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1. Introduction 

W e  

functions, 

f I Vu 1,'-~ Vu.  ( %  - vu) dx >= f b(x, u, Vu) (v -- u) dx 
D .Q 

+ f f ( x ) ,  g(v - u) dx 
g2 

consider the following variational inequality involving p-Laplacian 

(1) 

for all v E cg = {v E W~'P(fY) + Uo and v(x) >~ ~(x) a.e. in .(2}. Here .Ois abounded  
domain in R" and u0 E W1'P([2) with Uo(X) >= ~(x) a.e. in .(2. Naturally 1 < p 
< oc and u E W1'P(D). 

When f =  0 and b satisfies a growth condition of Serrin type [12], namely 

[b(x, u, h) I ~ c, l h ] ' - '  + ez [u[ ~-1 + ca, 

where cl, c2 and c3 are positive constants, MICHAEL ~; ZIEMER [10] have proved 
that u is H61der continuous when W is H61der continuous. 

Recently FUCHS [3], LINDQUIST [7], and NORANDO [11] proved the cl'~-regularity 
of u under various restrictions, LINDQUIST assuming that n = 2, p ~ 2, and 
FucHs and NORANDO assuming that p ~ 2, b - -  0 and ~oE W 2'~. CHOE & LEWIS 
[1] moreover have obtained Cl,~-regularity for bounded solutions u when ~0E 
WY'"+'(fY) and b satisfies the natural growth condition b(x, u, h) <~ c(g(x) + l h I p) 
where g E L  n+~,e>O. 

Clo c- o r  Here we shall prove that solutions of  (1) have 0,~ C~;c-regularity under 
various conditions on b, f ,  ~ in the spirit of [12]. Roughly speaking, we follow the 
principle that solutions of the obstacle problem (1) should be as regular as solu- 
tions of the equation 

div (]Vul p-2 Vu) = div (]V~o! p-2 V~o). 
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Since we shall use well-known integral inequalities (e.g., the Morrey growth 
condition and the Campanato growth condition) for solutions of elliptic equa- 
tions, and a comparison principle, our proof thus lies closer to the standard 
context of elliptic partial differential equation theory than the demonstrations 
given in [3], [7] and [11]. Moreover our C~d~-regularity result under the assumption 
~0 E C 1'r fl > 0, is new. We show in Section 3 that the condition ~o E C 1'~ is ne- 
cessary for C~g2-regularity for u, while the condition ~0E W 2'"+', e >  0, implies 
that ~0E C ~'a for some /3> 0, by the Sobolev imbedding theorem. Finally we 
shall examine in detail how the regularity of u depends on the regularity assump- 
tions for b, f and ~?. 

We define ]If this as the norm of f in the space S and let B(r) = B(xo, r) = 
{xER;  I x - - X o l <  r} with a typical point XoE s Also we define (u)~ = 

1 
iB(r) l j _  ~" udx.  Throughout the paper e denotes a given constant depending 

on n, p and various exterior data. 

2. C~ 

In this section we shall prove the C~ of solutions of the variational 
inequality (1). We can assume that 1 < p ~ n, since C~ is immediate 
and trivial when p > n in view of the Sobolev Imbedding Theorem. First we prove 
a Morrey-type growth condition for solutions wE WI'P(O) of the differential 
relations 

f l V w I P - Z V w .  V r b d x =  f b ( x , w ,  V w ) c b d x +  f f .  Vcbdx (2) 
s $2 ~2 

for all 4~ E C~(O), where b and f satisfy the controllable growth condition 

Ib(x, w, h)[ ~ c~(a(x) q- Iwl ~-~ § lhl,-'), (3) 

n n 
f ( x )  E L~(~), s > - - "  a(x) E L'(O),  t > - -  

p - - l '  p 

for some e~ ~ 0. As a preliminary to this result, we note that w E Llo%(f2) by 
Moser iteration (see Theorem 1 in [12]). 

p np np 
Define ~ : n - k - -  and 0 2 = n  

p -- 1 t (p - -  1) s(p -- 1)" 

Lemma 1. Suppose that B(2r) Q -(2 and 0 < e < rain (dl -- n + p, 02 -- n -k p). 
Then Vw satisfies the following inequality 

f I Vw I p dx < c2 r ~(~ 1~ + f [Vw l ~ dx  + e 3 7 ' - ~  + e~, "~2-~ (4) 
B(o.) B(r) 

for all ~ ~ r/2, where c2 depends only on n, p and where e3, e4 depend on n, p, 
llwlIL~<~c~)), [[fIIL~, ][allL~ and el. 



