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Abstract 

We study the nonlinear  hyperbolic  partial differential equation, 

(ut + UUx)x 1 2 = ~ U  x .  

This partial differential equat ion is the canonical  asymptot ic  equat ion for weakly 
nonl inear  solutions of  a class of  hyperbolic  equations derived from variat ional  
principles. In  particular, it describes waves in a massive director field of  a nematic 
liquid crystal. 

Global  smooth  solutions of  the part ia l  differential equat ion do not  exist, since 
their derivatives blow up in finite time, while weak  solutions are not  unique. We 
therefore define two distinct classes of  admissible weak solutions, which we call 
dissipative and conservative solutions. We prove the global existence of each type 
of  admissible weak solution,, provided that  the derivative of  the initial data  has 
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bounded variation and compact support. These solutions remain continuous, 
despite the fact that their derivatives blow up. 

There are no a priori estimates on the second derivatives in any L v space, so 
the existence of weak solutions cannot be deduced by using Sobolev-type argu- 
ments. Instead, we prove existence by establishing detailed estimates on the 
blowup singularity for explicit approximate solutions of the partial differential 
equation. 

We also describe the qualitative properties of the partial differential equa- 
tion, including a comparison with the Burgers equation for inviscid fluids and 
a number of illustrative examples of explicit solutions. We show that conserv- 
ative weak solutions are obtained as a limit of solutions obtained by the 
regularized method of characteristics, and we prove that the large-time asymptotic 
behavior of dissipative solutions is a special piecewise linear solution which we call 
a kink-wave. 

1. Introduction 

In this paper we prove the global existence of admissible weak solutions of the 
initial-value problem for the partial differential equation 

(1.1) (ut + uux)x 1 2 = ~ U  x . 

We also study the qualitative properties of (1.1), including blowup, singularity 
formation, admissibility conditions for weak solutions, and long-time asymptotics. 

In two companion papers, we analyze the zero-dissipation and dispersion limits 
of regularizations using viscosity and dispersivity [HZ1] and we show that (1.1) is 
a completely integrable, bi-Hamiltonian system [HZ2]. 

Significance of the equation 

Equation (1.1) is a formal asymptotic equation describing weakly nonlinear 
solutions of any hyperbolic Euler-Lagrange equation derived from a variational 
principle of the form 

f .. ~u v Ou q (1.2) 6 F, d x  = O, 
i , j , p , q  

provided that a certain "genuine nonlinearity" condition is satisfied [HS]. More 
generally, (1.2) may be supplemented by a constraint. 

Our analysis of (1.1) suggests that the Euler-Lagrange equations associated 
with (1.2) have very interesting and unusual properties which have hardly been 
studied. Equations (1.2) thus constitute a new class of nonlinear hyperbolic partial 
differential equations. 

A particular physical example leading to (1.1) and (1.2) is the motion of 
a massive director field in a nematic liquid crystal [HS, S]. The director field is 
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described by a unit-vector field n(x, t) e S 2. When there is no fluid motion, the 
director field satisfies an equation of the form [L, E] 

6"#/ 
pntt + #rt t + + 2n = O. 

3n 

Here, p and # are constants, the Lagrange multiplier 2 is determined by the 
constraint n.n  = 1, and the Oseen-Frank potential-energy functional, ~/U, is de- 
fined by 

W)dx, 

W (n, Vn) = �89 kl (V" n) 2 + �89 k2 (n-V • n) 2 + �89 k3 In x (V x n)12. 

Here, kl, k2, and k3 are positive elastic constants. A special case is the one-constant 
model, where kl = k2 = k3 --- k, when the potential energy W = �89 k[ Vn ]2 is inde- 
pendent of n. 

The elliptic equations for time-independent director fields have been extensively 
studied. In particular, the one-constant model leads to the equation for harmonic 
maps taking values in the two-sphere [C, EK]. 

There are two extreme cases of the time-dependent equations. The first is when 
viscous effects dominate inertia. Then we can set p = 0, and the evolution of the 
director field is governed by a gradient-flow parabolic partial differential equation 
[C]. This is the most important physical regime. 

Here, we are interested in the second extreme case, when inertia effects domin- 
ate viscosity. Then we can set/~ = 0, and the director field satisfies a hyperbolic 
partial differential equation which is derived from the constrained variational 
principle 

6f{ �89 W(n, Vn}dxdt=O, n ' n =  l. 

Since W is a quadratic function of Vn, with coefficients depending on n, this 
variational principle is of the form (1.2). 

All the interesting new nonlinear effects studied here are caused by the explicit 
dependence of W on n. In that case, formal weakly nonlinear asymptotics leads to 
(1.1). For the one-constant approximation (corresponding to the harmonic-map 
problem), W is independent of n, so that the wave speeds of the associated 
Euler-Lagrange equations are independent of n. In this case, the equations are 
"linearly degenerate" and (1.1) does not apply. Thus, at least for the hyperbolic 
equations, there is a dramatic difference in the effects of nonlinearity between 
one-constant and three-constant nematic liquid crystals. 

Comparison with the Burgers equation 

The Burgers equation without viscosity, 

(1.3)  + = 0, 
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Table 1. Comparison of (1.1) with the Burgers equation (1.3). 

Burgers Equation Equation (1.1) 

Primitive Equation conservation law variational principle 
Blowup u, ~ -- oe ux ~ -- 

Weak Solutions discontinuous, in BV HSlder continuous 
Typical Singularity shock cusp 

Large-Time Limit N-wave kink-wave 

Characteristics cross focus but do not cross 
Oscillations are killed persist 
Admissibility entropy dissipative solutions, 

Classes solutions conservative solutions 
Zero Dissipation strong convergence strong convergence to 

Limit to Weak solution dissipative solution 
Zero Dispersion weak convergence, strong convergence to 

Limit limit not a solution conservative solution (?) 

describes weakly nonlinear solutions of a genuinely nonlinear, hyperbolic system of 
conservation law [HK]  

f '(u)x, = O. 
i 

Equation (1.1) plays a similar role for the variational equations (!.2). 
The properties of (1.3) reflect those of general quasilinear, hyperbolic conserva- 

tion laws. Similarly, we expect that the properties of (1.1) reflect those of the general 
variational equations (1.2). 

As we shall see, the qualitative properties of (1.1) show remarkable analogies 
and contrasts with those of the Burgers equation without viscosity. Table 1 sum- 
marizes some of these properties, which are discussed in greater detail below. 

Qualitative properties 

The method of characteristics shows that the first derivative, ux, of smooth 
solutions of (1.1) blows up in finite time [HS]. A smooth solution can be extended 
past the blowup time by a weak solution, but, in contrast with the Burgers equation 
(1.3), shocks do not form. Instead we prove the surprising fact that (1.1) has global 
H61der-continuous weak solutions, with u(t, x) ~ C~(IR + x IR) for any c~ < �89 A typ- 
ical example is the explicit steady solution u = [x 12/3. 

Weak solutions of (1.1) are not unique, so (1.1) must be supplemented by 
an admissibility condition. We define two different classes of admissible weak 
solutions, which we call dissipative and conservative solutions. These are not 
the only possible admissibility classes, but they seem to be the most natural ones 
t o  use .  
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Dissipative solutions are motivated by the condition that their energy 

(1.4) E [u] (t) = j u~(t, x) dx 

decays at the fastest possible rate. This is analogous to the entropy-rate criterion for 
conservation laws [D1]. The analog of an entropy condition (which only requires 
E to decrease) is not sufficient to pick out a unique weak solution of(1.1). In [HZl] ,  
we show that dissipative solutions also satisfy a viscosity condition. We consider 
a viscous regularization of (1.1) with the simplest initial data displaying blowup of 
the derivative. We prove that the zero viscosity limit of the viscous solutions exists 
and is a dissipative weak solution of (1.1). 

Conservative solutions have constant energy, even after they lose smoothness, 
and are thus compatible with the Hamiltonian structure of (1.1) [HZ2]. Numerical 
results strongly suggest that the zero-dispersion limit of solutions of an associated 
Korteweg-de Vries-type dispersive equation is a conservative weak solution of (1.1) 
[HZ1]. Furthermore, as we show in Section 4, the limit of solutions obtained by the 
regularized method of characteristics is also a conservative solution. 

For smooth initial data, the dissipative and conservative solutions agree while the 
solution remains smooth, but they are distinct after the blowup time. Dissipative solu- 
tions are irreversible and, in general, they cannot be extended backwards in time. Con- 
servative solutions are reversible and can be extended backwards and forwards in time. 

The large-time behavior of solutions of (1.1) shows a striking similarity to the 
approach to an N-wave for solutions of the Burgers equation (1.3). For any a > 0, 
we define the function 

0, x____0; , 

u,(t ,x)  = 2x/t ,  O < x < aZt2/4, ': 

aZt/2, x >=:aZt2/4: 

It is straightforward to verify that u = u a is a weak solution of:(1.1) with constant 
, 2  

energy, E[u a] = a 2. We call this solution a kink, wave. 
In the existence proof, we construct dissipative solutions of (1.1) when ux has 

compact support in x. We show that, for these solutions, u(t, ") approaches 
a kink-wave in HI(IR) as t ~ + oe. The parameter a is determined from the initial 
data by the time-invariant 

~ [u+(t, x)]Zdx = constant. 

+ is the positive part of ux. It follows that Here, Ux 

a 2 = ~ [u+~ (0, x) 2] dx. 

Conservative solutions also approach a kink-wave as t ~ oo. The only differ- 
ence is that in the conservative case, the energy is constant, so that 

a 2 = ~ u~ (0, x) dx. 

We do not write out any of the details here. 
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(1.5) 

(1.6) 

(1.7) 

(1.8) 

Equation (1.1) is a completely integrable equation [HZ2]. It is therefore not 
surprising that it has a large class of explicit solutions. These include piecewise 
linear and cusped solutions, such as the special cases mentioned above, as well as 
solutions obtained by the method of characteristics. Smooth solutions of (1.i) 
satisfy an infinite family of conservation laws, although only the first three have 
local densities. We introduce a new dependent variable V defined by 

v(t ,  x) = ux(t, x). 

Then the first four conservation laws are 

(I vx 11/2), + (ulVx 11/2)x -- o, 

(v2)t + (uV2)x = o, 

(uV2)t - (2uVut + u2)~ = O, 

(2u2V 2 + [D- I ( vZ) ]Z) t  + (2u3V2)x = 0. 

In (1.8), D-1 denotes a suitable anti-derivative with respect to x [HZ2]I 

Global existence 

The existence proof is based on the fact that (1.1) has explicit solutions with 
u piecewise linear and Ux a step function [HS]. We approximate general initial data 
by piecewise linear functions, then pass to the limit in the corresponding family of 
piecewise linear solutions. Since the derivatives of the approximating solutions 
blow up in finite time, there are no a priori estimates on higher-order derivatives 
which ensure strong compactness of the family of approximate solutions. Instead 
we prove compactness by a detailed analysis which shows that, after "chopping 
off" solutions arbitrarily close to points where their derivatives blow up, the 
derivatives of the approximating chopped-off solutions are bounded in BV.  

We formulate the problem more precisely. Using the variable V = ux, we can 
write (1.1) as the system 

(1.9) V~ + uVx = - � 8 9  2, 

Ux = V. 

The function u is determined from (1.9b) only up to an additive function of time. We 
therefore supplement (1.9) with the initial and boundary conditions 

V(O, x) = Vo(x), x e IR +, 
(1.10) 

u(t, O) = O, t ~ IR +. 

