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Abstract 

We consider a system of N spheres interacting through elastic collisions at 
a stochastic distance. In the limit N--> co, for a suitable rescaling of the inter- 
action parameters, we prove that the one-particle distribution function converges 
to a local Maxwellian, whose gross density, velocity, and temperature satisfy the 
Euler equation. 

1. Introduction 

In this paper we prove that solutions of the Euler equation for compressible 
fluids can be approximated by solutions of an equation describing the dynamics 
of suitable systems of particles. To be more specific consider density, velocity, 
and temperature fields, 5, u and T, which constitute a smooth solution of the 
Euler equations (up to some time to, before the appearance of the first singularity) 
and construct a local Maxwellian M whose mean density, velocity, and tem- 
perature are given by 5, u and T, respectively. 

Consider also a system of particles interacting through elastic collisions with 
stochastic distance of interaction. We prove that M is well approximated by the 
time dependent one-particle distribution function of our system, provided that 
the number of particles is sufficiently large and that the initial distribution and 
the parameters of collision are suitably chosen. 

For two different reasons we do not claim that this result is a "derivation" 
of the Euler equation. The first is that our starting point is a stochastic system, 
so that we are not really able to construct the hydrodynamical picture fi'om New- 
ton's laws of motion. The second is that we are not following the correct physical 
procedure in deriving the Euler equations. This derivation is believed to hold 
(starting from realistic physical systems) under a hyperbolic space-time scaling. 
A fluid is in fact a continuum of points, each of which is, microscopically, a system 
consisting of a large number of particles in (local) thermal equilibrium. The 



82 M. LACHOWICZ ~r M. PULVIRENTI 

parameters of local equilibrium, ~, u, T, then evolve according to the Euler 
equation. 

Thus to describe a fluid in terms of the molecules one has to scale the space 
(to localize the microscopic structure) and the time (to reach the local equilibrium). 

We direct the reader to [41 for a survey of the hydrodynamical behavior of 
many-particle systems. 

An intermediate regime is that described by the Boltzmann equation in which, 
with the space-time scaling, the interaction is made weaker and weaker. This 
corresponds, from a physical point of view, to a rarefaction hypothesis and is 
equivalent to the well known Boltzmann-Grad limit. 

The regime of fluid dynamics can also be recovered from the Boltzmann 
equation in the limit e-~ 0, where e is the mean free path. 

Rigorous results in this last direction are known (see [2], [8]), while there 
has been no significant progress in deriving the Euler equations on the basis of 
Hamiltonian dynamics. 

Very little is known even for the problem (which is in principle easier) of 
deriving the Boltzmann equation [51, [6], [10], [13]. 

Our result is obtained through a sequence of steps which will be illustrated 
in Section 3, where also we establish the main result. 

The model and related equations will be introduced in Section 2. Section 4 
and 5 are devoted to the proofs. 

2. The Model 

We consider a system of N particles located at the points x l  . . . .  , x N on a 
rectangular domain D ~ R a. The dynamics of the system is the following: the 
particles move freely unless a pair of them undergo an elastic collision, as ex- 
pressed by the following formula: 

v '  i -~- v i - -  n o ( n i j "  (v  i - -  v j ) ) ,  

v j  - v j  + nU(n~ j �9 ( v i -  v j ) )  
(2.1) 

x l  - -  x j  
where nia - -  i x  ` __ x j  I" 

Here v; and v~. denote the outgoing velocities, where the ingoing velocities 
are given by v i and vj provided that ni~" (vi  - -  vj) < 0.  

Each binary collision takes place according to a stochastic law: the collision 
times for each pair i and j of particles are independent Poisson processes with 
intensity given by the function q;(xi,  x j ;  vi, vj) I n i j "  (vi - -  vj) I and ~o is given by 

~O(Xi, Xj'~ I) b l)j) = 09Z()X i - -  Xj} < I )  z ( l v  i - -  uj] ~ O) (2.2) 

where I ( R  1 is an interval, co and 0 > 0 are parameters and Z (something) 
is the characteristic function of the set of variables in which "something" hap- 
pens. 



