
Oecologia (1989) 79: 475-481 Oecologia 
�9 Springer-Verlag 1989 

Leaf movement, stress avoidance and photosynthesis 
in Vitis californica 
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Summary. Gas exchange and chlorophyll fluorescence tech- 
niques were used to evaluate the hypothesis that leaf move- 
ment in Vitis californica Benth. (California wild grape) al- 
lows a compromise between sunlight interception and stress 
damage in order to maximize photosynthetic carbon gain 
over the life of the leaf. Leaves that were restrained horizon- 
tally tolerated their increased radiation loads if critical tem- 
peratures were not exceeded. Reductions in photosynthetic 
capacity and the Fv/FM fluorescence ratio only occurred 
in leaves that attained high temperatures. Leaf orientation 
and canopy position were important determinants of leaf 
temperature. These results indicate that excessive leaf tem- 
perature, not high PFD, can be a principle cause of reduced 
carbon gain and senescence in this species in the wild. Leaf 
movement appears to protect photosynthetic components 
in midsummer. 
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Leaf movement affects physiological performance due to 
the influence of orientation on leaf energy balance. Various 
reports have illustrated that diaheliotropism can serve to 
maximize carbon gain by increasing incident PFD and leaf 
temperature; on the other hand, paraheliotropism can mini- 
mize incident radiation, resulting in more favorable leaf 
temperatures and water status during drought (Ehleringer 
and Forseth 1980; Mooney and Ehleringer 1978; Forseth 
and Ehleringer 1982). Other have hypothesized that parahe- 
liotropism might serve to avoid damage by high irradiance 
(" photoinhibition ") in leaves under drought (Ludlow and 
Bj6rkman 1984). 

Field observations indicated that sun leaves of Vitis cali- 
fornica Benth. exhibit an increasing tendency to turn paral- 
lel to incoming midday solar radiation as hot, dry summer 
conditions develop. In order to examine the role of these 
leaf movements in photosynthetic performance, we posed 
the hypothesis that leaf movement allows a compromise 
between light interception and stress damage so as to maxi- 
mize carbon gain over the life of the leaf. This hypothesis 
predicted that an altered leaf orientation would result in 
less carbon gain over the growing season. Because leaf 
movements of V. califbrnica tend to minimize incident PFD 
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at midday in midsummer, our experiments primarily fo- 
cused on the effects of an increase in radiation load on 
photosynthetic processes by restraining leaves horizontally. 

Altering a leafs radiation load can affect incident PFD, 
leaf temperature and water status. It is well known that 
water stress and high temperatures can limit photosynthesis 
(Berry and Bj6rkman 1980; Berry and Downton 1982; 
Berry and Raison 1981; Boyer 1976), however the role of 
excessive PFD in inhibiting photosynthetic processes 
(" photoinhibition") is less clear, especially under field con- 
ditions. Photoinhibition has been widely studied in the lab 
(Kyle et al. 1987; Powles 1984) but few studies have deter- 
mined if photoinhibition actually limits carbon gain in natu- 
ral habitats. Field studies of photoinhibition have been re- 
ported for CAM plants (Adams 1988; Adams et al. 1987b), 
mangroves (Bj6rkman et al. 1988) and phytoplankton (Be- 
lay 1981; Elser and Kimmel 1985; Vincent et al. 1984). The 
studies with terrestrial plants have found declines in fluores- 
cence yield, Fv/FM and oxygen evolution with exposure to 
high irradiance, but have not examined the effects on net 
CO2 assimilation under field conditions. In addition, most 
of these studies have not separated the possible effects of  
PFD from temperature and water status. 

The primary objective of this study was to ascertain 
the role of leaf movements of V. californica in its natural 
habitat in avoiding damage associated with high radiation 
loads. By examining leaves of  different orientations, canopy 
positions and seasons we were able to distinguish between 
effects of PFD, temperature and water status on photosyn- 
thetic performance. 

Materials and methods 

The study species, V. californica, is a woody, deciduous 
vine native to riparian areas of northern California and 
southern Oregon (Munz and Keck 1959). Unless otherwise 
noted, all measurements were made near Davis, CA on 
a south-facing bank of a perennial stream in the Putah 
Creek Reserve, managed by the University of California 
Natural Reserve System. The study plant appeared to be 
a single, female clone covering an area of 35 by 25 m, and 
extending from ground level to a height of 10 m in adjacent 
tree canopies. Measurements were confined to leaves be- 
tween ground level and 2 m high that were exposed to full 
sun at midday. Some additional measurements were made 
on a second female clone growing in Cold Canyon Reserve 
of the University of California Natural Reserve System, 
approximately 32 km west of Davis, CA. 
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PFD was determined with horizontally-mounted, gal- 
lium-arsenide sensors (Hamamatsu Corp., San Jose CA) 
calibrated against a standard quantum sensor (LI-COR, 
Inc., Lincoln, NE). Leaf azimuths and angles were deter- 
mined with a compass and a clinometer, respectively. The 
angles and azimuths were then used with the measured PFD 
on a horizontal plane to estimate the incident PFD on indi- 
vidual leaf surfaces (Gates 1980). 