Remark.  Throughout this paper, we assume that Vo(') is compactly supported, in 
which case V(t, ") is also compactly supported for all t. Note that 

+oo 
u(t, + oo) = [. V ( t , x ) d x  

0 
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is typically nonzero, so that u(t, ") need not have compact support. This fact 
corresponds to a nonlinear instability of the original variational equations (1.2) 
[HS]. Since x = 0 is a characteristic boundary for (1.9), (1.10), there is no loss of 
generality in restricting compactly supported solut ions to the half space 
IR + - (0, + oo). Extending {u, V} by zero gives a solution defined for all x ~ IR. 

If Vo(x) is smooth, then the method of characteristics shows that a smooth 
solution V(t, x) exists for a short time. However, if Vo(x) is negative at some point, 
then V(t, x) blows up in finite time because V satisfies a Ricatti equation along 
a characteristic. This blowup creates significant difficulties in proving global 
existence for problem (1.9), (1.10), as we now explain. 

When V is smooth, (1.6) implies that the energy 

(1.11) r4v)(t) =- ~ V:(t, x)dx 
0 

is constant in time. For weak solutions, E is not necessarily constant and can 
actually increase. However, for dissipative solutions, E decreases, while for conser- 
vative solutions, E is constant. In either case we have an a priori L 2 estimate on V. 

For any sequence of admissible solutions V" whose initial data are bounded in 
L 2, it follows that there is a uniform bound 

(1.12) E(V")(t) < C. 

This estimate implies weak L z compactness of {V"}, so we can extract a subse- 
quence V"-~ V. The main difficulty in proving existence is that the weak limit 
V need not be a solution, since (1.9) contains a quadratically nonlinear term, so that 
(V") 2 need not converge to V 2. 

We would like to show that {V"} is strongly compact in L 2. To do this by 
Sobolev embedding would require an L p estimate on V~", with p > 1. We know of 
only one conservation law involving Vx, namely (1.5), but the resulting estimate is 
not sufficient to give strong compactness. 

An alternative estimate would be a B V estimate. However, the total variation of 
V" in x blows up together with V", so this also fails. We overcome the tack of 
a priori estimates by introducing a family of regularized approximate solutions V "'~ 
for which strong compactness can be established. 

A more detailed description of the existence proof for dissipative solutions is as 
follows. We assume that Vo in (1.10) has compact support and that 

Vo(x) ~ BV(IR +). 

We approximate Vo(x) by a sequence of step functions {Vg(x)}~=l which have 
uniformly bounded BV-norms and satisfy 

V g ~ V  o inL2(lR +) a sn - -*+oo .  

We then construct explicit dissipative step-function solutions V"(t, x) of (1.9) with 
initial data Vg. 
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We consider an arbitrary finite time interval 0 _< t _< T. Given any e > 0, we 
chop V'( t ,  x) off when it is less than - 1/e. The resulting function V"'~(t, x) is in 
B V((0, T) x 1R +) uniformly in n. Hence { V "'~},% 1 is compact in L2((0, T) x I1t +) for 
any fixed e > 0. Furthermore, we show that the L2((0, T ) x  lR+)-norm of the 
difference between V n and V "'~ is of the order e, independent of n, because vn(t, X) is 
large only in a very small region of space-time. Together, these estimates imply that 
{V"} is strongly compact in L2((0, T )x  IR+), and the global existence of a weak 
solution follows. 

The restriction of the initial data to B V  is somewhat unnatural because the 
solution does not stay in B V  at later times. The proof can be extended to give 
existence of a dissipative solution for initial data Vo in a larger space W(IR +) of 
" chopped-B V" functions, 

W(1R +) = { f ~  L2(IR+) ]max{f  - M }  e BV(IR +) VM > 0}. 

Existence of a global weak solution for rougher initial data, for example 
Vo e L2(IR+), is an open question. 

Compensated compactness IT]  does not seem to be applicable to this problem. 
To see why, suppose we have a solution sequence {u ~, V ~} such that 

Vt ~ + (u~V~)x = �89 2 e bounded subset of L 2, 

((w)2), § (u~(VO)2)~ = o. 

If u" ~ u, V ~ --" V, (V~) z ~ Z, then the div-curl lemma implies the trivial result 0 -~ 0, 
because V and V 2 propagate at the same velocity, namely the characteristic velocity 
u, whereas the essence of the div-curl lemma is that the product of oscillations 
propagating at different velocities cancels out in the limit. 

The main obstacle to proving existence for rough initial data is the possibility of 
oscillations. As explained at the end of Section 3.2, concentrations do not occur. 
However, the example in Section 3.3 shows that oscillations in the initial data can 
persist at later times, and we are unable to rule out the generation of oscillations 
even jf they are not present initially. The persistence of oscillations for (1.1) is in 
sharp contrast with the Burgers equation (1.3), where nonlinear effects immediately 
kill any oscillations in the initial data. 

Uniqueness of dissipative or conservative solutions is an open question. In 
particular, the example at the end of Section 4 shows that uniqueness of conserva- 
tive solutions does not hold unless the initial conditions are formulated in a careful 
way. 

Outline o f  the paper 

In Section 2, we formulate a precise definition of weak solutions of (1.9), (1.10). 
We describe the piecewise linear solutions used in the existence proof, and intro- 
duce the admissibility classes of dissipative and conservative solutions. We also use 
cusped solutions to give an explicit example of singularity formation from C 1 initial 
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data for V. This example illustrates the different singularity structures of dissipative 
and conservative weak solutions. 

The key existence results are proved in Section 3. In Section 3.1, we prove that 
existence of global dissipative solutions with compactly supported initial data 
Vo ~ BV. In Section 3.2, we prove existence for initial data in "chopped-BV". In 
Section 3.4, we indicate the necessary modifications for proving the existence of 
conservative solutions. In Section 3.3, we give a simple example illustrating the 
persistence of oscillations, and we discuss the dynamic behavior of the associated 
Young measure. 

In Section 4, we construct solutions of (1.1) by the regularized method of 
characteristics. These solutions are globally single-valued because the character- 
istic surface of (1.1) never folds over, even though it becomes vertical at points 
where V blows up. We prove that the limit of solutions obtained by the regularized 
method of characteristics is a conservative weak solution of (1.1). This result also 
establishes global existence of a conservative solution when the initial data Vo is 
continuous and compactly supported. This includes some initial data which is not 
of bounded variation. 

Finally, in Section 5, we show that any dissipative solution approaches a kink- 
wave as t ~ + oo. 

2. Admissible Weak Solutions 

We consider the problem 

v, + ( .v)x = �89 2) 
u~ V f x > O ' t > O '  

(2.1) V(t, x)It=o = Vo(x), 

u(t,x)lx=o=O, t > 0 ,  

where Vo(x) ~ L2(IR +) is given. As we show below, global classical solutions of (2.1) 
typically do not exist even for smooth initial data. We therefore consider weak 
solutions. 

Definition 2.1 (Weak solutions). A pair of functions {u(t, x), V(t, x)} is a weak 
solution of problem (2.1) if 

(a) V E L~oc(lR +, LZ(IR+)), 
(b) u ~ C([0, + oo) x [0, + oo)), u(t, 0) -= 0 for t > 0, 
(c) V E Liploo([0, + co), H~t(IR+)), V(t, O) = Vo(x) in Hlo~(IR+), 
(d) ux = V in the sense of distributions, 
(e) Vt + (uV)x = �89 2 in the sense of distributions, 

Here Liploc ([0, + oo), X) denotes the space of Lipschitz continuous functions from 
[0, T) to X for any T > 0. 

Weak solutions are not unique, and we therefore need to supplement (2.1) with 
an admissibility criterion. Several different criteria are possible. The first criterion is 
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Definition 2.2 (Weakly admissible weak solutions). A weak solution {u, V} of (2.1) 
is weakly admissible if 

(2.2) (V2)t + (uV2)x < 0 in the sense of distributions. 

This criterion is analogous to a convex entropy condition for conservation 
laws. However, imposing weak admissibility is not sufficient to ensure uniqueness 
for problem (2.1). We therefore define two special classes of weakly admissible weak 
solutions: dissipative solutions and conservative solutions. 

Dissipative solutions 

To define dissipative solutions, we first consider a simple step-function solution 
of (2.1). 

Example 1. Given the initial data 

fVo, 0 < x < l ,  
(2.3) Vo (x) = ( 0, otherwise, 

where Vo > 0 and 1 > 0 are some constants, then 

(2.4) 

f 2 v( t ,  x) = 2/Vo + t' 

0, 

0 < x < (1 + �89 

otherwise, 

2 t x'  
u(t, X) = 2/Vo + 

�89 + t)V21, 

O < x < ( 1  + �89 Vot)21, 

x > (1 + ~Vot)Zl, 

is a weakly admissible weak solution (see Fig. 2.1). 
If Vo is negative in Example 1, then we note from (2.4) that V(t, x) blows up at 

time t* = -2/Vo > 0. We continue the solution beyond t* by V = u = 0 for t > t*, 
x e IR +. The resulting function is a weakly admissible weak global solution of (2.1) 
(see Fig I 2.2). 

Now if Vo(x) is given by 

(2.5) I 
V1, O < x < l l ,  

Vo(x) = 172, l l < x < 1 2 ,  

O, 12 < x < o% 
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V (t, x) 

Vo 

V -  2V~ 
\ 2  + ~vo 

"'i<-2 
~- Vo 0 2 j Y "  l 

l 

Fig. 2.1. An explicit solution: Vo > 0. 

X 

V=O 

=(I +}VoO ~ l 

kx V - 2Vo 
2 + t V  o 

Fig. 2.2. An explicit solution: Vo < 0. 

we similarly obtain a weakly admissible weak solution 

(2.6) V = .  

2/v~ + t '  
2 

2/v2 + t' 

O, 

0 < x < (1 + �89 t), 

(1 + �89 t) < x < (1 + �89 t) 

+ (1 + ~v2t )2(12  - ll)m(V2, t), 

otherwise, 
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ll lz 13 /4 

r / 

/5 

.L 
X 

Fig. 2.3. A weakly admissible weak solution: V(t, x) is a step function in x (the shading is for 
later use). 

and u follows from V, where m(V, t) is defned as 

1, V > 0 ,  t > 0 ;  or V < 0 , 0 < t < - 2 / V ,  
m(V, t )= O, V < O , t > - 2 / V .  

More generally, if Vo(x) is given as an n-step function 

(2.7) Vo(x)=Vi, xe ( l i - l ,  li), i=  l, 2 , . . . , n , n +  l, 

where 
0 = l o < l l < - "  <1,  < 1 , + 1 =  o% V , + I = 0 ,  

then, extending by zero after blowup, we can similarly obtain a weakly admissible 
weak solution (see Fig. 2.3). It is straightforward to verify explicitly that these are 
weakly admissible weak solutions of (2.1) in the sense of Definitions 2.1 and 2.2. We 
call these solutions piecewise linear dissipative solutions. We also refer to them as 
step-function solutions, especially when we regard V rather than u as the main 
dependent variable. 

We observe that the L2-norm of V in a strip (with integration in the space 
variable x) is conserved in time if V~ > 0 in that strip. If the solution blows up in 
a strip, then the L2-norm jumps down to zero at the blowup time. It follows that, 
for all the solutions constructed above, 

(2.8) ~ Va(t, x)dx < ~ Vo2(x)dx. 
0 0 

More generally, we define dissipative solutions as follows. 

