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O. Introduction 

Solid materials exhibiting more than one phase have received increased atten- 
tion in recent years. Continuum-mechanical theories have emerged which provide 
models for the type of behavior associated with austenite-martensite transforma- 
tions in certain alloys, twinning in crystals, or other load-induced phase trans- 
formations, such as the ones that occur in shape memory alloys ~. Macroscopic 
studies of such phenomena very often involve finite deformation fields with dis- 
continuous deformation gradients. The theory of finite elasticity, generalized in 
order to encompass such singular fields, predicts that they are necessarily accom- 
panied by a loss of ellipticity of the equilibrium equations. For isotropic hyper- 
elastic materials, conditions on the elastic potential (stored energy function) 
which are necessary and sufficient for strong and ordinary ellipticity have been 
obtained in various settings. Within the context of plane deformations, the appro- 
priate criteria were furnished by KNOWLES & STSRNBSRO [1] for compressible 
and by ABEYARATNE [2] for incompressible bodies. The analogous three-dimen- 
sional results relevant to incompressible isotropic materials were deduced by Zss 
& ST~RNBSRG [3], whereas the ones appropriate for compressible bodies were 
obtained by SIMPSON & St'ECTOR [4]. 

There are certain aspects of the interpretation and consequences of the afore- 
mentioned conditions that are well understood only in situations where the 
underlying constitutive response functions are essentially one-dimensional. One 
such situation is that investigated by ABEYARATNE [2]. He shows that for plane 
deformations of incompressible bodies, the requirement of strong ellipticity is 
only slightly stronger than that of striet convexity of the elastic potential con- 
sidered as a function of the amount of shear, Moreover. the former suffices for 
the invertibility of the shear stress response function. The implications of the 
latter property are taken up by ABEYARATNE & KNOWLES in [5]. They conclude 
that a loss of convexity of the elastic potential is synonymous with the existence 

1 For a sample of the literature on the subject the reader is referred to [5, 12-17]. 
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of equilibrium shocks, i.e.~ deformations exhibiting discontinuities in their gra- 
dient. 

On the other hand, the ellipticity conditions appropriate to the higher-dimen- 
sional constitutive setting in [1], [3] and [4] do not seemingly allow one to draw 
conclusions analogous to those in [2] and [5] alluded to above. Indeed, whether 
or not such an interpretation of ellipticity conditions is feasible within the general 
framework of three-dimensional elastostatics is a question that has motivated 
the present work. Our objective is twofold. First, we furnish a set of conditions 
for strong ellipticity which clarify its connection to a convexity condition on the 
elastic potential and to the invertibility of a suitably chosen constitutive response 
function. Additionally we deduce conditions on the constitutive law which are 
necessary and sufficient for the material to sustain equilibrium shocks. We ac- 
complish the latter task in a way which is constructive, in the sense that it char- 
acterizes the set of all possible piecewise homogeneous deformations, given the 
e!astic potential. Our results are pertinent to three-dimensional deformations of 
compressible, hyperelastic but not necessarily isotropic bodies. 

Section 1 recalls some preliminaries from the theory of nonlinear elastostatics 
as well as the relevant notions of strong and ordinary ellipticity. 

In Section 2 we introduce a direction-dependent decomposition for nonsin- 
gular linear transformations on a Euclidean space of arbitrary dimension. After 
establishing the existence and uniqueness of this decomposition, we investigate 
its kinematic significance in a three-dimensional context. 

Section 3 is devoted to a derivation of necessary and sufficient conditions 
for strong and ordinary ellipticity. The e!astic potential is reduced to a function 
of kinematic variables which arise in connection with the directional resolution 
of the deformation gradient introduced in Section 2. Strong ellipticity is shown 
to be equivalent to the positive definiteness of the Hessian matrix of this reduced 
elastic potential, and thus it suffices for the strJct convexity of this function. 
Moreover, strong el!ipticity implies that the gradient mapping of the latter -- 
expressing Piola tractions as functions of their conjugate resolved shears and 
extensions -- is globally invertible. Ordinary elliptieity is analogously reIated to 
the local invertibifity of this traction response mapping. These conclusions offer 
a mechanical interpretation of the ellipticity conditions. The results are subse- 
quently specialized to the case of isotropy, where they assume a particularly 
simple forn:, and are applied to a specific c~oice of the constitutive !aw for pur- 
poses of illustration. 

In Section 4 we set up the problem of existence of equilibrium deformations 
with piecewise constant gradients. By utilizing the kinematic results of Section 1, 
we then deduce certain inequalities which restrict the principal stretches of such 
deformations as a consequence of compatibility. We proceed to derive restrictions 
on the elastic potential which are necessary and sufficient for such states to be 
sustainable by the material. These conditions turn out to be equivalent to a loss of 
invertibi!ity of the traction response mapping introduced in the previous section. 
Furthermore they provide an explicit representation of all pairs of associated 
deformation gradients. Hence the question of existence of shocks is answered in 
a constructive manner. As an application we identify all shocks sustainable by 
a special class of materials. 
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Finally, Section 5 establishes a connection between previous work and the 
present paper by adapting the approach of Sections 2 and 3 to plane deforma- 
tions. The resulting conditions for ellipticity reproduce the results of KNOWLES & 
STERNBERO [3]. 

1. Preliminaries. Finite Elastostatics, Ellipticity 

The symbol E n, with n a positive integer, is used throughout to represent 
an n-dimensional real Euclidean space. Accordingly, ~ +  is the set of all tensors 

+ 
(linear transformations) on En with positive determinant, 6 a is the set of all sym- 

+ 
metric, positive-definite tensors, whereas b% stands for the collection of all 
symmetric, positive-semidefinite, singular tensors on E~. Moreover, (9 denotes 
the orthogonal group while (9+ and (9 are the subsets of (9 consisting in the 
proper and improper orthogonal tensors, respectively, so that (9+ = (9 fl  ~ + ,  
(9_ ---- (9 -- (9+. The set of unit vectors in E~ is denoted by q/. By a frame is meant 
a Cartesian coordinate frame J r =  {O; e~, e2, . . . ,  e.} with origin O and an 
orthonormal basis for E~ with vectors ei, i = 1 . . . .  , n. Latin indices have the 
range {1, 2, . . . ,  n}; Greek indices range over {1, . . . ,  n -  1}. Summation over 
the appropriate range of repeated indices is implicit unless otherwise indicated. 
The matrix of components of a tensor A in the frame X is denoted by [A] x. 

Superscripts --1, T and - -T  indicate inversion, transposition and inversion of 
the transpose of a tensor; 1 is the idem tensor. The set of strictly positive real 
numbers is denoted by R+. 

We consider a body which in some reference configuration occupies a region 
with interor ~ in real, Euclidean three-space E3. A deformation is an invertible 
and suitably smooth mapping 

j, : ~ ' -+  ~ , ,  :~(x) = x + u(x), x E ~ ,  (1.1) 

which maps N onto the interior N .  of the region occupied by the body in the 
deformed configuration. Here x is the reference position vector of a particle, 
:~(x) is its deformation image and u(x)  the displacement. Until further notice, 
we assume that :~ is twice continuously differentiable on ~ .  The deformation 
gradient tensor field, 

F = V• on N,  (1.2) 

is restricted so as to make the Jacobian determinant of the mapping (1.1) positive: 

J ---- det F > 0 on ~ .  (1.3) 

The right and left Cauchy-Green tensors, C and G, defined by 

C = FrF, G = FF r on ~ ,  (1.4) 
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share the same fundamental scalar invariants. These are known as the deforma- 
tion invariants associated with (1.1) and are given by 

I I (C  ) = tr C = 2 2 q- 2 2 q- 2 2 , 

I2(C) �89 [(tr C) 2 tr (C2)] 2 2 2 2 2 2 = 2122 q- + (1.5) = - -  2223 2321,  

I3(C) = det C = j2 ~2~2~2 = ~q~2,~3, 

where 2 i > 0 are the principal stretches of the deformation. 
The Cauchy stress tensor field ~, defined on ~ , ,  associated with (1.1) is 

related to the Piola (nominal) stress tensor field a,  defined on ~ ,  as follows: 

1 
lr@(#)) ---- y - ~  a(x) Fr(x), x E N.  (1.6) 

The deformation is equilibrated in the absence of body forces if 

div  a = O, o f  r = F a  r on ~ .  (1.7) 

We now specify that the body at hand is hyperelastic and that the reference 
configuration is homogeneous. Thus the elastic potential W is a scalar function 
defined and twice continuously differentiable on s162 The Piola stress is then 
determined by the constitutive law 

o = W~(F)  or ~/j = ~W(F)/OFq.  (1.8) 

Objectivity requires that 

W(F)  = W ( R F )  V (R, F) E (9+ • ~ + .  (1.9) 

Upon substitution from (1.9), (1.8) into (1.7) one finds that the second of (1.7), 
namely balance of moments, is implied by them, whereas the first becomes a 
system of second order, quasilinear, partial differential equations for the dis- 
placement field components: 

Cijkl(1 -~ VH) Hk,ly = 0 on N,  (1.10) 

where 

qjk,(r )  = G , d F )  = w(F)/or j f (1.11) 

are the components of the elasticity four-tensor C(F). The system (1.10) is known 
as the displacement equations of equilibrium. 

In the event that the body is composed of isotropic material, 2 the elastic 
potential depends on F only through the deformation invariants: 

w( r  9 = d , ( rd /~F) ,  rdr~F) ,  i dF~ t ) ) ,  i re  ~ + .  (1.12) 

In the above 1~ is a function defined on the Invariant Region 

§ + 
' ~  = ((~1,  ~2, ~3) ] ~i = /~ (A) ,  A E 5P}. ( 1 . 1 3 )  

2 Here the reference configuration is chosen to be natural for isotropy of the body. 
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Alternatively, W can be expressed in terms of the principal stretches 2;: 

I~(I1, 12,/3) = lY(2t, 22, 23), (1.14) 

where W, defined on R 3 and fully symmetric in its arguments, is obtained from 

l} z by means of the relations (1.5) connecting the I i and 2 i. 
One defines 

a ; -  &~i ' "r;-----2,222a ai on R % , (1.15) 

as the principal Piola and Cauchy stresses, respectively. These are equal to the 
principal values of the respective stress tensors in case F is symmetric with prin- 
cipal values h i > 0, as can be seen from (1.8), (1.6) and (1.14). 

Restrictions on mechanical behavior are often imposed by means of certain 

postulates in the form of constitutive inequalities. In particular, W obeys the 
Baker-Ericksen inequalities whenever 

(z i -- zj) (2; --  2~) > 0 (no sum) 2 i 4= 2j, 2, > 0. (1.16) 

On the other hand the Coleman-Noll condition holds whenever W is a strictly 
convex function on R 3.  A slightly stronger restriction requires that the matrix 
of  second partial derivatives 

L~2i ~2s/ be positive-definite on ~3+. (1.17) 

We now proceed to the notions of ordinary and strong ellipticity, no longer 
restricting attention to isotropic materials. The acoustic tensor is the tensor with 
components 

Qik(F, n) = Cij~;(F) njn, V (F, n) E s • og. (1.18) 

As is seen from (1.11), Q is symmetric on its domain of  definition. 

