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Summary. We compared the patch-choice performances of 
an ambush predator, the crab spider Misumena vatia 
(Thomisidae) hunting on common milkweed Asclepias syr- 
iaca (Asclepiadaceae) umbels, with two stochastic rule-of- 
thumb simulation models: one that employed a threshold 
giving-up time and one that assumed a fixed probability 
of moving. Adult female Misumena were placed on milk- 
weed plants with three umbels, each with markedly different 
numbers of flower-seeking prey. Using a variety of visita- 
tion regimes derived from observed visitation patterns of 
insect prey, we found that decreases in among-umbel vari- 
ance in visitation rates or increases in overall mean visita- 
tion rates reduced the "clarity of  the opt imum" (the differ- 
ence in the yield obtained as foraging behavior changes), 
both locally and globally. Yield profiles from both models 
were extremely flat or jagged over a wide range of prey 
visitation regimes; thus, differences between optimal and 
"next-best"  strategies differed only modestly over large 
parts of  the "foraging landscape". Although optimal yields 
from fixed probability simulations were one-third to one- 
half those obtained from threshold simulations, spiders ap- 
pear to depart umbels in accordance with the fixed proba- 
bility rule. 
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Optimal foraging theory began as a largely mathematical 
inquiry into the question: how should an idea animal for- 
age? (Krebs et al. 1983). This early emphasis on " ideal"  
behavior has shifted as a result of recent evidence. Experi- 
ments indicate that although animals may approach opti- 
mal behavior, perfection is rarely achieved and suboptimal 
performances are common and striking (e.g. Morse and 
Fritz 1982). Consequently, instead of focusing only on some 
idealized optimum, many researchers are now concerned 
with how animals make decisions in a way that approxi- 
mates an optimal solution (McNamara and Houston 1980; 
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McNamara 1982). Decision-making algorithms that for- 
agers might plausibly use have been given the name '~ rules 
of thumb"  (Janetos and Cole 1981; Krebs et al. 1983). 

We became interested in rules of thumb after observing 
crab siders (Misumena vatia: Thomisadae) ambush prey on 
common; milkweed (Asclepias syriaca) umbels. Crab 
spiders face the problem of choosing the optimal umbel 
on which to hunt. Because arrival of prey at umbels is 
highly variable in time, selection of this umbel is not easy. 
Imagine a spider that has recently arrived at an umbel and 
then waited in ambush for several hours without encounter- 
ing a single prey. The spider must decide whether to move 
to another umbel or remain. Critical to this decision is the 
reason for the absence of visitors. Visitors may have been 
absent by chance alone, even though on average the umbel 
is frequently visited, or because clouds and cool weather 
temporarily deterred flight. Visitors might also be absent 
because the umbel is new and not yet attractive to pollina- 
tors, although within a day it will mature enough to become 
extremely attractive. Or, the umbel may represent an unre- 
deemably poor site in which to wait in ambush for prey. 

Perhaps it is thus not surprising that crab spiders often 
remain for prolonged periods on conspicuously inferior um- 
bels that is, ones that attract few or even no prey (Morse 
and Fritz 1982; Morse 1986a). We have reached the impres- 
sion that the environment is so unpredictable for crab 
spiders that any single strategy is unlikely to stand out as 
markedly superior to all deviant behavior. This possibility 
has been neglected in most tests of optimal foraging theory 
although theoreticians have pointed out that the likelihood 
of an organism adopting an optimal policy depends on the 
payoff (Kacelnik 1984). In this paper we attempt to assess 
how clearly an optimum stands out above the yields asso- 
ciated with non-optimal behavior. We simulate tile foraging 
of individual spiders, using visitation patterns for prey that 
were obtained from field observations of the milkweed sys- 
tem. 