Definition 2.3 (Dissipative solutions). A weak solution {u, V} of (2.1) is a dissi- 
patively admissible weak solution, or dissipative solution for short, if it is the strong 
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limit in C1o~ | L~or + • 1R+) of a sequence of piecewise linear dissipative solu- 
tions. 

This type of solution is called a strongly admissible solution in [HS]. In the 
next section, we prove that there exists a global dissipative solution of problem (2.1) 
for quite general initial data by using the piecewise linear dissipative solutions. 

Proposition 2.1. A dissipative solution is weakly admissible. 

Proof. A straightforward computation [HS] shows that every piecewise linear 
dissipative solution is weakly admissible. The proposition then follows from the 
continuity of the functional (V2)t + (uV2)x, in the sense of distributions, with 
respect to strong convergence in Cloc@L~oc(]R + • We omit a detailed 
proof. []  

Remark. Dissipative solutions are also closely connected with viscous regulariza- 
tions of (2.1). In [HZ1],  we prove that  solutions of the equation with viscosity 

v,  ~ + usV~ = ~ v L  - �89 

u x = V s, 
(2.9) 

V~(t, x)[t=o = Vo(x), 

uS(t, x)Ix= o = 0 

with initial data (2.3), where Vo < 0, converge as ~ ~ 0 + to the dissipative solution 
in Fig. 2.2. For general initial data, it is straightforward to show that if the smooth 
solutions {u s, V s} converge strongly in Cloc| L2oc, then the limit is a weakly 
admissible weak solution. However, the convergence of the solutions of (2.9) to 
a dissipative solution of (2.1) has not been established except for the initial data in 
(2.3). We hope that dissipative solutions are unique because of their connection 
with solutions with vanishing viscosity. 

For completeness, we mention one other admissibility condition for selecting 
a dissipative type of weak solution. This condition resembles the Oleinik entropy 
condition [SM] for hyperbolic conservation laws. 

Definition 2.4 (Upper-bounded solutions). A weak solution {u, V} of (2.1) is an 
upper-bounded solution if for every to > 0, there is a constant K, possibly depending 
on to, such that 

V(t, x) < K 

for almost all (t, x) e (to, + oo) x IR +. 

Remark. If the initial data are bounded above, that is, if Vo(x) < K, then we can 
require instead that V(t, x) < K for almost all (t, x) e IR + x IR +. 

A piecewise linear solution is upper-bounded if and only if it is dissipative. Thus, 
the condition of upper-boundedness is sufficiently strong to ensure uniqueness 
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in the class of piecewise linear solutions. We hope that this condition is sufficient to 
ensure uniqueness for general initial data, and we plan to study this question in 
future work. 

The following proposition gives the simplest relations between upper-bounded 
solutions and the other types of admissible solutions introduced above. 

Proposition 2.2. (a) Any dissipative solution of(2.1) is upper-bounded. More precisely, 
2 

V(t, x) <= t for almost all (t, x) ~ IR + x ]R +. 

(b) Any solution of (2.1) which is the limit in Clo~ | L~o~(]R+ x IR +) of smooth 
solutions {u s, V ~} of the viscous regularization (2.9) is upper-bounded. 

Proofi First we prove (a). For a dissipative piecewise linear solution, V(t, ") is a step 
function. The values of V are given by 

2V, if 0 < t < -2 /V , ,  
V =  2 + t V ,  

0, otherwise 

for some finite number of constants {V,}. If 11, < 0, then V < 0 for t < -2/1I,  and 
V = 0 for t > -2 /V , .  If Vo > 0, then V < 2/t for all t ~ IR +. In either case, we 
always have V < 2It. Part (a) then follows from the fact that any dissipative 
solution is the pointwise a.e. limit of piecewise linear dissipative solutions. 

Part (b) follows from maximum principle arguments for the first equation in 
(2.9) [HZ1]. [] 

Conservative solutions 

The dissipative solution is not the only weakly admissible weak solution of 
problem (2.1) with data (2.3) when Vo < 0. We do not have to continue the solution 
beyond t* by zero; instead, there is a one-parameter family of weakly admissible 
weak solutions to the same problem [HS]. A second natural choice for the 
continuation, apart from zero, is the step-function solution which preserves the 
L2-norm. In that case, 

(2.10) 

2 , O < x < ( l + � 8 9  ' 
v( t ,  x) = 2/Vo + t 

0, otherwise, 

u(t,x) i V(t, y)dy. 
0 

0 < t < o o ,  

This solution is illustrated in Fig. 2.4. 
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v = 2 2 2 ~  

t 

V(t, x) l 

l 0 

1 2 
x = (1 + y V o t  ) 1 

Fig. 2.4. L2-conservation solution. 

V=0  

Equation (2.10) defines a weakly admissible weak solution with the property 
that 

va(t,x)dx = ~ VZ(x)dx for almost every t e IR +. 
0 0 

General piecewise linear solutions which conserve energy can be constructed in 
a way similar to that for the dissipative solutions described above. Each of these 
solutions satisfies the energy equation (1.6) even after blowup occurs. This leads to 
a second class of weakly admissible weak solutions. 

Definition 2.4 (Conservative solution). A weakly admissible weak solution {u, V} of 
(2.1) is a conservatively admissible weak solution, or conservative solution for short, if 

(VZ)t + (uVZ)x = 0 in the sense of distributions. 

Conservative solutions are the natural weak solutions compatible with the method 
of characteristics solution (see Section 4) and the Hamiltonian structure of (1.1) (see 
[nz2]).  

Remark. Another motivation for conservative solutions concerns the zero-disper- 
sion limit of 

8 8 g f i  v~ ~ + u v~ + ~ x =  = - � 8 9  2, 
(2 .11)  

u ~ = V ~. x 
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Numerical  calculations in [HZ1]  suggest that {u ~, V ~} converges strongly as e --, 0 
and that the limit is a conservative solution. 

Summary of admissibility classes 

We have introduced several different kinds of admissible solutions of (2.1). The 
following diagram summarizes the known relations between the various admissi- 
bility classes: 

zero- weakly (=) upper-bounded = zero- 
dispersion ( c )  conservative c admissible w viscosity 

limit solution D dissipative (~) limit 

The inclusions contained in parentheses are conjectured but not completely proved. 

Cusped solutions 

Equation (1.1) has explicit cusped weak solutions. We do not use these 
solutions in our existence proof, but they do illustrate energy considerations for 
weak solutions and reveal some interesting differences between dissipative and 
conservative solutions. 

It  is straightforward to check that the time-independent function 

~alxt 2/3, x <=0, 
(2.12) u - -  [blxlZ/3 ' x >= O, 

is a distributional solution of (1.1) for any choice of constants a and b. The energy 
equation for (2.12) is 

( r 2 ) t  -~- (uV2)x = 4(b3 - a3)b(x) .  

This solution is therefore weakly admissible when b _-__ a and conservative when 
b = a .  For  example, the monotone  increasing function u = sgnxlx l  2/3 is not 
a weakly admissible weak solution. The singularity at x = 0 is a source of energy, 
since the energy flux uV z = (~)sgn x is directed away from the singularity. The 
monotone  decreasing solution u = - s g n  x lxl 2/3 dissipates energy since the energy 
flux is directed inwards on either side. Finally, the two cusped solutions 
u = • ]xl 2/3 are conservative, and their energy fluxes are continuous across x = 0. 

We can use this type of stationary solution to give an explicit solution illustra- 
ting dynamic singularity formation in monotone  decreasing initial data. We con- 
sider piecewise C2-initial data 

3 - 3(x + 1) 2/3 when x > 0, 
(2.13) u(0, x) = [ - u ( 0 ,  - x )  when x < 0. 

Although this function is unbounded, we can patch it to constants at large [x [; we 
do not do this, since it does not affect the local behavior near x -- 0. 
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Fig. 2.5. Cusp singularity of a conservative solution. 

The  m i n i m u m  value of  the derivative is ux(0, 0) = - 2 ,  so the b lowup  t ime is 
t* = 1. W e  c h o o s e  so lut ions  u(t, x) which are odd  funct ions of  x. A conservat ive  
so lut ion  (which can be found by using the regularized m e t h o d  of  characteristics 
described in Sect ion 4) is 

u(t, x) = 3(t - 1) 2 - 3 Ix - (t - t)312/3, X ~ 0 .  

This is a piecewise C2-solut ion for t < 1. At t = 1, t w o  cusp singularities emerge 
from the point  (t, x ) =  (1, 0) and then propagate  away  from each other a long  
x = __+(t - 1)3; see Fig. 2.5. A dissipative so lut ion  is given by the same formula  for 
t < 1, but  for t > 1 it is cont inued  by 

u(t, x) = - 3 sgn x lx [ 2 / 3 .  

For  the dissipative solution,  there is a jump discont inuity  in bltt across  the line t = 1: 
utt(1 - ,  x) = 6, but  ut~(1 + ,  x) = 0 for all x; see Fig. 2.6. 

Finally,  we  note  thaX Theorems  3.1, 3.3, and 4.1 all apply to the initial func- 
t ion (2.13) (if it is patched to constants  at large x) and yield the existence 
of  dissipative and conservat ive  weak  solutions.  However ,  if we  take as initial 
data the so lut ion  after the b low up  time, none  of  the above  theorems applies, 
since the derivative of  x z/3 does not  have  b o u n d e d  variat ion and is not  con-  
t inuous.  T h e o r e m  3.2 is applicable in both  cases, since the derivative of  x 2/3 is in 
"chopped" B V .  
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Fig. 2.6. Cusp singularity of a dissipative solution. 

3. Global Existence of Admissible Weak Solutions 

3.1. Existence o f  dissipative solutions 

We first prove our  key result. 

Theorem 3.1. There exists a 9lobal dissipatively admissible weak solution {u, V} of 
problem (2.1) provided that Vo (x) has bounded total variation and compact support in 
[0, + oQ). This solution satisfies the reoularity conditions 

(i) u is H61der continuous in [0, + oo) • [0, + ~ )  with exponent o: ~ (0, �89 
(ii) V E Lv((0, T) x IR +) for any p ~ [2, 3), T < oe. 

Proof. By rescaling (t, x), we can assume that  Vo(x) is suppor ted  in [0, 1]. Since 
Vo(x) ~ BV[O, 1], it is bounded:  

[Vo(x)l<=m<oo,  x ~ [-0, 1]. 

We approximate  Vo(x) with step functions {V~(x)},~l defined by 

V~(x) = Vi n, x s , , i = 1 , 2  . . . . .  n, 
n 
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where the V~" are constants.  These step functions satisfy 

(3.1) Vg(x) ~ Vo(x) a.e. and  in LP[O, 1], 1 < p < co, 

(3.2) tl V~(')IIBvto, la < C, 

(3.3) I1 Vg IlL| to, 11 < M. 