Stochastic Model of the Euler Equations 83 

The basic evolution equation has the following form: 

N 

D t f N ( t ;  x l ,  v l ,  . . . ,  XN, VN) = �89 ~ q)(Xi, Xj; Vi, Vi) 
i,j = 1 

• ln,j(vi - -  vj) l {H(n i j "  (vi - -  V j ) ) f g ( t ;  X , ,  V , , . . . ,  Xi, V ' i , . . . ,  X 1, Vj . . . .  , XN, VN) 

- -H( - -nq(v  i - -  Vj)) fN(t;  Xl, V, . . . .  , XN, VN) } 

~" ( L N f  N) (t; Xl,  Vl . . . . .  XN, VN) (2.3) 

where f U  is the N-particle distribution function describing the probability density 
for finding the N particles in the points x t ,  . . . ,  XNE Q with velocities vl, . . . ,  
VN E F~ 3 at the time t ~ 0. H is the usual step function 

,1 if x ~ O, 
H ( x )  = t0 if x < 0. (2.4) 

Finally we put 

D, = 0, + N vi Gi" (2.5) 
i 

To avoid the boundary conditions we assume that all functions are periodic 
with respect to xl,  . . . ,  xN, which means that O is a toms. Consequently in 
the previous formulas lx -- y ] means the distance on the torus of two points x 
and y. 

Moreover we assume that all functions are symmetric with respect to exchange 
of the particles. 

The s-particle distribution functions are defined as 

fN'*(t;  x , ,  v ,  . . . .  , x , ,  v,) = f S v ( t ;  x , ,  v ,  . . . .  , X~v, VN) dx~+, d r , + , . . ,  dxN dvN. 

(2.6) 

By a standard argument we can show that {fN'*}~_--ll satisfies the following 
finite hierarchy of equations: 

Dtf~ '*( t ;  x l ,  Vl . . . . .  x , ,  v 3 = ( L , f  u'*) (t; x, ,  v, . . . . .  Xs, v,) 

AU (N --  s) k dxs+l dVs+l q)(xi, g s + l ;  ui, vs-bl) Ini,s+l(Vi - -  Vs+l) I 
i = 1  

• {Hi . ,+ , fN ' s+1( t ;  Xl ,  v l  . . . . .  X,, v; . . . .  Xs+,, v',+,) 

- -  Hi•+l fN ' s+ l ( t ;  Xl ,  V, . . . . .  X,+I,  V,+I)}. (2.7) 

Here Ls denotes the operator defined in (2.3) and we have used the shorthand 
notation 

Hid =- H(nio"  (vi - vj)), H - ( x )  = H ( - - x ) .  

The hierarchy (2.7) corresponds to the usual BBKGY hierarchy (cfr. [5], [6], 
[7], [10], [13], [14]) for hard spheres. Actually the hierarchy defined in (2.7) con- 
verges, at least formally, to the usual BBKGY hierarchy for hard spheres of dia- 
meter d, when 0 : +0% I = [d, d + V], w : 1/% in the limit ~7 ---> 0. 
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Since we are interested in other kinds of asymptotic behavior we shall not 
discuss this point further. 

From now on we shall use the definitions and notations 

3 1 
. . . . . . . . . .  , ~ > 0. (2.8) I = [ 0 , ~ ] ,  6 > 0 ,  o) NO 3 e 

From a physical point of view e is a measure of the mean free path. 
Formally making N tend to infinity, we obtain the following hierarchy of 

equations: 

3 
(Dt f f )  (t; x~, v~,... ,  x~, v~) = ~-~ i~ f z( lx ,  - x~+~ [ < ~) z(lv, - v~+~ l < O) 

X Inij (v i -  v~rCH ~'~+a~t" ' . . .  ' " J) I'k i , s + l J  k , X i~  l):b ' ' ' ,  Xi ,  Ui~ X s + l ~  /)s-bl) 

-- H S + l f  v'~+l (t; xl, vl, ..., x~+l, v,+1)} dx,+l dv~+l. (2.9) 

As we do for the Boltzmann hierarchy (cfr. [I0], [13], [14]), we expect that the 
propagation of chaos holds for the above hierarchy. Namely, suppose the par- 
ticles are initially identically and independently distributed according to a distri- 
bution density F = F(x, v); then at later times, they are identically and inde- 
pendently distributed according to a solution of the following Povzner equation 
(cfr. [12]) with a cutoff of the collision kernel: 

(DtfP.o) (t; x,, v~) = d3% - f z ( I  x~ --  x21 < ~) Z([ v~ --  v21 < O) 

• [,,,,~" (,,~ - -  v2)]{H1,2f~.o(t; xl ,  v;)fp, o(t; x2, v;) 