We begin by reviewing key features of crab spider natu- 
ral history. Then we discuss the methods used and results 
obtained in characterizing sequences of prey arrival at milk- 
weed umbels. Finally, we describe two simulation models 
of spider foraging, both of which lead to spiders eventually 
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Fig. 1. Frequency distributions of 
visitation rates at medium, high, and 
all umbel qualities. "Al l"  represents 
the data pooled from the three 
different qualities. Frequency 
distribution at low visitation rate is not 
depicted, because all 31 observations 
fell at 0-9 on the abscissa 

selecting umbels with the highest visi tat ion rates. These 
models  use variances and means in visi tat ion rates that  were 
observed in the field. Both models  give an op t imum yield 
associated with a par t icular  " ru le  of  t h u m b "  behavior.  The 
opt ima,  however,  are not  our major  concern in this paper.  
Instead we quantify how " c l e a r "  or " s h a r p "  these opt ima 
are. Given the stochastic environment  in which the spiders 
forage, how much might  the spiders lose by depar t ing from 
the op t imum behavior?  

Natural history of the system 

Misumena vat& is a s i t -and-wait  p reda tor  at flowers 
th roughout  nor theastern  N o r t h  America.  Adul ts  frequent 
flowers of  the common milkweed, a rich source of  nectar  
for bees, butterflies, moths,  and other insects (Morse 1981 a, 
1985 ; Morse  and Fr i tz  1982). Milkweed produces  its flowers 
in round,  compact  umbels  that  are often separated from 
each other  by 2-5 cm. Umbels  b loom sequentially up the 
stem and thus present hunting sites that  differ markedly  
in the rewards offered to nectar-feeding insects. Nectar-  
feeding insects accordingly visit umbels in a frequency pro-  
por t ional  to the number  of  nectar-producing flowers con- 
tained on the umbels (Morse and Fr i tz  1982; Morse  1986b). 
Spiders must  select which of  these discrete patches (umbels) 
to use as a hunting site, each of  which differs several-fold 
in the number  of  prey that  it attracts.  Since flowers produce 
nectar  for only three to four days (Fri tz and Morse  1981), 
the best sites are cont inual ly  changing. 

We have demonst ra ted  that  the site chosen is of  consid- 
erable impor tance  to these spiders; individuals  that  usually 
select sites with max imum numbers  of  insect visitors be- 
come significantly larger and lay significantly larger 
clutches than do those that  make  the " c o r r e c t "  choice less 
frequently (Fri tz  and Morse  1985). Larger  clutches, in turn, 
t ranslate into larger numbers  of  young emerging from the 
egg sac of  the spiders '  b rood  (Morse and Fri tz  1987). 

Methods for  estimating prey visitation rates 
and spider departure rates 

We studied adul t  female crab spiders on milkweed in an 
open field in Bremen, Lincoln Co., Maine,  USA.  This site 
is further described elsewhere (Morse  1981b). Spiders were 
tested on milkweed stems containing three umbels : one with 
25 or  more  nectar -producing flowers (" high-qual i ty") ,  one 
with 5-10 such flowers ( "medium-qua l i ty" ) ,  and one with 
0 nectar-producing flowers ( " low-qual i ty" ) .  We used this 
as our experimental  arena because during most  of  the flow- 
ering season as many  as 50% of  the flowering stems of  

Table 1. Parameters of best-fit gamma distributions and chi-square tests 
of goodness-of-fit to field visitation data. Gamma probability densities 
are two-parameter functions of the form 

prob (random variable = x) = (x/A) B- 1 exp- :,/A / A i s exp -" u B - 1 d u 
0 

A and B are constants such that the mean =AB, and the variance = A2 B 

Umbel type A B Mean variance Chi-square 
with 4 degrees 
of freedom 

High 3.7 0.3 1.1 4.1 1.42 P>0.2 
Medium 1.0 0.5 0.5 0.5 0.23 P > 0.5 
Low 0.1 0.2 0.03 0.002 0.11 P>0.5 
All a 0.8 0.8 0.64 0.5 1.98 P>0.1 

a All represents high, medium, and low umbels lumped together 

a clone contain umbels with this combina t ion  of  flowers 
(Morse 1981b). Spiders were randomly  assigned to one of  
these three umbels, one spider per stem. To control  for 
feeding state, we used only individuals  that  had  not  eaten 
for more  than a day. We thus subjected them to a hunting 
and feeding regimen that  is rout inely experienced by these 
spiders (Morse 1979, 1981a). All  tests were run between 
10:00 a.m. and 16:00 p.m. on clear or par t ly  cloudy days, 
times during which insects visit milkweed flowers frequently 
(Morse and Fr i tz  1982). 