Definition 1.1. For a given choice o f  W, ordinary elIipticity holds at F E s i f  
and only i f  

det Q(F, n) 4= 0 V n E og. (1.19) 

Moreover, strong eIlipticity holds at F i f  and only i f  

m �9 Q(F,  n )  m > 0 V m ,  n E dll. (1.20) 

In the above, ellipticity is regarded as a property of the constitutive function 
W, whereas the motivation stems from considerations pertaining to the smooth- 
ness of  solutions of the system (1.10). Using the terminology of KNOWERS & STERN- 
BERG [6], we call a displacement field u : ~ --> E3 a relaxed solution 3 of (1.10) 

3 The term "relaxed solution" was introduced by gEE • STERNBERG [3] in the con- 
text of a discussion parallel to the one in KNOWLES t% STERNBERG [1] but pertaining to 
incompressible bodies. 
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if it has continuous first and piecewise continuous second partial derivatives 
on N, the latter suffering at most finite jumps across continuously differentiable 
surfaces in N, and if moreover it satisfies (1.10) at points of continuity of its second 
derivatives. Accordingly, the system (I.10) is said to be elliptic at a relaxed solu- 
tion u, and at a point xE ~ ,  if(1.19) holds with F =  1 + Vu(x).  KNOWLES ~; 
STERNBERG [6] show that this is sufficient for all relaxed solutions whose gradients 
coincide with that of u at x to be twice continuously differentiable there. On the 
other hand, loss of ellipticity does not preclude the existence of twice continuously 
differentiable solutions of (1.10). This can be demonstrated by choosing a homo- 
geneous deformation whose (constant) gradient is such that (1.19) is violated. 

The system (1.10) is said to be strongly elliptic at a solution u and at x E 
i f  (1.20) holds with F = 1 d- Vu(x). Clearly, strong ellipticity implies ordinary 
ellipticity. For an alternative definition, which stems from the elastodynamic moti- 
vation of strong ellipticity, we refer the reader to TRUESDELL & NOEL [7]. 

In general it is desirable to establish the connection between various consti- 
tutive inequalities, including (1.19), (1.20). It is known that the Baker-Ericksen 
inequalities are necessary for strong elliptieity 4. By means of a special example, 
KNOWLES & STERNB~RG [6] have demonstrated that the Coleman-Noll condition 
neither implies nor is implied by strong ellipticity. 

2. On the Directional Resolution of a Tensor 

In the present section we introduce the directional resolution of a tensor. To 
begin with, we establish a theorem which guarantees the existence and uniqueness 
of  such a resolution, given a direction. We then proceed to elucidate the kinematic 
significance of this result in connection with the deformation gradient. 

At this point we introduce a direction-dependent decomposition for tensors 
with positive determinant, by establishing the following 

Theorem 2.1. Let  F 6 s +. Then for each n E ql, there exist unique 
+ 

unique a E E,,, unique V C 5r with Vn = n, such that 

F = R(a | n + e~ | e~) V, 

where {e~, . . . ,  en_~, n} is an (orthonormal) principal basis for V. 

R~O+, 

(2.1) 

Our proof of the above exploits a version of the Polar Decomposition Theo- 
rem which remains valid for singular tensors and is cited here without proof, s 

Theorem 2.2. I r A  is an arbitrary tensor on E 3, then there is a (unique) symmetric, 
positive-semidefinite tensor U, and an orthogonal tensor R, such that A = RU. 
I f  A is nonsingular, then R is also uniquely determined by A. 

4 This result was obtained by ZE~ & STERNBERa [3] for incompressible materials and 
SIMPSON & SPZCTOR [4] for compressible isotropic materials. 

5 Here we merely modify the terminology and notation of Theorem 1 in Section 83 
of HALMOS [8]. 
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We now state and prove a Lemma which provides a refinement of Theorem 2.2, 
by determining the extent of nonuniqueness of the orthogonal factor in the 
right polar decomposition of certain singular tensors. The null space of a tensor 
A is .A/'(A) = {x I x E  E, ,  A x  = 0). 

Lemma 2.1. Le t  B be a tensor on E n having a one-dimensional null space sU(B).  
+ - -  + 

Then there exis t  unique R E (9+, R E (O_ and a unique U C ~9~ such that 

§ 

B : R U  = R U .  (2.2) 

Proof of Lemma 2.1. + 
(a) Existence.  Theorem 2.2 ensures that there are tensors R E (9 and U E 6go, 
such that 

B = R e ,  (2.3) 

from which it follows that 

,X(B) = ,/r (2.4) 

Then 

By hypothesis, there is a unit vector e such that Jd(B)/5 0g = {--e, e}. Define 

P = l - - 2 e |  (2.5) 

p2 = 1 ,  p = pr,  P E (9. (2.6) 

Moreover, (2.5) yields 

Pe = - - e ,  P m  = m V m ~_ e, (2.7) 

so that P, which is symmetric, has precisely one principal value equal to --1, 
corresponding to the principal direction vector e, and n -- 1 repeated principal 
values equal to 1. This, in view of (2.6), dictates that P ~ (9_. From (2.4), (2.5), 
noting that e E Y(U),  one infers that 

P V  = v .  (2 .8)  

Now, since (2.3)holds for some RE (9, then either RE (9+ or RE(0_. If  
% 

R E (9+, we set R = R,  R = RP.  Then clearly R E (9_, whereas with the aid 
of (2.3) and (2.8) we conclude that 

+ § - -  + - -  - -  

R U  = R P U  = R U  = B, R C (O+, R E (O_, U E 5Co. (2.9) 

On the other hand, if RE(O_, setting R = R , R = R P E ( 9 + ,  once again 
vMidates (2.9), thus demonstrating existence. 

+ 

(b) Uniqueness. The uniqueness of U~ 5% satisfying (2.3) is ascertained by 
Theorem 2.2. In particular, (2.3) implies that 

+ 

U 2 = B r B  E 5Po, (2.10) 
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so that U is the unique positive semi-definite square root of B r B .  Turning now 
to the uniqueness of each of  the orthogonal factors in (2.2), we let R, Q E (9 
satisfy 

R U  = O U  = B (2.11) 

and define 
M = O r R ,  (2.21) 

so that M E (9. Because of (2.11), one has 

M e  = V .  (2.13) 

Since U is symmetric and possesses a one-dimensional null space JV'(U), it has 
an orthonormal principal basis {e~ . . . . .  en), in which exactly one of the el, say 
e~, belongs to .At(U): 

Ue n = O. (2.14) 

Use of (2.13) shows that 

M Ue i = Ue i; 

hence 
M e ~  = e~, o~ = 1 . . . .  , n -- 1. (2.15) 

Orthogonality of M forces the M e  i (i = t ,  . . . ,  n) to be orthonormal. In view of 
(2.15), this leaves two possibilities for M e n ,  namely 

(i) M e  n = en, or (ii) M e  n = --e~. (2.16) 

If the first of (2.16) is true, then together with (2.15), it dictates that 

M = 1. (2.17) 

In case (ii) of (2.16) holds, once again M is uniquely determined by (2.15), (2.16): 
By (2.14), e, E {--e, e} ~ ~ ( U )  #~ qg, whereas P defined by (2.5) satisfies (2.15), 
(2.16). Hence (2.15), (2.16) ii imply 

M = P ~ I - - 2 e |  . (2.18) 

In conclusion, if R and Q E (9 satisfy (2.11), then by virtue of (2.12), (2.17), 
(2.18), they are related by R = M O  with either M = 1, in which case R = O, 
or M = 1 --  2e | e, where e is the unit vector belonging to the null space of 
B and U and is unique apart from its sign, which does not affect M. Consequently 
there are at most two distinct orthogonal factors in the right polar decomposition 
of B, which cannot both belong to (9+ or (9_, since M E  (9_. This verifies the 
uniqueness of each of  them, and completes the proof. 

Proof of Theorem 2.1. 
(a) E x i s t e n e e .  Given F E ~ +  and n E ~g, define 

B = F ( 1 - - n  @n).  

Then, clearly, 

~ ( B )  = span {n}, 

(2.19) 

(2.20) 
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which has dimension I, so that B conforms to the hypotheses of Lemma 2.1. 
+ 

Accordingly there exists (unique) R E (9+ and U E 5~ satisfying 

B = RU,  , /r  = JV'(B). (2,21) 

Combining (2.19), (2.21) and rearranging, we obtain 

F = R ( R r F n )  | n + R U .  (2.22) 

From the properties of U we infer that there are e~ E q/ such that {el, . . . ,  e,_ ~, n} 
is an orthonormal principal basis for U. The principal vatue of U corresponding 
to n is zero; the principal values corresponding to e~ are strictly positive. Now 
let 

V = U + n | n .  (2.23) 

It follows that V is positive-definite and 

+ 

V n =  n ,  V E 50, (e~ | e~) V = U.  (2.24) 

Substitution of the last of (2.24) into (2.22.) and an appeal to the first of (2.24) 
provide 

F = R [ ( R r F n )  | n + e~ | e~] V.  (2.25) 

Finally, the choice 

a = R r F n  

in (2.25) leads to the desired result (2.1). 

(2.26) 

(b) Uniqueness. Granted the existence of R, a and V satisfying (2.1), we now show 
them to be unique. Directly from (2.1), we have 

F n  = R(a  | n + e~ | e~) Vn .  

Since Vn = n and the e~ are orthogonat to n, the above result simplifies to 

F n  = R a .  (2.27) 

From the fact that (e~, . . . ,  e ,_l ,  n} is a principal basis for V, we infer that 

(e~ | e~) V = V -- n | n .  (2.28) 

Upon substitution of (2.27), (2.28) into (2.1) and after some rearrangement, we 
obtain 

F - -  F n  | n = R ( V  - -  n | n ) .  (2.29) 

The left-hand side of (2.29), completely specified by F and n, has a one-dimen- 
sional null space (spanned by n) and thus conforms to the hypothesis of Lemma 2.1. 

+ 
Also R E (9+ whereas V -- n | n E 50o, so that -- by an appeal to Lemma 2.I--  
they are the unique factors of the (proper orthogonal) polar decomposition of the 
left-hand side (2.29). Thus the uniqueness of R and V is established. With this in 
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mind we conclude from (2.27) that 

a = R r F n ,  (2.30) 

which ensures that a is also uniquely determined by F and n and completes the 
proof. 

As suggested by Theorem 2.1, it is in fact possible to express R, a, V in (2.1) 
directly as functions of F and n. To that effect, define 

B = B ( F ,  n )  = F(1  - -  n | n ) ,  

~, , 
- -  n(F, n) = F - r  n/IF - r  n J, (2 .31)  

FE ~~ n E q / ,  

and let 

v = P(F, n) = (BrB + n | n)~, 

R = _R(F,n) = (B @ ~ | n) V -1, 

a = gt(F, n)  = R r F n ,  

(2.32) 

F E ~ + , n E  ~ .  

Then one verifies that R, a, V given by (2.32) indeed satisfy (2.1) with R E 0+, 
+ 

V E 5", Vn ---- n, a E E3 and with e~ as required by the theorem. We remark that 
a version of (2.1) that does not involve e is easily seen to be 

F : R [ ( a - - n )  | 1]V; (2.33) 

one merely notes that e~ | e~ -~ n | n = 1. In contrast to the polar decompo- 
sition of F, the result of  Theorem 2.1 is a direction-dependent decomposition of F, 
the "direction" being identified with the unit vector n. This is clarified by the ex- 
plicit dependence on n of the items in (2.32). Accordingly, f o r  given F E ~ +  
and n E ql we call (2.1) -- with R, a, Vsupplied by (2.32) -- the Directional Reso- 
lution o f  F with respect to n.  

