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Summary. The survival time of small and isolated populations 
will often be relatively low, by which the survival of species 
living in such a way will depend on powers of dispersal sufficient- 
ly high to result in a rate of  population foundings that about 
compensates the rate of population extinctions. The survival 
time of composite populations uninterruptedly inhabiting large 
and heterogeneous areas, highly depends on the extent to which 
the numbers fluctuate unequally in the different subpopulations. 
The importance of this spreading of the risk of extinction over 
differently fluctuating subpopulations is demonstrated by com- 
paring over 19 years the fluctuation patterns of the composite 
populations of two carabid species, Pterostichus versicolor with 
unequally fluctuating subpopulations, and Calathus melanoce- 
phalus with subpopulations fluctuating in parallel, both uninter- 
ruptedly occupying the same large heath area. The conclusions 
from the field data are checked by simulating the fluctuation 
patterns of these populations, and thus directly estimating surviv- 
al times. It thus appeared that the former species can be expected 
to survive more than ten times better than the latter (other 
things staying the same). These simulations could also be used 
to study the possible influence of various density restricting pro- 
cesses in populations already fluctuating according to some pat- 
tern. As could be expected, the survival time of a population, 
which shows a tendency towards an upward trend in numbers, 
will be favoured by some kind of density restriction, but the 
degree to which these restrictions are density-dependent appeared 
to be immaterial. Density reductions that are about adequate 
on the average need even not occur at high densities only, if 
only the chance of occurrence at very low densities is low. The 
density-level at which a population is generally fluctuating ap- 
peared to be less important for survival than the fluctuation 
pattern itself, except for very low density levels, of course. The 
different ways in which deterministic and stochastic processes 
may interact and thus determine the fluctuations of population 
numbers are discussed. It is concluded that some stochastic pro- 
cesses will operate everywhere and will thus necessarily result 
in density fluctuations ; such an omnipresence is much less imper- 
ative, however, for density-dependent processes, by which popu- 
lation models should primarily be stochastic models. However, 
if density-dependent processes are added to model populations, 
that are already fluctuating stochastically the effects are taken 
up into the general, stochastic fluctuation pattern, without alter- 
ing it fundamentally. 

* Communication No. 228 of the Biological Station Wijster 

Dedicated to Professor Michael Evenari 

1. Introduction 

During the many years I studied natural populations of carabid 
beetles I was increasingly struck by the severe contradiction 
between the holistic and deterministic structure of most mathe- 
matical population models, and the heterogeneous structure and 
highly variable not to say turbulent - environment of field 
populations. I soon learned that heterogeneity is not an exclusive 
feature of carabid populations and variability not a special prop- 
erty of the environments in the northern parts of the Netherlands. 
I long believed that we should have to go to the tropics to 
meet with conditions that would not completely upset the as- 
sumption of an about constant physical environment, as it lies 
at the root of most deterministic population models. However, 
since may friend Wolda went there (Barro Colorado Island) 
to study the dynamics of insects living in the tropical rain forest, 
also this illusion was roughly disturbed: population numbers 
are fluctuating there as heavily as they do in comparable insects 
in our temperate regions (Wolda 1978 a), and these fluctuations 
are clearly associated with unpredictable variations of the envi- 
ronment (especially with variable amounts of precipitation: Wol- 
da 1978b). Hence, apparently we have to retire into the deep-sea 
or far into some cave to meet with natural conditions that will 
tolerate the greater and most favoured part of our theoretical 
considerations on populations. But see also Turanchik and Kane 
(1979) and Juberthie (1979) concerning the environmental condi- 
tions in caves. 

However, meanwhile many field ecologists returned empty- 
handed from excursions into mathematical ecology, and thus 
continued their studies of real animal populations in real, i.e. 
heterogeneous and variable environments without much refer- 
ence to adequate general principles. For  many years already 
I realized, that we cannot go on for ever in this way, in spite 
of the many valuable and highly interesting - but mutually only 
little related field-studies that thus emerge (see also: Watt 
1971). In a desperate trial just to start from the crux of the 
problem I resolved to answer the question: "How do populations 
survive in a heterogeneous and changeable wor ld?"  

Admittedly only after some years, it became evident to me, 
that the answer to this question highly depends on the definition 
of "popu la t ion"  one adheres to. To keep as close as possible 
to our population models - where individuals are supposed to 
be continually able to interfere (via the "dens i ty"  reached) 
we should define a "popu la t ion"  as an "interaction group",  
i.e. a local group living in a locality of such dimensions that 
the individuals are at least potentially able to meet (Den Boer 
1977, 1979a, 1981), by which possible effects of interactions 
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can be expected to be about averaged throughout the group, 
and can thus indeed be considered density effects. A related 
definition of "popula t ion"  was already proposed by Bakker 
(1964, 1971), but met with the difficulty that ecologists did not 
see an easy way to generally dilimit "interaction groups" in 
the field. 

We were happy to discover that, by sampling carabid popula- 
tions with the help of pitfalls, we are actually sampling "interac- 
tion groups":  the number of individuals caught during a repro- 
ductive season appeared to be a relative measure not  only of 
the numerical size of the pertinent interaction group, but also 
of the mean density of that species around these pitfalls (see: 
Baars 1979b). 

Also e.g. Zw61fer (1979), who studies population processes 
running within single thistle-heads, is evidently working with 
"interaction groups", which in this case are distinctly separated 
in space and often composed of the larvae of different species. 

2. How Long will "Interaction Groups" Survive? 

When we thus take (simple) "populat ions"  to be "interaction 
groups" a hypothetical answer to our question might be : "Popu-  
lations (at least simple ones) do not survive very long, but are 
continually becoming extinct and being founded again". This 
evidently applies to species occupying temporary or unstable 
habitats like fruits, heaps of dung, dead bodies, mushrooms, 
banks of pools, lakes and rivers, agricultural fields, etc. The 
survival of such species will highly - if not  completely - depend 
on sufficiently high powers of dispersal. See further: Southwood 
(1962), Johnson (1969), and e.g. Dingle (1978). Remarkably 
enough have a number of ecologists tried to demonstrate the 
importance of density governing processes for the "regulation 
of numbers"  by sophistically arranging laboratory experiments 
with species of just this kind (like blow-flies, grain-weevils, Tribo- 
lium, Drosophila, etc.), for which it may be expected that under 
natural conditions the survival time of single interaction groups 
will only exceptionally suffice for such processes to reach "equi-  
librium values". 

But also the survival time of interaction groups of species 
living in more stable or permanent environments can often hardly 
be expected to exceed - at least in arthropods - some decades 
or a few centuries at best. By an indirect approach we could 
show this indeed to be the case among carabid beetles inhabiting 
remnants of old forest or old heathland in Drenthe (Den Boer 
1977, 1979a). On a more geological timescale also the survival 
of such species will thus highly depend on sufficiently high 
powers of dispersal, especially when many of the habitats are 
small and isolated and thus occupied by separate interaction 
groups. 

Therefore, a first answer to our question apparently should 
indeed be: "The survival time - measured as number of genera- 
tions - of populations taken as interaction groups is restricted 
and often very short indeed". See also Andrewartha and Birch 
(1954). However, most ecologists are convinced that under natu- 
ral conditions many populations do live very long. This convic- 
tion is favoured by two circumstances : First, for practical reasons 
many students observe large and/or very dense populations in 
rather stable habitats, and these are less likely to die out within 
the comparatively short span of active life of a field ecologist 
than most others. Secondly, most long-term population studies 
are carried out in extensive areas where populations are com- 
posed of a continuum of many interaction groups. As for many 
specie s the latter situation also is the more natural one we will 

Fig. 1. Part of Kralo Heath with indications of the sample-sites the 
data of which are plotted in the Figs. 2 and 3 

have to pay special attention to the survival time of such large 
and composite populations. 

3. On the Risk of Extinction 
of Composite Carabid Populations 

During twenty years already some carabid species living in such 
an extensive area, the Heath of Kralo and Dwingeloo (1,200 ha), 
in the northern part of the Netherlands, were studied by us 
with the help of a number of standardized sets of pitfalls (Fig. 1 ; 
descriptions and photographs of these sample sites can be found 
in: Den Boer 1977, Appendix A, Part II). An important question, 
that had to be answered to be able to get to grips with the 
structure of such a composite population, was: How far are 
the numbers of individuals of such a species, caught yearly in 
the different sets of pitfalls, samples from the same or from 
different interaction groups (subpopulations)? For two of our 
species, Pterostichus versicolor Sturm (=  coerulescens L.) and Ca- 
lathus melanocephalus L. this question was answered by Baars 
(1979 a) by radioactively marking some individuals and localizing 
them each day. By repeating this kind of observations in different 
times of the year as well as in several years he was able to 
characterize and quantify the walking pattern of these species 
in day-units, at which scale it is composed of day-distances and 
day-directions. This pattern could be simulated in a computer 
model, by which he could not only adequately simulate our 
pitfall catches - which appeared to give a reliable estimate of 
mean density around these pitfalls (Baars 1979b) - but also 
verify this pattern with the results of several independent field 
experiments (Baars 1979a). 