The spiders were moni tored  for 2 h each, and any move- 
ments or  respones to prey were recorded.  Dur ing  this per iod 
all insect visitors to the umbels of  a stem were recorded,  
as well as the length of  their visits and the number  of  flowers 
that  they probed.  The commonest  visitors were bumblebees 
(Bombus vagans and B. terricola) and honeybees (Apis melli- 
fera). We followed the spiders for two hours  because in 
an earlier s tudy (Morse and Fr i tz  1982) most  individuals  
that  shifted umbels during a six-hour per iod had  moved 
by the end of  2 h. In all we collected 31 runs of  two hours 
apiece from 24 different siders. 

Observed visitation patterns and spider behavior 

The frequencies of  visi tat ion rates to low, medium, and 
high-quali ty umbels summarize the spatial  var iabi l i ty  in 
prey visi tat ion that  spiders were likely to encounter  at our 
study site (Fig. 1). We fit each of  the frequency distr ibut ions 
in Fig. 1 to a gamma function, a two-parameter  function 
that  can be used to approximate  a wide variety of  probabi l i -  
ty dis tr ibut ions ( M c N a m a r a  and Hous ton  1985). In all in- 
stances, our frequency dis tr ibut ions of  visi tat ion rates were 
well described by a gamma function (see Table 1). Thus, 
we can use gamma distr ibut ions to represent  the umbel- to-  
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Table 2. Tests to determine whether spider giving-up times differed among umbel types 

Umbel type N Sum of scores Expected sum Expected 
if no differences standard deviation 

if no differences 

Mean score 

High 46 2560.5 2392.0 150.5 55.7 
Medium 29 1521.0 1508.0 136.2 52.5 
Low 28 1274.5 1456.0 134.7 45.5 

* Chi-Square Approximation to Kruskal-Wallis Test applied to Rank Sum Scores (average scores were 
used for ties) : 
X 2 with 2 d.f.=2.0, P>0.36 
Therefore, we accept the Ho that giving-up times are the same on all umbel types 
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Fig. 2. The percentage of spiders that  remain on an umbel for 
varying lengths of time. The solid points are actual field data for 
spiders hunting on umbels that  were not visited by prey (the sample 
size is 103 spider observation bouts). The dashed line is the best-fit 
exponential distribution, which has as its only estimated parameter  
a per-minute probabili ty of leaving = 0.064. This best-fit model ex- 
plains 92% of the variance in the data, which is significant at 
the P<0 .01  level 

umbel  variabi l i ty  in vistat ion rate at  our  study site (see 
Fig. 1). 

Since we watched spiders cont inuously for 120 � 9  we 
also obta ined frequency dis tr ibut ions of  giving-up times for 
spiders on each of  the umbel  types. To test whether  these 
dis tr ibut ions differed among umbel  types we performed a 
Kruska l -Wal l i s  nonparamet r ic  analysis of  variance on the 
rank sums. On the basis o f  this test we accepted the hypoth-  
esis that  dis tr ibut ions of  giving-up times did not  differ 
among umbel  types (see Table 2). Lumping  together  umbel  
types, we found that  the frequency dis t r ibut ion of  giving-up 
times fit an exponential  distr ibution.  In  part icular ,  the p rob-  
abil i ty that  a spider  has not  moved within t minutes is 
given by a func t ion f ( t )  = e x p -  2 t, where 2 is the per  minute  
probabi l i ty  that  a spider does move (see Fig. 2). Such expo- 
nential  dis tr ibut ions result when departures  occur with 
some fixed probabi l i ty ,  denoted 2 in the p reced ingf ( t ) .  