Obstacle Problems for Quasilinear Elliptic Equations 385 

Proof. Let N 6 WI"P(B(r)) be the solution of 

f IVY] p-2 V~ .  V~ dx = 0 (5) 
B(r) 

satisfying F = w on cgB(r). By the weak Harnack inequality for V~, we have 

f IV-~[~dx<=c f IVFl,'dx<c f lVwfdx (6) 
B(~) B(r) B(r) 

for all ~ < r/2, where c depends only on n, p. Ill turn, 

f ]VwlPdx~ 2" f IVw]Pdx + 2p f IVw-VF[ pdx 
B(o) B(~o) B(e) 

S c f IVw]" dx + 2 ~ f IVw -- VN l" dx. 
B(e) B(e) 

(7) 

If  we assume that 2 ~ p < 0% then the last term in (7) can be estimated as 
follows: 

f ]Vw - VF I" dx <~ f IVw- VFI~ dx 
B(Q) B(r) 

< c f []Vw[ p-2 Vw - ]v~l p-2 v ~ ] .  [Vw - v~] dx 
B(r) 

= c f b(x, w, Vw) .(w -- ~) + [ f - -  (f),] �9 (Vw - -  Vw-) d x  
B(r) 

< c f (a(x) -/- 1 -k ]Vw[ p-l) !w -- N[ dx 
B(r) 

+ e .] I f - -  ( f ) ,  ] [Vw -- VF I dx 
B(r) 

= I + I I .  

(8) 

Now assume that 2 ~ p < n. By H61der's inequality, 

- -  B )(a(x) -k  1 ) n P + p - n d x J  np ) IN __ -~ln~-_Pdx] np 

(9) 

By Sobolev's inequality and H6Ider's inequality applied to the first term of the 
right-hand side of (9) and by Poincare's inequality applied to the second term, 
we have 

I <= cr < ( ~ )  ]1 a 2_ I[[L t I VW -- VW[ p dx 
) 

(10) 

+ 
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When p - - n ,  we see that 

f (a(x)+ 1 ) i w - N l d x ~ H a §  IIIL, llw --~JI 
B(r)  L t - l(B(r)) 

G r ( - 7  - ~-) I1 a + 1 ]IL t ]w - -  w 1# dx  7 
) 

for all n < # < oo by Sobolev's inequality and H61der's inequality. Thus when 
p = n, we obtain (10) with c~ replaced by ~ -- e', for some small e' > 0. 

By H61der's inequality, 

"'-"n [/ q '  
II =< cr p ~ l l f - -  (f),]]r [Vw -- V~] p >-. (11) 

) 

Combining (8), (10) and (11) and using Young's inequality, we obtain 

P 

f ]Vw - V-~lPdx  ~ cr ~'-'" lla + 1lip; -1 

B(r) (12) 
p p 

+ cr ~. t l f - ( f ) l l [ g  ~ +crp-~ f ] V w f d x ,  
B(r) 

where e ' = 0  when l < p < n  and e ' > 0  when p = n .  Combining (7) and 
(12) gives Lemma 1 when p ~ 2. 

Now assume that 1 < p < 2.  Then by H61der's inequality we have 

f lVw - v~l" ax 
B(r)  

(13) 

<= c (IVwl + lW~[)" dx ~ -  (IVw] + lV~[)'-~ l v ~ -  v~? dx ~- 
) ) 

h ]P < c IVw[ . & (IVw].-2 Vw - IV~l . -2  v ~ ) . ( V w  - Vw)dx T. 
) ) 

As in the case p ~ 2, the last term in (13) can be estimated as follows: 

f (iVw/,-~ Vw - Iv~l  ~-~ v ~ )  .(Vw - v ~ )  & 
B(r)  

P 

~*-~ f IVwl'dx 
B(r) 

[ np+_p n n - d  n(p 1) 

+ c [ t "  P t l l a +  1 ] ] r  p 

Then by Yonng's inequality, we obtain 

f IWv- v~t.dx s d~.-, f IVwi" dx 
B(r) B(r) 

P P 

+ cr <-~  l[a + l ll~t 1 + c ~  "-~ Ilf--  (f),ll~g 1 

(14) 

[Vw[" dx 7 7 ] [ f_  (f)~ j]L~ . f )  

(15) 
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for each 0 < e < min (6~ - -  n § p, 62 - -  n + p). Combining (7) and (15) 
completes the proof.  [ ]  

Remarkl .  I f  t > n  and f E C  ~ 0 ~ > 0 ,  then 6 1 > n  and 6 2 > n .  