The thus checked simulation model could again be used to 
registrate the distances that will have been covered on the heath 
by individuals of these species that were caught in our pitfalls. 
It then appeared, that 50% of the captured individuals of P. 
versicolor will have covered less than 100 m and 90% less than 
200 m. In the case of C. melanocephalus these values are 40 m 
and 80 m respectively (Baars and Van Dijk, in prep.). Hence, 
with the exception - at least for P. versicolor - of the series 
AT, BH, B J, most sets of pitfalls can be considered to sample 
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Fig. 2. Mean relative densities in different interaction groups (subpopulations) of Calathus melanocephalus (Col., Carabidae) at Kralo Heath 
during 21 years. In the lower part of the picture: values of net reproduction in the different subpopulations (vertical bars), and in the 
population composed of these subpopulations (points connected by broken line) respectively 

different subpopulations for the greater part of the catches. Al- 
though the population processes, that are thus sampled by the 
different sets of pitfalls, can be considered to be sufficiently 
independent of each other (especially for the sets at greater mutu- 
al distances), the many interaction groups that can be supposed 
to exist on the heath are highly interconnected by the locomotory 
activities of  the individuals. By this interconnection the quantita- 
tive effects of the events occurring in the different subpopulations 
together determine the chance of  survival of the species in the 
whole area. 

When we now turn to our observations on the fluctuations 
of the mean densities around different sets of pitfalls on Kralo 
Heath during 19 years, i.e. to the fluctuations of numbers within 
different interaction groups, we first establish that there are 
marked differences between the two species studied. In C. mela- 
nocephalus these fluctuations are heavy and in different subpopu- 
lations they run about in parallel (Fig. 2). In P. versicolor the 
fluctuations are less violent and are often running in opposite 
directions in different subpopulations (Fig. 3). Apparently, for 
C. melanocephalus the conditions that influence changes in 
numbers are about the same at different places of Kralo Heath, 
i.e. during an unfavourable season conditions will be more or 
less unfavourable at every site, and vice versa. For  P. versicolor, 
however, in most seasons conditions may be favourable in some 
localities, whereas they are unfavourable in other ones, i.e. Kralo 

Heath is much more heterogeneous for P. versicolor than it 
is for C. melanocephalus. This striking difference in the way 
these species react upon the actual spatial heterogeneity of Kralo 
Heath must have important consequences for the pattern of 
numerical fluctuations in the population as a whole: In C. me- 
lanocephalus these fluctuations will not differ very much from 
those in an average subpopulation, whereas in P. versicolor these 
fluctuations may be expected to be much smaller and much 
more levelled than those in an average subpopulation. This latter 
difference again will highly determine the risk of extinction of 
the pertinent species in this heathland area. In C. melanoeephalus 
this risk will not differ very much from that of a collection 
of averaged - and thus identical subpopulations, because its 
risk of  extinction is hardly spread over differently fluctuating 
subpopulations. In P. versicolor, on the other hand, the risk 
of extinction is importantly spread over a number of differently 
fluctuating subpopulations (Den Boer 1968). 

4. Comparing Patterns of  Numerical Fluctuations 

We now will have to quantify the above difference between 
the two species concerning the degree to which the risk of extinc- 
tion of the composite population as a whole is spatially s p r e a d  
over subpopulations. This can be done by comparing for each 
of the species averages of a number of subpopulations, i.e. char- 
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Fig. 3. Mean relative densities in different interaction groups (subpopulations) of Pterostichus versicolor (Col., Carabidae) at Kralo Heath 
during 21 years. See further Fig. 2 

acteristics of the pattern of numerical fluctuations shown by 
a population that can be thought to be composed of identical 
(averaged) subpopulations (no spatial spreading of the risk), 
with the characteristics directly observed in a population com- 
posed of a representative set of natural (different) subpopula- 
tions. Though our sets of pitfalls were not conciously divided 
randomly over Kralo Heath they can be considered to sample 
a set of subpopulations that is representative for a composite 
population in which differences between subpopulations have 
a reasonable chance to manifest themselves. Moreover, as during 
the whole period both species were sampled with the same sets 
of pitfalls (i.e. also in the same places, and in the same years) 
the results are completely comparable. 

To quantify patterns of numerical fluctuations we calculate 
some fluctuation characteristics (cf. Reddingius and Den Boer 
1970; Den Boer 1971): 

a) The difference between the logarithms of the highest 
number and of the lowest number that was reached during the 
period of observation : "logarithmic range" (LR). This measures 
the limits between which population size has been fluctuating. 

b) The variance of net reproduction R (density (N) in genera- 
tion n divided by density in generation n-i) during the period 
of observation: Var R. This measures the violence of numerical 
fluctuations. 

c) Var R should be considered together with the average 
logarithm of R over the period of observation (the logarithm 
of the geometric mean of R) : Average In R (for m generations 
this is simply 1/m (ln Nm-lnNo)). It gives some idea of the 
overall trend in population fluctuations, but - except in very 
long series - it is highly influenced by the last population size 
estimated. 

5. Spreading of Risk 
in Two Composite Carabid Populations 

Table 1 distinctly shows that the limits between which population 
numbers have been fluctuating during 11 as well as during 19 
years in the composite population of C. melanocephalus are hard- 
ly different from those of an average subpopulation, i.e. the 
chance of survival of this population of C. melanocephalus will 
not be favoured by its being composed of a number of subpopu- 
lations with continuous exchange between. In the composite pop- 
ulation of P. versicolor, on the contrary, this fluctuation range 
is reduced to the half as compared with the average range of 
9 subpopulations, and this undoubtedly will favourably influence 
the chance of survival of this composite population. Also Var 
R is much more reduced in the composite population of P. 
versicolor (about 5 times) than in that of C. melanocephalus 
(about 2 times), as compared with the weighted average of Var 
R for 9 subpopulations (compare also St with S~ in the Tables 
3 and 4 of Den Boer 1971). Note, that in all cases Average 
In R has increased by integrating the subpopulations into a 
composite population. Though the movements of individuals 
can only level part of the differences in the fluctuation patterns 
between subpopulations (especially in P. versieolor where these 
differences are very great), the effect of such an exchange is 
apparently sufficient to already let increase somewhat net repro- 
duction in the population as a whole, according to the phenome- 
non mentioned by Kuno (1981). 

When looking at the Figs. 2 and 3, especially at the course 
of R for the population as a whole through time (broken line 
in lower part), one will be struck by the seemingly cyclic fluctua- 
tion of numbers : if numbers start to increase (or decrease) these 
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Table 1. Characteristics of the fluctuations of mean density over l l  
and 19 years repsectively for two carabid species at Kralo Heath, 
The Netherlands. 
A=average of the separate values for the 9 subpopulations (M, N, 
Z, AG, AT, AY, BB, BH, BJ: Figs. 2 and 3) that have been sampled 
longest (during at least 4 years in I970, and at least 12 years in 
1978). 
B = value for a population that is composed of the above 9 subpopula- 
tions. 
C=value for a population that is composed of all subpopulations 
sampled (Figs. 2 and 3) 

I. Over 11 years (1959-1970). All data from which these characteristics 
were computed were already published by Den Boer (1971: Tables 
3 and 4) 

A B C 

Calathus melanocephalus 

LR 3.6769 3.5248 3.6259 
Var R 1.7925 1.1059 1.0547 
Average In R -0.4141 -0.1537 -0.1637 

Pterostichus versicolor 

LR 1.5328 0.8786 0.8786 
Var R 0.2482 0.0578 0,0462 
Average In R -0.0460 0.0457 0.0384 

II. Over 19 years (1959 1978). See aiso, Den Boer (1981) 

A B C 

Calathus melanocephalus 

LR 4.8777 4.3499 4.4379 
Var R 3,2712 1.1609 1.0507 
Average In R -0.1291 -0.0660 -0.0807 

Pterostichus versicolor 

LR 2.2559 1.2912 1.0417 
Var R 0,4252 0,0846 0.0656 
Average In R -0.0320 -0.0005 0,0142 

continue to do so for some years. Baars and Van Dijk (in prep.) 
will show that this curious pattern results from the combined 
effects of some meteorological factors on the magnitude of re- 
cruitment and of survival of individuals respectively. Such a pat- 
tern will account for some serial correlation between succeeding 
values of R:  especially the rather high autocorrelation between 
Rt and Rt-3 (about - 0 . 6  for 19 years) significantly keeps up 
such a long term pattern. It is highly interesting that this pattern 
is about simiIar in the composite populations of both species 
(though C. melanocephalus generally is one year ahead of P. 
versicolor; see also Fig. 1 in Den Boer 1979b), in spite of the 
fact that P. versicoIor ( a spring breeder) is influenced in other 
stages of the life-cycle by other meteorological factors than C. 
melanocephalus (an autumn breeder); see further Baars and Van 
Dijk (in prep.). Still more interesting is, that the great difference 
between the species concerning the spatial spreading of the risk 
of  extinction - low in C. melanocephatus with subpopulations 
that fluctuate about in parallel (Fig. 2), and high in P. versicoIor 
because of quite differently fluctuating subpopntations (Fig. 3) 

is apparently not abolished (including the Kuno (1981) - effect) 
by these meteorological patterns: Table 1. 