Simultation models 

Overview. In bo th  of  our  s imulat ion models  foraging pro-  
ceeds according to a simple decision process. Var ia t ion 
among umbels with respect to visi tat ion rates was repre- 
sented by a gamma distr ibution.  The effectiveness o f  each 

decision rule was measured by the average yield (intake 
per unit  time) it produced.  This average was calculated from 
simulations o f  20 spiders foraging according to a par t icular  
rule for 2 h;  we chose two hours because most  spiders that  
move during a day  do so in considerably less t ime than 
this, and the per iod is of  sufficient dura t ion  for spiders 
to move several times under  field condit ions (Morse and 
Fr i tz  1982). We used 20 simulations per decision rule be- 
cause that  is our best guess of  the number  of  siblings that  
are likely to survive the high egg and juvenile mor ta l i ty  
characterist ic of  spiders, and thereby present  a genetic co- 
hor t  to the scrutiny of  natura l  selection. Al though simula- 
tions of  10 and 40 spiders gave similar results in a few 
trial runs, we expect an order  of  magni tude increase in 
the number  of  simulations would have smoothed out  the 
yield profiles we discuss later. The general approach  we 
adopted  assumes that  spiders are unable to carry over infor- 
mat ion  about  the quali ty of  their umbel  from one day to 
the next. 

Both models  share the same core structure and basic 
set of  input  parameters  (Fig. 3), but  differ in the decision 
process that  governs umbel  choice. At  the start  of  a run 
(and after each subsequent move) a spider occupies an um- 
bel that  is randomly  assigned a visi tat ion rate from a 
gamma distr ibution.  Visitat ion rate has visitors/h as its un- 
its, whereas what  we really want  is a r andom sequence of  
arrivals at  each umbel. Since we know that  prey arrivals 
occur as a Poisson process (Morse and Fr i tz  1982), we can 
easily generate r andom arrivals using our mean visi tat ion 
rate. We did this by converting mean visi tat ion rates to 
mean waiting times (if 2 = mean number  if  visits per  hour, 
then ~/2= mean hours between visits). The mean waiting 
times define an exponential  probabi l i ty  density, f rom which 
we can randomly  draw a sequence of  interarr ival  times. 
While  wait ing on an umbel  between prey visits, the spider 
consults its decision rule every minute. The decision rule 
either tells the spider to move or to continue waiting. I f  
the spider captures a visitor, that  capture is recorded and 
added to a running total.  Whenever  a spider consumes a 
prey item, it requires a certain amount  of  handl ing time, 
which is specified in each simulation. I f  the spider moves, 
a new visi tat ion rate is drawn from the gamma distr ibut ion 
and in turn used to simulate r andom arrivals at the new 
umbel. U p o n  arriving at  a new umbel the spider starts ap- 
plying its decision rule all over again. Thus the spider 's  
behavior  at each umbel is assumed to be independent  of  
its feeding history at  previously visited umbels. F o r  each 
decision process this s imulat ion procedure  was repeated us- 
ing a range of  behavioral  (in part icular ,  "cos t  of  moving" )  
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Fig. 3. Flowchart for threshold-giving-up time simulation (A) and fixed probability of moving simulation (B) 

J 

and environmental (different gamma distributions) parame- 
ters. 

Assumptions. We do not know what it costs a spider to 
move among umbels. We expect the calorie costs to be 
minimal, but  the time lost from foraging to be potentially 
significant. In our models a "cos t  to moving"  was a param- 
eter that we entered into our simulations as a time cost. 
Since cost ultimately is converted to a reduction in yield/ 
time, a time cost suffices to reduce this ratio. 

Because we lacked data on the energy value of  individ- 
ual prey items, we tabulated all prey as equivalent; thus 
our units of  yield were prey captured per unit o f  time. This 
aggregation o f  all vlsitors into one prey type is a reasonable 
simplification for the milkweed system because the relative 
frequency of  the prey types arriving at flowers does not 
change with mean visitation rate (Morse 1986b). 

We omitted risk from our model because in the course 
of  ten years studying Misumena foraging on milkweeds, 
we never saw a spider lost or eaten while searching for 
umbels. We also assumed that spiders could not evaluate 
umbel quality independent of  visitation rates, and that a 
spider's probability of  capturing a visitor does not vary 
with umbel quality. Both of  these assumptions have been 
borne out by field observations (Morse 1986a). 

