ < (2.20e) 

Therefore,  for each e > 0, the set 

(0 , , t+  (0) - ~ ] u [ , ~ + ( 0 )  + ~, oo) = (0, ~ ) \ ( ; ~ + ( 0 )  - ~,,~+ (0) + ~) 

contains only finitely many  of the 2(~,) and the assertion (2.18f) is established. 
By (2.18a), condi t ion (2.18f) implies that  

z ~ ~ ~. (2.21a) 

This in turn implies, by (2.12), that  

y ~ 3bo'c, (2.21b) 

and by (2.16f), that  
3 X ~ ~ boq+z 2. (2.21c) 

It is instructive to compare  the local form of p ,  as given by (2.21c) with the local 
form of p+,  that  is, p as a function of "c along C +. We have 

dp+ 
- -  = - c + (2.22a) 

dr 

where 
c+ = c(r, Z+ (~)) (2.22b) 
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(see (2.3b)), 

and by (2.5b, g), 

Consequently, 
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dp+ 
p+(O)=l,  ~ -z  ( O ) = - c ( N  + ) = 0 ,  

dr 2 ( 0 ) = -  ~ + e  -~' ( N  + ) = - b o q  + 

p+(r) = 1 -- kz 2 + o(r 2) 

(2.22c) 

(2.22d) 

We summarize the results of this section: 

(2.23h) 
9 

-- 1 -- bok'r 3 q- 0('c3). 

where k is the positive constant 
1 + 

k = ~ boq �9 (2.22e) 

In terms of the constant k the result (2.21c) is expressed by 

p, (~)  = ~ - �88 k~ 2 + o(~2). (2.22f) 

Let us recall that according to (4.8a-c) of [-II], 

d~b, 1 
d~- = 2 (f+ + f - )  (2.23a) 

where 

~/ flxfi, (2.23b) f+ =(1 + fi) 1 1+  

~/ fix (2.23c) f_ = (1 - fi) 1 + 1 - - ~  

Let 
1 9(s) = x/1 + s - (1 + �89 s - g s2). (2.23d) 

Then the Taylor expansion of g begins with cubic terms and we can express 

1 f12X2 
~(f+ + f - )  - +fo (2.23e) 

( f - - ~ )  8 
where 

( f i x )  1 (1 flxfi) f o=  ( l+ f l )g  - l + f i  + 5 ( 1 - f i ) 9  �9 (2.23f) 

The results (2.21b, c) imply that 

x 2 9 
bokz  3, (2.23g) 

1 - fi2 4 

while fo = O(z4). It follows that 
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T h e o r e m  2.1. Consider any solution of the problem of formation of a free phase 
boundary in the phase transition from soft to hard, as formulated in Section 1 o f [ I I ] .  
Let p as a function o f t  along C + be given, in a neighborhood of N +, by 

p+(z ' )  = 1 --  kZ 2 + 0(7" 2 )  

where k is a positive constant. Then, in a neighborhood of N +, p as a function of 
along ~ satisfies 

3 p, ( ' c )  = 1 - a k'c2 "~- O('g2) ' 

and 7 is given by 
3 

?(z) = 1 - ~ boz + o ( r )  

where bo is the positive constant: 

Moreover, 

(see Figure 1). 

bo = ~ (N+).  

k 
1 - -  fi(m) = ~ *  + o ( ~ ) ,  

ZOo 

a _  0 
r(~, O) = ro - 7 kz  ~ + o ( d ) ,  

~Oo 

9 4 
~,(~) = z - i5g bok'c + o(r 4) 

,, i / 

\ " ,., i Sof~ I I I  

-, j i ~  / 

\ ] / 
x ! / 

\ \  H a r d  J 
[ / 

\ l / i l l  C + 
C*+ \ - / / \ [ / 

\ / / 
\ / / 

\ / /  

\ \  ' 

Soft 

Figure 1 
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3. The Uniqueness Theorem 

The aim of this section is the p roof  of  

Theorem 3.1. Let ~',  (r', m', v', to', ~', q'), and ~",  (r", m", v", ~", (", if'), both defined on 
[0, z l ], ql (z l ), be two solutions of the problem of formation of a free phase boundary in 
the phase transition from soft to hard, as formulated in Section 1 o f [ I I ] .  Suppose that 
the two solutions have the same hard-phase initial data along C* + that is, the same 
function R, and also the same soft-phase initial data along C +, and hence correspond 
to the same soft-phase solution (r, co, p). Then the two solutions coincide. 