At this point we specialize the foregoing results to three dimensions and 
proceed to investigate their kinematic interpretation in the context of  three- 
dimensional deformations. Consider a homogeneous deformation :9 : Ea -+ E3 

:9( x) = F x, x E E3, F E ~ + .  (2.34) 

~2z72z2-2s + 
Also fix n E q/ arbitrarily. Let RE  r a E E 3 and V E J supply through use 
of  (2.1) the directional resolution of the deformation gradient F of  (2.34) with 
respect to n. In particular, because of the properties of V there are a frame X = 
{O; e~, e2, ca}, ea = n and two numbers /3~ > 0 such that 

2 

V =  ~ f l e ~ |  + n |  (2.35) 
cr 
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so that e~ (% = n) are principal direction-vectors of V corresponding to prin- 
cipal values ill, f12, 1, respectively. In view of (2.35), (2.1) becomes 

F = R (~=,~ fl~,e~, | e~, + aiei | e3) ai = a . ei, ea = n .  (2.36) 

Note that det F =/7~/~2a a > 0, so that necessarily a3 > 0. Thus it is a corollary 
of Theorem 2.1 that for given n, there are a frame X----{O; e~, e2, e3} with 
ea -- n, numbers fl~ > 0 and a,. with aa > 0, and art RE (9+ such that the matrix 
of components of F in X, [F] x admits the representation 

fl~ > 0, aa > 0. (2.37) I l l S =  [n]x /~ a~ , 

0 aa 

In fact, one can resolve (2.37) further into 

(i ~ :)(i ~ i)(i  ~ !1(! ~ ~ ) [F] x =  [R] x 1 1 2 1 [32 0 . 

0 a3 0 0 0 1 

(2.38) 

This provides the desired geometrical interpretation of the resolution (2.1) in 
terms of particularly simple homogeneous deformations. Consider the arbitrary 
homogeneous deformation (2.34), and choose art arbitrary direction n C ~g. 
Then one can find two orthogonal directions el,  e2 in the plane whose normal is n,  
such that the deformation (2.34) can be decomposed into the foltowing: 

(i) An in-plane biaxial stretch (in the plane normal to n) in the directions el,  ez, 
with principal stretches fll > 0, r2 > 0, respectively, followed by 

(ii) a simple shear parallel to el in the el, e 3 plane, of amount 81, followed by 
(iii) a simple shear parallel to e2 in the ez, e3 plane, of amount 82, followed by 
(iv) a uniaxial stretch parallel to ea = n, of amount a3 > 0, followed by 
(v) a rigid rotation about the origin with rotation tensor R E 0+. 

A noteworthy property of R in (2.1), (2.36)-(2.38) is that if 17 is a plane 

normal to n, the unit normal ~ to its deformation image ~ (H) under (2.34) is 
given by 

n -= Rn .  (2.39) 

This can be seen from (2.3t), (2.32), or directly from (2.1). 
For subsequent use we introduce the following notation. For /3~ E R+, we 

write fi ----- (ill, f12) E ~ ~ •+ • whereas for a~ E R~ a3 C ~+, we write 

a = (a~a2,  a 3 ) E ~ z ~ g X g X l R + .  Also we tet ~ = ~ t •  and denote its 
elements by (fl; a) E ~ where fl E ~ t ,  a E 92. For each frame i"  = {0;  e~, ez, e3} 
we define a )-ensor-valued function Ax(.  ) : N -+ 2'+ by 

2 

Ax(~;  a) = ~.~ fi~,e~ @ e~, + a i e  ~ | e 3 V (fl; a) (- 9 .  (2.40) 
- -  c r  
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That Ax(N ) C .ga+, follows directly from (2.4) and the definition of  N. According 
to (2.40), for any frame 2" and (/3; a) E (gN, A(/3; _a) is the tensor whose matrix 
of  components in the frame X i s  

I! 
i 0 a l )  

[Ax(fl__; a)] x = /32 a2 �9 

O a3 

(2.41) 

The connection between A x and the directional resolution is established in the 
following. 

Lemma 2.2. Given n E ql, let ~ , ,  be the set of  all frames X = {O; el, e2, e3} 
with e 3 = n. Then 

{F I F = RAx(/3; a), R E O+, XE ~ ' , ,  (/3; _a) E N} ----- 5q+. (2.42) 

Proof. Let d stand for the set of tensors in the set specified in the left-hand side 
of  (2.42). By use of  (2.41), 

det {RAx(fl; a)} = fll/~2a 3 2> 0 V R E 0+, V (/3; a) E N,  (2.43) 

since (/3; a) E ~ ~/3~ > 0, a3 > 0 and det R = i for R E O+. Hence FE d 
F E La+, so that d Q ~+ .  Now choose F E ~ +  and construct its directional 

+ 
resolution with respect to n. This yields R E 0+, VE 5e, aE E3 satisfying (2.1). 
Choose fi~ and e i as in (2.35), and let ai be the components of  a in XE ~'n, where 
X is a principal frame of V with unit vectors e~ (e 3 = n). Then 13 = (/31, t32) 

and a = (al, a2, aa) form (/3; a_) E N so that (2.36), (2.37) and (2.40) give 

F = RAx(/3; a) (2.44) 

where R E O+, XE ~, , ,  (/3; a) E ~ ,  so that FE  ~ +  ~ FE  ~4 because of  (2.44), 

(2.42). Consequently d Q ~e+ and the proof  is complete. 
Assume now that F admits the representation (2.44) for suitable R E d)+, 

frame X = {O; el, e2, e3} and (/3; a) E N, so that (2.37) is in force with (/3~,fl2) 

= / 3 ,  (al~ a2, a3) = a ,  (/3;a) E ~ .  -Motivated by (2.38) and its interpretation, we 
then call/31,/32 the resolved in-plane eomponents o f  the direetional resolution o f F  
with respect to e3. Moreover, we refer to aj,  a2 and a3 as the resolved out-of-plane 
components o f  the directional resolution o f f  with respect to e 3. In particular a~, az 
are the resolved out-of-plane shears and a 3 is the resolved out-of-plane stretch o f F  
with respect to e 3. 

Consider now the right Cauchy-Green tensor C = FrF associated with the 
homogeneous deformation (2.34). Employing (2.44), we obtain 

C = FrF = [Ax(/3; a)] r Ax(/3; a). (2.45) 

An appeal to (2.41) in conjunction with (2.45) furnishes an expression for the 
matrix of  components of C in X in terms of the resolved in-plane and out-of- 
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plane components of F with respect to ca: 

p0 0 \ 
[(7] x = f122 fi2a2 | .  (2.46) 

\fi~al fl2az aiai / ! 

In addition, (2.46) facilitates immediate calculation of the corresponding expres- 
sions for the deformation invariants (1.5) associated with (2.34). Thus 

II(C ) = fl~fl~ + aiai, 

z (c) d) 4) + = /3~/3~, (2.47) tq 2 +  + 
I3(C) RaR'- 2 

t,.,t1.,2a3. 
4- § 

We may now construct a mapping I( ') : @ -+ d r, where J is the Invariant Region 
defined in (1.13), by letting 

/~(/3; _a) = I~(C), C =  [Ax(13;a)lrAx(13;a) V (13; a)E N,  (2.48) 

+ 

2r= (i,, L, L) : 9 - ,  J ,  
+ 

so that ~(fi; _a) are given by (2.47). Since N and J are subregions of R s and 

R a, rspectively, _I cannot be one-to-one on N. On the other hand, Lemma 2.2 
+ + 

allows us to conclude that _f(N) = J since for any C E ~ ,  one can choose 
+ 

F = C~ E ~9' ( s in (2.42) and then employ (2.44) through (2.47). It is of par- 
ticular interest to determine the set of  all (fl; _a)E N corresponding through 

+ 

_I(') to a given _/ E J .  This set coincides with the set of all possible values of the 
resolved in-plane and out-of-plane components (13; _a) E N of a given FE 2'+ satis- 
fying _/(FrF) = L A demonstration of  this fact, together with a characteriza- 
tion of the set in question, is provided by the following 

Lemma 2.3. Given F E ~+,  let 2~ be the principal values o f  FrF = C, ordered 
so that 0 < 21 ~ 22 =< 23, and set I = I(C) 6. (i) Then (/3; a) C N satisfies 

f(fl; a) = _ / i f  and only i f  there is an R E (9+ and a frame X, such that F--= R a  x(13 ; a_). 

(ii) Furthermore, I(fl; a_) .... I i f  and only i f  /3 = (13j,/32) and a = (a~, a2, a3) 

satisfy: 

and in case t31 -+ 132, 

/3 (13, 

(~ + 7), (2.49) 

(2.50) 

o; 4= 7; (no sum), (2.51) 

6 In this case, I = (I1,/2, Ia) is related to the principal stretches 2 i through (1.5). 
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while g t31 = t32, 

,,here in (2.51) 
+ a 2  = - - (2.52) 

Proof. Assume that (fl; a) E N, R E (9+ and that the frame X satisfy (2.44). Then 

(2.45) holds and thus I = I(fl; a) because of (2.47), (2.48). 

ConverseIy, choose any (/3; a) E @ such that _I(/?; _a) = _L LetX 'be  an arbitrary 
frame and set B = Ax,(fl; ~ ,  so that B E s and 

_I(fl; a) = / ( B r B )  = _/(FrF). (2.54) 

The above implies that for some Q, P E (9+, F = QBP. Letting R = QP so 
that R E (9+, gives 

F = R(PrBP). (2.55) 

If  now X' = {O; ea, ez, ea}, then X = (O; Pre l ,  Pre~, prea} is also a frame 
since P E (9+. Moreover it easily follows from (2.40) that 

PrBP = prAx,(fl; a) e ~- Ax(fl; a). (2.56) 

Thus (2.55) becomes F = RAx(fi; a) 

To prove (ii) we let 

so that (2.47) becomes 

and (i) is confirmed. 

d t + d z + G - - I i - - ( c l q - e 2 ) ,  

(2.57) 

c2 dl + cl d2 + (cl + e2) d3 = I2 -- cl,cz, (2.58) 

elc2 da = 13. 

In view of (2.57) we need to determine all possible values of G > 0, d~ ~ 0 and 
d3 > 0 such that (2.58) holds. For fixed G (2.58) is a linear system for ds, the 
determinant of  the coefficient matrix of which vanishes if al~.d only if el = e2. 

Assume first that ct  4= e2. Then the solution of  (2.58) is 

= o~ 4= y (no sum), d3 = Ia/elez (2.59) 
- c , ) '  

where P_ft-) is the characteristic polynomial (2.53) of  C = F r F  and has roots 
22. Note first that G > 0 ~ d3 > 0, whereas d~ ~ 0 if and only if 

P!(G) ~ 0 ~ P_,(e~) for G > e~ (c~ 4= y). (2.60) 

Because G is positive, (2.60) are equivalent to 

2~ ~ G G 2~ <= % G 2] (c~ 4= y), (% ca) 4= (2z z, 2~). (2.61) 

In view of (2.57), the statements (2.59) and (2.61) confirm (2.49), (2.50), (2.51). 
Finally assume el = e2 = e ;> 0. Then tile first and second of  (2.58) reduce 
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to 

dt  + d2 = I t  - -  2C - -  [a/c z , 
(2.62) 

d,  - -  d2 = I2/c - -  c - -  2 la /c  2 . 