We  construct  the dissipatively admissible weak solutions V"(t, x) with da ta  Vg(x) 
as in Section 3 (see Fig. 2.3). We then have the est imate 

(3.4) ~[V"(t,x)12dx<~lVg(x)12dx<=C<o% n = 1 ,2 ,3  . . . . .  
0 0 

In  general, solutions b low up at t imes t*,i = -2 /V f .  The  earliest t ime is 

2 2 
t *  �9 - -  
,,m,n m a x l  _< i _< , ( _  Vf) > ~ �9 

Thus  the BV(IR +) n o r m  of the app rox ima te  solution V"(t, ") generally blows up. 
We chop V"(t, x) off to fo rm a new, bounded  sequence {V"'~(t, x)},%1, so tha t  
{V"'"}2=1 is compac t  in L2((0, T ) x  ]R +) for any T > 0 and  so tha t  

T o o  

~ IV . . . .  V"12dxdt < eC 
0 0 

uniformly in n for all e > 0 small. 
Let  0 < e < 2/M. Let V"'~(t, x) be defined as follows: replace the solut ion 

V"(t, x) in the shaded region f rom t** - e to t*,i by  the cons tant  at  t = t*,, - e (see 
Figures 2.3 and 3.1). The  regularized step-function solution, V"'~(t, x), is well 
defined in ]R + • IR +. I t  is equal  to - 2 / e  in the shaded regions (see Figure 2.3) 
where  V"(t, x) exceeds - 2 / e ,  and is otherwise equal  to V"(t, x). Thus  

2 
(3.5) II v"'~(t, x)  IIL~ _-< - 

8 

Given  T > 0, we next establish the following est imates which imply  s t rong com- 
pactness of { vn}~= 1" 

T o o  

(3.6) ~ ~ IV . . . .  V"12dxdt < eC, 
0 0 

C 
(3.7) sup [I V"'~( t, ")llnvr +) < -- 

O < t <  T ~ ~2  ~ 

C 
(3.8) sup II V"'~( ", x)IIBvtO,Tl < ~ .  

x E ~ .  + 

Here,  C = C(T, M, Vo) is a cons tant  independent  of  n, and  e ~ (0, 1]. 

Proof  of  (3.6). Fo r  convenience,  let us in t roduce some notat ion.  Fix n. Fo r  each 
i = 1, 2 . . . .  , n, let Ri denote  either the i-th shaded region, or  an emp ty  set when 
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tn, i 

i-1 i 
n n 

V n, ~ 2 
- - 8  

Fig. 3.1. Definition of V "'". 

there is no shaded region in the strip. Also, let xdt ) denote  the right b o u n d a r y  of 
a strip (the i-th strip) which has a b o t t o m  side ( i -1 !~ , , , , ,  on the x-axis. N o w  we have  

T o o  

S I I V  . . . .  V"l 2dxdt= ~ S I I v  . . . .  V"l 2dxdt 
0 0 i = 1  Ri 

<= ~ IIIV"l 2dxdt. 
i = l  Ri 

Using  the energy es t imate  (2.8) in each strip with a n o n e m p t y  R~, we find tha t  

t*,i xi (t) i/n 

~ l V " l  2dxdt= ~ ~ Iv"[ z d x d t = e  I IVS[ 2dx. 
Ri t* , i_  ~ xf 1(0 (i-- 1)/n 

Therefore  

~ JV . . . .  V"[Zdxdt~e  IV~12dx<=Ce. 
0 0 0 

P r o o f  of  (3.7). Fix  a t in (0, T). The  BV n o r m  of V"'~(t, .) is the sum of j u m p s  of V "'~ 
across all the boundar ies  xi(t) of the strips. There  are three cases to consider,  
depending on the signs of  Vf and Vf+ 1. The  first case is 
Case (3.7a), when Vf and l/f+ 1 are both positive. O n  each i-th strip, we have 

2 
vn(t, x) = 2/Vi n +~t" 
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So the jump in V "'= = V"(t, x) across the i-th boundary xdt) is 

(3.9) I v"'=(t, xdO +)  - v"'=(t, x,(t) -) l  

1 1 
4 V~" V~+~ 4 

= < 

The second case is 

11 1 I v~ v~+l 
2 2 

VF VF+I 

= I V L 1  - Vl ' l .  

Case (3.7b), when Vp and VF§ 1 have opposite signs. We need to estimate the rate at 
which the equation amplifies the initial data. For  simplicity, we assume that 
VF < 0  < VF+I. 

From the general formula 

2 2 
V'(t, x) - 2/Vp + t - 2 + Vi"~t V• in the i-th strip, 

we have for oiir present case 

(3.10) 0 < V"'"(t,x) < Vi"+I in the (i + 1)-st strip, 

(3.11) 0 >  V " ' = ( t , x ) > ( ~ - ) V i "  in the Mh strip. 

We prove the second inequality in (3.11); the rest is immediate. In fact, we split the 
initial data V~" into two categories (see Figure 3.2); V~" < - 2 / ( e  + T) and 
0 > V~" > - 2 / ( e  + T). In the first category, we use 

V,,=(t,x) > 2 = 2 ( ~ + J _ )  
= - ~  e(-V~") VF > VF. 

T 

i 
n 

(a) 

i 
n 

(b) 

X 

- 2  - 2  Fig. 3.2. Calculation of amplification of data. (a) Case VF < ~ .  (b) Case 0 > Vf > ,+~. 
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X 

Subcase 2 Subcase 3 Subcase 4 

Fig. 3.3. Four possibilities of case (3.7c). 

X 

In the second category, we note that  the solution blows up at time 

Therefore 

2 
t * , i -  > T + e. 

- v , "  

2 
v" ,% x) > 

= 2 + V,"T 
- -  

So (3.10) and (3.11) are proved, and the amplifying factor is bounded by a constant 
independent of n. Thus 

e + T  
(3.12) [V"'"(t, xi  + ) -  V"'~(t, x i - ) ]  =< I V/"+ 1 - Vi"l. 

8 

The last case is the one leading to the largest amplification of the variation. 
An initial variation of the order e produces a variation of the order e -  1 at later 
times. 
Case  (3.7c), when  Vi" and V['+ ~ are both negative.  According to the relative location 
of the two neighboring shaded regions, we have four different subcases depicted in 
Figure 3.3. 

The first subcase occurs when t, ,i+~ - e  > t , , i .  
The second subcase occurs when t,,i+ l > t*~ > t,,~+ ~ - ~. 
The third subcase occurs when t , , i+ ~ + ~ > t*~ > t,,~+ ~. 
The last subcase occurs when t,,~+ 1 + e < t,,~. 
We deal with the first subcase first. For  t e [0, t*~ - el, we find that the same 

argument  for (3.7a) works here also because 

(1 + �89 +�89 > 
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Hence  

_ V"+~ V~" I 
1 n (3.13) IV"'~(t, xi(t) +) V"'"(t, xi( t)--)1 = 1 + ~ V / + x t  1 + �89 

F o r  t e [t*,i - e, t*,i], we find tha t  

(3.14) 

IV,"+ I - VPl  

= ( 1  + �89 + � 8 9  

<= - -  I VP+ l - Vi"l .  

_ V.,~tt* + ) -  V.,~(t* I V"'"(t, xi(t) + ) V"'~(t, xi(t) - )l <= l , ,,i - e., xi , n,i -- e., Xi -- )l, 

because V"'~(t, x,(t) + )  is a decreasing function of t and  because vn'"(t, xi(t) +) > 
V"'~(t, Xi(t) --)  = -- 2/e in [t,*i -- ~, t*i] .  Combin ing  (3.13) and (3.14), we have 

(3.15) ,V"'~(t, x i ( t )+) - -V" '~ ( t ,  x i ( t ) - ) [<JVi"+l  V i n l ( ' ~  T )  2, - - -  t ~ [0, t ' i ] ,  

for the first subcase. We note  tha t  t cannot  be larger than  t*,i in the first subcase, 
since our  b o u n d a r y  x~(t) terminates  at  t*,i. 

F o r  the second and third subcases, the calculat ion is similar. The  only new par t  
is when t e [t,,* i+ 1 - e, t*] in the second subcase, or  t e [t*,,i - e, t,,~+* 1] in the third 
subcase. We note  that  in these cases the j u m p  is s imply zero. F o r  the four th  subcase, 
the calculat ion is exactly the same as in the first subcase. 

We have therefore p roved  (3.7). 

Proof of  (3.8). Fo r  any fixed Xo e (0, + oo), we est imate the BV[O,  T ]  n o r m  of 
V"'"( ' ,  Xo). No te  tha t  all the strip bounda ry  curves x = xi(t), 1 <_ i <_ n, are quad-  
ratic. So a vertical line x = Xo intersects any  of these curves x = x~(t) at  mos t  twice. 
A typical  case is depicted in Figure 3.4. 

The  BV[O,  T ]  n o r m  of V"'"( ' ,  Xo) is the sum of two parts: 
(I) Simple j u m p s  across the boundar ies  x = x~(t). The result is at  mos t  equal  to 

twice the BV(O, + oo) n o r m  of V"'~(t, ") as is given in (3.7). 
(II) The  m o n o t o n e  gain in the cont inuous  regions. This region can be split into 

two parts.  The  first pa r t  is the shaded regions, in which V"'" = 2/e is constant ,  so 
tha t  

V,"'" = 0. 

Hence,  there is no cont r ibu t ion  to the var ia t ion f rom the shaded regions. The  
second par t  is the unshaded regions. To  est imate the var ia t ion there, we use the 
equat ion  

V,"+ " " u v~ = - ~ ( v " ) :  

and V2 = 0 to find tha t  

v," = - � 8 9  2. 
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X 0 

Fig. 3.4. Proof of (3.8). 

Therefore 

I = IV?l e2, 

and the total variation in the continuous regions is 

2T 
Variation in continuous regions of IV"''( ' ,  Xo)[ - e-~-. 

Thus, the total variation in the whole interval [0, T3 is 

(3.16) tl V"'~( ", Xo)IIBVt0. TI = i jumps across xi(t) 
i = l  

+ Variation in continuous regions 

2T 
< 2 sup ]l V"'~(t, ")]l,v + -fi- 

O ~ t < _ T  

< C(T, M) 

Taking the supremum over xo e IR + of (3.16), we obtain (3.8). 
. , ~  oo From (3.7) and (3.8) it follows that {V },=1 is a bounded subset of 

L~176 c~BV([O, r ]  x ]R +). 

Therefore, {V"'~}2=~ is compact in L:([0,  T]  x lR +) [EG]. Since (3.6) holds, 
{V"}~~ is compact in L2([0, TJ x 1R +) [LS]. Thus there exists a subsequence 
{V'J}[=I which converges strongly in L2([0, T]  x lR +) to a limit V. One also 
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obtains that the corresponding sequence :u "~~176 y J= 1 is compact in L2([0, T]  x lRl+oc) 
since urn .~_ blnV n = 2J0 t v l  f xtgn'12] dx. Passing to a further subsequence of {u" j}j=~o a, we 
obtain a pair {u, V} which satisfies conditions (a), (d), and (e) of Definition 2.1. 

To establish the regularity for {u, V }, we assert that for all T > 0, 

I ~ [ g " ( t , x ) l P d x d t < C r ,  p [go(x)12dx, 2 < p < 3 .  
0 0 0 

In fact, we compute 

T o o  ~ i x i ( t )  
~ Iv"(t,x)l'dxdt = ~ IV"(t, x ) l ' d x d t  

0 0 i = 1  0 x~-l(t)  

i=~ 0 X i - I  

In positive strips where Vf > 0, we have V" < 2/t. Therefore 

T T 

]V"lV- 2 dt < dt - 3 - p 

0 0 

2 
In strips where - ~  < Vf < 0, we have t*,i = -V,." > 2T. Hence 

T T 

[Vn]p-2 dt ~ \ t *  i -- tJ dt < 2p-2T 3-p. 

0 0 

And in strips where Vf _< --~, we have 0 < t*,i <= 2T. Therefore 

T T T 

[ V " f - 2 d t  <= [t.;Z~p_2dt<-2p-2, _ ~ <co .  