The p roof  of  the theorem relies on the results (2.21) on the local form of the 
variables x, y and  z in a ne ighborhood  of the null point.  Let  us recall that  the 
variable 

x = 2(1 - p , )  (3.1a) 

satisfies equat ion (2.4): 

dx 
d~ = 2tic, - 2(1 - fl)b, (3.1b) 

and  that  fl is given by 

f i _  Y (3.1c) 
(1 - y)x + y" 

Let us also recall that  
1 

y = l - 3 ;  2 , 7 -  (3.2a) 
a _ . ( .  

and  that  ( ,  is given by (see (1.43e)): 

~, = r21 (~ ,  + 4 , )  (3.2b) 

where 
e , ( z )  = e N* (Q 0~(27, 0) - -  A,(27).  (3.2c) 

Let  us fur ther  recall f rom (1.31a) and (1.13a) that  ~b,r,( a long C *+ are given in 
terms of the pa rame te r  fi by 

1 e_~ofif(fi 1/2), (3.3a) 

1 e - ~'~ ofig(fi 1/2), (3.3b) r o -  tic.+ = 

h(fi 1/2) 
(ic,+ - - -  (3.3c) 

a -  0 

Here  f, g, h are smoo th  positive functions and  

bo 
f (0 )  = g(0) = h(0) = 1, (0) = e -~176 q+ 1/2" (3.3d) 
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Consider the function 

O(s) = s , f  g(s). 

The function ~ is smooth, with dO/ds is positive, and 

5(0) = O, (0) = 1. 

(3.3e) 

(3.3f) 

Consequently, ~ posesses a smooth inverse function ~-  1, with d(1 1/dt positive, and 

0-1(0) = O, (0) = 1. (3.3g) 

Since, in view of 3.3b, 

t e-  o,o/2 al_/g(l(~ 1/2), f r o  -- tic.+ = 

recalling the definition of the variable z from (2.8i): 

( 2 7  ~ z ( ~ )  = - -  , f r o  - -  r ( ~ , O ) ,  
\ a - o /  

we can then express 

and, by (3.3c), 

fil/2 = O-l(21/2eO)o/2z) 

P(z(z)) 
C ( ~ , o )  - 

a -  0 

where 
P(z) = (hoO 1)(21/2e~176 

is a smooth positive function with 

~(o) \U]  " bo 

Moreover, using (3.3a) we also express 

~(~, o) = S(z(~))  
where 

1 S(z) = ~ e -~~ (( f  o O-1)(21/Z eO~ 2, 

f ( s ) = , , /  7 

The function )7 is smooth, with d)7/ds positive, and 
3 1 1  

f(o) =0, ~s(0)=l. 
Consequently, S is a smooth strictly increasing function with 

~z d2S S(O) = (0) = O, ~z2(O) = 1. 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

(3.4g) 

(3.4h) 

(3.4i) 

(3 .4 j )  
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In view of (3.4a, c, f), we can express 

cz(~, O) = Q(z(z))  

where 
(3.4k) 

Q(z) = x / r ~  - � 89176  P(z )  - S(z)  (3.4/) 
a -  0 

is a smoo th  function with 

d~- (0) - (0) -- - -  (3.4m) 
a - o  a - o \ q + J  " 

Substi tut ing (3.4k) into (3.2c) and substi tut ing in turn the result into (3.2b), we 
obta in  

( ,  = r ,  1 ( e -N 'Q(z )  + O ,  -- A , ) .  (3.5) 

Finally, by (2.9b), the variable z satisfies the equat ion  

dz _ 1 a _ ,  (1 - fl) e_N, ' (3.6) 
dr 2 a - 0  z 

Consider  now two solutions as in the s ta tement  of  T h e o r e m  3.1. F r o m  (3.1 c) we 
have 

fl' - fi" = Pl(Y '  - Y') - pz(x '  - x") (3.7a) 
where 

x' / ( 1  - y") 
Pl = - - ,  P 2 -  , (3.7b) 