6. Estimating the Survival Time 
of Carabid Populations by Simulation 

It is nice, of course, that we could obtain some numbers that 
apparently indicate the magnitude of the difference between these 
two species in the degree to which the risk of extinction is spatial- 
ly spread over a number of subpopulations, but how do we 
show that this difference is more important for the survival 
time of these species on Kralo Heath than e.g. the fact, that 
in many years and in the greater part of the localities the mean 
density of C. melanocephalus is about 50 times (or even more) 
higher than that of P. versicolor? (not only the catches of C. 
melanocephalus are much higher than those of  P. versicolor (Figs. 
2 and 3), but also the catch efficiency (Luff 1975) of our pitfalls 
is more than 5 times lower for the former than for the latter 
species: Den Boer, I977: 4.4.2). Because we cannot observe the 
survival time of such large populations, we can only try to simu- 
late our populations as well as possible in computer models, 
and then run these programs until the simulated populations 
have become "ext inc t" ,  under the assumption, of course, that 
the future (especially concerning the conditions that influence 
numbers) will not differ fundamentally from the past 19 years 
we studied, i.e. under the assumption of a stationary environ- 
ment. If  we simulate these two species in two versions, one 
as "composi te  populat ion"  (i.e. differences between subpopula- 
tions included), and the other as a collection of averaged subpop- 
ulations with the same start value (i.e. differences between 
subpopulations excluded), we will learn what may be the signifi- 
cance of differences between subpopulations and thus of the 
spatial spreading of the risk over subpopulations, for the survival 
time of the composite population. At the same time we will 
learn what is the predictive value of our fluctuation characteris- 
tics, especially of LR (Table 1). 

The manner we simulated (in Fortran IV) the autocorrelation 
between R t and et.3 is given in the Appendix (A1). As we had 
to use rather long sequences of random numbers (two in each 
"year") ,  and we did not like to let determine our results by 
some peculiar series of random numbers, each version of each 
program in this paper was run thirty times, each time with 
a quite different sequence of random numbers; the results of 
these thirty runs are averaged. By doing thirty extra runs with 
still other sequences of random numbers in some cases we could 
check that such an average is thus very stable indeed. We could 
only change it 5 15% by using a new set of  thirty runs, whereas 
the standard deviation of survival time within such a set of 
thirty runs amounts to 60-90% of the mean in all stimulations 
in this paper. In terms of a t-statistic we can keep the rule 
of thumb that only mean survival times that are more than 
30-50% apart from each other can be considered actually to 
be different. After having read a start value (PP) following popu- 
lation sizes (PI) are computed according to A1, and each run 
is thus continued until the "popu la t ion"  contains less than a 
single " ind iv idua l" ;  the survival time in "years" is then printed, 
and the program turns to a new run. In these open programs 
there is also a chance that some (or even many) "popula t ions"  
will exceed all bounds; such "popula t ions"  were considered 
also to have become "ex t inc t "  if numbers (PI) passed an "upper  
l imit"  which is equally distant as the " lower  l imit"  (1) from 
PP (start value), i.e. this value was fixed at ppz. 

The results of  these simulations are given in Table 2. It 
must be noted that nearly all "populations" surpassed the lower 
limit (1), i.e. we did not  need some "density-restricting mecha- 
n ism" to run these simulations. The simulations of P. versicolor 
are satisfactory in many respects : in different as well as in similar 
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Table 2. Survival times of simulated popuIations of two carabid species in which Rt shows a negative autocorrelation with Rt.3 of a value 
as found in the field during 19 years. The 3 first values of R are given (from the field population); following values are found according 
to Rt=exp (a+b.In Rt.3+z.c.), in which a, b and c are computed by regressing In R, on In Rt_3 for the 19 years available, and in which 
z is a random variable normally distributed on (0,1). Populations composed of the subpopulations as sampled in the field (different subpop.) 
are compared with populations composed of (similar) subpopulations obtained from averaging over the sampled subpopulations (similar subpop.). 
Each value is the average of 30 runs with different random numbers 

Pterostichus versicolor 

Start value (PP) 

10 z 103 104 105 10 6 

Different subpopulations 613 1,109 1,483 2,457 2,897 
Similar subpopulations 65 98 131 158 195 

a b c autocorrelation mean LR over 
In Rt, In Rt.3 19 year-periods a 

Different subpopulations -0.0068 -0.6533 0.27525 -0.5889 1.6611 (n=24) 
Similar subpopulations 0.1175 0.5487 0.32469 -0.4538 2.2582 (n=51) 

Calathus melanocephalus 

Start value (PP) 

102 103 10 '~ 105 10 6 

Different subpopulations 45 61 75 83 96 
Similar subpopulations 66 86 141 209 259 

a b c autocorrelation mean LR over 
In Rt, In Rt-3 19 year-periods a 

Different subpopulations -0.2609 -0.5806 0.89177 -0.5954 4.7947 (n=27) 
Similar subpopulations -0.0480 -0.3667 0.95178 -0.3637 4.7647 (n=25) 

" Periods of 19 years were taken randomly from the first 180 years of the first 6 15 runs of the simulation with PP= 105. Compare Table 1 

subpop, the intended autocorrelation was touched very closely 
in all runs, and the frequency distributions of R-values (first 
180 years, P P =  10 s) fitted that of the 18 R-values from the field 
(cf. Appendix: A2), very closely in the composite population 
(P>  0.70), and not too bad in similar subpopulations (no run 
with P <  0.05); also LR was touched sufficiently (even very well 
in similar subpop.): Table 2. We are therefore convinced that 
the survival times of P. versicolor in Table 2 indeed illustrate 
the highly favourable effect of spreading the risk of extinction 
over a number of differently fluctuating subpopulations. The 
simulations of C. melanocephalus are less satisfactory: the simu- 
lated autocorrelations are too low (especially in similar subpop.), 
and the frequency distributions of R-values often deviate signifi- 
cantly from that of the 18 R-values in the field; it is apparently 
impossible to simulate this bimodal distribution (A2) adequately 
by a single autocorrelation. The simulated populations neverthe- 
less show the right range of fluctuations (LR). In spite of these 
shortcomings we have reasons (which will become obvious in 
the continuation of this paper) that not only the LR-values 
of Table 1 but also the survival times of Table 2 rightly show 
that the composite population of C. melanocephalus at Kralo 
Heath is greatly deprived of the favourable effects of spreading 
the risk of extinction over subpopulations. Hence, the fluctuation 
characteristics of Table 1 (especially LR) adequately predict the 
expected differences between survival times. 

7. Random Fluctuations of  Population Size, 
and Survival Time 

Now we have constructed these first-generation survival models 
(second-generation models will not use R-values, but directly 
simulate processes that influence recruitment and survival of 
individuals : Baars and Van Dijk in prep.), we are in a favourable 
position to also try answering some more theoretical questions, 
such as: 

a) Does the pseudo-cyclic fluctuation pattern (Figs. 2 and 
3) influence the effects of spreading the risk of extinction over 
subpopulations ? 

b) Do density-restricting processes interfere with spreading 
of risk, and is the influence of the former processes on survival 
time more important than the latter phenomenon? 

To answer the first question (a) we had only to adapt our 
models (section 6) in that - after having read the start value 
(PP) - new population sizes (PI) had to be generated by drawing 
subsequent R-values at random from a frequency distribution 
that equals the distribution of the relevant field data. The fre- 
quency distributions of R-values from our field data, both for 
composite populations and for similar subpopulations, can be 
found in Appendix A2, while the simulations of these distribu- 
tions are given in A3. The survival times from these simulations 
are shown in the columns OPEN of Table 3. 
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Table 3. Comparison of the survival times of different simulated populations in which R-values succeed each other randomly (short runs). 
Frequency distributions of R as found in the field (Appendix A2) during 19 years. For each start value the survival times of the composite 
populations are compared with those of similar subpopulations (compare section 6 and Table 2). Each value is the average of 30 runs 
with different sequences of random numbers. 
OPEN: no density restrictions; lower limit of extinction= 1, upper limit =PP 2. 
INDR : independent (constant) density restrictions at independent moments (mean frequency of restrictions as in INCC). 
INCC: independent (constant) restrictions if "carrying capacity" (at 99.*PP) is exceeded. 
DDCC: density-dependent restrictions if "carrying capacity" is exceeded (mean frequency of restrictions as in INCC). 
DDSC : density-dependent restrictions occur in the greater part of the range between the start value and carrying capacity. 
DDS: density-dependent restrictions for all population numbers above the start value 

Start value Pterostichus versicolor Calathus melanocephalus 
(PP) 