Substracting the first of (2.62) from the second yields 

1 
- ~  ~_,(c) = o, 

~.~, 23}. Expressing ]'i in terms of ;t; and choosing c = 22 in whence cC{2~, 2 2 
(2.62) gives 

d~ + d2 = (22 -- ~.) (22 -- 22)/27, i 4=j ~ k (no sum). (2.63) 

Now d~ ~ 0 necessitates that 

c = 22, d, + d 2 = (22 -- 222) (22 -- 22)/22 (2.64) 

with the understanding that whenever two or more 2; coincide they equal 22. 
The sufficiency of (2.64) is confirmed directly by substitution into (2.62). This 
completes the proof. 

3. Elliptieity Conditions and their Interpretation for Hyperelastic Materials 

This section aims at estab!ishing conditions necessary and sufficient for 
strong and ordinary ellipticity based on the kinematic developments of the pre- 
ceding section. 

Our discussion concerns elastic potential functions W : 5r -+ R, restricted 
to be twice  cont inuously  di f ferent iable on 5~+ and subject  to the requirement  o f  
objec t iv i ty  (1.9). We do not  restrict our attention to isotropic materials until 
later on, where we eventually specialize our main results to the case of isotropy. 

Let t)(-) = Wv(') on s denote the nominal stress response function and 
recall the definition (1.18) of the acoustic tensor Q. It is a direct consequence 
of objectivity (1.9) that 

~(nF) = R6(F) v (R, F) < 0+ x Y+, (3.1) 

whereas the acoustic tensor obeys 

Q ( R F ,  n )  = R Q ( F ,  n )  R r V (R ,  F,  n )  ~ (9+ • ~ +  • ~ .  (3.2) 

This identity is obtained by differentiating (1.9) twice with respect to F and 
using (1.18). 

We now consider the class of homogeneous deformations :9 :/?3 -~ E3 

~(x )  --- F x ,  x E E3, F = Ax( f l ;  a_) (3.3) 

where X is a fixed frame, A x is as in (2.40) and (fl; a) E @. Since Ax(/5; a) is 

fully determined by X and (/3; _a)ff ~ ,  the elastic p~tential associated wffh (3.3) 
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is expressible -- for a given choice of frame X - -  as a function only of (/3; a). Thus 
m 

for each frame X we define ~ x : ~  _> R by 

~/Fx(B; a) = W((Ax(13; _a)) V (/3; _a) E ~ .  (3.4) 

One recognizes from (3.4) that ,r162 a) coincides with the stored energy per 

unit reference volume due to a homogeneous deformation (3.3) with (constant) 
gradient whose matrix of components in the frame X is given by (2.41). The 
next result assembles some properties of ~F x important to our analysis. 

L e m m a  3.1.  For each frame X = {O; el, e2, e3), , g # x  : ~ - - - >  R ,  

is twice continuously differentiable on ~.  Moreover, 

also 

defined by (3.4), 

--~/r e i =  ~(Ax(t3;a)) e3 V (fl; a)E ~ ;  (3.5) 
Oai - - - - - 

8 2 

~ai~aj~//'x(fl__;a) e i |  Q(Ax(fl_;a),e3) V (fl_; _a)C ~ .  (3.6) 

Proof. For each frame X, and by definition, the function ~grx is the composition 
of W: s  and A x : ~ - +  ~+. The latter is seen from (2.40) to be a 
linear -- hence infinitely smooth -- function on ~ .  Hence the regularity of ~#F x on 

follows from that of  W. Differentiating (2.40) once and twice with respect to 
ai furnishes 

82 
Z x ( f l _ ;  a )  = e i | e3, ~a i ?aj Zx(t3; a) = 0 V (/3; a) E ~ .  (3.7) 

In view of the smoothness of ~g/-x, the chain rule and the first of (3.7), we may 
extract from (3.4) 

-~a.~g/~x(fl; a = b(ax(fl__; a))" (e i | e3) V (/3_; a) C ~ .  (3.8) 

This leads directly to (3.5). (In the above the dot indicates the scalar product 
A �9 B = tr (ArB) of two tensors A, B.) Differentiating (3.8) once more with re- 
spect to aj and observing the second of (3.7), we arrive at 

~z 
cqai c~aj ~f.x(fl_; a) : (ej | e3)- [C(Ax(fl__; _a)) (e, | e3)], (_fl; a) E ~ (3.9) 

where the elasticity tensor C(') is the second tensor gradient of W on 5e+; see 
(1.11). By virtue of (1.18), for every AE 5r 

(ej | e3). [C(A) (e i Q e3)] = Q(A, e3) . (e i @ ej) 

which, combined with (3.9), validates (3.5) and completes the proof. 
We will refer to ~g/-x in (3.4) as the reduced elastic potential associated with 

the frame X. 
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The results of the foregoing Lemma suggest the following interpretation of 
the first and second partial derivatives of ~/K x with respect to the out-of plane 
kinematic variables % The nominal stress tensor o associated with (3.3) is given 
by ~ = ~(Ax(fi; a)), with components in X given by a x = e i �9 aej. Then, by 

(3.5), the first partial derivatives ~Kx(L3_; a) are equal to the components ai3 

of the nominal traction oe 3 acting on a reference plane with normal e3. Bearing 
in mind the kinematic interpretation of a i following (2.38), we remark that the 
shear tractions a~ x are conjugate to the out-of-plane shears a~ with respect to 
~/Kx03; .), whereas the normal traction component a x is conjugate to the out- 
of-plane stretch aa. At this point we define a function g X : ~  ~ •3 by letting 

gX03; a) = - -  ~/K x 03; a) V (/3; a) E N. (3.10) 
- ~ a  i - _ - 

In  view of our observations above, for each/3 = (t31 ./~2) E ~1, gX03; "):N2--> ~3 

constitutes a traction response mapping of the triplet of out-of-plane components 
(aj, a2, aa) = a E ~2 to the triplet of their conjugate nominal tractions (~r x,  ax,  ax). 
In this context, the in-plane components/3~ play the role of parameters. The Ja- 
cobian matrix of gX03; .) coincides with the Hessian matrix of the reduced elastic 

potential ~/~x03; .) on the set ~2 of triplets a of out-of-plane components. The 

result (3 .6 )o fLemma 3.1 thus proves that the Jacobian matrix of the traction 
response mapping gX03; .) associated with the frame X, evaluated at a E ~2, 

coincides with the matrix of components in X of the acoustic tensor O evaluated 
at Ax03; a_) and direction e 3. 

No~r let F E ~o+ be the gradient tensor of an arbitrary homogeneous defor- 
mation, and choose any n E ~,/. According to Lemma 2.3, there exist R E (O+, 
a frame X = {O; e~, e2) e 3 = n} and 03; a)E @, such that F admits the repre- 

sentation F = RAx03; a). The objectivity requirement (1.9) together with (3.4) 
implies that 

W(F) = W(Ax03; _a)) ----- ~Kx(/~; a). (3.11) 

Similarly, from (3.1), (3.2) and an appeal to (3.5), (3.6) of Lemma 3.1, we infer 
that the Piola traction ~(F) n and the acoustic tensor Q(F, n) are expressible as 

~(F) n = gi'r03; a) Rei, 
- (3.1.2) 

02 ~r �9 Q(F, n) = -~a i eaj (fl, a) Re i | Rei , 

where 

F = R a x 0 3 ; a ) ,  X = { O ; e a ,  e2, e a = n } ,  RE(O+, 03; a ) E ~ .  

Thus the stored energy density, the Piola traction and the acoustic tensor asso- 
ciated with any direction n are expressible in terms of the rotation R, the frame 
X and the resolved in-plane and out-of-plane components of the directional 
resolution of F with respect to n. This involves the reduced elastic potential ~/K x 
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(associated with X) and its derivatives (with respect to the out-of-plane compo- 
nents) in the manner specified by (3.12). In particular, the components of the Piola 
traction and the acoustic tensor in a frame rotated with respect to X by R, i.e., 
with unit vectors Re~, again coincide with those of the traction response mapping 
and the Hessian matrix of ~/r respectively. 

The relevance of the above observations to the notions of ordinary and strong 
etlipticity made precise in Definition 1.1 is exhibited by the following theorem, 
which constitutes the main result of this section. 

Theorem 3.1. Ordinary ellipticity fails at F E 5s + i f  and only i f  there is (t3; a_) E 
and a frame X at which the Hessian matrix [~2~trx(fl; a)/aai #aj] is singular, such 
that g admits the representation 

F -~ RAx(13; a) 

for some R E 0+. Moreover, the above remains valid if"ordinary" and "'singular" 
are replaced by "strong" and "not positive-definite" respectively. 

Proof. Assume first that ordinary ellipticity fails to hold at F E ~+.  Then by 
Definition 1.1, there is n E 0g such that the acoustic tensor Q(F, n) is singular. 
By constructing the directional resolution of F with respect to n, in view of 
Lemma 2.3 we can find RE ~0+, aflame X =  {O; ei, e2, e3 = n} and(fl; _a)E@, 
such that F = RAx(/~; a). Moreover Q(F, n) now satisfies the second of (3.12). 
Hence [#2~Kx(fl; a)/~a i ~aj] is singular, since it equals the matrix of components 

of Q(F, n) in a frame with unit vectors Re i. 
To show the converse, assume that a frame X = (O; e t, Ca, e3} and (13; a)E,@, 

such that [~2;r a)/~ai ?aj] is not positive-definite exist. Choose any R E (9+ 

and set F = RAx(~;a ) which belongs to s because of Lemma2.3. The 

acoustic tensor Q(F, e3) now satisfies (3. t2), the right-hand side of which i s singular 
by hypothesis. Hence, ordinary elliptiticy fails at F since Q(F, n) is singular for 
n = e a. The analogous result for strong ellipticity is obtained by substituting 
"ordinary" and "singular" by "strong" and "not positive-definite" respectively 
in the above. This completes the proof. 

A corollary of the above theorem is that strong ellipticity holds globally 
(that is, for every F E 5e+) if and only if the reduced elastic potential function 
Nrx(13; ' ) : 92  -+I{ has positive-definite Hessian matrix oll 9z  = {(al, az, a3) l 
ai E ~,  a3 > 0} for every X frame and /3 E ~ .  BERNSTEIN 8r TOUPIN [9] have ob- 
tained a characterization of strictly convex functions in terms of properties of 
their Hessian matrix. They show that a twice continuously differentiable scalar 
function defined on a convex region in N" and having positive-definite Hessian 
matrix there has the following two properties. It is strictly convex on its domain 
of definition and the mapping defined by its gradient is globally invertible there. 
These results, asserted respectively in Theorems I and IV in [9], are readily applic- 
able to the reduced elastic potential qg.x(fl; .), considered as a.function of  the out- 
of-plane component triplet a_ on ~z, and yie!d the following 
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Theorem 3.2. Assume that strong ellipticity holds globally on 5Y+. Then for every 
frame X and t3 = ([1~, f12) C @l, 
(i) ~/Ux(/3; .) isstrietIy convex on Nz,  i.e., 

#~,x~; a') -- ~Kx(/3; a) -- gX(fi; a) (a; -- a,) 7> 0 v a, a 'CN2,  a ~ ~'. 