Po Po 

Po = [-(1 - y ' )x '  + y']  [-(1 - y ' ) x "  + y"] .  (3.7c) 

Note  that, according to the results (2.21b, c), 

x' q+ 1 1 
Pl y , y ,  12bo' P2 y ,  3boz" (3.7d) 

F r o m  (3.2a), we have 

Y' - Y" = 7'7"(7' + 7 " ) ( a ' - , ( ,  - a " _ , ( , )  (3.8a) 

and f rom (3.6), 
tt  ( ,  - ( ,  : ( r , ) -  t e-W*(Q(z')  - Q(z")) 

! t l  - -  t !  It  ! t t  
- ( r , r , )  l (Q(z")e  -s'; + 4), - A , ) ( r ,  - r , )  

+ ( r , ) - i [ Q ( z " ) ( e  - x ;  - e - u ; )  + (4), - 4),) - ( A ,  - A , ) ] .  (3.8b) 

Let  us denote  

L = 14), - 4,1 + IN ,  - N , [  + [A~ - A. I .  (3.9a) 

t =  sup (L(~_').  (3.9b) 
re(0,zl] 

The p roof  of  Theo rem 3.1 relies on the following lemma: 
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L e m m a  3.1. Consider two solutions as in the statement of  Theorem 3.1. I f  z l  is 
sufficiently small, then there is a constant C such that 

[ x ' ( ' c ) -  x"('c)] ~ Cl'c 2, l y ' ( ' c ) -  y'('c)l, I z ' ( ' c ) -  z"(v)] <= Cl'c in [-0,'c13. 

Proof.  We int roduce the var iable  (see (2.16c)) 

w = x + 2bo z2. 

Then  by (3.1b) and (3.6), w satisfies the equat ion  

dw 
d~ 2/~c, 2(1 ~)f, 

where 

f ,  = b ,  - (a , /a_o)e-N*bo.  

(3.10a) 

(3.lOb) 

x'  - x" = w' - w" - 2bo(z' + z")(z' - z"). (3.10d) 

F r o m  (3.10a) we obta in  

d 
d-~ (w' - w") = 2(ff  - f f ' ) c ,  + 2fl"(c, - c , )  + 2(fl' - f l " ) f ,  - 2(1 - f l " ) ( f ,  - f , ' ) .  

(3.10e) 

N o w  let g be a smoo th  function defined by the soft-phase solution, such as 
r, p, a_ ,  b, c, and  let g ,  and 9', be the restrictions of g to N '  and  N"  respectively. 
Then  we have 

" ] Ig, - g , l (z)  = 

In  the case g = p, since 

z;; (~) 

we have 

> 0, & o + e - ~ 1 7 6  o = 0 '  while ~ o 

Op 
- -  < 0 in a ne ighborhood  of N +. 
6Z 

(3.11a) 

We shall base our  est imates on the variable w instead of x. The advan tage  of doing 
this is the following. Whereas  the coefficient c ,  off l  in equat ions (3.1b), (3.10b) is the 
same and vanishes at v = 0 (see (2.5a)), the coefficient b ,  of 1 - / ~  in the former  
equat ion  does not  vanish at z = 0, while the coefficient f ,  of 1 - fl in the lat ter  
equat ion  does. Consequent ly,  in a ne ighborhood  of the null point,  the difference 
w' - w" depends less sensitively on the difference fl' - fi" than  does the difference 
x'  - x". We  can express 

(3.10c) 
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! 

I 0 ,  - p.l(~) = 

It follows that 
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x;(O 

f (O~Z)(z'z)dz =>C-1[Z,-Z,t ,, %, 
z~ (~) 

(3.11b) 

(3.7d), we obtain 

Ifi' - fl"l 

Also, from (3.8a, b), and from 

ly' - y"l 

< C ( ~ - l l  x '  - x"l + lY' - Y"I). (3.12a) 

(3.11d) in the cases g = r , a _ ,  we get 

<= C([x '  - x"] + ]z' - z" I + L )  (3.12b) 