- -  H~,2fp, o(t; x t ,  vl) fp,  o(t; x2, v2h dx2 dr2 (2.10) 

and with initial datum fp, o(O, x, v) = F(x, v). 
We also consider the function re, a solution of the Povzner equation, obtained 

by putting 0 = §  in (2.10). The Povzner equation is a certain modified 
Boltzmann equation in which the stochastic nature of the collisions in the under- 
lying model results in a spatial smearing, whereas in the Boltzmann equation the 
deterministic collision law gives rise to a strictly local interaction. Formally, the 
Boltzmann equation is obtained from the Povzner equation by making d tend to 
zero: 

(Dt fs)  (t; x, vt) = + f dv2 f dn~.2n~,z " (v~ --  vz) H(n~,z " (v~ - -  v2)) (2.1I) 

• {fB(t; x, v;)fB(t; x, v;) - iS(t; x, vl)fB(t; x, v2)}. 

The right-hand side of Equation (2.11) vanishes only on the local Maxwellians, 
i .e.  on functions of the kind 

3 { (v - .(t, x)) 2] 
M(t; x, 0 ---- ~(t, x) (2~r(t, x ) ) - ~ e x p  \ $ ~ x ~  1" (2.12) 
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In this paper we wish to compare the time evolution of the one-particle distribu- 
tion function f;r obeying the first equation of the hierarchy (2.7), with a local 
MaxweUian (2.12), where the hydrodynamical parameters Q, u, T satisfy the Euler 
equations. We shall prove that the difference can be made arbitrarily small 
provided that the parameters N, 8, e, 0 are suitably chosen. 

3. Main Result and Outline of  the Proof  

In this paper the letter c (with or without subscripts) is reserved for positive 
constants, independent of all the relevant variables and the parameters N, s, 0, 8 
and e. When the letter c occurs in a formula, the formula is assumed to be valid 
for some particular e. 

We shall denote by [['[11 the L1 norm with respect to Lebesgue measure. 
The starting point of our analysis is the existence of unique solutions in the 

interval [0, to]: 

Q, u, TE Cm([0, to1; C"(Q)), (3.1) 

of the system of Euler equations for compressible fluids such that 

inf e > 0 ,  inf T > 0 .  (3.2) 
[0,to] X s [0,to]Xg2 

The indices m and n can be arbitrarily large if the initial conditions are sufficiently 
smooth. (See, for example [11].) 

We denote by M the local Maxwellian (2.12) with ~, u, T Nven by such a solu- 
tion of the Euler equation and by M+ a global Maxwellian (i.e. a Maxwellian 
with constant parameters) such that 

sup (1 + /)2) ~/2 M(t, x, v) ~ c~M+(v) (3.3) 
tEi0,to] 

x ~  

for all ~ E R 1. 
We are now im position to formulate our main result. 

Theorem 1. Let m and n be sufficiently large. Then .for all a > O, there exist 
~o(a), 8o(a, e), Oo(a, e, 8) and No(a, e, 8, O) such that if e ~ Co, 6 ~ 80, 0 ~ 0o, 
N ~ No, then 

sup II M - -  f N , 1  [I1 < a, (3.4) 
[O,to] 

where {fN'*}~= 1 is the solution of  the hierarchy (2.7) with initial condition 

fN'~(O; xl, v~ . . . .  , x~, v,) = l?I M(O; xj, vj). 
j ~ l  

The proof of Theorem 1 is carried out in the following steps. 
First we investigate the Boltzmann-Grad limit for our particle system and 

prove 
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Theorem2. Let 0 <  6, e, 0 < c %  O <= FE LI( f2•  I[FI} 1 = 1, F >= O. Then 
there exist unique , nonnegative functions flv, s forming the mild solution of  (2.7) 
with initial data 

fN's(o;  Xl,  Vl, . . .  gs, Vs) = f i  F(Xi, Vi) (3 .5)  
i~1 

and a unique solution fe, o o f  the eutoff Povzner equation (2.10), such that 

sup Ill N,' - fp,  olh < exp {--2-z~176 l n N  § CtoF}, (3.6) 
[0,to] 

24~ 
where ]1 = e6a.  

A similar result has already been proven in [3] in a weak sense and by means 
of a compactness argument. For our purposes the present form of the result is 
needed. 

We remark that it is only in the proof of Theorem 2 that the stochastic nature 
of the basic system is used to smooth the interaction of the particles. 

The proof of Theorem 2 will be given in Section 4. A second step removes 
the cutoff 0. 