(3.13) 

(ii) the traction response mapping gX(fl; ,) : ~ z  -+ R3 satisfies 

(gX(f3; a_') -- giX(/3; a)) (a'i --  ai) > O V a', aE 92,  a' =~= ct, 

so that it is globally invertible on ~2. 

(3.14) 

Proof. By hypothesis and Theorem 3.1., for each frame X and /3 E Nt the Hessian 
matrix of ~iKx(/3; .) is positive-definite on N2 = ((al, a2, a3) I aiER, a3 > 0} 
which is a hatfUspace and thus a convex subregion of g 3  Now gX(/3; .) is the 

gradient of gt~:~:(fl; .) on N2 by definition (3.10). Assertion (i) then--fo~ows from 
Theorem II of B'ERNSTE1N & TOUPIN [9] applied to ~#~x(/3;-), whereas (3.14) is 
deduced from an appeal to (i) and Theorem IV of [9]. In particular, the global 
invertibility of gX(/3; .) on @2 follows from the strict monotonicity inequality 
(3.14). This completes the proof. 

The invertibility property of the traction response mapping for a globally 
strongly elliptic potential admits the following constitutive interpretation. Con- 
sider two homogeneous deformations of the same body, with gradients whose 
directional resolutions with respect to some direction n possess common rotation, 
frame and in-plane components but distinct out-of-plane components. Then the 
respective nominal tractions acting on a reference plane with normal n are necessar- 
ily distinct. 

On the other hand, if ordinary ellipticity holds globally on ~ +  then Theorem 3.1 
demands that the Jacobian determinant of the traction response mapping never 
vanish, so that gX(fl; .) is merely locally invertible at every point in .@2. 

Our next objective is a specialization of the foregoing results to the case of 
isotropy. Thus in the present circumstances we assume that the elastic potential 
is expressible by means of (1,12) as a function ~l" of the deformation invariants, 
Certain properties of the reduced elastic potential which pertain to the class of 
isotropJc hyperelastic solids are established below. 

Lemma 3.2. Assume W satisfies (1.12) and define Nr : @ -+1~ by 

a) = a), a), a)) V a) e (3.1S) 

rr'l~ere ~(~; a_) are given by (2.47), (2.48). Then for  at~v frame X, the reduced elastic 
potentia[-Y,U x obeys 

~/Kx(/3; _a) __ #r(fl; a) V (/7; a) E N, (3.16) 
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Moreover, ~ determines W completely in the sense that given F E s +, there is 
(fl;_a) E N (with _l(fl; a) = I(FrF),) such that 

W(F) = '/:(fl; a). (3.17) 

Proof. By the definition (3.4) of "r a), 

The deformation invariants corresponding to Ax(fl; a) are given by (2.47), (2.48). 
This, together with (I.12), demonstrates that the]eft-hand side of (3.4) is equal 
to the right-hand side of (3.15). Hence (3.t6) holds. Now given FE L~~ we 
construct its directional resolution with respect to an arbitrary direction to obtain 
(2.44). Then F = RAx(fl; a) so that /(FrF) = ~fl; a) because of (2.45), (2.47), 
(2.48) and since RE r Also, (3.11) is now in force, which together with (3.16) 
validates (3.17) and completes the proof. 

As asserted by (3.16), it is a special feature of isotropic materials that the 
reduced elastic potential is independent of the frame X in (3.4). Once lie(It, Iz, In) 
is specified, it is a simple matter to construct ~#:(~; a) in the way suggested by 
(3.15). One merely has to make the substitution 

~//'(fl; _a) --= W(I1, I2,/3), in which 

-rl = II(fl ; a) = 13~,fl~, -+- aia i, 

= a) = P (4 + aD + + 4 )  + 
(3.18) 

Iz -- •(fl;_a) ----- (/3jfl2aa) 2, (fl; a)E ~ 
m 

using (2.47), (2.48). Furthermore, the second assertion of Lemma 3.2 gives rise 
to the conclusion that the single function ~ defined on N determines the elastic 
potential W completely on A~ Given ~/'(/3; a), one substitutes for the ai from 
the corresponding expression (2.50), (2.51),so that the result involves only the 
invariants Ii and the in-plane components fl~. However, since substitution from 
(2.50), (2.51) into (2.47) satisfies the latter identically, and because of (3.15), 
the resulting expression for the potential is independent of the/3~; it involves 
merely the invariants and coincides with (V(I1, I2, In). 

The following version of Theorem 3.1 is relevant in the case of isotropy. 

Theorem 3.3. Assume W satisfies (I.12), and define 

~ 2  

Hij(fl; if) = ~ai Oaj ~/:(fl-; a), (_/7; a) E .~. (3.19) 



Elastic Deformations with Discontinuous Gradients 21 

Let  ~_ = {(/3; a)1 (/3; a)E N, [Hsj(/3; a)] notpositive-defiMte}. Then strong ellip- 

ticity fails ai- F E ~q~,_ with I i = [i(FrF) i f  and only i f  

(Ia,/2, I3)E_/(~_), (3.20) 

+ 

where I:  ~ -~- J is defned by (2.47), (2.48). The above remains valid i f  "strong" 
and "notpositive-definite" are repIaeedby "ordinary" and "singular", respectively. 

Proof. By virtue of Theorem 3.1 and Lemma 3.2, if strong ellipticity fails at F, 
then F admits the representation (2.44) with (/3; a) E ~_.  From (i) of Lemma 2.3 

we draw that I = (/1, h ,  Ia) = / ( /3 ;  a) so that (3.20) holds true. Conversely if 

(3.20) holds, then there exists ( /3 ; a )E~_  with _/ ---- _/(/3 ; a). With the aid of 
Lemma 3.2 we infer that there i s a n  R E (9+ and a frame X such that F con- 
forms to (2.44) with (/3; _a)E @_. Then strong ellipticity is guaranteed to fail 

m 

by Theorems 3.1 and 3.2. This completes the proof. 

With a view toward illustrating some of the above ideas, we turn to an ex- 
ample involving a class of elastic potentials introduced by HADAMARD [10] and 
discussed extensively by JOHN [11]. These have the form 

c d 
liz(Ij, Iz, I3) : -~  I t  -]- -~  I2 -~ q~ (]/-~3 ) , (3.21) 

where c and d are material constants and q~ is a function twice continuously 
differentiable on (0, oo). Upon  using (3.18), we immediately obtain 

qC(/3; a) = -} [(c q- dt3~) a~ -~ (c + d/3~) a 2 q- (c -~ d13~/3~ ) a~ ~- et3A3 ~ -]- df12/32] 

-}- ~b(/31f12a3), f17 E R+, a v E tg, aa E R+. (3.22) 

This is the reduced elastic potential generated by I4 ) in (3.21). Our next task 
is to derive necessary and sufficient conditions for ellipticity appropriate to the 
Hadamard materials. 

Proposition 3.1. Strong eltipticity holds at F E ~ +  for the potential (3.21) /f  
and only i f  

e + d2Z~ > O, c + d(I~ -- 22) + ~ ~b" (]/L'a) > 0 (3.23) 

where 7 2~ > 0 are the principal stretches o f  F and /1 = 2s2 j , /3  = (21222a) 2. 
Moreover, strong elliptieity holds globally on ~ +  i f  and only i f  

c >- 0, d ~ 0, c +  d > 0, q~"(J) ~ 0 u J > 0. (3.24) 

7 Primes indicate differentiation with respect to the argument. 
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Proof. For  the Hadamard potential we calculate the Hessian components (3.19) 
from (3.22) to obtain 

H33(/3; a) = c § d f i 3  ~ .+-/3~/32q~"(/3d32a3), (3.25) 

Hof f i ;a )=O~ i + j ,  (fi; a)E ~ .  

In the notation of  Theorem 3.3, (/a,/2, ira)~ _](~_) if and only if 

/(/3; a_) = ([1, I~, I3) ~ Hi~ft3; a) > 0 (no sum). (3.26) 

We appeal to (ii) of Lemma 2.3 and observe that (3.25) only involves/31,/32, a 3 .  

Taking note of  (2.49), we make use of  (2.50) in (3.25). In view of (3.26) and Theo- 
rem 3.3, stxong ellipticity at F is equivalent to 

+/3,/3~q' ( .0  > o + d/3~ > o, B(~,,  ~2) ~ ~ + d ~ &  ~ ~ " 

v (/3./3~) ~ _4 = [&, &]  x [&, &]  (3.27) 

where J = det F = ]/I-~3 �9 The first of  (3.27) is equivalent to the first of  (3.23). 
In view of (1.5), the second of  (3.23) becomes 

BO.i, )v) :> O, i < j (3.28) 

so that it is necessary for the second of  (3.27). To show it is also sufficient, we first 
conclude from (3.27) that B(-,/3z) is linear in/71 z so that the extrema of B(., -) in A 
may occur only at the four vertices (/31,/32) = (4i, 2s) for i < j or (i, j )  ----- (2, 2). 
Thus we need only show that (3.28) suffices for B(4a, 42) > 0. From the defini- 
tion of B(//1,/3z), 

[B(&, 42) - B(&, 491 [B(&, 43) - -  B(&, 42)] = [ d +  4 ~ " ( S ) ]  2 (4~ - -  222) (2~ - -  2~)<  0,  

(3.29) 

the inequality following because of  the ordering of the 4i. With the aid of (3.28) 
we then deduce from (3.29) that B(42, 42) 2> 0, so that B is positive on all four 
vertices and hence throughout A if the second of (3.23) holds. 

Turning now to the global inequalities (3.24), we first observe that strong 
ellipticity holds globally if and only if (3.23) hold for all 4 i > 0. Clearly~ (3.24) 
are sutficient for (3.23). To show their necessity, assume first that c § d ~ 0. 
Then, choosing 4 i = 1 contradicts the first of  (3.23). If  c < 0 or d < 0, again 
(3.23)1 is violated for some 2 i > 0. This proves that the first three of  (3.23) 
are necessary for global strong ellipticity. It remains to consider the case where 
these hold but  q~"(Jo) < 0 for some J0 > 0. We may pick 21 ----- 22 = 2 > 0, 
4 3 ~  Jo/4 z so that 4~424a=aro for each 4 > 0 .  Then (3.23)2 with i = 3  
demands that 

h(4 2) ~ c @ 2d42 + #"(Yo) 4" :> 0 V 2 > 0 (3.30) 
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for global strong ellipticity. However, since c ~ 0, d ~ 0, c + d > 0, qb"(Jo) < O, 
(3.30) is contradicted by choosing 

~.~ = - - [ d  + (d  ~ - c ~ " ( J o ) ) ~ ] / ~ " ( J o ) ,  

which is a real and positive root of  h(22) = 0 in (3.30). This completes the 
proof. 

It is worth remarking that the first three of (3.24) are equivalent to the Baker- 
Ericksen inequalities (1.16). Also, the last of (3.24) is the condition for convexity 
of  the function ~b 

The local strong ellipficity conditions (3.23) may alternatively be obtained 
by means of the criteria deduced by SIMPSON & SPECTOR [4]. Although the ap- 
proach presented above and theirs should lead to the same conclusions for speciM 
materials, a direct proof of the equivalence of the two methods in general has so 
far eluded my efforts. On the other hand for another special potential, whose 
ellipticity was investigated by KNOWLES & STERNBERG in [6], I have derived 
necessary and sufficient conditions for eUipticity which are in complete agreement 
both with the results reported in [6] and with an application of the conditions pre- 
sented by S~MPSON & SVECTOR in [4]. 