(see 3.9a); hence, substitution yields 

Ifl' - g"l <= c ( ~ - l l x  ' -  x" l  + I z ' -  z"l + Z ) .  (3.12c) 

Going back to (3.11a) and taking into account the fact that 1 - fl, c , ,  f ,  are all 
O(~), as well as (3.11d) in the cases 9 = a _ ,  b, c, we obtain 

d 
d-~ Iw' - w' l  ~ C(~lfl '  - fl"l + Ix' - x"l  + rL). (3.13a) 

Hence, substituting (3.12c) into (3.13a) we obtain 

d 
d7 Iw' - w"l <= C ( I x '  - x"l  + v lz '  - z"l + zL) .  (3.13b) 

By (3.10d) and the fact that z = O(~) by (2.2ta), we find 

Ix' - x"l  <= C ( I w '  - w"l + ~lz '  - z"l). 

Substituting (3.13c) into (3.13b) then yields 

d 
lw' - w"l <= C ( I w '  - w"l + ~lz '  - z"l + zL) .  

(3.13c) 

(3.13d) 

Next we consider the difference z ' - z " .  By (3.6) this difference satisfies the 
equation 

d ( z '  - z") = + E; (3.14a) 
1 d_,  e-N'.A 
2 a - o  

here A is the difference 

1 -  f l '  1 -  f l "  ( f i '  - f l " )  (1-fl") 
A . . . .  (z '  - -  z " ) ,  ( 3 . 1 4 b )  

Z' Z" Z' Z'Z" 

! tr  

[Z, - Z,I(Q --< Clx '  - x"l(Q. (3.11c) 

Therefore, substituting in (3.11a), we obtain 

Ig ,  - g , l (~ )  _-< C I x '  - x"l(~). (3.11d) 

From (3.7a) and from the relations Pl -- O(1) and P2 = O(z- ' )  coming from 
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and 

Since 

1 (1 - -  ~ " ) ,  , - N ' ,  - -  a"-  
E = - -  t a _ , e  ,e-N*). (3.14c) 

2 a _  o z" 

d d z"l z")~ z"), d~ [z' - = sgn(z' - (z' - 

we need only estimate the product 

,, d - z " )  sgn(z' - z ) ~ (z' (3.14d) 

from above. In particular, the last term on the right in A contributes negatively to 
this product, and hence requires no further consideration. To evaluate the contri- 
bution of the first term in A to the product (3.14d), we substitute (3.10d) into (3.7a) 
to obtain 

fl' - fl" = P l ( Y '  - Y") + 2p2bo(z '  + z")(z '  - z")  - pz(w' - -  W"). (3.14e) 

The difference z ' - z "  in the second term on the right enters the first term 
- (fi' - f l") /z '  of A with a negative coefficient. Hence this also contributes nega- 
tively to the product (3.14d) and need not be considered further. Consider now the 
difference Q(z ' )  - Q(z" )  which enters the difference ~, - ~, (see (3.8b)), and hence 
also the difference y' - y" (see (3.8a)), with a positive coefficient, and the first term of 
A with a negative coefficient. We can write 

Q(z ' )  - Q(z" )  = Q l ( z ' , z " ) ( z '  - z") .  (3.14f) 

According to (3.4m) we have (dQ/dz)(O) > 0; thus, if zl is sufficiently small, then 
Q1 > 0. Consequently, the term in Q ( z ' ) -  Q(z" )  contributes negatively to the 
product (3.14d) and need not be considered further. In view of (2.21a), (3.7d), by 
using (3.11d) in the cases g = r, a_,  the contribution of the remaining terms can be 
estimated by 

C ~ - l ( I x  ' - x"l + z - l l w  ' - w"[ + L )  < C( I z '  - z"] + z - 2 1 w  ' - w"l + z - l L ) .  