OPEN INDR INCC DDCC DDSC DDS OPEN INDR INCC DDCC DDSC DDS 

102 

Different subpop. 241 1,404 1,735 1,631 1,065 428 38 91 I15 63 68 54 
Similar subpop. 103 207 233 169 185 99 34 97 99 85 83 56 

103 

Different subpop. 607 1,787 2,600 2,696 2,319 959 74 118 151 91 115 79 
Similar subpop. 216 380 440 317 372 194 76 126 142 99 102 84 

104 

Different subpop. 1,117 2,275 4,150 4,144 3,339 1,916 144 161 206 117 I46 122 
Similar subpop. 342 507 612 445 536 368 115 165 178 129 144 106 

l0 s 

Different subpop. 2,009 3,710 6,118 6,116 4,837 3,017 182 195 249 133 203 163 
Similar subpop. 548 760 802 615 724 494 161 185 256 153 205 161 

106 

Different subpop. 2,980 4,784 7,711 7,701 6,561 4,174 290 271 309 155 241 217 
Similar subpop. 744 1,052 943 689 875 705 259 227 370 200 295 229 

Apart  from a greater influence of the start value, the results 
of these"  short run"  simulations of our " o p e n "  model (columns 
OPEN in Table 3) apparently are not very different from those 
of the autoregressive version (Table 2): again, the composite 
population of P. versicolor distinctly shows the favourable effect 
of spreading the risk of extinction over differently fluctuating 
subpopulations, which effect is absent from the composite popu- 
lation of C. melanocephalis. There is one important difference, 
however, between the "shor t  run"  version and the autoregressive 
version of  our open models: in the "shor t  run"  simulations 
most populations passed the upper limit of extinction (in the 
composite population of P. versicolor even accompanied by a 
higher value of LR  over 19 year-periods than in Table 2). The 
autocorrelation between Rt and Rt_ 3 as it was simulated in the 
autoregressive model - and which can be traced back to the 
influence of weather factors: Baars and Van Dijk (in prep.) 

apparently favours a downward trend of population numbers. 
At the same time, the opposite feature of the "shor t  run"  simula- 
tions gives an excellent starting point to study the possible effects 
of density restricting processes on the time of  survival, i.e. to 
try to answer the second question (b). 

8. The Effects of Density Restricting Processes 
on the Time of Survival 

The most obvious way to prevent population size from reaching 
the upper limit (pp2) is diminishing numbers with a certain 
value as soon as some less high limit, called "carrying capacity" 

�9 (fixed at 99 times PP) is passed. Such a diminishing of numbers 
can be independent of  the amount of exceeding, either a constant 

or a variable reduction of R:  INCC, or proportional to the 
extent to which "carrying capacity" is exceeded: D D C C  (see 
further Appendix: A4). F rom Table 3 can be learned that in 
C. melanocephalus the survival times from INCC are possibly 
somewhat better than those from DDCC,  whereas in P. versicolor 
the two processes gave similar results (the mean frequency of 
restrictions is kept the same in both versions). In Table 4 is 
shown, that the level at which "carrying capacity" is fixed in 
itself is not  very important:  putting this level at 20 times PP 
in most cases reduces the averaged survival times only for 10- 
20%, which is less than required to consider such a reduction 
probably significant (see also section 6). Taking either "carrying 
capacity" itself, or the reduction of density after exceeding, vari- 
able instead of constant does not  influence survival times at 
all (Table 4). Such a kind of stochasticity completely depends 
on the laws of large numbers and needs not be incorporated 
as such in our simulations to increase our understanding of 
processes affecting survival times. Therefore, in all simulations 
with density restrictions we kept both "carrying capacity" and 
the degree of restriction deterministic: we replaced the (more 
realistic) variations by their expectation values, so to say. Note, 
that spreading of risk is fundamentally different from the above 
kind of stochasticity within a single process: spreading of risk 
comes into play if there is some kind of exchange between differ- 
ing stochastical processes (e.g. between differently fluctuating 
subpopulations as a result of the movements of individuals, but 
also e.g. between differently sized patches of  prey as a result 
of the exploitation by fouraging predators). 

It could be expected, of course, that in INCC and D D C C  
survival times would be generally better than in OPEN:  the 
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Table 4. Comparison of the influence on survival times of the level 
of "carrying capacity" (1 and 3), and of a constant versus a variable 
density reduction after exceeding (1 and 2). Given are the data on 
P. versicolor, frequency distribution of R as found in the field, pro- 
gramm INCC, "short runs" (other cases show about similar features) 

Start value "carrying capacity" at 99. * PP "carrying 
(PP) capacity" 

density density at 20.* PP. 
reduction reduction Reduction 
constant a variable b as in 1 

1. 2. 3. 

10 z 

Different subpop. 1,735 1,625 1,064 
Similar subpop. 233 256 184 

103 

Different subpop. 2,600 2,578 2,250 
Similar subpop. 440 416 396 

10 r 

Different subpop. 4,150 4,143 3,321 
Similar subpop. 612 608 521 

l0 s 

Different subpop. 6,118 5,863 4,820 
Similar subpop. 802 803 724 

106 

Different subpop. 7,711 7,586 6,545 
Similar subpop. 943 929 876 

a In 1 and 3 the constant reduction of density after exceeding of 
"carrying capacity" exists of subtracting 0.4054651 from In R (i.e. 
R=R/1.5) 

b In 2 the reduction of density is made variable by multiplying with 
a random number (homogeneous distribution) between 0.5 and 1.5 

populations that passed the upper limit in OPEN (most of them 
did so), and were thus considered "ext inc t" ,  were prevented 
from doing so in INCC and D D C C  by the restricting processes, 
by which they were allowed to continue fluctuating at or below 
"carrying capacity" until they would eventually pass the lower 
limit. The more surprising, that in C. melanoeephalus this poten- 
tial delay of extinctions does hardly work in INCC and not 
at all in D D C C  (Table 3): especially at higher start values the 
lower level o f "  carrying capacity" (99.*PP) in INCC and DDCC,  
as compared with the upper limit (ppz) in OPEN, together with 
the unfavourable distribution of R-values, is apparently more 
influential in many cases (at least in DDCC).  The composite 
population (different subpop.) of P. versicolor, on the other hand, 
highly benifits under this potential delay of  extinctions by re- 
stricting processes (similar subpop, much less, however, probably 
because of the more vigorous density fluctuations) : Table 3. 

One will wonder now whether or not it is essential that 
density restrictions exclusively occur at very high densities as 
in INCC and DDCC.  We therefore also tried constant density 
restrictions of the same value as in INCC,  that were applied 
randomly with respect to density, but with the same mean fre- 
quency as in INCC to save comparability: I N D R  (cf. Appendix: 
A4). Neither in C. melanocephalus, nor in similar subpop, of 
P. versicolor the survival times of I N D R  are different from those 
of INCC (cf. section 6): Table 3. Only in the composite popula- 
tion of P. versicolor the survival times of I N D R  seem to be 

lower than those of INCC (Table 3), but at most start values 
it is somewhat doubtful whether this difference is real because 
the survival times are only 30-50% apart from each other (cf. 
section 6). As soon as an only small deviation from a random 
application of the constant density restrictions - in the direction 
of some preference for high densities - would be built in INDR,  
survival times will already sufficiently increase to be sure that 
no actual differences between the survival times of I N D R  and 
INCC are left. Hence, as could be expected, density restrictions 
of about the right size and occurring in about the right mean 
frequency will appreciably prolong the survival times of popula- 
tions that otherwise would have shown an upward trend of 
numbers, but it will be less expected, that it does not make 
much difference whether such restrictions occur about randomly 
or only at very high densities, though a rather low probability 
of occurrence at very low densities must generally be favourable, 
of course. The same conclusion was already reached by Red- 
dingius and Den Boer (1970) with some single simulation experi- 
ments of a different kind. 

Many population ecologists wilt have a notion of the general- 
ly supposed stability-favouring influence of density-dependent 
mortality that is different from the manner we simulated it in 
D D C C  (or even in INCC);  see e.g. Murdoch (1979). They will 
think of a density-dependent mortality (e.g. by predation) that 
potentially is operating continuously over a broad range of densi- 
ties (and not only at "carrying capacity") in such a way t h a t  
the "buil t- in tendency" towards an upward trend in numbers 
is just counteracted sufficiently to prevent exceeding o f "  carrying 
capacity". In DDSC we constructed such a mild kind of density 
dependence that operated continuously over the greater part 
of the density-range between the start value and "carrying capac- 
i ty"  in such a way that numbers were fluctuating around the 
start value as in INCC (the mean frequency of passing the start 
value was kept about similar to that in INCC), whereas at the 
same time "carrying capacity" was just never exceeded (see: 
Appendix A4). In DDS the same mild form of density depend- 
ence was kept operating continuously over the whole range be- 
tween PP and 99 times PP. In the latter case the mean frequency 
of passing the start value was different, of course, from that 
in INCC, because numbers were fluctuating now below the start 
value for a greater part of time than in DDSC and INCC. 