Decision rules. For  our simulations, we selected the two 
simplest rules of  thumb that we could imagine: 

1) Threshold Giving-Up Time (abbreviated TGUT) :  A 
spider always leaves an umbel when some fixed amount  
of  time has elapsed without any prey visiting the umbel. 

I f  the environment were deterministic, this giving-up time 
could be calculated according to the marginal value theo- 
rem (Charnov 1976). It would simply be the time at which 
the average rate of  prey harvest in an umbel equals the 
rate expected if a move were made. 

2) Fixed Probability of  Moving (Abbreviated FPOM):  
The probability that a spider will leave an umbel is some 
constant ' p ' .  Although this might appear to be a self-evi- 
dent " ru le" ,  one can imagine the ' p '  being adjusted to 
different environmental circumstances. Different probabili- 
ties of  moving will produce different yields. We simulated 
this simple behavior because field observations supported 
it; as noted above, spider giving-up times fit an exponential 
probability distribution (Fig. 2), which suggests that  depar- 
ture is indeed a result of  a random departure process with 
a fixed probability. 

Analyzing model output. Since we do not know the net calor- 
ic gain associated with each prey item, or the cost of  travel, 
we cannot predict an optimal behavior. We can, however, 
explore how well hypothetical optima stand above sur- 
rounding suboptimal yields, and the extent to which yield 
topographies are influenced by the variance of  visitation 
rates. 

In Figs. 4 and 5 we present the yield topographies of  
two different series of  simulations. First we will discuss 
Fig. 4 to develop an intuitive idea o f  what one might mean 
by a '~ clear op t imum"  and then we develop two quantita- 
tive measures of  the "clarity of  an opt imum".  In Fig. 4a, 
as one moves away from a giving-up time of  three minutes, 
yield falls off sharply and no other peak in the range o f  
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giving-up times produces a yield near the three-minute opti- 
mum - we would call this peak a very clear optimum. In 
stark contrast, no opt imum is clear in Fig. 4d;  there are 
several relatively indistinguishable peaks (e.g., 6min ,  
12 min and 37 min). One might interpret Fig. 4d  as evi- 
dence that an organism has considerable leeway with re- 
spect to giving-up time. 

By contrasting Fig. 4 a, d (and several other yield topo- 
graphies), we selected two aspects that reflect the clarity 
of  an opt imum point  on a yield curve: 

1) how high it reaches above neighboring points, or how 
sharply yield falls off  as one moves away from the opti- 
mum;  

2) the extent to which the opt imum is unrivalled by 
other peaks in the yield curve. 

To quantify these two notions of  "clari ty o f  an opti- 
m u m " ,  we used the following indices: 

a) local clarity or LC = Mean % reduction in yield rela- 
tive to the maximum yield for the four strategies closest 
to the optimal strategy (in terms of  minutes for T G U T  
simulation and in terms of  probability for the F P O M  simu- 
lation). Thus if the optimal strategy was a 6-min giving-up 
time, we would calculate the % reduction in yield for 4, 
5, 7 and 8-min giving-up times. 

b) global clarity or G C =  Mean % reduction in yields 
for the four yields most  similar to the maximal yield, regard- 
less o f  how similar their underlying behavioral rule is to 
the optimal rule. In other words, we looked for the four 
next-highest yields and calculated the mean % reduction 
in yield they represented compared to the optimal perfor- 
mance. 

According to these indices, Fig. 4a  has both a higher 
LC and GC than does Fig. 4d  (in general the two indices 
were correlated in our simulation output). LC is a measure 
of  the gradient in yield in the neighborhood of  the opt imum 
point, whereas GC measures the extent to which there are 
competing opt imum points distant from the single highest 
optimum. 

Ultimately it would be useful to develop more general 
and rigorous measures of  yield topography than our ad 
hoc GC and LC indices. As a first step, however, GC and 
LC will suffice for quantifying differences among yield to- 
pographies. To organisms making decisions about  whether 
or not to move, GC and LC reflect the penalties suffered 
by suboptimal behavior. I f  penalties are minor, the selective 
pressure for a particular optimal behavior would not  be 
sharp. 