We can also estimate 

IEI < C ( I x '  - x"l + L )  < C ( r l z '  - z"l + Iw' - w"l + L ) ,  (3.14g) 

for, according to the results of Section 2, (1 - t3)/z = O(1). We conclude that 

d 
d~ [z' - z" I <= C z  l ( Iz '  - z"l + z - 1 ] w  ' - w"] + L) .  (3.14h) 

Setting 

0 =  sup / \([z '--z-"[(z)) (3.15a) 
~(0,rl] \ / ' C  

and recalling (3.9b), we obtain from the estimate (3.13d) that 

d 
dz  Iw' - w"l < C( Iw '  - w"l + z2(O + 1)). (3.15b) 
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Integrating and using the fact that w(0) = 0 yields 

[W' -- W"[ <= C(O q-/)77 3. (3.15c) 

Substituting this into (3.14h), integrating and using the fact that z(O) = 0 then yields 

]z' - z"[ < C(~20 + rl). (3.15d) 

This implies that 

,9 < C(r1,9 + l), (3.15e) 

which, when rl is small enough, in turn implies that 

,9 < Cl. (3.15f) 

In view of (3.15c), (3.13c) and (3.12b), the lemma then follows. 

Lemma 3.2. Consider  two solut ions as in the s ta tement  o f  T h e o r e m  3.1. I f  ~1 is 
suff iciently small, then there is a constant  C such that 

tt 1 O , ( z ) -  O.(r)l < CM in E0,rl].  

Proof. From (2.23a, e), we have 

1 ~,2 x '2 1 fl,'t2 
d ( ( 9 ,  - c~,) - 8 l Y fl  7~ -~ 8 1 -  fl "~ x ' 2  + fd  - fd'" (3.16a) 

From (3.12c), by virtue of Lemma 3.1, we get 

lY  - Y' I  < Cl~. (3.16b) 

In view of Theorem 2.1 and Lemma 3.1, it follows that 

y2  /~,,2 x "~ /~,2 1 - /~ '~  x'~ 1 - /~"~ <= ~ Ix'2 - x'21 + x'~ I/~ '2 /~"~1 

<= C'clx' - x ' l  + C'c2[fl ' - fl"l <= Cl'c3. 

By (2.23f) we can express 

f~ _f~, 1 , 1 , h")  = g (h ;  -- h+) + y(h_ - 

where 

(1 - y2)(1 - y,2) 

(3.16c) 

(3.16d) 

h+ = (1 +/~)g 1 +-/3 ' h_ = (1 - /3 )g  . (3.16e) 

Since the Taylor expansion of g begins with cubic terms (see (2.23d)), the results of 
Theorem 2.1 imply that 

( fix )=O(,c6) ' g( l f lXfl )=O(.c3) .  (3.16f) 
g 1 T ~  
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Also (note that g is analytic on ( -  1, oo)), 

d~s s'[. Ig(s ')  - g ( s ' ) l  _-< sup "Is' - 
[s",~'] 

Hence, setting 

we can estimate 

flrX• fl','X 'r 
f f  - -  S "  = - - -  

l + f i "  1 + fl"' 

< C z  4 < Clz  6 
l + - y / - g  1 + ~ " / I  = 1 + ~ '  1 + ~  " =  

by (3.16b), while setting 

we can estimate 

fl'X' flnXr' 
f f  - -  - -  S "  - -  

1 -~"  1 -~" 

\ l - f i ' / - g \ l - f i " J l  < 1---~' 1 - f i "  < C l v 3  

by Theorem 3.1. The estimates (3.16b, f,g, h) imply that 

qh'+ - h"+l <= Clz  ~, Ih" - h" l <= Clz  4. 

Hence 

I f d  - fg ' l  <= c I ~ L  

which together with (3.16a, e) yields 

d 
I O ', - (S ' =< C l r 3 . 

The lemma then follows by integration. 

Proof of Theorem 3.1. Let us denote 

~u(z) = {(u,v) :  0 =< v __< u < ~}. 

From (1.49c) we have 

v'(u,  ~) - v"(u,  ~) = ( v ; ( u )  - ~;;.' ( ~ ) ) e  N'("'v)-'%(") 

+ V;(u) (e  u'(u'v)-N'*(u) _ eN"(u,v)-U'~(u)), 

~'(u,  ~) - K"(u, v) = (~2(~) - G ( v ) ) e - K ' ( " ' ~  

+ tc , (v) (e  K'(,,~) _ e-K"(, ,v)),  

149 

(3.16g) 

(3.16h) 

(3.16i) 

(3.16j) 

(3.16k) 

(3.17a) 