Table 3 shows that in DDSC in none of the cases survival 
times are actually different (cf. section 6) from those in D D C C  
(or INCC), and if such a difference seems to be indicated (as 
in P. versicolor, different subpop., P P =  100) DDSC is inferior 
to D D C C  or INCC. DDS is generally worse than either DDSC,  
D D C C  or INCC and not better than INDR.  The values of 
mean LR over 19-year periods in the simulations discussed in 
this section do not deviate importantly from those of the autore- 
gressive simulation (section 6, Table 2), e.g. in different subpop. 
P. versicolor INCC:  1.3912 (n=27), DDSC:  1.4096 (n=23);  C. 
melanocephalus INCC:  4.1775 (n=29),  DDSC:  4.1674 (n=29), 
and in similar subpop., P. versicolor INCC:  3.0905 (n=27), 
DDSC:  2.0227 (n=16);  C. melanocephalus INCC:  5.1121 (n= 
28), DDSC:  3.1715 (n= 18). 

The general conclusion from this section thus can be: as 
far as population size is bounded from above (and this will 
often occur when numbers show an upward trend) it is not 
so much the degree to which the limitation or decrease of 
numbers is density-dependent that is important for survival, but 
the limitation or decrease itself. This conclusion was already 
expected by Den Boer (1968: III.4). Even random restrictions 
( INDR) do rather well. It will also be apparent that density- 
restricting processes do not interfere with spreading of risk (corn- 
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Fig. 4. Relationship between the survival times of simulated popula- 
tions of Pterostichus versicolor and Calathus melanocephalus respective- 
ly and the start value (estimate of the overall density level) of simula- 
tions in which R-values are taken randomly from frequency distribu- 
tions as found in the field during 19 years (short runs). In both species 
"different subpop." (solid lines) is compared with "similar subpop." 
(broken lines') in simulations without density restrictions (OPEN) and 
in simulations with different kinds of density restricting processes (for 
further explanations, see Table 3). Each point is the mean survival 
time from 30 runs with different sequences of random numbers but 
with the same start value. See further text 
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pare OPEN with the other versions in Table 3). Probably this 
is still more evident from Fig. 4, where is clearly shown that 
in each version of our simulations the same pattern is repeated: 
a great difference in survival times between different and similar 
subpop, in P. versicolor and no actual difference in C. melanoce- 
phalus. Figure 4 also indicates that at higher start values an 
almost linear relationship exists between log start value and 
log survival time. Only with very low start values survival time 
decreases more rapidly, as could be expected. Apparently, surviv- 
al time depends less on the level of population numbers (esti- 
mated here by the start value) than is often supposed : to increase 
survival time twice we will have to increase the level of numbers 
80-500 times in the composite population of P. vet~'icolor (only 
in OPEN 33 times) and 200 1,000 times in similar subpopula- 
tions, 100 2,000 times in the composite population of C. melano- 
cephalus and 100 1,000 times in similar subpopulations, as can 
easily be read from Fig. 4. We can also answer now the question 
posed at the start of section 6: the much higher densities of 
C. melanocephalus as compared with P. versicolor apparently 
are of only little value for survival; compare e.g. in Table 3 
start value 104 in different subpop, of P. versicolor with 106 
in C. melanocephalus, which population sizes will be about those 
of the composite populations at Krato Heath that were studied 
by us (i.e. composed of 5 (8)-14 subpopulations). 

9. On the Importance of the Amplitude of Fluctuations 

We have still to take away the last possible doubt that the 
great difference in survival time between different and similar 
subpop, in P. ve~'icolor only results from the high degree to 
which the risk of extinction is spread over differently fluctuating 
subpopulations, i.e. from a much more favourabte pattern of 
numerical fluctuations in different subpop, than in similar sub- 
pop. It could still be argued that part of the effect as it is 
given in Table 3 might result from the fact that in different 
subpop, we directly used the frequency distributions of R-values 
as found in the field, and in similar subpop, the best fitting 
In-normal distributions of the subpop. R-values (Appendix A2). 
Therefore, we also estimated the In-normal distributions best 
fitting the 18 R-values from the field for the composite popula- 
tions of P. versicolor and C. melanocephalus respectively: Appen- 
dix A5. We will still go one step further: though the values 
of E(ln R) of the respective In-normal distributions now available 
do not differ very much from zero, even these rather small 
differences between different and similar subpop, might be suffi- 
cient to give different trends of numbers through time, which 
may result again in markedly different survival times (as can 
easily be checked by simple simulation models). To avoid also 
this influence, in all simulations treated in this section we put 
E(ln R)=0 .  Hence, the different In-normal distributions only 
differ in the value of the standard deviation, i.e. we can study 
now the pure influence of the amplitude of fluctuations on the 
time of survival. 

After having adapted DDCC,  DDSC and I N D R  to INCC 
anew (Appendix A4) we could again simulate the cases that 
were treated in section 8: Table 5. Though we now avoided 
each kind of trend in numbers the survival times in OPEN, 
especially in P. versicolor, cannot be considered different from 
those in Table 3 (contrary to expectations in the present simula- 
tions of OPEN still somewhat more than half of the populations 
passed the upper limit). Also the survival times of  I N D R  are 
hardly influenced (possibly only P P =  102 in P. versicolor, differ- 
ent subpop, is actually lower, and PP=105 and PP=106 in 



48 

Table 5. Comparison of the survival times of different simulated populations in which R-values succeed each other randomly (short runs). 
In all cases are used the ln-normai frequency distributions of R-values best fitting the field data during 19 years, but with E (In R)=0 
to maximize the mutual comparability of the fluctuation patterns. For further explanations, see Table 3 

Start value Pterostichus versicolor CaIathus melanoeephaIus 

OPEN INDR INCC DDCC DDSC DDS OPEN INDR INCC DDCC DDSC DDS 

I02 

Different subpop. 374 790 1,083 1,054 853 
Similar subpop. 94 226 273 195 187 

103 

Different subpop. 734 1,357 1,442 1,432 1,200 
Similar subpop. 214 399 448 332 375 

104 

Different subpop. 1,244 2,313 2,707 2,687 2,160 
Similar subpop. 344 663 693 487 600 

105 

Different subpop. 1,754 2,951 3,531 3,230 3,027 
Similar subpop. 483 825 898 653 773 

106 

Different subpop. 3,188 4,282 4,554 4,242 3,796 
Similar subpop. 697 1,164 1,033 729 916 

405 41 93 150 84 129 82 
99 35 78 100 72 86 59 

808 118 I65 260 118 197 116 
220 75 117 143 85 114 88 

1,186 226 231 403 150 358 221 
372 129 157 206 96 151 117 

1,814 322 383 571 173 423 365 
547 196 188 361 161 237 188 

2,907 386 549 695 213 638 422 
727 274 246 413 177 362 273 

Table 6. Comparison of the survival times of different simulated populations in which R~ shows a negative autocorrelation with R~.3 (Appendix 
A5) of a value that is generally lower than found in the field during 19 years (long runs), but which could be combined with the best 
fitting In-normal frequency distributions of R-values. To maximize the mutual comparability of the fluctuation patterns E(ln R) was put 
at zero in all cases_ For further explanations, see Table 3 

Start value Pterostichus versicolor Calathus melanocephalus 

OPEN INDR INCC DDCC DDSC DDS OPEN INDR INCC DDCC DDSC DDS 

102 

Different subpop. 686 1,588 1,506 1,482 1,375 567 106 202 261 178 195 78 
Similar subpop. 184 306 392 308 322 166 70 66 172 112 87 66 

103 

Different subpop. 1,579 2,234 2,679 2,620 2,387 1,317 217 260 402 256 286 229 
Similar subpop. 362 506 650 472 540 298 156 184 261 175 194 103 

104 

Different subpop. 3,263 3,431 4,411 4,354 3,648 2,234 400 347 560 364 503 303 
Similar subpop. 614 765 843 701 767 554 231 219 _~ 367 216 269 229 

105 

Different subpop. 4,975 5,042 6,130 6,146 5,485 3,129 567 470 797 395 653 512 
Similar subpop. 813 979 1,356 856 1,176 790 334 299 469 283 371 286 

106 

Different subpop. 5,965 6,498 8,436 8,390 6,597 4,691 641 653 972 428 797 657 
Similar subpop. 1,314 1,274 1,759 1,113 1,647 1,015 471 413 611 382 514 401 

C. melanocephalus, different subpop. 1 are actually higher than 
in Table 3; compare section 6). More interesting is that  in P. 

As in C. melanocephalus, different subpop, the frequency distribution 
of R-values from the In-normal distribution is quite different from 
that used in section 8 (A5), comparing survival times from the 
Tables 3 and 5 respectively is not very useful in the case of C. 
melanocephalus, different subpop. On the other hand, the survival 
times of C. melanocephalus, different and similar subpop, as given 
in Table 5 are better comparable mutually than in Table 3, but 
they are more deviating from the natural situation, of course 

versicolor, different subpop, survival times are distinctly lower 
now in INCC, DDCC,  DDSC and possibly also in DDS, 
especially with higher start values. As the field distribution of 
R-values is somewhat asymmetrical (Appendix A2, Table A.2.1) 
in the simulations treated in section 8 reductions of numbers 
occurred about 40% more frequently than in the present ones, 
i.e. below the level of numbers where restrictions occurred the 
chance that in any year numbers would increase was also about 
40% higher in the former than in the present simulations. 