4. Deformations with Discontinuous Gradients 

In the event that strong ellipticity fails for some deformations, the possibility 
arises that weak solutions of the equilibrium equations might exist that do not 
abide by the smoothness requirements imposed in Section 1. We presently en- 
visage a situation where the deformation 2? remains continuous on the reference 
region N, but there is a continuously differentiable surface Z' ~ ~ such that 
27 is twice continuously differentiabte on N -- Z', whereas F = V~ suffers jump 
discontinuities across Z'. s It is a well known consequence of the continuity of 
the deformation under the present circumstances that there is a vector field 
b: 2,"-> E3, such that 

EF? ~ b | n on X, (4.1) 

where E'? denotes the jump of a function across Z and n : Z - +  9! is a con- 
tinuous field of unit normals on Z'. 9 In view of the constitutive law (1.8), the 
smoothness properties of F are shared by the associated nominal stress field a .  
The deformation under consideration is equilibrated if the integral of the nomi- 
nal traction over the boundary of any bounded regular subregion of Y~ vanishes. 
This global balance law reduces to the local equations (1.10) on ~ -- Z'. Moreover 
it necessitates that the nominal traction acting o~ Z " be balanced in the sense that 

[ a ~  n = 0 on X. (4.2) 

s That is, if ~ C ~ is separated by 2;' into two complementary subregions with 

nonempty interiors N, then F coincides on ~ (respectively ~) with a function continuous 
+ 

on the closure of N (respectively ~). 
9 See for example GURT1N [12] and JAMES [13]. 
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The additional conditions (4.1), (4.2) pose restrictions on the class of elastic 
potentials capable of sustaining equilibrated deformations with discontinuous 
gradients. Rather transparent conclusions on the existence of such deformations 
may be arrived at by studying a specialized class of them, namely the piecewise 
homogeneous ones. We let ~ be the whole space E3, agree that the deformation 

+ 
gradient takes two distinct values F and F E ~ +  and that there is a single surface 

of discontinuity Z'. It then follows from (4.1) that Z is a plane. We choose a unit 
normal to X, n E ~r so that the deformation ~ is given by 

J (4.3) 
] ; X ,  x E E 3 ,  X ' n <  0 .  

Continuity of 33 on E3 implies through (4.1) that there is a nonzero constant 
vector b such that 

+ -- 
F - - F =  b O n .  (4.4) 

In view of  (4.2) the deformation (4.3) is equilibrated if and only if  

+ 

6(F) n = 6(F) n ,  (4.5) 

equilibrium being trivially satisfied on E3 -- Z'. Whether or not a given piece- 
wise homogeneous deformation -- one that satisfies (4.3), (4.4) -- is equilibrated 
depends on the elastic potential because of the appearance of the stress response 
function j = We in (4.5). 

+ -. 
Definition 4.1. A pair o f  tensors (F, F) E ~+ • ~+  is a shock for the potential 

W (f F + F and (4.4), (4.5) hold for some b E E3 and n E ~ .  In the event 
that such a shock exists we say that W sustains shocks. 

Our intention is to deduce conditions on the elastic potential which are ne- 
cessary and sufficient for it to sustain shocks. To begin with we concentrate 
on the kinematic jump condition (4.4). Two tensors are said to be rank-one apart 
i f  their difference is a tensor o f  rank one, i.e., a tensor product c | d of  two 
non-null vectors c and d q E3. The next result utilizes the directional resolution 
to characterize such pairs of  tensors. 

Lemma 4.1. Two tensors F, F E 5e + are rank-one apart i f  and only if  there are an 
+ 

R E 0+, a frame X = O; {el, e2, e3}, fl = (]31, f12) E ~ and distinct a,  a E 92,  

a : (hfl, ~2, , such that 

in which case 
F = RAx(fl;  ~:), (4.6) 

+ - ~ R  + F - -  F -= b Q n ,  b (a i  - -  a l )  ei ,  n : es. ( 4 . 7 )  
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Proof. Assume first that (4.6) is true. Recalling (2.40) we have 

F = R ~e~ | e~ 4- ale i | e a , 

whence 

Upon setting 

4-  

F - F = R ( a  +, - -  e, | e 3  

hypothesis 

(4 .8 )  

(4.9) 

b = R ( a  + - a i )  ei, n = e a ,  we recover (4.7) and note that by 
4- 

b =~ 0, n E dg. Hence F and F are rank-one apart. 

4-  - -  

To show the converse, assume that F -- F = c | d 4= 0 and set n = d/[ d i e  q/, 
b =  [d Ic, so that 

- -  + 

F = F - -  b | n ,  b E E 3 ,  n E dg .  (4.10) 

4- 
By constructing the directional resolution of F with respect to n,  we obtain 

4- 
RE(9+, a frame X = { O ; e ~ , e 2 ,  e3} with e 3 = n  and ( f l ; a ) E N ,  such that 

F = R A x ( ~ ;  a )  = R ~e~ | e~ 4- aie i | ea , (4.11) 

Substituting (4.11) into (4.10) and recalling that n = ea, we find that 

F = R 8~e~ | e~ -}- R(aie i - -  Rrb)  | e 3. (4.12) 
o;=1 

Letting 

a i = a i - -  (Rrb) �9 e i ,  a = (al, a2,  a 3 )  , (4.13) 

we draw from (4.12) 

F = R fl~e~ | e~ 4- aie i | e a = RAx(t3; ~ ) .  (4.14) 

That a defined in (4.13) also belongs to 92 follows from (4.14), since by hypo- 

thesis d e t F >  0. Hence (4.14), (4.11) confirm (4.6), whereas (4.7)follows from 
(4.10), (4.13). This completes the proof. 

It becomes evident that by choosing an arbitrary rotation tensor R E 0+, 

frame X = { O ; e l ,  e2, ea} , 13 (fil,132)E91 and a ~ - • = _ = ( a  1 ,  a 2, a~3) E 92 with 
+ 

a 4= a~, one may construct the most general piecewise homogeneous deformation. 
§ - -  

This is done by assigning to F, F the values (4.6) and defining ~ by using (4.3) with 
n = e 3. The plane of discontinuity Z' is specified by its normal n and (4.4) is 
satisfied provided b is chosen according to (4.7). In other woras the directional 
resolutions o f  the two values o f  the deformation gradient taken in the direction 
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normal to the surface of  d&continuity possess common rotation R, frame X and 
in-plane components fl~, but at least one of the out-of-plane components a i .jumps 
across ~. Thus there is a frame X with its third unit vector normal to the plane 
of discontinuity, in which (!0;, 

[ e l  ~ = R_ /3~ , 

0 a a /  

where R is a proper orthogonal matrix. 

(4.15) 

The-next result shows that the principal stretches associated with piecewise 
homogeneous deformations must obey certain inequalities because of  the kine- 
matic jump condition (4.4). 

+ + + 4- 

Theorem 4.1. Let 2 i > 0 be the principal stretches of  F E c~o+, with 21 ~ 22 
4 -  . . . . .  

<= 23. Then there exists F E 5r with principal stretehes 2,. > 0 (21 ~ 22 ~ 2a), 
4- 

such that F and F are rank-one apart i f  and only i f  

- -  + + - -  4 -  + - -  

21 =< 22, 21 ~ 2~ ~ 23, 25 ~ 23, (4.16) 
§ 

with the first or the last of  the above inequalities or both being strict in case 2~ ----- 
2 > 0 ,  i =  1,2,3.  

4- 
Proof. First we assume that F and F are rank-one apart. Then they satisfy (4.10) 
for some b E E3 and n E q/. Moreover, their directional resolutions with 
respect to n possess the same in-plane component pair /3 = (/31 /32)~ ~1, as 

guaranteed by Lemma 4.1. We may assume t32 ~/31. Invoking (ii) of  Lemma 2.3 
+ 

and applying it to F and F, we conclude from (2.49) that 

• • • 

21 ~ #1 < 22 ~ /32 ~ 2 5 ,  ( 4 . 1 7 )  

which immediately yields (4.16). To demonstrate the assertion following (4.16), 
+ + + 

suppose that 2t = 22-----23 ~ 2 > 0. We now assume that equality holds in 
the first and last of the inequalities in (4.16), and show that this leads to a con- 

_ -- _ 4- -- 
tradiction. It follows that 2j = 22 = 2a = 2. Then F and F are similarly trans- 

+ + -- _ s 

formations; F = 2R, F = 2R, R E (9+. Lemma 4.1 demands that (4.6) be in 
force. However, 

+ + + 

F = 2R = RAx(  fl; a)  

4- 4- 4- 
can be satisfied by setting R = R, /3~ = ~3 = 2, oct = 0. By uniqueness of 

+ 

the directional resolution asserted in Theorem 2.1, R = R, Ax(/3; +) ~- 21. 
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The same argument applied to F given R = R. Then by (4.6), R ---- R, hence 
+ - -  

F ----- F and they are not rank-one apart. 

To show the converse, assume the 2~ conform to (4.16) and its subsequent 
• 

qualification. Because of  the ordering of  the 2~, it follows from (4.16) that there 
are/37 with /32 ~/31 > 0, such that 

21 ~ fll ~ 22 ~/72 ~ 23. t4.17) 
@. 

In particular, (2.49) now holds with 2 i = 2~, so that (ii) of Lemma 2.3 with 
+ -4- 

F = F can be used to define a E N2 by means of (2.49) through (2.52). Then 
+ + 

(/3; a)  E @ satisfies the hypotheses of Lemma 2.3(i) with F = F. Hence there 
is  a frame X and an R ~ (9 +, such that 

+ + 

F = R A x ( f l ; a ) ,  (4.18) 

with fl abiding by (4.17). For such/3, (2.49) is valid with 2 i = 2 i. Then, ob- 

taining Ii -----// by setting 22 = 2i in (1.5), we may construct a such that (2.49) 

through (2.52) are satisfied by (8; ~ )E  N. We then choose 

F = R a x ( f l ;  a_), (4.19) 

with R, X as in (4.18). By construction, F has principal stretches 2i, as is guaranteed 
by Lemma 2.3. In view of Lemma 4.1 it remains to be shown that/3 satisfying 

_ + + 

(4.17) can always be chosen so that + @ a in (4.19), (4.18). In case (2 +, 22, 23) @ 
+ - -  

(2i, 22, )~3) we have / @ _/, since the mapping (21, 22, 23) ~-- (/1, 12,/3) is inver- 

tible for 0 < 2~ =< )t2 ~ 23. This suffices for a and a to be distinct because of  

(2.47). I f  2 i = 2~ = 2~, then by hypothesis not all three of the 2~ coincide, and 
(2.47) permits us to choose (t3~, f12) + (2i, 2j), where i + j .  Examination of  

+ +  - -  + 

(2.50) then reveals that ~o~ 7 > 0. Hence choosing ~ = --~e yields the re- 
+ 

quisite + 4: ~, so that (fl; a) ,  (/?; _~) satisfy (2.49) through (2.52). In view of (4.18), 
(4.19), an appeal to Lemma 4.]- now completes the proof. 