0 0 - 2 T  

Hence 

~ Iv"(t,x)lpdxdt < CT, p 5 cT, p IVo(X)t2dx. 
0 0 i = 1  F/ 0 

Therefore the assertion is true, so that condition (ii) holds. Furthermore, from the 
assertion and the equation 

x 

u'~ + u"V" = �89 1 (V"(t, y))2 dy, 
0 

we have 
T R  

l f lu~l vd~at <-- c~,,,R ~ IVo(xll2dx. 
0 0 0 
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Therefore {un}nct)= 1 is a bounded subset of WI'P([0, T]  x [0, R]) for all p e [2, 3), 
T > 0, R > 0. By the Sobolev embedding theorem, WI'P([0, T] x [0, R]) c C 1-2/p. 
We obtain that Su "1~ is uniformly HSlder continuous for any exponent e < �89 ( ) n = l  

Therefore the limit u is also H51der continuous for any exponent e < �89 so that (i) 
holds. Since u~(t, 0) = 0, it follows from the uniform convergence of u n ~ u that 
u(t, 0) -- 0 also, so that condition (b) of Definition 2.1 holds. 

It remains to check that V satisfies condition (c) in Definition 2.1. This follows 
from equation (e) of Definition 2.1, which implies that 

Vt = -(uV)~ +~Vt 2 e L~or oo), HfiJ(]R +) + L~(IR+)) ~ L~or oo), H~(]R+)). 

We give a detailed proof in Appendix B. 
This finishes the proof of Theorem 3.1. 

3.2. More general initial data 

The solution V constructed in Theorem 3.1 is only in L2((0, T ) x  IR +) even 
though the initial function is in BV(IR+). In this section, we prove existence of 
global solutions under a weaker assumption on the initial data. We define a space 
W of"chopped" BV functions which lies between L z and BV. We then prove that if 
Vo(x) is in W(IR+), there exists a solution V(t, x) in W((0, T) x IR+). 

Given O c IR", we define the space W(~2) to be 

where 

W(O) = { f e  L2ffd)lllfM IIBv~o) < oo VM > 0} 

fM(X)= {f(X)M if f(x) > --M, 
if f (x)  < - M .  

Corollary 3.1. The solution obtained in Theorem 3.1 is in W((O, T) x IR +) for all 
T > 0 .  

The proof of Corollary 3.1 is implicit in the proof of Theorem 3.1 and is 
contained in the proof of the next more general theorem. Therefore we omit it. 

We need a lemma whose proof is given in Appendix A. 

Lemma 3.1. For any Vo(x)e W([O, 1]), there exists a sequence of step functions 
{V~}2=I defined on [0, 1-1 with the properties: 

(1) V~(x)~ Vo(x) in L2([O, 1-1), 
(2) II(V~)~(x)llBvto, ll < CM < oo Vn, V M  > O. 

We now state our existence result. 

Theorem 3.2. There exists a dissipatively admissible weak solution {u, V} to problem 
(2.1) provided that Vo(x) is supported in [0, 1] and belongs to W[0, 1]. For any 
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T > O, the solution V is in W((O, T)  x ]R +) and LP((O, T)  x lR+)for p ~ [2, 3), and 
u is H61der continuous with exponent ~ < �89 in both space and time. 

Proof  of Theorem 3.2. For  Vo(x) e W[0, 1], we find a sequence {V~(x)} which 
satisfies the properties of Lemma 3.1. For  each n, Vg(x) is a step function. Using the 
construction of Section 2, we obtain a dissipative step-function solution vn(t, x) 
with initial data V~(x). This solution satisfies 

i v . ( t , x ) l  2 ax <= iV  x)l 2 ax <= c .  
0 0 

For  any 0 < e < 1, we define (see Figure 3.5) 

V"(t, x) if V"(t, x) > - 2/e, 
vn'~(t, x) = - 2/e if V"(t, x) < - 2/~. 

V"'~(t, x) is defined in the whole IR + x lR +. In particular, 

V""(O, x) = (V~)2/~(x) - the cut-off of V~ at - 2/e, 

(3.17) Iq V"'~(O,x)llnv(R +) _-< C~ Vn = 1,2 . . . . .  

This V""(t, x) is the same as the V n'~ defined in the proof of Theorem 3.1 for t > e. 
As a matter of fact, it satisfies all of the estimates (3.6)-(3.8) in exactly the same 
way. Thus there exists a subsequence {u"J,V "j~~ H=I which converges in 

+ 
C([0, T ]  x FXloe)(~)L2([0, T ]  x]R +) to a limit {u, V} which is a solution, and 

V"J oo converges in L z {( )u}j = 1 to VM, which is in BV for all M > 0. The proof of other 
regularity conditions is the same as in Theorem 3.1. This completes the proof of 
Theorem 3.2. 

We remark that the space L z is a more natural space for problem (2.1) than the  
space W. It would be interesting to start with L:(IR +) data and obtain an 
L~176 T), L2(IR+)) solution. The problem is that we do not have strong enough 

t '  

n, i 

L J_ x 
n n 

Fig. 3.5. Definition of V "'~. 
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estimates to obtain compactness in L 2. We note that, by interpolation, an 
LP((0, T) x IR+), p < 3, estimate would imply compactness in L 2 if one can estab- 
lish compactness in L 1 (i.e., no oscillations). In this sense concentration is elimi- 
nated. In the next section, however, we give an example which shows that oscilla- 
tions can persist in solution sequences. 

3.3. Persistence of oscillations 

Consider problem (2.1) with data Vo(x) given by 

Vg(x) = { _ 
1, x ~  , , k = 0 , 1 , .  . . . .  

n 

1, x ~  , , k = 0 , 1 , . . . ,  - 1  
n n 

where n is a natural number (see Figure 3.6). The step-function solution V"(t, x) is 
given explicitly for 0 < t < 2 by 

2 

v"( t ,  x) = 
2 

Fn - l-] 
for Xzk<X < x2k+l, k = 0 , 1  . . . .  ' [ - ~ / '  

E ] for x2k+j<x<x2k+z,k=O,  1 , . . . ,  ~ - -1 ,  

Vo(X) 

- I  

i 2 i 3  
I ~ -  
I 
I 
I 
I 
I 

X 

21 .... / / / ?  ..... 
x4(t) 

1 2 3 4 
1,1 n it n 

X 

Fig. 3.6. Oscillation. 
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where  

X2k(t) = 2k (t + 2) 2 -- - -  t, k = 0, 1, 2 . . . . .  
4n n 

. . . .  t, k = 0 ,  1,2 . . . .  - 1 .  
X2k + 1 4n n ' 

The two lines x = X2k+l(t ) and x = x2k+2(t ) meet  at  t = 2. Therefore  in the 
region 0 < t _< 2, the solut ion V"(t, x) changes sign f rom region (X2k, X2k+l) to 
(X2k + 1, X2k + 2), and oscillations occur  when n approaches  infinity. 

The  weak  limits of V" and (V") 2 are simple to compute  explicitly. We find that  

V"(t, x) ~ V(t), 

16 
(V") 2 (t, x) ~ V2(t) + (t 2 + 4 )  ~ 

in Lz((0, 2) x IR +) and in the sense of distributions,  respectively. Here  

V(t)  = ~ • x2k+2 X 2 k J  t - 2 \ X2k+2 - -  X2k /I t 2 + 4"  

Tha t  l im(V") 2 4= (lira V") 2 means  that  the weak limit V is not  a solut ion of (2.1). 
The  dynamic  behav ior  of the Young  measure  vt.x associated with this sequence 

of solutions is interesting. Fo r  0 < t < 2 the Young  measure  is a sum of two delta 
measures:  

(2 + 0 2 (2 - t) 2 6 
(3.18) v,,x - 2(4 + t 2) ~2/(2+t) -~ ~ _~-y) 2/(t-2)" 

As t T 2, the coefficient of  the second delta measure  tends to zero, while the poin t  on 
which it is suppor ted  tends to - oe. Fo r  dissipative solutions, the Young  measure  
reduces to the single del ta-measure  

Vt, x = t~2/(2+t ) 

when t > 2. Thus,  for t > 2 the sequence converges s t rongly to a solution. F o r  
conservat ive  solutions, on the other  hand,  the Young  measure  is given by (3.18) for 
all t > 0. 

3.4. Existence of conservative solutions 

In  this subsect ion we prove  the existence of conservat ive solutions of  p rob lem 
(2.1). With  different condit ions on the initial da ta  the existence of these solutions 
also follows f rom the me thod  of characterist ics (see Section 4). 

Theorem 3.3. Suppose that the initial function Vo(x) is compactly supported and is in 
BV(]R+). Then there exists a conservative weak solution {u, V} of problem (2.1) 
which satisfies 
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oo o9 
(ct) ~o V2( t' x )dx  = Io V~(x)dxfor  almost every t ~ 1R +, 
(13) (V2)t + (uV2)x = 0 in the sense of distributions, 
(7) u is H6lder continuous in [0, oo) x [0, oo) with exponent ~ < �89 
(~) V ~ L~ T) x IR +) for any p ~ I-2, 3) and any T > O. 

Proof of Theorem 3.3. For simplicity we assume that the initial function Vo(x) is 
supported in I-0, 1] and is in BV[0, 1]. We use the sequence {F~(x)} from the proof 
of Theorem 3.1 to approximate Vo(x). Using the construction of conservative 
solutions described in Section 2, we obtain step-function solutions {V"(t, x)} to 
problem (2.1) with data { V~(x)}. The solutions { V"(t, x)} are weakly admissible and 
preserve the L 2 norm: 

(3.19) ~ IV% x)12 dx = ~ Ig~(x)12 dx for t e l e  +, a.e. 
0 0 

We show that { V"}~= 1 is strongly compact in L2((0, T) x IR+). Condition (a) on the 
L 2 conservation of V follows from (3.19) and this strong convergence. For 

)1)_ 1 O < e < 2  sup I Vo(x , 
\ [o, 11 

we set 

2/e, V"(t, x) > 2/e, 

V"'~(t,x) = V"(t,x),  I V"(t,x)J < 2/8, 

- 2/e, V"(t, x) < - 2 / e .  

We note that we need to have V""(0, x) = V"(0, x) = Vg(x) for later estimates (i.e., 
Vg should not be chopped off with 2/e). As in the proof of (3.6) we obtain that 

T co 

(3.20) ~ ~lV""( t ,x)  - V " ( t , x ) 1 2 d x d t < S C  V n = l ,  2 . . . . .  
0 0 

The estimates (3.7), (3.8) do not hold in the present case. Instead, we assert that the 
following estimates hold: 

r ~  C 
(3.21) ~ ~ I V;,~ d x d t  < - 

0 0 ~ 8 2 '  

ro~ C 
(3.22) ~ ~ ] V?'~I dx dt < -~. 

0 0 

Proof of (3.21). We note that V2 '" = 0 in continuous regions. The only contribution 
to (3.21) are jumps of V "'" across strip boundaries. We try to follow the proof of 
(3.7). In the first case, (3.7a), we have no new difficulty: the estimate (3.9) is still valid. 
In the second case, (3.7b), we have to estimate the new wave emerging after t* i. For 
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tn, i +1 

x; (t) 

i x 
/ ' /  

Fig. 3.7. For proof of (3.21). 

t e l 0 ,  * 6 , J ,  the estimate (3.12) is still valid. For  t e [t*,i, T ] ,  we note  that  our  initial 
value Vi" satisfies V~" < - 2 / ( e  + T). Thus for t > t*. 