Remark 2. Suppose 0 < v < min (6t - -  e, 6z - -  e, n). By iteration [4] there exists 
a constant ro depending on c~, n, p, e, s, t, [lUllL~(~(ro> IlallL~, II/IIL~ and ~ such 
that, for each 0 < r < ro, 

j I Vwl pdx<: cr ~ 
B(r) 

where e is a constant independent of  r. 

Remark 3. By the imbedding theorem of MORREY we have w E Cl~c for some 
o ~ 0 .  

We are now in position to consider the obstacle problem. Suppose 
w*'m(,Q), m > n, and let u E WI"P(,Q) satisfy the variational inequality 

f ]Vu 1~-2 Vu. (% - vu) dx ~ f b(x, u, Vu) (v - u) dx 
g2 12 

for all 

~oE 

+ f f .  (gv - gu) dx 
t2 

(16) 

v E cg. We show that u is locally bounded by following a well-known 
truncation idea going back to DE GIORGI. 

L e m m a  2. u c Llo~c(s 

Proof. Let k ~ sup ~(x) and u~ = (u - -  k) +. Then 
t2 

v(x) = u(x) - u~(x) n~(x) >= ~(x) 

for all ~7CC~~ 0 ~ 7 ~ 1 ,  and v E ~ .  Then f rom (16) we get 

p 

f lVu lP~ ' f x<c  f lV~["luklPdx+c f ap----~dx 
u~_k u~_k u>_k 

19 

+ e  f ( I u k l P + k P ) d x + c  f lf[~'-~dx. 
u ~ k  u>-k 

n 11 
Since t > - -  and s > - -  we can use L e m m a 5 . 4 i n  [8] to show that u 

p p - - l '  
is locally bounded. [ ]  

np 
Define 6 a = n - - - - ~ n ~ p .  

m 
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Theorem 1. Suppose that B(2Ro) Q -Q ande issuch that 0 < e < min (Ot, O2, 6a) 
-- n + p. Then there exists an ro E (0, Ro) such that for each r < to, 

( (+)) f lVul" dx < c~ r '0'-1) + 
B(e) 

f ]Vu 1~ dx + c6 r~l-e @ c7r~2-~ @ c8r~S-t 
B(r) 

(17) 

r 
for all 0 < ~ < -~-, where cs depends on p andn, c6 dependson [IuIIL~(B(Ro)) for 

and Ila~L', c7 depends on llfllzA and Cs depends on IIV~,lkm. Consequently u E Cl~ 
for some or > O. 

Proof.  Let fie WI'p(B(r)) satisfy 

f IVal'-2v~'V~dx = f IVv,['-zvv,'v4 'dx 
B(r) B(r) 

(18) 

for all + E C~(B(r)) and K = u on OB(r). Then by the maximum principle, 
~(x) ~ ~o(x) in B(r), since u ~ ~o on OB(r). We also have 

f [Vu l "-2 Vu. (vh - Vu) dx ~ f b(x, u, Vu) (~ -- u) + f .  (Vfi - -  Vu) dx, 
B(r) B(r) 

since u -  hE Wlo'P(B(r)) and u => ~p in B(r). 
Applying Lemma 1 to ~ we have 

( (5)n) 
f I V u l ' d x ~  e r ' ( ' - l ) +  

B(e) 
f ]VF~ I" dx + car ~-% (19) 

B(r) 

where es depends on n,p  and IIV~I]Lm. With 4> = u -- u in (18), an application 
of Young's inequality and H61der's inequality yields 

f IV~l" dx ~ c f IVul" dx + e f [v~I" dx 
B(r) B(r) B(r) 

<= e f IVuI" dx + c? 3 HV~ollf,.. 
n(r) 

(20) 

Now from (19) and (20), 

f [ V u l ' d x ~ e  f Iv~l'dx+ c f ]Vu--V~['dx 

~ c @,-'> + (2-)) [j> lVul" dx + ?' flV'PlI'm] (21) 

+ cr ~-~ + c f ]Vu--  V ~ f  dx. 
B(o) 



Obstacle Problems for Quasilinear Elliptic Equations 389 

Assume p ~ 2. Then 

f IVu - v~i  ~ dx < c f [IVul , - 2  Vu - IVal p-2 Val .  [Vu - V~l dx 
B(r) B(r) 

< c f b(x, u, Vu) (u - ~) + f .  (Vu -- Vu-') dx 
B(r) 

- f lv,/,l "-2 vv," (Vu - vfi) dx 
B(r) 

= III + IV. 