§ 

In the special case when F ---- 1 the appropriate version of  (4.16) is in agree- 
ment with a result of  BALL &JAMES [14] 1~ Moreover, Theorem 4.1 dictates that 
given a (non-trivial) piecewise homogeneous deformation, its restrictions to 

lo See, in particular, the first assertion of Proposition 4 in [t4], where the 2 i stand 
for the squares of the principal stretches. 
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either side of  Z' cannot be related to each other by a similarity transformation. 
That is, if 

- -  q -  q -  - -  

F ----- ~RF, F -- F = b | n (4.20) 
+ 

for some v a > 0, R E (9+, b E E3 and n E q/, then necessarily b = 0 and F =- F. 

To see this, we note that (4.20) dictates that 

1 - - 4 R = c |  (4.21) 
q- + + 

where c = - I F - r n l b ,  m = F - r n / I F - ~ ' n l .  Applying Theorem4.1 to 1 and 
+ 

z~R we have 2 i ---- 1, 2i = v a. Then (4.16) demands that z~ ---- 1, which is pro- 
hibited by its subsequent qualification. Hence c = 0 in (4.21) so that b = 0 in 

§ - -  q- _ 

(4.20) and F = F. In particular, F and F cannot both be the similarity transfor- 
mation if they are rank-one apart. 

In our study of equilibrated piecewise homogeneous deformations, it remains 
to consider the traction continuity condition (4.5). This we propose to do by 
utilizing the properties of the traction response mapping introduced in Section 3, 
within the framework laid down by Lemma 4.1. In what follows, the traction 
response mapping generated by the elastic potential W in the frame X is the 
function gX(13; . ) : 9 2 _ + R 3  defined by (3.10), (3.4). We now state the main 

result of this section. 

Theorem 4.2. Necessary and sufficient for the potential W to sustain shocks is 
that there is a frame X and t3 E 91  such that the traction response mapping 

gX(13, " ) : 9 2 - + R  3 generated by W in X is not invertible on 92.  Moreover 
+ - -  

every shock (F, F) sustained by W admits the representation (!o 
[F] x =  [R] x t32 ff2 , (4.22) 

,-b 

0 a 3 

where R E C+, whereas X, 13 = (t31, tJz) E ~1 and ~a = (a~, a~2, a~3) E 92 are such 

that ,~ + a and 
g/X/(13; +) = gX(13; a~). (4.23) 

Proof. We recall (3.12)1 and apply it to two tensors RAx(13; ~). By subtracting 

the resulting expressions, we obtain 

[~(RAx(~; +)) _ ~(RAx(13; ~_))1 e3 = [g/X(/3; +) _ gX(13; a~] Re i (4.24) 

for any RE (0+, frame X =  {O; el, e2, e3} and arbitrary (t3; a)Eg._ Assume 
+ - -  

now that (F, F) is a shock for W. Then by Definition 4.1, (4.4) is in force for 
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+ - 

suitable b, n. We infer from Lemma 4.1 that F, F are expressible through use of 
(4.6). Since by hypothesis (4.5) also holds, we observe that the left hand side of 

_ • 

(4.24) vanishes for those choices of R, X,/3, + and a that correspond to F through 
+ 

(4.6)and(4.7). Moreover, a 4= a and, since R is orthogonal, we recover (4.23), 
whereas (4.6) is equivalent to (4.24) in view of (2.41). We have shown that if W 
sustains shocks, then every shock admitted by W conforms to the representation 
(4.22), and a suitably chosen gX(fl; .) fails to be invertible because of (4.23). It 
remains to show that if there exist /3 E N1 and a frame Xfor  which gX(fl; .) is not 

one-to-one, then W sustains shocks_By this hypothesis, (4.23) must hold for some 
+ - -  

X,/3 and distinct a, a E N2. In terms of these and an arbitrary R E ~0+ define 
4 -  + - -  

F through (4.22). Then in view of (2.41), F, F satisfy (4.6) of Lemma 4.1 and 
§ - -  

hence (4.4) with b, n given by (4.7). Thus F 4= F. Moreover, the right hand side 
of (4.24) vanishes due to (4.23). With the aid of (4.6) and the last of (4.7), we con- 

+ - -  + - -  

firm that F, F also satisfy (4.5), and so by definition, (F, F) is a shock for W. This 
completes the proof. 

Theorem 4.2 provides a complete characterization of the class of hyperelastic 
materials that sustain equilibrated piecewise homogeneous deformations. To 
obtain a mechanical interpretation of the theorem, we recall that the traction 
response mapping is a constitutive response function, expressing components of 
Piola traction in terms of their respective conjugate resolved out-of-plane compo- 
nents of the deformation gradient. Whenever this mapping fails to be invertible, 
one may find deformation gradients with common in-plane but distinct out-of- 
plane components associated with a given direction, but giving rise to identical 
tractions. Such deformation gradients are the successful candidates for a shock. 
In principle one may construct all the shocks sustainable by a given material. 
This is done as follows. For each frame X and in-plane component pair/3 one 

q -  

finds all pairs of out-of-plane component triplets a satisfying (4.23). The defor- 
4 -  

mation gradients F of the associated piecewise homogeneous deformation (4.3) 
are then given by (4.22). The normal n to the reference surface X of discontinuity 
is related to the frame X through the last of (4.7). It is possible that for some 
anisotropie materials the traction response mapping might lose invertibility only 
for certain restricted choices of the frame X. If this is the case, then shocks are 
sustainable by such materials only for special orientations of the discontinuity 
surface. 

Conbining the conclusions of Theorem 3.2(ii) and Theorem 4.1, one readily 
concludes that a loss of  strong elliptieity at some deformation is a necessary condi- 
tion for an elastic potential to sustain shocks. Thus we arrive at a result established 
by K~OWLES & ST~RYBERG [15]. 

In the event that the material at hand is isotropic, the preceeding discussion 
may be simplified by an appeal to Lemma 3.2. In these circumstances, the reduced 
elastic potential is obtained by means of (3.15), (3.16), so that the traction response 
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mapping is independent of the frame X in (3.10). In particular, if we define 

gi(fi; _a) -- ~a/ r  a), (/3; _a)e .@, (4.25) 

with "#/" supplied by (3.15), then, for any choice of the frame X, 

gX(/3; a) = g(fl; _a) u (/3; a) E N.  (4.26) 

Thus in attempting to find the shocks sustained by an isotropie material, we need 
only examine the invertibility of a single family of mappings g(/3; "):~z--->lga, 
depending on the pair of  scalar parameters/3. Once this is done, the frame X 
in the representation (4.22) is seen to be arbitrary. Evidently, if an isotropic 
material sustains shocks, it does so for every possible orientation of the pIane of 
discontinuity. 

In order to illustrate the above results, we apply them to the special case 
of  the elastic potential (3.21) for the Hadamard material, the strong ellipticity 
of which was investigated in Proposition 3.1. 

Proposition 4.1. The Hadamard potential (3.21) with c ~ O, d ~ O, c + d ~ O, 
sustains shocks i f  and only i f  

+ + 

[gi,(j) _ q~'(;)] [J  -- J] < 0 (4.29) 
+ - -  

for some distinct J, J >  O. Moreover, i f  F E (9+ has principal stretches 2 i 

(0 < 21 ~ 22 ~ 2a), then there is a shock (F, F) with det F = f / f  and only i f  

where [~ = 2i2i, a r = 212223. 

for i = 3 ,  

Jbr i =  l ,  
(4.30) 

Proof. By means of (3.22), used in conjunction with (3.21), the components of 
the traction response mapping specialize for the material under consideration to 

g,(/3; a) = [c + (~/32//3,) ~ d] a,, (1:o sum), 

gd/3; _a) = [~ + (/3~ +/32) d] a~ + fl~&~'(/3~&aO, 
(4.31) 

where (/3; _a)C ~ .  In view of Theorem 4.2 and the preceeding remarks pertaining 
to isotropy, we now set out to show that (4.29) is necessary and sufficient for 
the function g(/3; .) to lose invertibility on 9 >  From (4.3I) and the hypotheses 
on c, d, we draw 

+ 

&(fl;_ +) -- &(fl; _~) = 0 <=> ay = a~. (4.32) 
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Hence the resolved out-of-plane shear components al, a2 may not jump. Setting 
2~2 4 -  &- - -  

or = fll/3za3 we conclude from (4.32) that for a nontrivial shock h 3 4= a3, which 
+ - -  

is equivalent to o r 4= d. The last of (4.31) gives 

where 

+ )  - = 0 A = 0 ,  

@ 

_ 

2 , (4.33) = _  + + _ 

J - - J  

J= 
If  a shock exists, then A vanishes in (4.33) for some /3~ > 0 and distinct J > 0. 
Because of our assumptions on e and d the first term in the right-hand side 
in (4.33) is positive. This confirms the necessity of (4.29). Now suppose (4.29) 
holds true. Then, assigning any fixed positive value to fit, we may confirm easily 
that /32 ~ 0 can always be chosen so that A vanishes. For such/3 we may then 

~ • + - -  

choose a 3 = J/ill/32, choose arbitrary a~, set a s = a~ and construct (F, F) 
by way of (4.22) with R and X also arbitrary. Then (4.33), (4.32) confirm that 

+ - -  

(F, F) is a shock for the Hadamard potential. 
Turning now to a proof of (4.30), we recall the results of Lemma 2.3. If  F 

has principal stretches 2i, then there is a shock (F, F) if and only if the first of 

(4.32) holds and A vanishes with (/3; _a +) satisfying (2.49) through (2.52). Clearly 
+ 

we only need confirm that (4.30) are equivalent to (4.33) with J = det F, for 
some 

(/31,/32) E A ~ {(t3~, t32) [21 -<_/3~ <= 22 <= P2 _< 23} 

and for some positive J 4= or. Now A in (4.33) depends continuously on (/317/~2) 
and is easily seen to achieve its maximum and minimum for (/31,/32) = (21, 22) 
and (22, 2a), respectively. Moreover, A attains all intermediate values on A, 
which is connected. Hence it vanishes for some (/3t,/32) E A if and only if it 
is nonnegative at (21, 22) and nonpositive at (2,2, 2a). These conditions are equi- 

+ 
valent to (4.30) if one sets I1 = 2i2 i, Is ~ 212223 ~- j2, j = j .  This completes 
the proof. 

The restrictions on the material constants c and d imposed in the foregoing 
proposition are equivalent to the Baker-Ericksen inequalities (1.16). In case 
these hold, one readily infers from (3.29) that the potential under consideration 
sustains shocks if and only if the last of the global strong ellipticity conditions 
(3.24) fails to hold, i.e., in case ~b"(J) < 0 for some J > 0. Hence for the Hada- 
mard materials that satisfy the Baker-Ericksen inequalities, existence of shocks is 
equivalent to loss of strong ellipticity at some deformation. 
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5. Ellipticity for Plane Deformations of Isotropic Materials 

Conditions for strong and ordinary ellipticity of the equilibrium equations 
appropriate for plane deformations of compressible isotropic materials have been 
etstablished by KNOWLES & STERNBrRG [1]. This section aims at arriving at these 
results by way of an alternative route: the kinematic results of Section 2 are special- 
ized to two dimensions, and the developments of Section 3 are modified to make 
them relevant to plane deformations, Our intention is not only to test the methods 
developed in this work against previously known results, but also to provide an 
example of the applicability of our approach in a setting simpler than, but similar 
to the three-dimensional one. 

