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Abstract 

Let D C R~r be a cone with vertex at the origin i.e., D = (0, oo) • ~ where 
~QC S N-j and x E D  if  and only if x = (r,O) with r = Ixi, O E D .  Weconsider 
the initial boundary value problem: ut = A u  + u p in D•  T), u -- 0 on 
OD• T) with u(x, 0) = Uo(X) ~ 0 .  Let ~o~ denote the smallest Dirichlet 
eigenvalue for the Laplace-Beltrami operator on f2 and let y+ denote the positive 
root of 7(7 -k N - -  2) = ~o 1. Let p* = 1 + 2 / (N  -? 7+). If  I < p < p*, no 
positive global solution exists. I f  p > p*, positive global solutions do exist. 
Extensions are given to the same problem for ut = A u -k [ x ]~ u p. 

I. Introduction 

Let D C R N be a domain with a piecewise smooth boundary or all of R N. 
We consider nonnegative classical solutions of  

~u 
9-7 = Au + u p (x, t) ~ D • (0, r ) ,  (p) 

u(x, t) = 0 (x. t )E  OD • (0, T) ,  

u(x, O) = Uo(X) x C D 

where Uo ~ 0 and p > 1. It is well known that not all solutions of (P) are global. 
This follows from several sources. See [5, 6, 9, 12] for example. 

When D ----- R N, FUJITA proved that if 1 < p  < 1 -k 2 / N = ~ p * ,  no positive 
global solutions exist. He also showed that if p > p*, positive global solutions 
do exist. Later several authors proved that p* belongs to the former case [1, 8, 
10, 11, 20]. 

In [15], MEIER proved that if kE {1, . . . ,  N} is fixed and 

D = Dk = ( (x l  . . . . .  xN) l x l  > O . . . .  ,xk > 0} 
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and if p* ~ 1 + 2/(N 4- k), then both statements of FuJITA hold in this case with 
this value of  p*. 

More recently BANDLE & LEVlNE [2] undertook the study of (P) when D is 
a c o n e  with vertex at the origin. That is, x C D  if and only if x = ( r ,  0), 
where r = txl and ~ E/2  where /2 Q S N-1 is a region with boundary, ~Q. 
We assume 9-O is smooth enough to permit integration by parts. Let co~ denote 
the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator o n / 2  and 7+ 
denote the positive root of 7(7 + N -  2) = ~o~. Let 

p = 1 q-- 2/(N 4- v+), 

: rain [1 4- 2 / ( N -  2 4- 7+), 1 + 2IN]. 

They showed that if 1 < p < p, 

also showed that if 

no positive global solutions were possible. They 

(N + 1)/(N-- 3) if N > 3  a n d f f <  l + 2 / N ,  

if  N : 2 , 3  o r / S =  1 + 2 / N  

then positive global solutions do exist. When N : 2, 3 or /S < 1 + 2/N, they 
showed more but those results need not concern us here. 

In view of MEI~R'S result, he conjectured that in the case of a general cone, 
p =: p*, i.e., p is the cutoff between the blow up case and the global existence case. 

He had shown this in some special cases in [14, 15, 16]. 
It is the purpose of this note to establish MEIER'S conjecture. In view of the 

fact that the works of FUJITA and of MEIER [5, 14, 15, 16], depend heavity on the 
availability of explicit formulas for the Green's function for the heat equation 
in D, it is desirable to have proofs that avoid the Green's function when dealing 
with general regions. 

The plan of the paper is as follows. In w II we define precisely what we mean 
by a solution. In w we prove our principle result. Finally we indicate some 
simple extensions of the result to other problems. 

II. Definitions 

The earlier terminology being in force here, for each T >  0 we let 

0T : =  D•  T). 

A (nonnegative) solution of (P) is called quasiregular if 

(i) u E C2(QT) • c ~  - D • {T)), 
(ii) for all k > 0, t E [0, T) 

l i m e  -kr f u(r, O, t) dSo = 0 
r---> oo $2 
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and 

lira e -kr f lur(r, O, t)l dSo = O. 

A quasiregular solution is called almost regular if for all 
sequence {r,}~=l, r, -+ 0 such that 

lirno~ f r2 -1 [u(rn, O, t)/G -k lu~(r,, O, t)]1 dSo = O. 

Throughout the remainder of the paper we consider only almost regular solutions 
of (P). 

tE[0,  T) there is a 

III. The Global Existence--Global Nonexistence Results 

We prove the following theorem. 