As in Lemma 1, we see that 
P 

III ~ / z  f IVu - V ~ f  dx § cr p-1 
B(r) 

and 

(22) 

f [Vu l" dx + c?  ~-~' + c?  �9 (23) 
B(r) 

IV ~ # f I Vu - Vh I ~ dx § c?  ~, (24) 
B(r) 

for some small # depending only on n, p, where e' = 0 for p < n and e' > 0 
when p = n. Combining (21) through (24) we obtain Theorem 1 when p => 2. 

Now assume that 1 < p < 2. By Young's inequality, 

f I Vu - va  [. dx 
B(Q) 

f ]Vu - w [" dx (25) 
B(r) 

<= ~ + lv~l~ dx ~ + Iv~t) ~-~ IVu-  Vr,? dx -~ 

~ c iVu f  dx § r~3 ~ -  (iVul § ]VFt])p-Z l V u _  Vhl2 dx -5 
) ) 

(26) 

As in the proof of Lemma 1, we also have 

f [Vu - V ; , f d x  <= cr ~(~ " f [Vu]'dx + e, ,~-~ + c ? , - ~  e ? 3 - t  
B(r) B(r) 

Combining (21), (25) and (26) completes the proof of the theorem. [ ]  

of 
f ] V w f - Z V w .  V 6 d x =  f b ( x , w ,  Vw)4, dx + f f .  V4, dx, 

.O D Y2 

where b and f satisfy a controllable growth condition 

]b(x, w, h)] =< el(a(x) + Tw[ p- '  + I h f -1 ) ,  

f(x) C Cr fl > 0; a(x) C Lt(Q), t > n, 

3. C~g~-regularity 

First we prove a Campanato-type growth condition for solutions wE WI'P(.Q) 

(27) 

(28) 
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for some cl ~ 0. Suppose ~ 6 (0, n) is fixed number and define 

P ( l - - t ) ,  3 s = n +  f lP l ,  = n +  p ~ , ~ = n + p _  1 p - -  p - -  1 + ( ~ - n )  

when p =~ 2, and 

( ' )  O , ~ = n + p  i - -  t @ ( r  n ) ( 2 - - p ) ,  

when l < p < 2 .  

os = n + ~ p  + ( , -  n)(2 - p ) ,  

O 6 = n + p + ( e - - n )  

Lemma 3. Suppose B(2Ro) Q s Then there exists an ro 6 (0, Ro), 
r 

on r, such that for each r < ro and ~ < - - f  , 

depending 

@U f tVw-(Vw)~l~dx< ~2 f I V w - ( V w ) , l ' &  
B(O) B(r) 

-[- C3 r~4 -~- e4r  05 -~- Csr ~6 
(29) 

for some d > O, where c2 depends only on n and p, and c3, c4, c5 depend on n, p, e, 

llfllca, and cl. 

Proof. As in Lemma 1 we let N E W1rP(B(r)) satisfy 

f I VN ]P VN- Vqb dx = O, -~ = w on 8B(O 
B(r) 

for all 4~6 C~(B(r)). By following a method due to G. LIEBERMAN (see the proof  
of Lemma 5.1 in [6]), we obtain 

f IV-~-(WN)olPdx<~e f Ivy- (V~)~l 'dx  (30) 
B(o) B(r) 

for some 6 > 0  and 

f ]v~ - (Vw--), f dx ~ c f 1Vw -- (Vw), f dx + c f ]Vw -- V~ f dx. 
B(r) B(r) B(r) 

(31) 

Hence, 

f B(q) 
lVw - (Vw)~ I p dx 

=< e f IVY-  (v~)o[" dx + c y IVw- W l ' d x  
B(9) B(r) 

@7' <__ e f IVw - (Vw)rlP dx + e f IVw -- V~l" dx. 
B(r) B(r) 

(32) 



Obstacle Problems for Quasilinear Elliptic Equations 391 

When p ~ 2 ,  we can show as in the proof  of L e m m a l  that 

P 
f IVw - vwl p dx ~ cr ~* + er os + cr p-1 f IVw] p dx. (33) 

B(r) B(r) 

By Remark 2 we see that for each 0 < v < n there exists an r o such that 

f I Vw ]P dx ~ cr ~ (34) 
B(r) 

for all r < to. Lemma 3 for p ~ 2 now follows by combining (32), (33) and 
(34). 