(3.23) I V " ' ~ ( t ' x ' + ) - V " ' * ( t ' x ' - ) ' < 2 < e + T (  2 ) - e  e 

< 1 +  

e + T  
< IVL1 - Vi"[. 

Thus (3.23) (or (3.12)) holds for all t e [0, T] .  In the last case, (3.7c), we find that  
estimate (3.15) is no longer valid for all t e [0, T] .  Wi thout  loss of generality, let us 
assume that  Vi" < Vi"+ 1 < 0. Therefore we have the order  0 < t*i _-< * , t , , i+l  for the 
blowup times. N o w  if t,*,i > T, the estimate (3.15) is valid for all t ~ [0, T ]  because 
the new positive waves appear  after t,*.,. Suppose that  0 < t,** < T, and that  
t,*~+l < t*., + e (see Fig. 3.7). It follows that  

2 2 
(3.24) -- VF > ~ ,  - V~+ ~ > - - .  

= T + ~  

If we denote  Jump(xi(t))  = ]V"'"(t, x i ( t  ) -[-) -- vn'~(t, x i ( t  ) --)[, we find that  

(3.25) Jump(xi(t))  =< 

(1 + T/e)aIV[+I - V~"I, 

4/~, 

0, 

4/~, 

(1 + r/e)2lgT+l - g~[, 

t ~ (o, r  

t e (t*,i, * tn, i+ l ) ,  

t* * t e (  ,,i+~,t,,i + e), 
. t e( t*i  + e,t,,i+l + e), 

re ( t ' i+1  + ~, + oo). 
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The last estimate of (3.25) holds because, for t > t , , i+, + e > t*,i + e, 

Jump(xi(t))  = 
IV.P+, - V?l 

10 + } v L , o ( 1  + �89 

= 

<= T(T + e) 

where we have used (3.24). The critical estimate is 

(3.26) l*  _ t , l <  21VL1-Vfl l  <(T+e)21VLI_Vpl 
t . , , + l  = i ( _  V.+ ~ ) ( _  V . )  i = - - - - y - - -  �9 

This estimate implies that the time interval in which Jump(x~(0) > 4/e is big is 
controlled by the initial jump. The remaining case occurs when 0 < t*,~ < T and 
t*,i+ 1 > t*f + e. In this case, Jump(xi(t))  can still be as big as 4/e, but we find that 
the initial j ump is big too. As a matter  of fact, we have from the assumption 
t,*i+ l > t*~ + ~ that 

2 2 - - > &  
-V?+,  - V p  - 

Hence, 

2vr 
0 <  -Vp+, < e 7 7 -  2" 

Therefore, 

2v," 
V?+, - V? _-> Vl 

e V p - 2  

>_ 4 / T  2 2e 

2e/T - 2 T T ( T  + e) 

where we have used t*~ < T, so that - VP > 2/T.  Thus 

4 2 ( T + e )  T .  2e 
(3.27) Jump(xi(t)) < - = 

c, t32 T ( T  + e) 

2 T ( T  + e) 
~2 I Vp+ ~ --  l ip Io t ~ [0o T] .  
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So, for the case (3.7c), Jump(x~(t)) is given by one of the three estimates: (3.15) if 
t * ~ > T ,  (3.25) if t * . < T  and t,,~+~* <t*~, +e ,  and (3.27) if t*-,,~<T and 
t*,i+, > t*,i + e. Thus 

T oo T oo 

f flVx"'~ldx&= f f~= Jump(x,(t))6(x-xi(t)) 
0 0 0 0 

T 

k f.,.mp,x,tt,,d, 
i = 1  �9 

0 

4 
IV,",+~ - Vgl T + - "  2 " - -  

< 6T(T + ~)2 
82 II Vo IIBv 

dx dt 

]1 2 + 

(T + ~)2 Ivn+l _ 17,1" ~ ) 

where we define 6(x - xi(t)) by 

~3 

; J ,; (p(t ,  x), 6(x -- xi(t))) = qg(t, xi(t)) 1 + xi(t at 
0 

V~o e Cy.  

Proof of(3.22). E "'~ can be split into two parts. Vg '' = V~;~ + V~;~. The first part is 
the simple jump across xi(t) and takes the form 

(3.28) V~;~ = k + Jump(xi(t))6(x - xi(t)) x'i(t) 
i=1 ~/1 + (x'i(t)) 2" 

The second part occurs in each strip and satisfies 

2 
(3.29) I V~,, I < ~ .  

The estimate (3.22) follows from (3.28) and (3.29). 
Now that the estimates (3.20), (3.21), and (3.22) are established, the rest of 

the existence proof is similar to the proof of Theorem 3.1, and we omit the 
details. 

Finally, we note that the conservative piecewise linear solutions satisfy 

((v")2), + (u"(V")2)x = 0, 

in the sense of distributions [HS]. Passing to the limit in a strongly convergent 
subsequence implies that the solution also satisfies this conservation law. 

This completes the proof of Theorem 3.3. [] 
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4. Method of Characteristics 

The main purpose of this section is to show that there is a close connection 
between conservative weak solutions and the method of characteristics. We begin 
with a heuristic discussion. 

For  smooth solutions, equation (1.1) can be solved exactly by using the method 
of characteristics [HS]. An implicit solution of (1.1), with initial data 

is given by 

u(O, x) = F(x), 

u = U(t, 4):= F(~) + tG(~), 

x = X(t ,  4):= ~ + tF(~) + �89 

Here G is a function such that 

G ' ( ~ )  1 2 = ~ f  (4), f(~)  = F'(~), 

and ' denotes the derivative with respect to 4. 
The derivative Xr is given by 

X r  Y 2, Y =  l + �89 

It follows that 

~ _ f  
V = ux - Xr Y 

blows up when Xr = 0. However, even after the blowup time, the transformation 
from characteristic to spatial coordinates is typically one-to-one since Xr is non- 
negative. The only exception is when {4 :f(~) = c} has non-zero measure, in which 
case an interval of characteristics converge at the same point. (This is exactly what 
happens for the piecewise linear solutions used previously.) 

Geometrically, the surface ~ = Z(t, x) formed by the characteristics becomes 
vertical when the derivative of u blows up, but the surface never folds over (see 
Fig. 4.1). We can therefore use the method of characteristics to construct global 
single-valued solutions of (1.1). This again contrasts with the behavior of character- 
istics for conservation laws such as the Burgers equation (1.3). 

To make these arguments rigorous, we introduce a solution u ~ by the regular- 
ized method of characteristics. We assume that f ( x )  = F'(x) is continuous with 
compact support. Given any g > 0, we define 

F(4) + tG(4) 
U~(t, 4) - 1 + 52 ' 

(1 + 52)4 + tF(~) + �89 
X ~ ( t ,  4)  - 1 + 5 2 ' 

r 

G(~)=�89 S f2(z)  dz, r( t ,  3 ) = l  +�89 
- - o 0  

(4.1) 
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Fig. 4.1. A typical characteristic surface for conservative solutions. 
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It follows that 

y2 + ~2 ~2 

(4.2) X ; -  1 + ~2 = 1 +,g2 > > O. 

The implicit function theorem implies that the change of variables (t, 4) ~-*(t, x) is 
a Cl-diffeomorphism of IR z. We denote the inverse map by 

(4.3) 

We let 

(4.4) 

= Z~(t, x).  

u~(t, x) = u+(t, z+(t ,  x)) e c1(~2). 

From (4.1)-(4.4), the derivative V + = u~ is given by 

f (Z~(t, x) ) Y (t, Z~(t, x) ) 
(4.5) V~(t, x) = y2(t,  Z~(t, x)) + e 2 

We prove that {u ~, V ~} ~ {u, V} as e ~ 0 and that the limit {u, V} is a conserva- 
tive weak solution of (1.1). 

Before stating and proving a general theorem, we illustrate how the regularized 
method of characteristics picks out a conservative solution for the basic step- 
function initial data 

f (x)  = {07 1, O < x < l ,  
otherwise. 
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Using (4.1), and eliminating { in terms of x (assuming that F(x) = 0 for x < 0), we 
find that the solution by the regularized method of characteristics for this initial 
function is given by 

2 ( t  - 2)  

V~(t,x)= (t--2) 2 + 4 e  2' O < x < { ~ ( t ) ,  

O, otherwise, 

where 

r  - 
(t - 2) z + 4~ 2 

4(1 + e2) 

After the blowup time, t* = 2, this solution approaches the conservative step- 
function solution 

2 O < x < � 8 8  2 , 
V(t ,x )= t - -  2' 

0 otherwise, 

shown in Figure 2.4, rather than the dissipative one shown in Figure 2.2. More 
precisely, it is straightforward to check that 

S [ v ~ -  V] 2dtdx = 0(~) 
K 

for any compact set K, so that V ~ ~ V in L2o~(IRZ). 

Theorem 4.1. Suppose that f (x) = F'(x) ~ Cc(IR). There exists a global conservative 
solution of(2.1) with initial data u(O, x) = F(x) and V(O, x) =f (x ) .  This solution is 
the limit in C1oc | L~oc(lR 2) of solutions {#, V ~} by the regularized method of 
characteristics defined in (4.1)-(4.5). 

Proof. We show that V~(t, x) has a finite pointwise limit V(t, x) almost everywhere. 
The limit exists on a set O consisting of those points (t, x) where Y(t, Z~(t, x)) is 
bounded uniformly away from zero as e --+ 0. 

Throughout  the proof, we restrict t to an arbitrary finite interval [ - T ,  T].  
Given any 0 < e < 1 and 0 < t / <  1, we define 

(4.6) f2~ = {(t, x) E [ - -  T, T]  x ]R:[ Y(t, Z~(t, x))[ > 1/}. 

The convergence of the regularized characteristic variables Z ~ follows from the 
following nesting property of the O~. 

Lemma 4.1. For any ~/> 0, there exists Eo(~) > 0 such that 

(4.7) ~2;~/2 c f2~ ~ c Q~/2 V0 < ~ < Co. 
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Proof. From (4.1) and the assumption that f i s  continuous with compact support, 
there is a modulus of continuity p:IR + -+ IR + such that 

(4.8) [ 4 -  ~[ =< p(t/) ~ [r(t, 4 ) -  Y(t,~)] < n/2. 

We define M and eo by 

(4.9) M = sup [tF(~) + �89 ~2(7) = p(7)tl2/4M. 
t,~ 

First we prove that ~2~ ~ c ~ /2 .  Differentiating x =X~(t, Z~(t, x)) in (4.1) with 
respect to e2, with (t, x) fixed shows that 

~Z ~ 1 tF(Z ~) + �89 ~) 
(4.10) ~ g 2  - -  1 + e 2 ya(t  ' Z 8) q_ g2 

To explain the idea of the proof, assume that [ Y(t, Z~)[ > ,//2. Then estimating the 
right-hand side of (4.10) gives 

4M a Z ~ <  
ae2 = /12 

Integrating this result and using (4.9) implies that IZ ~~ - Zq < P(7). It follows from 
(4.8) that [ Y(t, Z~)[ differs from [ Y(t, Z~~ by at most 7/2, and is therefore greater 
than 7/2, in consonance with our initial assumption. 

We give a detailed proof by contradiction. Suppose that (t, x) e f2~ ~ Let 

e, = inf{e, > 01 I Y(t, Z~(t, x))] > t//2 Ve e (e,, eo(t/))} 

= inf{~, > 0] (t, x) e O~/e Ve e (el, go(t/))}. 