Theorem 3.1. Let p* = 1 + 2/(N + 7+). I f  1 < p < p*, (P) has no nontrivial 
global solution. I f  p > p*, nontrivial global solutions of  (P) exist. 

We recently learned of some related results of KAVIAN and his co-authors 
[3, 4, 10] which, taken with our results, show that for (P), p* belongs to the blow 
up case if the cone is convex. After submission of this article, we found a proof 
of this for arbitrary cones. The proof is based on a modification of WEISSLER'S 
[20] method and will be published in a separate paper [13]. 

The first statement of the theorem has already been proved in [2] if p < p*. 
We include a sketch of that proof for the convenience of the reader. 

To prove the first statement, we set 

q)(r, O) : =  C -1 r m e -kr ~p(O) (3.1) 

where m, k > O, y is the (positive) eigenfunction of Ao corresponding to o l  
with 

f ~(o) dSo = 1 (3.2) 
O 

and where 

Therefore 

It follows that in D 

C = k-(m + ~) / ' (m + N). 

f mdx=l. 
D 

(3.3) 

A~o + 2~o ~ 0 (3.4) 

provided 

(k 2 "@ 2) (m 2 @ (N -- 2) m -- o~) ~ k2(m + �89 (U - -  1)) 2 . (3.5) 

We then define 

F(t) ~- f u~o dx. (3.6) 
1) 
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In view of our definition of a solution, we have 

F'(t) ~ --2F(t) + (F(t)) p. 

Consequently u will not be global in time if 

F(0) > 2 ~/("-~). 

Now (3.5), (3.7) and (3.8) will hold provided 

m 2 -~ (iV - -  2) m -- 0~1 > 0, 

2 m -]- co~ -k �88 (N -- 1) 2 
k--- 2 = /3  :---- m2 -k ( N - -  2) m -- c~1 

and 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

k-t2/o-1)- m+mJ f q (x) Uo(X) dx > r(m + (3.11) 
D 

Thus, if 
2 - - N - - 7 _ = 7 + < m < Z / ( p - -  1 ) - - N  (3.12) 

we can choose k (and hence 2) so small that (3.9), (3.10) and (3.11) hold so that in 
turn (3.4), (3.7) and (3.8) also hold. There is m which satisfies (3.12) provided 
1 < p  < p * .  

The proof of the second statement proceeds by the method of supersolutions 
[17, 18]. We use an argument similar to that used in [14, 15, 16]. I f  w(x, t) is a posi- 
tive solution of ut = Au in D • [0, cx~), vanishing on ~D we let 

t) =/3(0 w(x, t). 

Then ~ will be a supersolution of (P) provided 

I /3'(t) = [/3(0]" sup w(x, t) , 0 < t < T. (3.13) 
k x~D 

The solution of (3.13) with /3(0) =/3o > 0 will be global in t if 

Woo : =  7 l[w(', t)ll~ -~ d t <  oo (3.14) 
0 

and if 
0 </3o < ((p -- 1) Woo) -1/~p-1). (3.15) 

Thus, it remains to construct w(x, t) such that Woo < co. To do this, we let 
r----}x I and let t o > 0  be fixed. We define 

r : =  7+ ~- �89 (N -- 2) = [~ol -[- (�89 (N -- 2))2] t/2 . (3.16) 

We let 

w(r ,  O, t )  -~- ( t  -~- /o)  - 1  F - � 8 9  ],(r/2(t + to)) e -(r2+l)/4(t+t~ '/fl(0) (3.17.1) 

= r -�89 ~ e - a ( t + t ~  J,(r ~/-f) J~(~/2) d2. ~p(0), (3.17.2) 
0 

where Jr, I,  denote the Bessel function and modified Bessel function of order 
respectively. (See WATSON [18], p. 395.) From the first of these, w is clearly positive 
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and vanishes on ~D, while from the second, w is seen to be a solution of the heat 
equation in D. (We use the fact that 

{ 2-~//'(~ -~ 1 ) ' z"  z---v0 + (3.18) 
I ,(z)  ~ (2~z)_l/2 e ~ z - +  + c ~  

to see that the boundary condition is satisfied at r = 0 and that w vanishes at 
r ~--- (xT).)  