Hence, if population numbers show an upward trend survival 
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times are favourably affected if population size is somehow 
bounded from above. However, Table 5 again clearly illustrates 
that the degree to which this necessary limitation or decrease 
is density-dependent in fact is immaterial. The only significant 
point is, that the necessary restrictions of numbers occur in 
about the right mean frequency and are of about the right mean 
size; even nearly random restrictions (a little better only than 
1NDR), if answering the above conditions of mean frequency 
and mean size, will do sufficiently well in many cases. On the 
other hand, it will be evident from this section, that the favour- 
able effect of spreading the risk of extinction over differently 
fluctuating subpopulations as it is shown in P. versicolor, primar- 
ily results from a decrease of the amplitude of fluctuations in 
the population as a whole (different subpop.) as compared with 
that in separate subpopulations (similar subpop.). 

We are also in a position now to better compare the possible 
influence of some autocorrelation between et  and Rt_a than 
we could in section 7, because we have eliminated now all other 
differences that might obscure this effect. In Appendix A5 is 
shown how we could introduce some autocorrelation between 
Rt and Rt_ 3 without altering anything else in our simulations 
(the In-normal frequency distributions of R-values actually used 
in these "long run" simulations appeared to be similar to those 
in the "short run" simulations already discussed in this section; 
only the sequence in which R-values are taken from the In- 
normal distributions has changed). 

In Table 6 the results of these "long run" simulations are 
shown. When comparing the Tables 5 and 6 it appears that 
nearly all survival times have improved in the "long run" simula- 
tions, and probably also has the effect of the spreading of risk 
in P. versicolor become somewhat more pronounced. All other 
conclusions - e.g. about the importance of density restrictions 
- are the same as for the "short run" simulations. Apparently, 
the effect of an autocorrelation between Rt and Rt-3 on survival 
times is somewhat unpredictable: the strong autocorrelation as 
found in the field, the simulation of which was discussed in 
section 6, seems to be unfavourable, whereas the lower autocorre- 
lation as used in the present "long run" simulations appears 
to be favourable. This aspect will have to be studied more closely. 
For the moment we have the impression, that such an autocorre- 
lation may promote the effect of spreading of risk: the differences 
in survival times between different and similar subpop, in P. 
versicolor are greater in Table 2 than in Table 6, and in the 
latter they are greater again than in Table 5. As could be expect- 
ed,the values of mean LR over 19-year periods in the simulations 
treated in this section are somewhat smaller than those in the 
simulations of section 8, and thus more similar to the values 
from our field populations (Table 1), e.g. in the "long run" 
simulations in the case of composite populations we found mean 
LR= 1.048132 (n=33) for P. versicolor and mean LR=3.25398 
(n = 30) for C. melanocephalus. 

10. Discussion 

Are we able now to answer the question : "How do populations 
survive in a heterogeneous and changeable world?" I hope to 
have shown in this paper (sections 5 through 9), that apparently 
there can only be one answer to this question: Although "pop- 
ulations" taken as "interaction groups" cannot be expected 
to survive very long (similar subpop, in Tables 2 and 3), popula- 
tions that are composed of large numbers of highly intercon- 
nected "interaction groups" (subpopulations) may show an im- 
pressive survival time, if the risk of extinction is sufficiently 
spread over a great part of these subpopuIations (different subpop. 

in P. versicolor). This does not mean, that interaction groups 
within composite populations necessarily survive much longer 
than isolated interaction groups: In our long-term samplings 
on Kralo Heath we repeatedly recorded species that, after a 
decrease of numbers during some years, disappeared from the 
catches of a certain set of pitfalls; Figure 2 shows that even 
in C. melanocephalus, by far the most abundant species of this 
area, some subpopulations have been very close to this (e.g. 
in 1969 and 1976). We also observed the reversed case: after 
a number of years of sampling in a certain site a locally new 
carabid species appears in the catches and will sometimes in- 
crease in numbers during some years (cf. Den Boer 1977: Table 
9). This means, that within such a composite population even 
a species with rather poor powers of dispersal will easily repopu- 
late (mainly by immigration) a depopulated site when conditions 
become favourable again. It will be clear that the difference 
between such a composite population and a species, that inhabits 
a less continuous area with a number of more or less isolated 
populations, the sites of which are all within reach of dispersing 
individuals, will only be a gradual one: in the latter case the 
survival time of the species in that area will depend on the 
degree to which the risk of extinction is spread over these more 
or less isolated populations. The most important difference be- 
tween these two cases will be found in the powers of dispersal, 
which will have to be much better in the latter case. In general, 
the more isolated the natural units of (local) population and/or 
the more unstable the habitats occupied, the higher should be 
both the powers of dispersal and the numbers of individuals 
that take part in dispersal to sufficiently spread the risk of extinc- 
tion over these units of population. In the extreme case the 
survival of a species will thus be reduced to a lottery with on 
the average about equal chances of extinction and of founding 
of local units of population, with sufficient powers and amount 
of dispersal as a necessary condition to keep playing in this 
lottery. I always understood that Andrewartha and Birch (1954) 
tried to tell us this, whereas Southwood (1962) recognized only 
one aspect of it: the relationship between powers of dispersal 
and degree of instability of the habitat. It will be evident, however 
- especially in the case of composite populations occupying rath- 
er stable habitats (e.g.P. versicolor and C. rnelanocepkalus at 
Kralo Heath) - that the degree of instability of the habitat 
is not the only factor that determines the degree of "turnover" 
of the units of population. Instead of redefining "habitat" in 
such a way that it contains everything (and becomes useless), 
we can better state, that the degree of turnover of the units 
of populations will depend on the degree of instability (pattern 
of density fluctuations - exchange between units included) of 
these population-units themselves. See further Den Boer (1970, 
1977, 1979a). 

Returning to the composite populations of carabid species 
at Kralo Heath, our simulations of these populations not only 
showed the magnitude of the influence of spreading of risk in 
the case of P. versicolor (which thus appeared to be correctly 
indicated by the value of LR from our field data: Table 1), 
but also illustrated that the effect of spreading of risk is not 
disturbed by density restricting processes. On the other hand 
was also shown that during prolonged periods with an upward 
trend in numbers at least some, but possibly many populations 
can be expected to need some ceiling to growth to survive. The 
most interesting point in this is not, however, that at least in 
principle populations need to be bounded from above, but that 
density-dependence - that achieved the status of a paradigm 
(Kuhn 1970) in population dynamics concerning the survival 
of populations (see e.g. Murdoch 1979) - appeared to play an 
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only minor part in it. In general, survival will be promoted 
if the necessary restrictions of numbers have a higher chance 
of occurrence at high densities than at low ones, i.e. it is a 
sufficient condition that restrictions do not occur completely 
at random but with a lower chance at low densities (cf. section 
8, and compare INDR with INCC and DDCC in the Tables 
3, 5 and 6). The degree to which these necessary reductions 
of numbers are density-dependent, irrespective as to whether 
they occur only at "carrying capacity" (DDCC) or over a wide 
range of densities (DDSC), is immaterial to survival, however. 

How could we attain such results (which were already fore- 
shadowed, however, by Reddingius and Den Boer 1970), that 
seem to contradict everything that could be expected from the 
current (deterministic) population modelling? Can it be that our 
simulations - that cannot give truly "universal" results, of course 
-just picked out some exceptional situations? I don't think 
so, but on the other hand: what is the use of truly "universal" 
deterministic models that do not fit any situation in nature (see: 
Introduction) ? Should we not prefer less general but more realis- 
tic models, in spite of the small chance that there can be found 
- either in the field or in the head of some ecologist - a few 
cases that are not covered by the models? The more so, because 
I think, that our results have to do something with the interac- 
tions between deterministic and stochastic processes. If we start 
from deterministic population processes and add stochasticity, 
the deterministic processes will often not be altered fundamental- 
ly. In many cases the effect will even be restricted to introducing 
more uncertainty into the deterministic relationships, e.g. the 
neighbourhood (equilibrium-defined) stability of the "system" 
will be lowered, as in the models of May (1973); see also: Den 
Boer (1981). Such kinds of stochasticity generally depend on 
the laws of large numbers (see e.g. section 8), and in fact do 
not change the deterministic character of our population models 
(see further: Reddingius 1971, Ch. 4). If we start, however, from 
stochastical population processes and add some detemainistic 
relationships (such as density-dependence) matters may stand 
quite differently. In most cases the special effects of the determi- 
nistic relationships (e.g. the degree of density-dependence) will 
be taken up into and thus be levelled out by the more general 
stochastic relationships, and it will thus not - or only slightly- 
alter the "between-limits stability" (Den Boer 1981), estimated 
by LR (section 4), of the population. This effect was already 
expected by Den Boer (1968: III.3); see also: Reddingius (1971). 