Theorem 3. Suppose 0 <-- F <~ M ~. Then there exist a unique positive solution f e  
o f  the Povzner equation, with initial datum F, and two positive constants A(e, 6), 
B(e, 6) depending only on e and O, such that 

A(~, 0 
sup I[fP --fp,  o[[~ < - - e x p  (B(e, 6) to). (3.7) 
[0,to] = 0 

The proof of Theorem 3 follows the ideas of ARKERYD [l] developed in the 
context of the homogeneous Boltzmann equation. For the proof see Section 5. 

As a third step we compare fp with a suitable solution f~ of the Boltzmann 
equation exhibiting hydrodynamical behavior. The existence of such a solution 
has been proved in [2], [8]. To formulate precisely the result we need to introduce 
the following space. Let 

IlfllM = sup~ ((1 + v2) ~/2 M+-~(v) Hf(', v,)j[tg(o) ) (3.8) 

where H21([2) is the usual Sobolev norm. Denote by X~, t the Banach space equipped 
with the norm (3.8). Then 

Theorem 4. There exist eo > 0 
o f  the Boltzmann equation (2.11), 
M(0; x, x), o f  the form 

where q~ is such that 

for 0 < e~eo ,  

f B =  M + e~b 

and a unique, nonnegative, classical solution fB 
with initial datum Mo(x, v) = 

sup It q~ [[~,t < c~ 
[0,to] 

for  all t3 and sufficiently large I, depending on m and n. 

(3.9) 

(3.1o) 
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The proof of Theorem 4 follows by the analysis given in [8] where a stronger 
result, including the initial layer effect, was obtained. 

We remark that fB is nonnegative as follows by general arguments. 
Now we are in position to formulate the last step; namely to compare f e  

with fB. 

Theorem 5. Let fg  be as in Theorem 4 and fe  be a soh~tion of  the Povzner equation 
with the same initial datum. Then i f  ~ ~ do(e), 

sup ]]fB--f?}l~ ~ ct/~. (3.it) 
[0,td 

The proof of Theorem 1 follows easily by collecting all the error terms as 
given by the estimates in Theorems 2, 3, 4, 5. 

4. Proof of Theorem 2 

First we consider the basic evolution equation (2.3) in the following integral 
form: 

t 
fN( t )  o S~,,,(t) = F N + f (LU f N) (t~) o S(t~) dt~, (4.1) 

0 

where 
N 

F;V(xl, va . . . . .  XN, VN) = ~ F(xi, vi) 
i~1 

is the initial datum and 

(4.2) 

Su( t )  : ( ~  •  (O • 

S N ( t )  (X t ,  Vl . . . . .  XN, VN) = (XI § Vl t ,  Vl . . . .  , X N § VNt, VN). 
(4.3) 

Since L u is a linear, bounded operator in L~((s215 R3)N), existence and unique- 
ness for the equation (4.1) is a trivial problem. 

Consider now the (infinite) hierarchy (2.9) and denote by %'+~ the operator 
appearing in the right-hand side, i.e. 

We have 

DS~(t) = ~'+lf '+1(t) .  

60s ~+i 
o,+l ~+1, < _ 2 ~  Ill It~ z~. j ill == 

(4.4) 

(4.5) 

The mild form of Equation (4.4) has a solution given by the formal perturbation 
series 

k t t ~ / n  - 1 
f ( t )  = F 'o  sa t )  + f dtl f dt2 ... dt,~ (4.6) 

n~ l  0 0 0 

( ~ , + i  . . .  (~t,+n(F,+,, o &+~(t~)) o &+~_ l ( t~  - -  t ~ - 3  . . . )  o &+~ (t - -  t~) 
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where F ~ is the initial condition assumed to be a product of identical densities" 

F~(x,1, vl . . . . .  x~, v~) = ~[  F(xj, vj). (4.7) 
j=l  

The L~ norm of the //th term of the series (4.6) can be estimated by 

60]"  1 ( 2 s q - n - -  1)! t n (4.8) 7., ( s - - l ) !  
e 63 

Choosing t ,  = 240 '  we can see that the series converges uniformly for 
t6  [0, t ,].  

By the same method we can prove that the solution we have constructed for 
t E [0, t*] is unique. 