Leaf temperature measurements were made with home- 
made fine-wire copper-constantan thermocouples 
(0.076 mm diameter) or with an infrared thermometer 
(model 210, Everest Interscience, Tustin, CA). Thermocou- 
ple measurements were made by attaching two junctions 
to each abaxial leaf surface with surgical tape and then 
averaging the two readings. Infrared thermometer measure- 
ments of  leaf temperatures were made on adaxial surfaces 
and were corrected for instrument drift by frequent calibra- 
tion against a blackbody target (Telatemp Corporation, 
Fullerton, CA). The maximum leaf temperatures measured 
with the thermocouples were, on average, 2 -3~  higher 
than those measured with the infrared thermometer. 

Air temperature gradients with height were measured 
with shielded fine-wire thermocouples. Seasonal maximum 
daily air temperatures at two meters height were obtained 
from a weather station located 2 km from the study site 
and monitored by the University of California Department 
of  Land, Air and Water Resources. 

Leaves were reoriented to horizontal by supporting 
them with 20 gauge copper wire loops. 

Most measurements of net CO2 uptake were made with 
either a LI-6000 (1986) or a LI-6200 (1988) portable photo- 
synthesis system (LI-COR, Inc., Lincoln, NE), modified 
with a 0.6-1 chamber designed to contain an entire leaf. 
Steady-state gas exchange measurements were made with 
a portable gas exchange system described by Pearcy (1987), 
with the following modifications. Measurements of CO2 
concentrations were made with a Binos 1 infrared analyzer 
(Leybold*Heraus, Hanau, Fed. Rep. Germany). Air of the 
desired CO2 pressure was obtained by passing compressed 
air through an ascarite column to give CO2-free air. This 
was then mixed using mass flow controllers (Tylan Corpor- 

ation, Carson, CA) with air containing 0.4% CO2 to give 
the desired COz pressure in the leaf chamber. Air humidity 
was controlled by passing humidified air through a Peltier- 
cooled condenser made from a copper block (Field et al. 
1989). Steady-state net CO2 uptake, conductance and inter- 
cellular CO2 pressure were calculated using the equations 
of Caemmerer and Farquhar (1981). 

Chlorophyll fluorescence at 77K and 690 nm was mea- 
sured on adaxial leaf disk surfaces with a fluorometer based 
on the designs of Powles and Bj6rkman (1982) and Bj6rk- 
man and Demmig (1987). 9-mm diameter disks were placed 
in the fluorometer, given a 3-5 minute dark period at ambi- 
ent temperature to ensure reoxidation of QA (Krause and 
Weis 1984) and reverse high-energy (delta pH) fluorescence 
quenching (Krause et al. 1983), and then frozen by addition 
of liquid nitrogen. The initial fluorescence (F0) was deter- 
mined as the essentially instantaneous signal obtained by 
exposing the frozen, dark-adapted leaf disks to 
0.2-0.4 ~tmol photons m - 2  s-1 at 470 nm. The maximum 
fluorescence (FM) was measured by first giving a 1-minute 
exposure to 2 pmol photons m -2 s-1, fully reducing QA, 
and then returning the excitation light to 0.2-0.4 ~tmol pho- 
tons m -  2 s-  1. The variable fluorescence (Fv) was the differ- 
ence between F0 and FM. 

Fluorescence measurements were made on samples col- 
lected shortly before dawn, when maximum recovery from 
any short-term irradiance effects would have occurred. 
Samples were collected before sunrise, placed in dark con- 
tainers on ice, and measured 1/4 to 4 h later. Preliminary 
studies indicated that leaf disks collected before dawn could 
be stored this way and assayed up to four hours later with 
little change in fluorescence characteristics. 

Fluorescence data is expressed as Fv/FM for two reasons. 
1) This ratio of two absolute fluorescence values tends to 
normalize differences due to absorptance, chlorophyll con- 
centration and drift in instrument electronics. 2) There have 
been several reports that the Fv/FM ratio is linearly related 
to the CO2-saturated photon yield of oxygen evolution 
(Bj6rkman and Demmig 1987; Demmig and Bj6rkman 
1987; Adams et al. 1987 a). Others have found a curvilinear 
relationship (Gamon and Pearcy, in preparation; Greer 
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et al. 1988). Regardless of  the shape of  this relationship, 
Fv/FM is an estimate o f  photosystem II photochemical effi- 
ciency (Bj6rkman 1987b) and thus is a useful assay for 
light- or heat-induced damage to the reaction center. 