Spreading of risk comes into play if a number of more or 
less independent stochastical processes interact to end up in 
a single quantity (e.g. population size). To conclude, we are 
left with the question whether stochastic or deterministic proc- 
esses necessarily result in the kind of changes in population 
numbers that is observed in the field. As probably no organism 
can completely withdraw itself from the vagaries of its physical 
environment (cf. Introduction) unpredictable changes of the 
physical environment will necessarily result in fluctuations of 
population numbers. Though relevant to both, this will be more 
self-evident for poikilothermic than for homoiothermic organ- 
isms. On the other hand, it is quite possible that a population 
survives for some (or even a long) time without density-depend- 
ent relationships (such as intraspecific competition, a high mor- 
tality by monophagous predators and/or parasites). Note, that 
I don't deny the possibility that density-dependent relationships 
exist in nature, (apart from difficulties in unequivocally demon- 
strating their existence, see e.g. Reddingius 1971; Kuno 1971). 
I only question the necessity of occurrence to understand fluctua- 
tions of numbers. Neither do I suggest that density effects would 

be uninteresting, but only that this interest will be found in 
other phenomena than the survival time of populations, e.g. 
in stimulation of a better exploitation of resources, or giving 
structure to predator/prey or parasitoid/host relationships. In 
my opinion, we must thus conclude, that population-models 
should primarily be stochastic (see also: Andrewartha 1957), 
and that more deterministic relationships can be incorporated 
as far as needed (as we did in our stimulations), and not the 
other way round (see also: Reddingius 1971). 

It may possibly be objected, that populations that by chance 
are reduced to very low numbers will show logistic growth and 
will thus rapidly reach again the "normal" density level (or 
even "carrying capacity"). As far as may field experiences are 
concerned this argument is not confirmed by observations on 
populations living in more stable habitats. At low densities such 
populations are at the mercy of chance to recover again or 
to die out, which was already pointed out by Milne (1957, 
1962) and in connection with "underpopulation" by Klomp 
et al. (1964). See also our Fig.'s 2 and 3. I suppose, that the 
above argument was derived from laboratory experiments with 
animals occupying highly unstable habitats, a kind of animals 
that under natural conditions show a high turnover of popula- 
tions: founding in a (temporarily) favourable place, rapid 
growth, disappearance after one (or a few) generations by a 
high level of dispersal, founding in some other temporarily fa- 
vourable places, etc. (see also : section 2). Such species are playing 
the lottery mentioned above, and are thus irrelevant in discus- 
sions on "the regulation of population numbers". 

It will have become apparent already from the above discus- 
sions that spreading of risk will not only influence the quantita- 
tive relationships between interaction groups and between other 
units of population, it will also be "at  work" within interaction 
groups. Just as the risk of extinction of a composite population 
can be spread over a number of differently fluctuating subpopu- 
lations, so too the risk of extinction of an interaction group 
may be spread over a number of different individuals, viz. differ- 
ent genotypes, different developmental stages, different age class- 
es. Examples of this are discussed by Van Dijk (1981); see fur- 
ther: Den Boer (1968, 1971, 1981)). If the interaction group 
occupies a site with a high level of effective, spatial heterogeneity, 
the movements of individuals between environmental patches 
will lower the variance of numbers in the interaction group 
as a whole (Den Boer 1981: Appendix), as well as increase 
the general level of net reproduction (Kuno 1981). Spreading 
of risk will also come into the picture when studying the interac- 
tions between species. If a population of predators exploits a 
kind of prey the stability of both the predator and the prey 
population will generally be enhanced by a high degree of clump- 
ing of the preys and thus by the occurrence of significant dis- 
tances between prey patches. These effects are as robust as to 
appear already if this heterogeneity is modelled deterministically 
and the stability is estimated as neighbourhood stability (Hassell 
1978). 

To come to a conclusion, I hope to have made clear that 
heterogeneity and variability should not be considered as just 
drawbacks of field situations, that can best be circumvented 
by retreating into the laboratory or even into deterministical 
mathematics. On the contrary, heterogeneity and changeability 
must be recognized as fundamental features, not only of the 
natural environment of a population but even of life itself. The 
enormous genetical and phenotypical variation of a natural pop- 
ulation is in some way a reflection of the heterogeneous and 
variable conditions in spite of which, but - as I tried to show 

also with the help of which, it is able to survive for a shorter 



or  longer  t ime.  A n d  on  a larger  scale, the  incredible  divers i ty  

o f  life reflects  the  nea r ly  inf ini te  he t e rogene i ty  o f  n a t u r a l  hab i t a t s ,  

wh i ch  is aga in  i m p o r t a n t l y  inc reased  by  the  p resence  a n d  the  

ac t ions  o f  l iving c r ea t u r e s  themse lves  (see e.g. Zw61fer 1978). 

As  long  as he t e rogene i ty  a n d  var iabi l i ty  are cons ide red  to be 

mere  dev ia t ions  f r o m  " t y p i c a l "  cases,  t ha t  are the  on ly  ones  

t ha t  are  g r a sped  by  ou r  intel lect  a n d  c a u g h t  in p reconce ived  
and  of ten  s ta t ic  (equi l ibr ia)  theore t ica l  s t ruc tu res ,  I fear  we will 

deny  s o m e  o f  the  m o s t  f u n d a m e n t a l  f ea tu res  o f  o rgan ic  life. 
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A p p e n d i x  

A1. To simulate an autocorrelation of the desired value between Rt 
and Rt_3 we make use (after having fixed the first three R-values: 
RY1, etc., from the field data) of  a simple lineair regression of the 
form Rt = e x p ( a +  b. In R~_3 + z .c), which is simulated (Fortran IV), e.g. 
in the case of the composite population of P. versicolor (compare Table 
2), as : 
A3 = -0 .0068  
B3 = -0 .6533  
SDY =0.275249 

CALL RANDU(IX ,  IY, R N D G E N )  
X = R N D G E N  
CALL R A N D U ( I X ,  IY, R N D G E N )  
Y1 = COS(6.2831185307,X) 
Y2 = S Q R T ( -  2 .*ALOG(RNDGEN))  
Y3 = A 3  + B3*ALOG(RY1) 
T = E X P ( Y I * Y 2 * S D Y + Y 3 )  
PI = PI*T 

(compare A3) 

RY1 = RY2 
RY2 = RY3 
RY3 = T 

Table A.2.1. R-values in P. versicolor 
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A2. The 18 R-values of  the composite populat ion of P. versicolor are 
(for the first 10 values, see also: Den Boer 1971: Table 3, R0:  1.22; 
1.32; 1.30;, 1.15; 0.86; 0.79; 0.96; 1.22; 1.05; 0.73; 0.65; 0.89; 1.37; 
1.14; 1.38; 0.58; 1.29; 0.93, which can be brought  into 5 classes of  
a frequency distribution with a class-width (in) of  0.175: Table A.2.1; 
in the same table the distribution of  the 18 averaged subpop. - R-values 
(~'.~ in Table 3 of  Den Boer 1971) is shown. 

The 18 R-values of the composite population of  C. melanocephalus 
are (see also: Den Boer, 1971: Table 4, R-,): 2.32; 0.96; 3.28; 0.89; 
0.35; 0.39; 1.56; 1.93; 0.26; 0.28; 0.73; 1.36; 3.04; 2.08; 0.36; 0.47; 
0.42; 2.71, which can be brought into 5 (ln)-classes with a class-width 
of 0.5: Table A.2.2. 

Table A.2.2. R-values in C. melanocephalus 

- 1 . 81  -1 .31  -0 .81  -0 .31  0.19 0.69 
l n R  t. -1 .31  t. - 0 . 81  t. -0 .31  t. 0.19 t. 0.69 t. 1.19 

0.16 0.27 0.44 0.73 1.21 1.99 
R ( x  1.65) t. 0.27 t. 0.44 t. 0.73 t. 1.21 t. 1.99 t. 3.29 

Freq. R~ - 6 1 3 3 5 
ib. 1".i 1 4 1 3 3 6 

Instead of using the frequency distribution of  the 18 averaged subpop.- 
R-values to simulate "similar  subpop ."  it seems better directly to 
use the frequency distribution of the subpop.-R-values themselves (ex- 
cept in the simulations treated in section 6). Both in P. versicolor 
and in C. melanocephalus the distributions of  the 138 subpop.-R-values 
available can reasonable be fitted by In-normal ones: Table A.2.3. 

To convert a known distribution (of R) to the best fitting in-normal 
one (of Y, say) we can make use of: E ( Y ) = 2 1 n M - � 8 9  2) 
and Var(__~ = ln(V 2 + M z) - 2 in M, if E(R) ---M and Var(R) = V  2 (Red- 
dingius pers. comm.).  The best fitting in-normal distribution of sub- 
pop.-R-values thus has E(in R ) =  --0.0130142774 and  s(In R)=0.91689 
in the case of  C. melanoceph--alus, but E(tn R__)=-0.0027-~50241 and 
s(In R)=0.520982771 in P. versicotor. 