It is easy to realize that the series expansion (4.6) also provides a solution for 
products of  the cutoff Povzner equation (2.10) so that we have 

s 

f~(t; x~, vl, . . . ,  x~, v~) = I-[ fe, o(t; x~, vj), (4.9) 
j = l  

The positivity of  fe, o (and hence of f~) follows by general arguments (see for 
example [1]). 
Moreover, since 

f ~ f ~  d x ~ f v a . . ,  dx,  dv~ = 0 (4.10) 

the L~ norm o f f ' ( t )  is preserved during the motion and hence, assuming F ( t , )  
as initial datum, we can prove the convergence of the series for t E [t,, 2t ,]  
and so on. 

The difference 
~ U ' s ( t )  = f:v,'(t) -- T ( t )  (4.11) 

satisfies the following equation (for t~ ~ t and s ~ N): 

f 

A~C'~(t) = ~tN'~(t, h )  + f dt2( 9~+1 A~c"+a(t2)) ~ S,(t2 -- t) dr2 (4.12) 
t l  

where 

92N'~(t, tl) = AX'*(h) o Ss(t -- h )  

q- t f  dt2 {LS fN'~ --  

Letting t k -----t,k and 

a~ ---- sup 
t~[tk--l,t k] 

N g ~ + l f  N's+l} (t2) o S,(t2 -- t l ) .  (4.13) 

I[AN's(t) lit (4.14) 

we shall prove the bound 

where 
a~ =< exp {--~k in N + Z~} 

~~ = 2---'(k+l)' /3k = 2 In 2' 

for s G/3i, In N (4.15) 

= (5 in 2) k.  (4.16) 
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The bound (4,15) will proven by iteration on k. It will be assumed for k -- 1 
if k >  1, and otherwise we shall use AU'S(to) = 0. By (4.13) for tE [tk~ 1, tk] 

s z [120~ 
ll~N"(t, t~-~)!lx =<= ItAN'~(tk-~)!ll + - ~  t, \-2~] . (4.17) 

By the hypothesis of induction, since for s < / 3  k In N ; k <  r-lit_.. I = = -k 1 and N 

sufficiently large 

we have 

SZ < L 2--4( kq- 1) ( In  N ]z N : N k2-'~n2] ~ C--r ~-  O~k--I' (4.18) 

II~J~N's(t, tk_l)[I ~ 2ock_ ~ . (4.19) 

Therefore, by (4.12), 
t /60  \ 

llA~'~(t)th < 2~xk_t + j dtls [_--35/I1AN'S+l(q)]ll �9 (4.20) 
tk_l \ e O I  

We iterate the above inequality up to the largest n for which s + n ~/3k-1 In N 
(in order to satiafy the hypothesis of induction). Thus we obtain 

I]AN's (t)']I < 2C~k-, 2 (I't,/4)' 2S(S + 1).. .(S + n ) ( ~ _ ) n  
-= l= o l'----Tf--, s(s + 1). . .  (s + 1) + (n + 1)! 

(4.21) 

where the last term on the right-hand side of (4.21) is obtained by using the 
obvious bound 

Therefore 

I[dN, x(t)[[z ~ 2. 

4 ~ 4c%_ I2' -k 2(�89 U. (4.22) 

For s ~ fl~ln N we have 

a~ ~ exp{--q)k_t l n N @  Zk-1 § 21n 2-~ l n 2 f l k l n N  } 

§ exp {2 In 2 + 2 In 2/3 k In N -- In 2/3k_ 1 In N} (4.23) 

By our choice of qgk, /3 k and Z k we easily obtain the estimate (4.15) and from this, 
we complete the proof of Theorem 2. 

5. Proof of Theorems 3 and 5 

Proof of Theorem 3. Following [1] we can construct unique positive solutionsfe,0 
of (2.10) and also fe, solution of the Povzner equation without cutoff 0 satisfying 
the Conservation of energy and mass and the following bound: 

sup sup j(f(t)14 <= CF(e, 8) (5.1) 
0 t 
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where Cr(e, d) is some positive constant depending only on s, d and on the initial 
datum F, and 

If[~, = f d x  dv(l + v2) ~!2 If(x, v)[ (5.2) 

To estimate the difference Ao = J~,o --re,  we introduce the following equation 
ef  [1] Part II, Theorem 1.1): 

D , ) ~ . 0 + e L , 0 =  + -  - - Qo (fe, o, fe, o) Q-(frv, o, ffe, o) + R(fe, o,f~,,o), (5.3) 

where Q+ and Q- denote the gain term in the cutoff symmetrized collision oper- 
ator of the Povzner equation and the loss term in the symmetrized collision oper- 
ator when there is no cutoff, 

and 

cq_ 
P(v 0 = ~ (I + v~) fFf2, c+ a large constant, (5.4) 

c+ (1 + v~)A(x~, v~) IA 12 (5.5) R(A,U~) (x~, v~) = ~ 

The unique mild solution of (5.3) with F as initial datum is such that 

0 _=fe, o <-fe, o~ <~fP for 0 =< 0~, (5.6) 

and 

Therefore 

o L,o<=L,o. 