We want to show that e, = 0. Suppose that e, > 0. Integrating (4.10) and then 
using (4.9) and the fact that Y(t, Z ~) >= 7/2 for e > e, implies that 

4 

] f 1 tF(Z' )§189 2 
[Z '~  = 1 + e  z Y ~ , Z - S T ~ -  ae 

4 
4M(e~ - e2,) 

--< 72 < p(7). 

It follows from this inequality and (4.8) that 

I Y(t, z~*)l > I Y(t, z~o)l - I Y(t, z ~~ - Y(t, z~*)l > 7/2. 

Since Y ( t , z  ~) is a continuous function of e, this inequality implies that 
]Y(t, Z~)] > t//2 for some interval el < e < e.,  contradicting the definition of e.. 
Therefore, ~. = 0 and 12~ ~ c t2~/2 for all 0 < e < eo. 

An almost identical argument shows that if ]Y(t, Z~(t, x))] __> 37/2 for some 
e ~ (0, eo), then ] Y(t, Z~~ x))] > 7- We do not write out the details. It follows that 

This completes the proof of Lemma 4.1. [] 
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We abbreviate 

and define the "good" set 
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q 

The next Lemma shows that m(s c) = 0, where m is the Lebesgue measure and 
c denotes the complement in [ -  T, T]  x IR. 

Lemma 4.2. For 0 < t I < �89 there is a constant C independent of  tl such that 

m(s <= c ,? .  

Proof. We consider the change of variables (t, x) ~ (y, 4) defined by 

(4.11) y = Y(t, Z~(t, x)), ~ = Z~(t, x). 

By (4.1)-(4.3), this transformation is one-to-one on any set where f (~)  ~ 0, and its 
Jacobian is given by 

2 y2 + e2 
(4.12) d tdx  - 1 + ~ ]f(~)~ dyd~. 

The definition of s implies that If(i)]  is bounded uniformly away from zero on 
s when ~/< �89 Using (4.11)-(4.12), with e = eo(t/), and (4.9), we compute that 

= f d tdx  m(s 
* 1  

2 yZ + ~o dy d~ 
= l + ~ g  l f(~)l 

C f (y2 + eg)dy ____ C(~ 3 + ~ )  5 C~ 3. [] < 

]y[ < t/ 

Next we prove that the characteristic variables Z '  have a pointwise limit on s 

Lemma 4.3. For any (t, x) ~ s there is a pointwise limit, Z~(t, x) ~ Z(t,  x) as ~ ~ O. 
Moreover, [Y(t, Z(t, x))[ > I//2 on s and Y(t,  Z(t ,  x)) 4:0 on s 

Proof. If (t, x) ~ s then (t, x) ~ s for some t / >  0. Lemma 4.1 implies that 

(4.13) I Y(t, Z'(t, x))l >_- n/2 
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for all e < So(t/). Therefore, from (4.9), we have 

1 tF(Z  ~) + �89 ~) < 4M__ _ p 
1 + 82 y a ( t  ' Z ~) + e2 = q2 eg" 

Integrating (4.10) with respect t o / ~ 2 ,  and using this inequality to estimate the result, 
gives 

i z  o _ z~l < ~ ( e 2 _  a2) 

for all eo >- e > 6 > 0. It follows that Z ~ is a uniform Cauchy sequence on (2~ and 
therefore has a pointwise limit Z. 

Taking the limit of (4.13) as e --, 0, and using the continuity of Y, implies that 
I Y(t, Z(t ,  x))[ > t//2 4: 0. This completes the proof of the lemma. []  

From Lemma 4.3, equation (4.5), and the continuity of f, we can define the limiting 
function 

(4.14) 

lim V~(t, x) - f (Z ( t ,  x)) if (t, x) e s 
V(t, x) = ~-~o g(t ,  Z(t,  x)) 

O, if (t, x) e ~2 c. 

We now prove the main convergence result. 

Lemma 4.4. V ~ --* V strongly in L v ( [ -  T, T]  x lR) for any 1 <= p < 3. 

Proof. For  any t / >  0 and e < eoff/), we have 

(4.15) IIV = -  vii p =  j" IV ~ -  VlVdtdx+ ~ IV ~-  Vl'dtdx, 
Ea, t gag 

where 11"[[ is the LP([ - T, T l x IR) norm. From (4.5) and Lemma 4.3, 

C 
sup IV ~ -  V I < - - ,  

( t , x ) ~  II 

so it follows from (4.14) and the Lebesgue dominated convergence theorem that 

(4.16) lim ~ IV ~ - VlVdtdx = O. 
e~O ~u 

To estimate the second term on the right-hand side of (4.15), we use 



344 J.K. HUNTER 84 YUX~ ZHENG 

By Lemma 4.1, (2~ c O ~c Consequently, using (4.11), (4.12) to change integration 3t / /2  �9 

variables from (t, x) to (y, 4) and then using (4.5), we obtain 

(4.18) f lV~ f lWlPdtdx 

f 2 y2 + ez 
= IvT 1 +e ~ lf(~)~ dyd~ 

Q %/2 

2 f lyl" - 1 + 12 I f ( ~ ) :  -* dyd~ (y2 q_ g2)p- 1 

3~7/2 

lyl < 3r/ /2 

< Ctla-p. 

Using Fatou's lemma and the fact that V ~  V a.e., we also have 

(4.19) I IV[ pdtdx = I liminflWI pdtdx __< liminf ~ Igq'dtdx < Cq 3-p. 
a~ a;, ~ o  8-+o a~, 

Combining (4.15)-(4.19) implies that 

limsup ]l v"  - Vll =< c ~  (a-~)/~, 
e--+0 

and taking the limit as q ~ 0 proves the result. [] 

By the Sobolev embedding theorem, it further follows that u ~  u uniformly, 
with V = ux. This establishes the convergence of {u s, V '} --, {u, V} in C | L 2 
( [ -  T, T]  • IR) and shows that (d) of Definition 2.1 is satisfied. 

To show that the limit is a weak solution, we need to prove that {u, V} satisfies 
(e) of Definition 2.1. From (4.1)-(4.5), we compute that 

1 1 2 f2 
(4.20) V: + u~F~ + ~ (V~) 2 = ~ ~ (y2 + ~2)2, 

where the right-hand side is evaluated at { = Z~(t, x). If f e  C 1, this equation is 
valid in the classical sense; otherwise it holds in the sense of distributions. 

Using (4.11), (4.12), we find that the L 1 (IR 2) norm of the right-hand side of (4.20) 
is given by 

f f2 82 f 'f(~)' dyd{ ~ f 1 ~2 12)2 dtdx - - -  = 5 ( y 2 +  1+~2  y2+~2 ~ If(~)ld~. 
N. 2 N 2 N 

The right-hand side therefore tends to zero in the sense of distributions as e ~ 0. It 
follows that {u, V} satisfies (e) of Definition 2.1 and is a weak solution. (We omit 
the detailed verification of conditions (a)-(c), with V0 = f )  
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To show that this solution is conservative, we compute from (4.1)-(4.5) that the 
energy equation for the regularized solution is 

(V'Z)t + (u~V~2)~ = e 2 y f3  (yZ + e2)3" 

We shall prove that the right-hand side tends to zero in the sense of distributions as 
e ~ 0. It follows that the limiting solution satisfies the energy equation exactly. 

The right-hand side of the regularized energy equation does not tend to zero in 
1 Lxoc, but some cancellation occurs and it does tend to zero in the sense of 

distributions. We consider 

U[tp] = ge ( q)rf3 
j (y~-  7 72) 3 dtdx, 

where ~o(t, x) is an arbitrary test function. Using (4.2) to change variables from x to 
= Z~(t, x) gives 

e2 ~ r 
Y[qq 1 + e 2 " J(Y~-+-e2) 2dtd{" 

F 

Here, we restrict the region of integration to g = IR x A where a = {{ : f ( , ~ ) ,  0}. 
Using Fubini's theorem and integrating by parts with respect to t gives 

P[q0] - 1 + e2 [Or(t, X"(t, ~)) + X~(t, ~)qo~(t, X"(t, ~))] 

F 

t 

x (y2(t, ' ~) + e2)2 dr" dtd~. 

Using (4.1), we have that X~ = U" and 

t 

f Y(t', ~)f(~) 
(y2(t', ~) + 82) 2 

- o o  

Using these in the expression for Y[~o] gives 

1 
d t '  = 

~2 ~ (~ot + U~q~)f 2 dt 
I ~ [ q ) ] = l + e 2 ~  y2 + e2 d~. 

F 

Since U ~ is uniformly bounded on compact sets, 

II~[q)J] <= Ce 2 dtd~ <_ Ce 2 j y T ~ 2  = 

F 1" IR 

where we use (4.1) to change integration variables from t to y = Y(t, r and where 
C is a constant independent of a. It follows that I~[~0] ~ 0 as e ~ 0. 

This completes the proof of Theorem 4.1. [ ]  
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The proof gives an explicit expression for the conservative solution, namely, 
(4.14). This expression is the same as the one obtained by the method of character- 
istics for smooth solutions, but with the characteristic variable Z(t, x) defined a.e. 
as a pointwise limit of regularized characteristic variables. Characteristics are not 
defined uniquely from dx/dt = u(t, x), since u is not Lipschitz continuous in x. It is 
interesting to compare this construction of characteristics for weak solutions of 
(1.1) with the generalized characteristics introduced by DAF~RMOS [D2] for conser- 
vation laws (where u is discontinuous). 

Finally, we mention a problem concerning lack of uniqueness. There are many 
conservative solutions which take on initial values u(0, x) = V(0, x) = 0. The one 
constructed by Theorem 4.1 is the zero solution. However, another solution is the 
conservative step-function solution 

f 2/t, 0 < x - ~ < a2t2/4, 
V(t, x) -- ( 0, otherwise. 

More generally, we can place arbitrary amounts of energy at a finite number of 
points, and V still takes on zero initial values in the sense of Definition 2.1. Thus, in 
addition to initial values for V it is also necessary to give compatible initial values 
for V 2 (in the space of bounded measures, for example). This difficulty does not 
arise in the dissipative case, where the only admissible piecewise linear continua- 
tion of V(0, x) = 0 is V(t, x) = 0 for all t > 0. 

5. Large-Time Asymptotics 

In this section, we prove that the dissipative solutions whose existence we have 
established in Theorems 3.1 and 3.2 all have the same asymptotic form as t ~ + oo. 
The asymptotic state is completely determined by a single invariant of the solution, 
namely, the energy of the positive part  of V. We use the natural space Lz(IR. +) for 
solutions V(t, x). The LP(IR +) spaces with p 4= 2 are not suitable for V(t, x), because 
the L p norm of V(t, x) blows up in time if p + 2. 

Theorem 5.1. As time approaches infinity, all solutions V(t, x) of the problem (2.1) 
established in Theorem 3.2 converge in L2(]R +) to U(t, x) given by 

(5.1) 

where 

~2/t, 0 < x <�88 2, 
U ( t, x) = (0 ,  otherwise 

o~ 
E(v+(  0, ))  = S (v+( 0, x)) 2 dx, 

0 

V+(t, x) = max{V(t, x), 0}. 

We remark that this conclusion was conjectured in [HS]. The function U(t, x) 
satisfies the first two equations in (2.1), but it takes on very singular initial data. 
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The asymptotics of u(t, x) follows immediately from Theorem 5.1: 

t 
u(t, + oo) ,,, U(t ,x)dx =~E(V+(0 , . ) ) .  