Results of simulations 

For  a wide variety of  visitation regimes, yield profiles from 
both T G U T  and F P O M  models were either remarkably 
jagged or quite flat - so that distinct optimal points are 
rarely evident (see Figs. 4 and 5). The "jaggedness" of  
the yield profiles is certainly a reflection of  the low number 
of  simulations per decision rule, as well as the inherent 
stochasticity o f  the process. But as we argued earlier, we 
think that a limited number of  simulations is appropriate 
because natural selection would have only a limited number  
of  trials to "evalua te"  for each particular genotype that 
entered the spider population. Our results clearly also de- 
pend on the particular means and variances in visitation 
rates that we used as input variables for the model. Rather  
than exhaustively simulating foraging success for a wide 

Table 3. Multiple linear regressions relating "clarity of optimum" 
indices as the dependent variable to: mean in visitation rates 
("mean" below), variance in visitation rates ("variance" below), 
variance to mean ratio for vistation rates ("clumping" below), 
and the cost to a spider of moving among umbels (" cost" below). 
Because "clumping" is a ratio of mean and variance, the regression 
analysis should be interpreted with caution; it is intended merely 
to highlight relationships. The clarity of optimum indices, which 
are percentages, were arcsin ]fP transformed. Asterisks are used 
to draw attention to significant predictor variables 
A Regressions for TGUT simulations where 37 cases enter into 
the analysis (a case is one set of simulations) 

Predictor Coefficient Standard Significance 
variables error 

Global mean* -0.11 0.03 0.0004 
Clarity variance* 0.04 0.01 0.0007 
Index clumping* 0.21 0.08 0.0117 
r 2 = 0.79 cost* - 0.01 0.005 0.0288 

Local mean* - 0. t 5 0.04 0.0004 
Clarity variance -0.02 0.02 0.3319 
Index clumping* 0.35 0.1 0.0034 
r 2 =0.47 cost 0.004 0.008 0.5643 

B Regressions for FPOM simulations where 28 cases enter into 
the analysis 

Predictor Coefficient Standard Significance 
variables error 

Global mean* -0.10 0.10 0.3249 
Clarity variance -0.08 0.12 0.5569 
Index clumping 0.12 0.14 0.3763 
r 2 = 0.40 cost 0.02 0.007 0.0038 

Local mean* - 0.40 O.t 3 0.0058 
Clarity variance 0.27 0.16 0.0984 
Index clumping O.tO 0.17 0.5714 
r 2 = 0.50 cost 0.009 0.009 0.2933 

variety of  visitation schemes, we focused on the actual range 
of  means and variances obtained from field observations 
(i.e. Table 1). Thus our results are particular to the crab 
spider system for which we gathered visitation data. 

An obvious question is whether features of  the visitation 
regime influence our "clarity of  op t ima"  indices in any 
consistent manner. The pertinent features of  the visitation 
regimes are: the mean, the variance, and the variance/mean 
ratios in the visitation rates associated with each umbel. 
In addition we varied the cost to a spider (in terms of  
calories or fraction of  prey units) of  moving from one umbel 
to another, assuming that the spider is sure to find another 
umbel. To examine quantitatively how the topography of  
yield profiles varied with simulation parameters we per- 
formed the following multiple linear regression: 

Clarity of  opt imum index=a1 (mean of  visitation 
rates) + a2 (variance of  visitation rates) + a3 (variance/mean 
of  visitation rates) + a4 (cost of moving) + constantS_The re- 
gression was actually performed using the arcsin 1/P trans- 
formation of  the indices.) The results of  these regressions 
are summarized in Table 3. The one consistent relationships 
seems to be that an increase in mean visitation rates tends 
to decrease the clarity of  optima (significantly so in 3 of  
4 cases). Thus, as the mean reward rate at flowers increases, 
predators will suffer smaller and smaller penalties for de- 
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viating from the so-called optimum behavior. Otherwise, 
relationships between simulation parameters and clarity of 
optima indices are weak or dependent on which index, and 
which simulation (TGUT versus FPOM) is examined. 