(3.17b) 
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and, from (1.4%), 

l tt i ! i !  1 t t  t ~ !  

v, -- v,  = 2 ( a_ ,  -- a_ , ) (1  --  fi') - -  ~ a - , t p  --  fl"), 

- -  a" ~ 1 
, ,, (a'_, - * ' ( 1  + f l ' ) +  ~ ( f i ' -  fl"). K, - to ,  - 2a '_  , a L ,  

U s i n g  (3.16b) and the fact that 

la '-,  - a ' - , I  < C l x '  - x'l < Clz  2, 

by (3.11d) and Lemma 3.1 we deduce that 

! I t  
I v ,  - v , I ,  I~: ,  - ~c,I = < Cl'c. 

Taking also into account  that 

v, ( 'c)  = O(r), sup v = O(~) 
~' (r) 

(see Theorem 1.1), we then obtain 

sup Iv' - v'l =< Clr  + C z  sup IN' - N'], 
~z (O qz (r) 

sup I~' - ~c"l < CIr  + C sup IK' - K"[. 
~, (r) ~ (~) 

From (1.49d) we deduce that 

sup IN' - N"I =< Cv [ s u p  (Ir' - r"l 
' ~ ( 0  I_ ~ 

+ Ira' - re'l) + sup~<~) I"' - ~c'l 1, 

supou(o [ K ' -  K']  < Cz I r  sup~(o ( ] r ' -  r'l + 1~ ' -  ~"l) + sup~(o I v ' -  v"]]. 

Substituting into (3.17h, i) we obtain 

sup Iv '  - v ' l  ~ Clz  + Cz 2 I s u p  (tr' - r"l 

sup ]to' - ~"[ < Clz + C r  Iv  sup (Ir' - r ' l  
~(~) L ~(~) 

(3.17c) 

(3.17d) 

(3.17e) 

(3.17f) 

(3.17g) 

(3.17h) 

(3.17i) 

(3.18a) 

(3.18b) 

+ Ira' - m"l) + sup~(~) [~c' - ~c"[l, (3.18c) 

+ I~' - ~"1) + sup~(~) Iv' - v"[]. (3.18d) 

When z is suitably small these inequalities imply that 

sup Iv' - v'[ < C l z  + C z  2 sup ([r' - r" t + [ m '  - re'I) + C z  4 sup [~' - ( ' l ,  
~, (~) ~ (r) ~ (~) 

sup ]~' -- ~c"[ < Clr  + Cz 2 sup (]r' - r"] + [~' - ~"[) + Cr 3 sup [m' - m '[ .  
(r) oe (~) oe (~) 

(3.18e) 

( 3 . 1 8 f )  
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Subs t i tu t ing  in to  (3.18a, b) then  yields 

sup IN'  - N"[ < Cl'c 2 -}- C'c sup (It '  - r"l + Lm' - m"[) + Cz 3 sup I~' - ~"1, 

(3.18g) 

sup JR' - K"] =< Cl'c 2 + C'c 2 sup (Jr' - r"l + 1~' - ~"]) + Cv 3 sup ]m' - m"]. 
qz(,) qb(r) ~(~) 

(3.1Sh) 

W e  have  

r ( u , v )  = , ' , ( v )  - j v ( u , , / ) & / .  

Now,  by  (3.11d) a n d  L e m m a  3.1, 

I t ,  - r , I  < CIx '  - x"l < CI "c2. 

I t  fol lows tha t  

(3.19a) 

(3.19b) 

sup Ir' - r"l < CI "c2 q- "C sup IV' -- V"I. (3.19C) 
o~ (~) ~ (~) 

A c c o r d i n g  to e q u a t i o n  (3.4a) of  [ I I ]  we have  

m(u,  v) = m , ( v ) e  K("' ~) - F(u ,  v) (3.19d) 

where  (see (2.3c) of  [II-])  

u 

F ( u , v )  = 2~  ~ eK(u'v)-K(u"V)(rZv(~ 2 q- 1 ) ) (u ' , v )du ' .  (3.19e) 
V 

By (3.11d) a n d  L e m m a  3.1, 

tl  
I r a ,  - -  m , [  ~ C[x '  --  x"] ~ Clr  2. (3.19f) 