Whether  we used the above In-normal distributions of  subpop.-R- 
values or the distributions of averaged subpop.-R-values (given in 
Tables A.2.1 and A.2.2) to simulate cases of  "similar  subpop ."  did 
not  influence our results. Therefore, we preferred to simulate with 
the best fitting in-normal distributions. 

A3. Drawing R-values at random from an explicitly defined distribu- 
tion, e.g. in the case of the composite populat ion of  C. melanocephalus 
(Table A.2.2), is simulated as: 
S =0.27 
A1 =0.17 
A2=0 .29  
A3 =0.48 
A4=0 .78  
A5=1 .30  

- 0 . 7 2  -0 .545  - 0 . 3 7  -0 .195  - 0 . 0 2  0.155 0.33 
l n R  t. - 0 .545  t. - 0 . 3 7  t. - 0 .195  t. - 0 . 0 2  t. 0.155 t. 0.33 t. 0.505 

0.49 0.58 0.69 0.82 0.98 1.17 1.39 
R ( x  1.19) t. 0.58 t. 0.69 t. 0.82 t. 0.98 t. 1.17 t. 1.39 t. 1.66 

Freq. R~ -- 2 2 4 3 7 - 
ib. r.i 1 - 3 1 3 6 4 
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Table A.2.3. R-values of subpopulations 

0.09375 0.1875 0.375 0.75 1.50 3.00 6.00 
R( x 2) <0.093 t. 0.1875 t. 0.375 t. 0.75 t. 1.50 t. 3.00 t. 6.00 t. 12.00 

P. versicolor - - 10 34 63 29 2 - 
C, melanocephalus 3 6 17 32 36 23 18 3 

CALL RANDU(IX,  IY, RNDGEN)  
RA = RNDGEN* 18. 
CALL RANDU(IX,  IY, RNDGEN)  
V = R N D G E N  
1F(RA.LE.6.)T = S + V*A 1 
1F(RA.GT,6..AND.RA.LE.7.)T = S + A 1 + V , A 2  
1F(RA.GT,7..AND.RA.LE. 10.)T = S + A i + A 2 + V * A 3  
1F(RA.GT. 10..AND.RA.LE. 13.)T = S + A1 + A 2 + A 3  + V , A 4  
1F(RA.GT. 13..AND.RA.LE. 18.)T=S +A1 +A2  +A3 + A 4 + V * A 5  
PI =PI*T  

Taking R-values at random from a In-normal distribution, e.g. 
in the case of "similar subpop."  in P. versicolor, is simulated as: 
CALL R A N D U  (IX, IY, RNDGEN)  
X = R N D G E N  
CALL R A N D U  (IX, IY, RNDGEN)  
Y1 = COS(6.283185307,X) 
Y2 = SQRT( - 2*ALOG(RNDGEN) 
T = EXP(Y 1 *Y2*0.520982771 - 0.002715024) 
PI = PI*T 

Note: like in the models of section 6, also in these models (and in 
all following ones) the 3 first R-values are given from the relevant 
field data. 

A4. Reductions of population numbers in INCC occurred as (PM = 
carrying capacity = 99.*PP) : 
after PI =PI*T,  

1F(PI.LE.PM)GO TO 15 
PI = PM*T/1.5 (or : PI = PI/1.5), 

in the case of P. versicolor, and as : 

P I - P M * T / 4 .  (or: PI=PI/4.) ,  
in the case of C. melanocephalus. 

In this way the reductions were about in relation to the violence 
of fluctuations in the species concerned (fluctuations are nearly 3 times 
heavier in C. melanocephalus than in P. versicolor). 

Density-dependent reductions of population numbers in DDCC 
occurred as: 
after PI =PI*T,  

1F(PI.LE.PM) GO TO 15 
PI = 2.0*PM - PI, 

in the case of P. versicolor, composite population, and as: 

PI = 2.0*PM - 0.4*PI 
in the case of P. versicolor, similar subpop. 

In C. rnelanocephalus, composite population, was used: 

PI = 2.0*PM - 0.75,PI 
and: 
PI = 2.0*PM - 0.38,PI 
in similar subpop. 

The fraction of PI that was subtracted from 2.0*PM could be 
adapted in such a way that the mean frequency of exceeding carrying 
capacity was kept the same as in the pertinent versions of INCC. 

To keep the mean frequency of reductions of population numbers 
in INDR about the same as in INCC we had to build a counter 
into the program. As an example we mention P. versicolor, different 
subpopulations : 
AP = KP (KP is a small integer that differs with different start values) 
M = I  
VX=0.9  
WRS = VX*AP + 54.3 

PI = PI*T 
WVV =20 .*RNDGEN 
MRES = WRS § WVV 
1F(M.LE.MRES)GO TO 15 
PI = PI/1.5 
M = I  
15 . . . . . .  

M = M + 1 (counter of "years ") 

WVV results in a random variation between - I 0  and +10 "years"  
in the computed "distance" between two reductions of numbers. WRS 
could be adapted in such a way that the mean frequency of reductions 
was kept the same as in INCC, 

In the case of P. versicolor, similar subpop, we had to use for 
that: VX = 1.14 and WRS = VX*AP + 22.4, in C. melanocephalus, dif- 
ferent subpop. VX=l .075  and WRS=VX*AP+22 .3  and in similar 
snbpop. VX=0.625 and W R S = V X * A P +  17.7. 

To get continuous and mild density dependent reductions over a wide 
range of population numbers in DDSC we simulated, e.g. in the case 
of P. versicolor, different subpop. : 
PI =PI*T  
SDD=2.6  
APP =ALOG(PP)  
API =ALOG(PI)  
DD =API-APP 
1F(DD.LE.O.)GO TO 15 
S D L = S D D - 1 .  
DD = SQRT(DD) 
1F(DD.LE.SDL)GO TO 15 
PI = PI* SDD/(1. -- DD) 
1F(PI.LE.PM)GO TO 15 
LC = LC + 1 (to check if indeed PM is never exceeded) 

In this way density dependent reductions of numbers occurred 
between 13 and 99 times PP. We could adapt SDD in such a way 
that the mean frequency of passing the start value was kept about 
the same as in INCC. 

In P. versicolor, similar subpop, we had to put SDD=3.3  (without 
SQRT(DD)), and got reductions between 10 and 99 times PP. 

In C. melanocephalus, different subpop. SDD = 1.7 (reductions be- 
tween 2 and 99 times PP), and in similar subpop. SDD = 1.8 (reductions 
between 41/2 and 99 times PP). 

With the same procedure and setting S D D =  1.0 in DDS we got 
density dependent reductions over the whole range between PP and 
99.*PP. 
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Note: In ai1 simulations with some reduction of numbers the value 
of R was recalculated after the reduction had occurred, in order to 
be able to compose the frequency distribution of the R-values actually 
used. 

Ag. In A2 are given the R-values of the composite populations of 
P. versicolor and C. melanocephalus during 19 years, as well as the 
method to convert these distributions into the best fitting In-normal 
ones. In the case of the composite populations of P. versicolor we 
thus got a best fitting In-normal distribution with E(ln R)=0.01596 
and s(ln R)=0.2412832, and in the case of C. melanocephalus a In- 
normal distribution with E(ln R)=0.0200326 and s(ln R)=0.6955634. 
In P. versicolor this In-normal distribution fitted the frequency distribu- 
tion of the field data as given in Table A.2.1 rather well, even if 
E(ln R) is put at zero (P>0.30), both in the "short run" (Table 
5) and in the "long run" version (Table 6). In C. melanocephalus 
the frequency distribution of R-values from the field as given in Table 
A.2.2 is very different from a In-normal one, by which "the best 
fitting In-normal distribution" is a quite different distribution indeed. 

An autocorrelation between Rt and Rt_3 within an already defined 
in-normal distribution of R-values could be attained by the following 
trick, e.g. in the case of P. versicolor, composite population (compare 
A1 and A3) : 
CALL RANDU(IX, IY, RNDGEN) 
X-RNDGEN 
CALL RANDU(IX, IY, RNDGEN) 
Y1 = COS(6.283185307.X) 
Y2 = SQRT( - 2.*ALOG(RNDGEN)) 
T = EXP(Yl*Y2*0.2412832) 
1F(T. QT. 1..AND. R(K -- 3).GT. 1.. OR.T. LT. 1..AND. R(K - 3). 
LT.1.) T = EXP(SIN(6.283185307*X)*Y2*0.2412832) 
PI =PI*T 

The autocorrelation between In Rt and In Rt_a attained in this way 
had a value around -0.35 in most simulations. This value is lower 
than those from the field data of the composite populations during 
19 years (-0.6),  but of the same value as that in the composite popula- 
tion of P. versicolor after 21 years (-0.357). Apparently, the pattern 
of weather conditions that resulted in these high autocorrelations du- 
ring the first 19 years changed during the last two years, at least 
as far as P. versicolor is concerned. 
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