On average, the optimum yields obtained from FPOM 
simulations were one-third to one-half those obtained from 
TGUT simulations. For instance, using the visitation re- 
gimes we observed in the field, crab spiders could perform 
two times better by selecting an optimum fixed giving-up 
time than by selecting an optimum probability of departure. 
This result is not surprising. It is surprising that real spiders 
seem to depart umbels according to a fixed probability rule, 
rather than according to some giving-up time threshold; 
the consequences of this behavior in terms of expected yield 
are substantial. 

Discussion 

Foraging theory has recently focused on identifying the op- 
timum behavior associated with a variety of foraging prob- 
lems. Even when models have included stochastic environ- 
ments or variable rewards, the emphasis of the theory has 
remained the identification of a particular optimum point. 
Yet naturalists have raised doubts about optimal foraging 
theory because the organisms they observe in the field often 
engage in a variety of behaviors that do not seem to corre- 
spond to any conceivable optimal solution (Heinrich 1983). 
For example, our crab spiders spend the majority of their 
time in flower patches of higher than average prey visitation 
rates, but also spend hours, or even days, hunting in flower 
umbels where few or no prey visit. Occasional non-optimal 
behavior has become the focus of much debate in evolution- 
ary biology and modern foraging theory. Sometimes non- 
optimal behavior is explained away post-facto by modifica- 
tions of the original optimization model (see Gould and 
Lewontin 1979 for a critique of this practice). In other in- 
stances, examining limitations in the information available 
to animals can explain certain types of non-optimal behav- 
ior (Kacelnik et al. 1981). 

Animals may also fail to optimize their expected yield 
because they are more concerned with minimizing the vari- 
ance of their reward (Barnard and Brown 1985; Caraco 
and Gillespie 1986), than with expectations. Indeed, Caraco 
and Gillespie (1986) have recently analyzed a model of am- 
bush spider foraging that predicts different strategies of 
movement depending on the variance of prey encounter 
rates. We did not apply this model to crab spiders because 
the model gives the predator only two alternatives: move 
every day or sit still (a dichotomy that does not conform 
to crab spider behavior). 

We suggest here another explanation for why organisms 
often behave suboptimally - it simply may not matter much 
to the yields that are obtained. Using actual field data on 
visitation rates our stochastic simulations of two different 
types of decision processes (fixed giving-up time, and fixed 
probability of giving-up) indicate that optimum behaviors 
often do not stand clearly above alternative behaviors. For 
many visitation regimes, wide departures from the simu- 
lated optimal behavior produced almost no perceptible 
change in the yield to the spider. Of course a point optimum 
still exists; but the topography of yields in such that it 
might be difficult for natural selection to single out one 
stereotyped optimal behavior. For this reason we think 
much is to be gained by paying attention to entire yield 

landscapes, not just optimal points. Field biologists would 
do well to quantify the yields foragers obtain when follow- 
ing a variety of different behaviors; theoreticians could con- 
tribute by developing a rigorous way of characterizing yield 
topographies (as opposed to our ad hoc "clarity of optima" 
indices). Finally we must address the question of whether 
our impression of "unclear optima" is simply an artifact 
of our models. We think not because the only guess that 
entered our models was the cost of moving, and the appear- 
ance of "unclear optima" was independent of this cost. 
For any cost of moving, there was a wide range of visitation 
rates and variances in visitation rates that produced yield 
topographies without any clear optima. 

The most striking finding of our field observations is 
the suggestion that spiders seem to leave umbels at random, 
rather than following a fixed giving-up time. The evidence 
for this is the good fit of exponentialprobability distribu- 
tions to the departure times of spiders. This does not mean, 
however, that the probability of moving is a constant - 
it could be adjusted by stomach fullness. A random depar- 
ture process with a probability of leaving that varies with 
stomach fullness will lead spiders to spend most of their 
time on umbels with relatively higher than average visita- 
tion rates. We are currently experimentally testing the idea 
that spiders simply leave umbels at random, but at a rate 
determined by how well fed they are. 
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