W e  can  also es t ima te  ( taking in to  a c c o u n t  (3.17g)): 

sup IF' - F"I < Cz [~ sup (IK'  - K"[ + I r ' - r " l  + I ~ ' -  ;" l)  + sup Iv' - v" l l .  
~(~) I_ ~(r) ~ 3 

(3.19g) 
H e n c e ,  

sup Im' - m"l < Clz  2 + C sup IK' - K"I + Cz 2 sup (Ir' - r"l + 1~' - ~"1) 
oa, (~) ~ (~) ~ (~) 

+ C'c sup Iv' - v"l. (3.19h) 

Subs t i tu t ing  (3.18e, h) in to  (3.19c, h), we deduce ,  w hen  "c is small  enough ,  the  
inequal i t ies  

sup Ir' - r' l  < CI  "c2 + C "c3 s u p  I m ' -  m"] + C'c 5 s u p  1~' - ~"1, (3.20a) 
o~z (v) q/(~) oa, (~) 

s u p  Ira' -- m"[ ~ Cl'c 2 + C'c 2 s u p  [r' - r"] + C'~ 2 s u p  1~* - -  ~r , l .  (3.20b) 
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W h e n  ~ is su i t ab ly  smal l  these  i m p l y  tha t  

sup  Jr' - r"[ < Clr 2 + CT 5 sup  1(' - ("1, 
~( r )  ~(~) 

sup  Ira' - m"[ < Clz 2 + Cr 2 sup  I('  - ("1. 
~, (r) ~, (~) 

Subs t i t u t i ng  these  in to  (3.18e, f, g, h) yields 

sup  [v' - v'l < Cl~ + c z  4 sup  1(' - ("[, 
~ ( r )  ~(~) 

sup  Itc ' - ~c" I < Clz + C~ 2 sup  I( '  - ~"l, 
~'(~) ~ ( r )  

sup  IN '  - N"I  < CIT 2 + Cz 3 sup  I( '  - ff"l, 
~' (~) ~ (r) 

sup  IK' - K"I < C I T  2 + CT 2 s u p  [(t __ ( .1 .  
(~) ~, (~) 

W e  h a v e  

(3.20c) 

(3.20d) 

(3.20e) 

(3.20f) 

(3.20g) 

(3.20h) 

u 

O(u,v)  = (o,(v) + ~ (v~)(u,v')dv'.  (3.21a) 
v 

C o n s e q u e n t l y ,  we can  e s t ima te  

sup  [~b' - ~b"] < sup  IqS, - 4),[ + Cz sup  Iv' - v"[ + Cz 2 sup  1~' - ~"]. (3.21b) 
(r) [0 ,  r ]  ~, (r) ~ (~) 

Subs t i t u t ing  the  resul t  of  L e m m a  3.2 a n d  (3.20e) in to  (3.21b) yields 

sup  [~b' - q~'] < Cl'c 2 + Cr 2 sup  1~' - ("1. (3.21c) 
~u (~) ~u (~) 

W e  n o w  es t ima te  the  difference ~' - ~" in ~ ( Q .  A c c o r d i n g  to (1.43e) we have  

= r - a ( e  + ~b), (3.22a) 

e(u, v) = a(u, O)e -N("' ~ - A(u,  v). (3.22b) 

c%(u) = ~(u,O)e N,(u) _ A , ( u ) ,  

In  pa r t i cu la r ,  

a n d  we can  express  

a(u, 0) = ( e , ( u )  + A , ( u ) ) e  N*(u). 

Subs t i t u t ing  this in (3.22b), we o b t a i n  

~(u, v) = (cG(u) + A . ( u ) ) e  N*(")-N("'v) - A(u,  v). 