R e s u l t s  

V. californica leaves in full sun exhibited seasonal and diur- 
nal leaf movements, primarily involving changes in leaf an- 
gle (Fig. 1), with little change in azimuth (not shown). These 
movements tended to reduce incident PFD at midday in 
midsummer (Fig. 2a) when midday water potentials were 
low and maximum daily air temperatures were high 
(Fig. 2b). 

The peak daily CO2 uptake rates of  unrestrained leaves 
reached a maximum early in the season, and then declined 
gradually during the summer (Fig. 2c). In contrast, the pre- 
dawn Fv/FM values of  these leaves changed little during 
this period (Fig. 2c), indicating that photosystem II photo- 
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chemical efficiency was maintained when leaves were free 
to move. 

There was no evidence for an adverse effect of  the in- 
crease in P F D  following reorientation on net photosynthe- 
sis. In May, 1986, when daily maximum air temperatures 
had not  exceeded 35 ~ C (see Fig. 2b), most  horizontal leaves 
had peak daily photosynthetic rates that were equal to or 
higher than those of  unrestrained controls (Fig. 3 a). There 
was a slight decline in predawn Fv/FM with increased PFD 
(Fig. 3b). The lack of  any large decline in photosynthetic 
rates or Fv/FM following horizontal reorientation indicated 
that these leaves were able to tolerate higher light levels 
than normally encountered by unrestrained leaves. 

In contrast, leaves that were reoriented horizontally in 
mid-July exhibited an abrupt  decline and subsequent partial 
recovery in both peak daily net CO2 uptake and predawn 
Fv/FM (Fig. 4). At  the same time, there was a decline and 
recovery in both the photon  yield region and the light satu- 
rated region of  the light-response curves of  assimilation 
(Fig. 5). Apparent  photon  yields calculated from the initial 
slopes of  these curves were 0.032, 0.019 and 0.024 real CO2 
mol p h o t o n -  t, respectively. Similarly, net CO2 uptake plot- 
ted as a function of  intercellular COz pressure exhibited 
a decline and recovery at all CO2 concentrations (Fig. 6). 
These results suggested a concerted loss of  function of  many 
photosynthetic components and an ability of  these compo- 
nents to partially recover over several weeks. 

PFD on a horizontal plane was essentially equal in May 
and July, 1986 (Fig. 2a) and thus could not  account for 
the greater inhibition of  photosynthetic processes by hori- 
zontal reorientation in midsummer as compared to spring. 
However, it seemed possible that seasonal differences in 
leaf age, water status or leaf temperature could account 
for the seasonal differences in photosynthetic performance. 
Because our 1986 data did not distinguish between the pos- 
sible effects of  these factors, we examined their effects on 
net CO2 uptake and fluorescence in more detail in 1988. 
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The measurements in 1988 examined the consequences 
of natural variations in temperature as a function of both 
orientation and height above the ground (Fig. 7). Maxi- 
mum daily temperatures of unrestrained leaves were usually 
closely coupled to air temperature, which decreased mark- 
edly with height. In contrast, horizontal leaves typically 
reached maximum temperatures that were several degrees 
higher than unrestrained leaves of similar height. 

In the spring of 1988 a cohort of  leaves of similar sun 
exposure was divided according to height above the ground 
(<  0.4 meters or > 0.7 m) and orientation (restrained hori- 
zontally or unrestrained). Seasonal trends in peak daily leaf 
and air temperatures, midday water potential and net CO2 
uptake for these leaves are illustrated in Fig. 8. These four 
groups of leaves had essentially equivalent photosynthetic 
rates at the start of the study in May. In late spring, hori- 
zontal leaves developed the highest photosynthetic rates, 
provided they were high in the canopy where temperatures 
were low. This supported the earlier conclusion that high 
PFD p e r  se had no adverse impact on net CO2 uptake. 
Similarly aged horizontal leaves near the ground con- 
sistently reached the highest temperatures and had the low- 
est photosynthetic rates, and all leaves in this group were 
dead by August. With the onset of hot, summer conditions 
in late June, photosynthetic rates in all leaves became inver- 
sely correlated with daily peak leaf temperatures regardless 
of orientation. Differences in water status were probably 
not responsible for the different photosynthetic rates ob- 
served; the lower leaves had slightly higher average midday 
water potentials than the higher leaves (Fig. 8 a). There were 
no differences in midday water potentials between horizon- 
tal and vertical leaves (data not shown). These results indi- 
cated that leaf temperature, not incident PFD, water status 
or leaf age, was the overriding determinant of photosyn- 
thetic performance. 
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The strong correlation of maximum daily leaf tempera- 
ture with maximum daily photosynthetic rate is further il- 
lustrated in Fig. 9. The relationship was the same for all 
leaves regardless of their orientation or height above the 
ground. In contrast, when peak photosynthetic rates in July 
were plotted as a function of daily incident PFD on a subset 
of the same leaves, a single correlation was not  observed. 
Rather, points fell on one of two relationships according 
to leaf position in the canopy (Fig. 10a). 