0 

It foUows that the constant state u = 0 is nonlinearly unstable. If u = 0 is perturbed 
initially by a compactly supported pulse Uo(X) with E(u+x(x)) > 0, then asymp- 
totically u(t, + or) grows linearly in time. 

Sketch of the Proof of Theorem 5.1. We need to prove that 

(5.2) lim 7 IV(t, x) - U(t, x)12 dx = O. 
t-*co 0 

We use the sequence of approximate solutions { V"} from Theorem 3.2, a sequence 
which converges to V in LZ((O, T) x IR +) for all T > 0. Consider the simplest case: 
(i) V(0, x) _< 0. 
It is clear that any initial value V"(0, x) less than -2 / t ,  where t > 0, blows up 
before time t. From the construction of V", it follows that the energy at t > 0 comes 
only from initial values larger than -2I t .  Thus 

4 
7 IV"(t,x)l 2dx ~-~.  
0 

Passing to the limit n --* o% we find that 

4 
(5.3) 7 IV(t, x)l 2 dx <= -g. 

0 

But E(V+(O, x)) = 0; thus U - 0 in this case. So (5.2) is established for this case with 
the explicit rate given in (5.3). 

The next simplest case is 
(ii) V(0, x) > 0. 
The solution V(t, x) is bounded on the entire domain lR+x IR +, so u(t, x) is 
Lipschitz continuous with respect to x. Therefore the characteristics for (2.1) can be 
uniquely defined everywhere: 

(5.4) 

dX 
ds u(s,X), 0 < s < o o ,  

x ( t )  = x, (t, x)  e IR + • P , + .  

Let Xo be the intersection with the x-axis of the characteristics X(s; t, x) starting at 
(t, x): 

Xo = Xo(t, x) - x ( 0 ;  t, x).  



348 J.K. HUNTER & YUXI ZHENG 

Then 

2V(xo(t, x), O) 
v ( t ,  x) - 

2 + tV(xo(t, x), 0)' 

• V2(t, x)dx = ~ V2(O, x)dx. 
0 0 

Integrating the first equation in (2.1), we further find 

• V(t, x)dx = ~ V(O, x)dx + �89 x)). 
0 0 

oo 
The value of u(t, x) is increasing with respect to x, and equal to ~o V(t, x)dx 
when x is larger than the characteristic X(t; O, 1) starting at t =  0, x = 1, which we 
find to be 

X(t; O, 1) = 1 + t ~ V(O, x)dx + �88 ")). 
0 

So the difference between V and U can be split into two parts. The first is in the 
strip $1:�88 ")) < x < X(ti 0, 1), and the second is in the region $2:0 < x 
< �88 .)). Inside the first strip S~, we have U = 0 and 

2 4 2 
O < V = - -  < -  

t t [2 + tV(O, Xo(t, x))] = t 

Thus 

I v  - uI2  dx  = o ( 1 / 0 .  
$1 

Inside the second region $2 ,  w e  have 

V - U =  - 
t [2 + tV(O, Xo(t, x))]" 

We see that this difference decays like - 2 / t  at points where V(0, Xo(t, x)) = O. 
A simple bound such as ] V - U I < 2It is not enough, because the width of the 
domain of integration grows like t2E(V(O, .))/4. To overcome this difficulty, we 
note that intervals (al, a2 )~  (0, 1) in which V(0, xo(t, x ) ) =  0 at t = 0 do not 
expand (or shrink) with time. That  is, the two characteristics X(t; 0, al) and 
X(t; 0, a2) have a constant distance X(t; 0, at) - X(t; O, a2) = al - a2 for all time 
t > 0 if V(0, x ) =  0 in (al, a2). So the simple bound I V -  UI =< 2/t suffices in 
regions where V(t, x ) =  0. We further note that the distance between any two 
characterstics X(t; 0, ai), i =  1, 2 expands at a rate at most O(t2); and I V -  U[ 
<__ c/t 2 hold in regions where V(t, x) > c. From this analysis and a coordinate 
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t ransform x ~ Xo, we find that  

�88 t2E(V(O, ")) 

f IV -- UlZdx ~ 16 

0 

X(t;O, 1) 

t2[ 2 + tV(O, Xo(t, x))] 2 dx 
0 

< f dxo 
(2 + tV(O, Xo)) 2 + O(1/t2) 

So 

where So = {Xo ~ (0, 1)] V(0, Xo) =~ 0}. Splitting the integral over So into two parts 

$3 = {Xo ~ Sol V(0, Xo) < 1/x/ t  } and $4 = {Xo 6 So] V(0, Xo) >= 1/x//t}, we find 
that  

�88 t2E(V(O" ")) < C. 1 
j IV - U l a d x  [Ssc~Sol + + O(1/t  2) = o(1). 
o = 4 (2 + x//t) 2 

So we have established (5.2) in the second case V(0, x) >_ 0. 
For  the general case, we split V into two parts 

v ( t ,  x) = v + (t, x) - v -  (t, x) 

where bo th  V + and V-  are nonnegative.  As in case (i), we obtain 

4 
I V-  (t' x)lZ dx < 7 "  

0 

So we only need to find the asymptot ic  behavior  for V +. By using V" and strong L 2 
convergence, we find that  

So 

I g + ( t ,  x)12dx = ~ l V+(O, x)l 2 dx -~. E(V+(O,  x)). 
0 0 

~ V 2 dx = ~ IV + (0, X)I 2 dx  -1- O(1/t2). 
0 0 

The  characteristic for V(t, x) starting at t = O, x = 1 is 

t2 
X(t; O, 1) = 1 + t V(O, x)dx + ~  E(V +) + O(logt).  

0 
09 

The integral ~o V(O, x)dx can be assumed to be nonnegat ive without  loss of 
o0 

generality, because ~o V-  (t, x) dx vanishes as t --+ ~ and because we can start the 
problem (2.1) at any later time to > 0 without  changing the asymptot ic  behavior.  
Therefore  we can assume that  X(t; O, 1) > tZE(v+)/4 for sufficiently large t. So the 
difference of V + -- U in the strip t2E(V+)/4 < x < X(t; O, 1) tends to zero as in 
case (ii). We note  that  inside the strip 0 < x < taE(V+)/4, the por t ion  of 
{x: V -  (t, x) + 0} has a length which is decreasing with time; thus it is less than its 
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initial length. Hence the length of {x: V + (t, x) = 0} is at most 1. Thus the argument 
in case (ii) still applies to give 

t 2 E ( V + ) / 4  

IV + - U[2dx = o(1), 
o 

and (5.2) is proved in the general case. The sketch of the proof of Theorem 5.1 is 
complete. 

Appendix A. Proof of Lemma 3.1 

Lemma 3.1. For any f ( x ) ~  W([O, 1]), there exists a sequence of step functions 
{f"(x)}~=l c L 2 [0, 1] with the properties: 

(1) i f ( x ) - ~ f ( x )  in L2([O, 1]), 
(2) II(f")MllBv~o, ll < [If~ll~vto, ll VM = 1,2 . . . .  Vn = 1,2 . . . . .  

Proof of Lemma 3.1. Let f (x)  e W [0, 1] be given. Suppose g(x) is a step function 
on [-0, 1] and can be written as 

g(x)=gi ,  xe (a i_ l ,a i ) ,  i =  l , 2 , . . . , k ,  

where 0 = ao < al < . . .  < ak = 1 and gi are constants. If on each interval 
(ai- 1, ai), i = 1, 2 . . . . .  k, there exists a point xi ~ (ai- 1, al) such that 

f (x~) = gi 

or there are at least two points y~, zi ~ (a~_ 1, ai) such that 

f(Yi)  > 9i >f(z i ) ,  

then we say that g is twisted with f It follows that 

II g [l~v _-< II f IIBv 

by the definition of BV. 
Now for any M = 1, 2 . . . . .  fM is in BV by the definition of W([-0, 1]) in 

n X ov Section 3.2. There exists a sequence of step functions {fM ( )},= 2, each of which is 
twisted with fu ,  and 

1 
II fM - f ~ , "  IIL~r < - -  

= 2 n~ 

I[ f~" l l~v < II fMII. 

We assert that f "  = f , "  satisfies all the conditions of the lemma. Indeed, f "  is a step 
function, is bounded from below by - n  and is in L2(0, 1). Furthermore, 

IJf" --fl[L= < Ilfn" --fn IlL2 + IFfn - f i lL= 

<• 
= 2 . +  I[W,-WIIL~. 
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Therefore (1) is satisfied. To verify (2), we note that 

(f")M =f , "  if M > n, 

S O  

II (f")M Ilnv < ][ f ," ILBv N II f ,  [Inv < l] f ~  I[Bv if M > n. 

For M < n, it can be verified that (f,")M is twisted wi thf~ ,  and thus 

II(f")~llBv < II(f,")Mllsv < I] fMIIBv. 

So (2) is verified. This completes the proof of Lemma 3.1. 

Appendix B. Verification of Condition (c) 

From equation (e) of Definition 2.1, we have 

- ~ ~ ~ ~fi~oV2 dxd t  (B.1) ~i ~ ' ( t )q)(x)Vdxdt  = - ~  ~(p 'uVdxdt  1 

for all test functions ~ ~ C~(IR +) and ~o e C~(IR+). For any tl ,  t2 e (0, T), we can 
choose a sequence {~j}2% ~ ~ Col(R +) such that 

~llj(t) -~ ltt,,t21 a.e. 

where lm,t~l is the characteristic function of the set Its, t2]. Using ff~ in (B.1) and 
taking the limit j ~ ~ ,  we find that 

t2 09 

(B.2) ~(q~(x)V(t2, x) - ~o(x)V(t~, x))dx = - ~  y (q/uV + �89 
tl  0 

for almost all tl ,  t2 e (0, T) by using the Lebesgue point and dominated conver- 
gence theorems. We can estimate the right-hand side of (B.2) by 

< It2 - t l  I(ll ~o' IIL~ It u IlL~r T)• V IlL~(~*) + �89 II ~o/IL~ II V [I~2<R*)) 

< It2 - t~ [ C T I[ q)I[HI(II-+)" 
Therefore 

that is, 

] j ((#(x) V(t2, x) -- (p(x)V(tl,  x))dx ] < ]t2 - tl ]CT ]] (P l]ul(~+); 

[I v ( t 2 ,  .) - v ( t , ,  ")11~-, <= It2 - t ~ [cT  

for almost all t l ,  t2 e (0, T). This becomes the Lipschitz continuity condition in (c) 
when we redefine V on a null set of t. To prove the initial condition in (c), we start 
with the equation 

v ?  = - ( u ~ v n ) ~  + �89 ~, w(0 ,  x) = vg(x )  

in the distributional sense. We find similarly that 

q~(x)(Vn(t~, x) - V g ( x ) ) d x  <= t~CT LI ~0 IIH'(*+)- 
0 
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Letting n ~ oo, we obtain 

l ~q) (x ) (g ( t2 ' x ) -o  V~ 
for almost all t2 ~ (0, T). Therefore 

V(t ,x)  ~ Vo(x) in H - I ( I R  +) 

as t ~ 0 + ,  Since V(t, x) is Lipschitz continuous on [0, T-I, V(O, x) is defined as the 
limit l imt .0 V(t, x) in H -  I(IR+). Therefore V(0, x) = Vo(x) in H -  I(IR+). The verifi- 
cation of condition (c) is complete. 
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