We identify E2 with a plane in E3 containing the origin O and spanned by 
two unit vectors e~, of a fixed frame {O; e~, e2, ea}. Consider a body that, in the 
reference configuration, occupies a cylindrical region with open middle cross- 
section ~ Q Ez and generators along e3. A deformation of the cylindrical body 
is plane if it maps the particle at x == x~e~ to y -- y~eg, so that 

y = ~(x~e~) + x3e3, x~e~ E ~ ,  (5.1) 

where ~ : ~, --~ E2 is a two-dimensional mapping defined on the cross-section 
of the cylinder. Greek indices are understood to take the values 1, 2 throughout 
this section. If we refer to :9 in (5.1) as the (plane) deformation of ~ ,  we may 
reinterpret the exposition in Section 1 in a two-dimensional setting. The sets 

+ 

og, 5e+, 0+ and 5/' now take otl two-dimensional meaning. Let X stand for the 
two-dimensional frame {O; e~, e2}. We write x = x~e~ for the position vector 
of a particle in N, F(x) E 5r for the two-dimensional gradient of the mapping 
:9, and C(x) = Fr(x) F(x), for the two-dimensional version of the right Cauchy- 
Green tensor. From the three-dimensional nominal and Cauchy stress tensors 
associated with the deformation, we construct two-dimensional tensors ~ and 
by specifying that their components in X are given by cr~r and ~r respectively. 
(Note that a~3, a3~. and Ti3 = "g3i need not vanish.) We speak of a and ~ as the 
in-plane nominal and Cauchy Stress tensors~ respectively. 

For a more detailed account of the theory of plane deformations, we refer 
the reader to KNOWLES & STERNBErm [1 ], [15]. The three deformation invariants 
in (1.5) are frilly determined for plane deformations by the two plane invariants 

_ r ( c ) - -  tr c = + 

J(C) = t/d-~ C = det F = it22, 
(5.2) 

where 2~ > 0 are the principal stretches. 
The in-plane mechanical response of an isotropic body is characterized by 

its in-plane elastic potential 

W(F) = liz(I, Y), I = tr FrF, J = det F, F E s (5.3) 
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where l~(., .) is defined and twice continuously differentiable on the two-dimen- 
+ 

sional invariant region ,r = {(I, J)  I I => 2 J  > 0}. In view of (5.2) we may 
define 

~'(2j, 22) = I7V(2~ § 22, 2~22) , 2, > 0, (5.4) 

thus expressing the potential in terms of principal stretches. 
The equilibrium equations are now given by the two-dimensional counter- 

part of (1.1t3) which is to be satisfied by the two components of the dist~lacement 
field u : N - +  E2. Analogous remarks apply to the acoustic tensor (1.18), so 
that the ordinary and strong ellipticity conditions for plane deformations are 
supplied by the two-dimensional version of  Definition 1.1. 

Theorem 2.1 can be directly applied to tensors in Ea, for which it asserts 
the following. Let n E :~" and F E ~ +  be given. Let e E ~ be orthogonal to n. 
Then F admits the representation 

F = R(a | n + e | e) V, (5.5) 

where R C (9+, a E E2 and V ~ 5 a+ are uniquely determined by n and F, and 
V n = n .  Clearly 1 7 = { O ; e , n }  is a principal frame for V. If  / 3 > 0  is the 
principal value of V corresponding to e and al = a �9 e, az = a �9 n, the matrix 
of components of F in the frame X = {O; e, n} is given by 

[ F ] x =  [R] x . (5.6) 
a2 

From (5.6) we conclude that a2 > 0, since det F =/3a2 > 0. Equation (5.6) is the 
two-dimensional analogue of (2.37). In the current circumstances there are only 
one in-plane component 13 > 0 and two out-of-piane components a, and a2 > 0 
associated with the directional resoIution o f / ;  with respect to n. Using (5.6) 
and (5.2), we obtain 

I = tr F rF  =/32 _~ a~ -t- a~, 
(5.7) 

J = det F =/3a2.  

Using (5.5)-(5.7) and proceeding in a fashion parallel to the proof  of Lemma 2.3, 
we arrive at its two-dimensional counterpart. 

Lemma 5.1. A two-dimensional tensor F E ~+ with principal stretches 2,, 22 
(22 ~ 21 > 0) admits the representation (5.6) for some R E (9+, frame X and 
(/3; al, az)E ~ = ~%+•215 i f  and only ~f 

21 ~ / 3  ~ 22, a 2 = I -  (S//3) 2 --/32, a2 = J//3, (5.8) 

where I = 22 -? 22, Y = 2122. 

The proof  is omitted, since it mimics that of Lemma 2.3. Instead, we remark 
that in view of the restrictions /3 > 0, a2 > 0, (5.8) is equivalent to (5.7). 
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With the above at our disposal we may retrace the construction of  the results 
of  Section 3 to obtain their plane comlterparts. Keeping in mind our present 
confinement to isotropic materials, we define the plane reduced elastic potential 
by means of 

"/r(/3; a~, ~)  =: w@~ + a2 + a~,/3a~), (/3; a~, a~) E ~ .  (5.9) 

This is justified by the observation that if (/3; a~, a2)E v-2 is related to FE  ~ +  
through (5.6), then (5.7), (5.3) imply that 

W(F) = "/t/'(/3; a~, a~). (5.10) 

With the aid of (3.2) -- reinterpreted in the present context -- and the chain 
rule, we recover an expression for the acoustic tensor analogous to the second 
of  (3.12), namely 

82 
Q(F, n) : Oa~ 0ar "/U(/3; a~, a2) Re~ | Re~ (5.11) 

where X = {O; e~, e2} , e2 = n, R E r and (/3; a~, a2) are related to F through 
(5.6). 

The foregoing results allow us to obtain a result parallel to Theorem 3.3. 

Lemma 5.2. Ordinary ellipticity holds at F E ~ +  with principal stretches 22 >= 21 
(2~, > O) i f  an only i f  

det _//(/3; (I -- j2//32 _/32).~-, y//3) 4= 0, 2~ ~ fi ~ 22, (5.12) 

where It~/o(fl; a~, a2) = 02" /~P( /~ ;  al,  a2)/Oa), Oa~ and I ----- 22 + 2~, J = 2~22. 

Proof. In view of (5.11) and Definition 1.1, ordinary ellipticity holds at Y if 
and only if the Hessian matrix of "///'(/3; al, a2) is nonsingular for every choice 
of  (/3; al, a2) E @ that corresponds to some directional resolution of F through 
(5.6). Lemma 5.1 asserts that such (/3; al  az) are precisely the ones satisfying 
(5.8). This completes the proof  of (5.12). 

At this point, we obtain conditions for ordinary ellipticity at F E ~2'+ in- 
volving only the invariants /, Y and the partial derivatives of W with respect 
to them. With this in mind, we introduce the following notation 

0~,~ 021i " + 
W~= 8 I '  W , , = 6 i  2 on J ,  (5.13) 

and so on. Employing the chain rule in (5.9) and invoking the smoothness of  

if/, we derive the following expressions for the components Hr~(/3; al, a s ) =  
82"///'0; y~, ae)/Oa,/Oa~ of the Hessian matrix of  "///, where we omit arguments 
for brevity 

H~l == 2Wr + 4Wna2, 

H22 = 2Wz + 4Wiia~ -? 4Wz,fia2 + W, rafl 2 , (5.14) 

Hi2 = Hz~ = 4Wnala2 + 2Wij13al. 
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det H = H~H22 -- H~2 and assigning to at and a2 the values 

D = W n W j s -  W~s. (5.i6) 

With (5.15) at our disposal, we may arrive at the requisite ellipticity conditions. 

Theorem 5.1. Given I = 25 + 222, a r = 2121 (22 ~ 21 > 0) ,  define 

E ~  = 2WI(2W ) + 4WuJZ]22 -~ 4tu -}- Wsf i  2) (no sum), 
(5.17) 

E~2 = E2~ = 2D(U -- 4 J  2) + �89 + E22). 

Then ordinary ellipticity holds at F E 2'+ with principal stretches 2~ i f  and only i f  

> 0, > - 1  (5.1s) 

where r/---- sgnEl~. 

Proof. Lemma 5.2 asserts that necessary and sufficient for ordinary ellipticity 
at F is that 

A(.fl:) @ 0, 2~ _--</3 ~ ),2, (5.18) 

where A(fl z) is defined by (5.15), with the partial derivatives (5.13) of  (V evaluated 
at the invariants of  C. Assume first that 2~ < 22, and define ~ through the 
equation 

~}(),~ _ 22) $ _}_ �89 + ),~) = f12. (5.19) 

One easily sees that for t3 > O, (5.19) ensures 

) ~ f l = < 2 z  ~ - - 1 ~ 1 .  (5.20) 

Thus we may set r = cos 20, 0 C [0, ~/2] in (5.19) mad substitute the result into 
(5.15) to express A(fl 2) as a quadratic in cos 20, for 0 ~< 0 ~< :r/2. By means 
of standard trigonometric formulae and some manipulation of  (5.15), one finds 
that 

A(fl 2) = E ~ ( O )  g~(0), (5.21) 

where ~1(0) = sin a 0, ~'z(0) = cos 2 0, 0 E [0, ~/2], E~  are given by (5.17), and 
f32 obeys (5.19) with ~ = cos 20. In view of (5.21), (5.18) becomes eqtfivalent to 

E~z~z~ + 0 for z~ ~ 0, zl -,~ z2 > 0. (5.22) 

KNOWLES & STERNBERG have shown in Section 2 of  [1] that (5.22) is true if and 
only if  (5.18) holds. It remains to consider the case where )~t = 22 = 2 2> 0, In 

Observing that 
indicated in (5.8), we obtain from (5.14) that 

det _//(/3; (I  --  j2/f12 _/32)~, j/fl) ~ A(/32) 

= --4Dfl 4 @ [2 WI(Ws s --  4WH) + 4DI]fl 2 

+ 4 g ~  + 8Wx(WnI+ WHJ ) -- 4DJ 2, 

< / 3  < 22, 1 +  + or = :.122, > ).1 > o,  (5.15) 

where we have set 
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this instance (5.18) reduces to 

A(22) 4 = 0. (5.23) 

Moreover, since I = 2 J  = 222, inspection of (5.17), (5.15) reveals that 

EI~ ----/?22 = El2 = z~(22). (5.24) 

Thus in the present circumstances ordinary ellipticity reduces to Ej ~ 4= 0, which, 
in view of (5.24), remains equivalent to (5.18). This completes the proof. 

The above is an alternative derivation of  the ellipticity conditions established 
by KNOWL~S & S TERNBERG [1 ]. Here w e have arrived at a version of  these conditions 

involving the derivatives of the function liz(I, J), whereas their result is given in 

terms of  the plane elastic potential 1~(2~, 22) expressed as a function of  the 
principal stretches. 

The strong ellipticity conditions are easily obtained in a similar fashion. They 
are equivalent to the requirement that the matrix with components equal to 
Hc~(~'~ ( [  - -  j2/f12 __ ~2)�89 d / ~ )  be positive-definite for fl E [21,22]. Since the 
H~r are continuous in fl, H is positive-definite on [21, 22] if and only if it is non- 
singular there and positive-definite for fl = 2~. The latter condition becomes 

W I > 0, EH > 0, (5.25) 

as inspection of (5.14), (5.17) reveals. Hence the conditions for strong elliptieity 
are given by (5.25) together with (5.18), in which now ~7 = +1 is appropriate 
because of the second of (5.25). The above is once again in complete agreement 
with the conclusions of [1]. 
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