Fluorescence measurements in July, 1988, indicated that 
the substantial decline in Fv/FM previously observed in mid- 
summer of 1986 upon increased irradiance following hori- 
zontal reorientat ion (Fig. 4b) had partly been due to high 
leaf temperatures. Results in 1988 indicated almost no de- 
cline in Fv/Fm with increasing PFD in leaves high in the 
canopy where temperatures were cooler (dashed line, 
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Fig. 10b); however, the hotter leaves close to the ground 
showed a substantial decline in Fv/Fm with increasing PFD 
(solid line, Fig. 10b). 

D i s c u s s i o n  

By attenuating radiation loads at midday in midsummer,  
V. californica leaf movements  maintained photosynthetic 
function and avoided premature senescence. This appeared 
to be particularly impor tant  for sun leaves near the ground, 
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where temperatures reached high values in midsummer. In 
leaves restrained horizontally, photosynthetic rates were 
lower over most  o f  the growing season as compared to 
unrestrained leaves o f  similar canopy position. In freely 
moving leaves, incident P F D  levels at midday in midsum- 
mer (Fig. 2a) were near or slightly below light-saturating 
levels. Thus any further reduction in P F D  would have prob- 
ably lowered net COz uptake. These observations appear 
to support the hypothesis that leaf movements allow a com- 
promise between light interception and stress avoidance so 
as to maximize carbon gain over the life o f  the leaf. 

The main cause of  reduced photosynthesis in horizontal 
leaves appeared to be high temperatures rather than high 
PFD or low water potentials. In contrast, when Fv/F~ was 
plotted against P F D  (Figs. 3 and 10), the resulting slopes 
varied with temperature, indicating that the declines in Fv/ 
FM in this species involved interactive effects of  high temper- 
atures with high PFD. Similar interactive effects of  light 
and temperature have been reported for other species (Lud- 
low 1987; Ludlow and Bj t rkman 1984), and may be due 
to differences in the temperature sensitivities of  damage 
and repair processes (Greer et al. 1986; Ludlow 1987). To 
our knowledge, this is the first documentat ion o f  such ef- 
fects in a wild plant. More work needs to be done to further 
elucidate the possible impact of  interactive light and tem- 
perature effects on the overall physiology, survival and pro- 
ductivity o f  wild species, especially those lacking light- 
avoiding leaf movements. 

Our results differ from those of  Adams et al. (1987b) 
who concluded that Opuntia basilaris cladodes exposed to 
full sun exhibit " ch ron ic"  photoinhibition. There is also 
evidence for severe declines in Fv/FM and photon  yield in 
a variety of  other CAM (Adams 1988) and mangrove 
(BjSrkman et al. 1988) species. Because high P F D  and high 
temperature often co-occur in the field, it is possible that 
the inhibition of  photosynthetic processes attributed to high 
PFD in these species was, in part, due to high temperature 
during high irradiance. In V. californica, leaf movements 
ensured that damage by high light and temperature did 
not  occur. Similar observations have been made with potted 
Macroptilium atropurpureum cv. Siratro exhibiting parahe- 
liotropic movements (Ludlow and Bj t rkman  1984). 

Although the lack o f  photoinhibition in unrestrained 
V. californica leaves is largely attributable to their move- 
ments, other protective mechanisms such as non-radiative 
dissipation (Bj t rkman 1987a; Demmig etal.  1987) may 
have been operating. The predawn fluorescence measure- 
ments and peak daily photosynthetic rates reported in this 
study reflect maximal daily values of  photochemical effi- 
ciency and photosynthetic capacity, respectively. The reduc- 
tions in these values seen in horizontally restrained leaves 
exposed to high temperatures imply severe, long-term dam- 
age to one or more of  the partial processes of  photosynthe- 
sis. Diurnal changes in leaf gas exchange and chlorophyll 
fluorescence in V. californica, reflecting readily reversible 
processes, are described in a separate study (Gamon and 
Pearcy, in preparation). 
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