Since ~p(0) is bounded on 22, in order to show that (3.14) holds for p > p*, 
it suffices to show that 

lira sup (t + to) ~(N+'+' [sup W(r, t)] < 0o (3.1.9) 
t - ~  L r > O  3 

where 
[ \ 

W(r, t ) : =  (t + to) -1 r-�89 [ v t ~ )  e--(r2+ l)]4(t+to) (3.20) 

Now W(r, t) vanishes at r ----- 0, eo for each t. Thus a value r,,(t) of r may be found 
such that 0 < r~(t) < c~ and 

W(rm(t ), t) = sup W(r, t) .  
r > O  

Let 

Let 

Y~'(t) = (t + to) ~(:v+r+) W(rm(t), t) 

I t - ' -~o]  L \2(t + to)] e - \ ~ / "  

y (t) = �89 r (O/(t + to). 

Suppose that, on some sequence {tk}k~1, "/#'(tk) --~ c~ as t k --~ @ o 0 .  If~ On some 
(sub) sequence, Ym(tk) -+ O, then 

~ ( tk )  ~ const �9 (t k -F to) ~7+ Y~+ e -y2(t~+t~ . 

However, z~+e -z= is bounded on [0, co) so Y#'(tg)~ oo on such a subsequence. 
If, on the other hand, ym(tk)-+ -F oo on some (sub) sequence, 

" t '~'~y+[2 e--Y2z(tk +to) . eYm ~D~(tk) ~ const y~(u+2~.+) (y2 .  (t k + w) 

from which we again conclude that #K(tk) 7~ ~ on such a sequence. Therefore, 
if ~//'(tk) -~ -}- co, we must have constants A and B such that 

0 <  A ~Ym( t k )  ~ B <  ~ .  

However, in this case we have 

0 <= ~r -<_- const �9 (tk + to) ~+ e -a~(tk+t~ 

so that "r --> + oo is impossible here also, This establishes the theorem. [ ]  
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Corollary 3.2. I f  p > p* and 

0 <~ u(r, O, t) <= tS(t) w(r, O, t) (r, O) E D, t > 0 

for some to > 0, then the corresponding solution o f  (P) satisfies 

lim sup (t + to)~(N+e+)[I u(t)I[L~ < co. 
t--~- + oo 

Remark 3.2. For  any p > 1, it is not hard to prove that the blowup of F(t) 
implies the pointwise unboundedness of the solution in finite time [2]. 

IN+I 
2 - - - -  N > ~ 4 ,  

1 + ( U  - -  2 + 7+) < p < 3 '  - -  (3.21) 
too, N = 2, 3 

BANOLE & LEVlNE [2] have shown that the stationary problem for (P) possesses 
singular solutions of the form 

us(r, O) = r - 2 / ( p - "  c~(O) 

and that whenever 
u(r, 0, 0) _< min (r ~, us(r, 0)) 

for some e > 0, the corresponding solution will be global. 
They also showed that if 

1 < p  < 2/(N--  2 + 7+) 

no stationary solution (or even singular stationary solutions of the above form) 
exists. 

Remark 3.4. A s,~milar result can be obtained for 

u t = A u + lx I ~ u p in D • (0, T), (P,,) 

u = 0 on OD • (0, T), 

u(x,  O) = Uo(X) o n  D .  

(The stationary equation was studied in [7] when D = RN.) Let 

p*(a) = 1 + (2 + a)/(N + 7+). (3.22) 
We have 

Theorem 3.3. I f  1 < p < p*(a) and ~ ~ O, no nontrivial global regular solution 
o f  (P~) exists. I f  

p > p*(~) (3.23) 

then there are nontrivial global solutions of  (P,). 

The first statement was proved in [2] for a > --2 along with a weaker version 
of the second statement. 

Remark 3.3. In the case that 
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The proof  of  the second statement proceeds exactly as before. In place of 
(3.19) we must require 

lira sup (t + to) (N+v+)[O+~ [sup r ~t(p-~) W(r, t)] < oo 
t-~+ oo kr>0 / 

where W is given in (3.20). 
The following is all extension of Corollary 3.2. 

Corollary 3.4. I f  (3.23) holds and u solves (P~) with ~ ~ 0 and 

0 ~ u(r, O, t) ~ fl(t) w(r, O, t) ,  

then 
lira sup t (N+~'+)[(2+~ sup u(r, O, t) ~ Cr -~ 

~2 

where C depends only upon fi(O), to and geometry. 
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