d ; = f ~ , o - f p ,  o and ~ o ' = Y ~ - - Z . , o  (5.7) 

are nonnegative functions and Ao can easily be estimated in terms of A~ and A;'. 
We have 

DtA; = Q+(Ao, fp, o -~ ~,o) -- Qo (Ao, fp, o -? J~,0) 

+ Q-(f,.,o,f.,o) - Qo(f..o, fe, o) + Pfe, o - R(fe, o, fe, o) (5.8) 

with initial datum A;(0) = 0. 
Integrating Equation (5.8) with respect to (1 + v 2) dv dx, we obtain 

C p 
d lA;12 < I(O- (L,o,L,o)t  tL, ol4 lAol . (5.9) 
dt = 

Here the estimate iliFlz --Ife,  olzIl ~ tA'otz has been used. 
Finally we bound the first term on the right-hand side of (5.9) by 

1 e 
0 e 6 3 Ife, o(t)t]. (5.10) 

A t '  An analogous estimate can be obtained for 0 2, so that the uniform estimate 
(in 0) on lfe, o(t)14 and Ife(t)14 (see (5.1)) allow us to conclude the proof of 
Theorem 3. 
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P r o o f  o f  Theorem 5. Putting 

f e  = fB q- ]/~ h, (5.11) 

we have for h the following weakly nonlinear equation 

-'VX  ̂ , , 

oth = TO~(f~, h) + O~(h, h) + -T- o (f~ f . )  h(O) = 0,  (5.12) 

1 
in w h i c h ~  Qo denotes the symmetrized Povzner collision operator in which the 

e 
dependence on 8 is explicitly taken into account and 

1 
de = -T (Q~ - o ) '  (5.13) 

where Q is the symmetrized Boltzmann collision operator. 
Let us first consider the linear problem associated to (5.12): 

1 1 
Dth -t- -~%"  h =--K~he -t- Q~(q~, h) -t- G (5.14) 

with initial data 

hl,=o = O, (5.15) 

where 

1 6 

~ ( x ,  ~) = 

• M(x,  + ~"~2, v2) In~" ( ~  --  ~2)1, (5.16) 

Kef = Q~(M, f )  -- % " f (5.17) 

q~ is given in (3.9) and G is considered to be a known function. 
It is well known that a solution of the problem 

1 
Dtha § --~% . h~ = O, h~ It=0 = ho (5.18) 

satisfies the following estimate: 

Ilhl(t, ", v)ll~zt(o)~ c exp ( - - e t ( l e  + lvl))llh~ (~)" (5.19) 

Thus by (3.10) a solution h of (5.14) with initial data (5.15) satisfies 

C t 

]Ih(t)ll~,z <=-- f ]]h(q)ll~,t dtt -~ c" e sup llhllr + c" e sup ]1Gl]~-a,z (5.20) 
8 0 [o,t] [o,t] 

for all t E [0, to]. Choosing e sufficiently small, we obtain 

C t 

sup II h II~0z < T o f II h(ta)]l~,z dtl + c sup l[ G [t ~-l, (5.21) 
to,t] [o,t] 
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for all t E [0, to]. Applying the Gronwall lemma, we obtain 

Now assuming that 

to,tdsuplfhrr~'t~cexp(~-) supIIG[la-l"t'to,tol (5.22) 

0 <  d ~ d l e x p ( - - c e t - ~  ~ (5.23) 

for some properly chosen constants ~ ,  d2 > 0, we can prove the existence of 
a solution of the nonlinear problem (5.12) by the usual successive approximation 
method as in [8] and [9]. In fact by Grad-type estimation (see [8]) we have 

IfQ~(h, h)lla-l,t ~ c [Ihl[~,t (5.24) 

provided that l => 2. Moreover by Theorem 4 we can consider fB to be given 
and sufficiently smooth with respect to the x-variable, so that 

IIO.~(A, A)ll~-~,t-<- c. (5.25) 

Thus the nonlinear problem (5.12) has a unique solution h in the space X~,~ 
and 

II h [I~,1 ~ c. (5.26) 

Now (3.11) immediately follows. 
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