N o w ,  

(3.22c) 

1 1 1 
/ c -  

a - , 7  a _ ,  ~ / 1  -- y 

Hence ,  by  v i r tue  of  L e m m a  3.1 a n d  (3.17e), 

t t  t t  

I ( ,  - ( . I  < C l a ' - ,  - a - . I  + Cly'  - Y"I < Clz. (3.22d) 
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Since 

~, = r , ~ ,  - -  4 , ,  

we then obtain, by virtue of Lemma  3.2 and (3.19b) that  

tc~, - ~,l < Cir .  - r.l  + CIg,  - ~,1 + 14), - 4,1 < CIT. (3.22e) 

Using (3.22e) we deduce from (2.22c) that  

sup [~' - c('] < Clr + C sup IN' - X"[ + C sup IA' - A"I. (3.22f) 

In view of (3.22a), this implies that  

sup [~' - ~"[ < CI~ + C sup Jr' - r"] + C sup 14' - 4"l 
~'(~) qr ~(~) 

+ sup [X' - N"[ + C sup [A' - A"[. (3.22g) 
~z~ (~) ~ (~) 

Substi tuting the estimates (3.20c, g), (3.21c) into (3.22g) yields 

sup ]~' - ~"] __< Clz + Cz 2 sup [~' - ~"[ + C sup [A' - A"]. (3.22h) 

Consider  finally the integral A (see (1.43b), (1.49c)): 

A ( u , v ) = f ( 4 ( # - 4 ~ z r 2 ) ~ ) ( u , v ' ) e  m"'~') N(u'~)dv'. (3.23a) 

0 

Since sup~(~) 4 < z, we deduce that  

sup [ A ' -  A " [ ~ ( ~ )  < C ~ 2 ( s u p [ r ' - r " [ \  ~(~) + sup [m' - m"[) ~(~) 

+ C z 2 ( s u p [ ~ c ' - W ]  + sup ,N' - N" [ )  
\~(~) ~(~) 

+ Cr sup 14' -- 4"1. (3.23b) 
qe(~) 

Substituting the estimates (3.20c, d, f, g), (3.21c) into (3.23b) we then obtain 

sup IA' - A"[ < CI'c 3 q- C723 sup ]if' - ~"1" (3.23c) 
~'(r) ~(~) 

Substituting (3.23c) in turn into (3.22h) yields the inequali ty 

sup 1~' - ~"1 < Cl'c + C~: 2 sup I~' - ~"1, 

which when ~ is suitably small implies that  

sup 1~' -- ~"1 < C l r .  (3.24a) 
og(z) 
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In view of this estimate, the inequalities (3.20c, d, e, f, g, h), (3.2 lc) and (3.23c) reduce to 

sup Jr' - r"l 5 
~'(~) 

sup Iv' - v'[ __< 
~(~) 

sup IN' - N"I < 
(~) 

In particular, we obtain 

Clz 2, sup Im' - m"[ <: Clv;, (3.24b) 

Clz, sup Ire ' - ~c" I __< Clr, (3.24c) 

Cl'c 2, sup I K '  - K"  I <= Cl'c 2, (3.24d) 
qt (~) 

sup IqS' - 4"1 =< Cl'c2, (3.24e) 
(~) 

sup IA' - A'l < Clz 3. (3.24f) 
(-c) 

t l  sup IN,  - N;;[ ~ Clz 2, sup IA~ - A.I = Clz 3, 
(0,~] (0,~] 

which, combined with the result of Lemma 3.2, implies (see (3.9a)) that  

L(z )  <= Cl'c 2. 

Therefore, 

sup 
re(o,~,] 

which when Cz~ < 1 implies that  
(3.24a-f) and the equation 

(r~l)(u, v) = em" 'v )[ (r . r l . ) (v )  - J(u,  v)] 

(3.25a) 

(3.25b) 

( ~ - ~ )  :=l__< Clzl, (3.25c) 

l = 0. In view of Lemma 3.1, the estimates 

k +  2y - 2xy  
~/, : a _ ,  ~/ x -+  2-y-- ~y  ' 

where 

V 

J(u, v) = y e-K(""~)((1 - #)v()(u ' ,  v) du' 

(3.26a) 

(3.26b) 

(3.26c) 
u 

(see (1.45a-e)), we conclude that for rl suitably small, the solutions N', 
(r', m', v', ~c', (', ~/') and N", (r', m', v', ~c", (", r/"), coincide on [0, zl] ,  ~(zl) .  The unique- 
ness without a smallness condition on zl then follows immediately from the unique- 
ness in the large of the solution of the continuation problem, Theorem 3.2 of [II] .  
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