When l < p < 2 ,  we see that 

f [Vw - V-~l~dx (35) 
B(r) 

<= + ]V-~)'dx (IVw] + - . 

e ) 

Also, as in Lemma 1, 

f ( } V w l §  t V'~I) p d x ~ c  f I Vwl p d x ~ c F ,  (36) 
B(r) B(r) 

f (IVw[ + ]Vw]) p-2 [Vw - V w [  2 d x  (37) 
B(r) 

< c f (a(x) + 1 + ]Vwf -~) [w -- i~[ dx + f i f - -  (f)~, i Vw -- V-~[ dx 
B(r) B(r) 

= V + V I .  

Clearly, as before (see Lemma 1), 

V ~ c,la + l i [L t rn+l -~-~[  fB ) IVw--  V ~ f  dx] lip 

+ c . r  " . r  I V w - -  V ~ l ' d x )  , 
) 

where we used Poincar6's inequality for the last term. 
Similarly VI can be estimated by 

__< cr "p~I I V w -  V~ dx 
) 

Combining (35)-(39), we have 

f IVw- -V~ fdx<=cr  t ,n-1 , 7_j_ F P 
B(r) 

112 

(38) 

(39) 

(40) 
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whence by Young's inequality 

n +p-- @p + (v--n)(2 --p) 
f [Vw - v~ lP  dx <: er 4- cr n+p+(v-n) 4- er n+~p+(v-n)(2-p). 

B(r) 
(41) 

The required estimate now follows from (32) and (41). [ ]  

By using Lemma 3 we can show Q~-regularity for obstacle problems. Suppose 
~E CI'7(~), 7 > 0, and let uE WI'P(f2) satisfy the variational inequality 

f iv u [p-2 Vu. (vv - Vu) dx >= f b(x, u, Vu) (v -- u) dx 4- f .  (Vv -- Vu) dx 

(42) 

P 
for all vECg. Again we assume that rE(0 ,  n). Define 6 7 = n + 7  

p - - 1  
when 2 ~ p < o o ,  and d 7 = n + T p ( P - -  1) + 0, -- n) (2 -- p) when 1 <  
p < 2 .  

Theorem 2. Suppose B(2Ro) ( -(2. Then there exists an ro E (0, Ro) depending 
on r, such that for each r < ro 

f IVu -- (Vu)ol p dx (43) 
B(q) 

( 5 ;  +` < e f I Vu -- (Vu)r I p dx + cr ~ 4- cr ~5 + cr ~ 4- cr ~ 
B(r) 

for all 0 < ~ < r/2. Consequently u E C~;{(O) for some o~ > O. 

Proof. As in the proof of Theorem 1, we define ~ E WI'P(B(r)) to be the solution 
to 

f lwt'-~ v~- v ,  dx = f IVv, U~ V~  v~ dx 
B(r) 

for all CE Cg(B(r)), with ~ = u  on OB( O. 

(~) n+O 

f IV;,--(V~ol'dx<~ f 
B(e) B(r) 

Then by Lemma 3 we have 

l Vh -- (V~, I" dx + er ~.  (44) 

As before, 

f I V u - - V h [ P d x < ~ c ( - ~ )  n+~ 
B(e) 

f L v ,  - (Vu). l'dx + e f I V ,  - V~ I" d~. 
B(r) B(r) 

(45) 

As in the proof of Theorem 1, it is evident that fi is an admissible competing 
function in the class cg for the domain B(r). Assume that 2 ~ p < co. In this 
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case IV~olP-2 V~E C~ Hence 

f I V u -  v~ I" dx 
B(r) 

C f (IVHIP-2 VU - -  IVU[P-2 V~--)"(V/d - -  Vu-)dx (46) 
B(r) 

< ~ f b(x, ~, V~) (~ - ~ d~ + ~ f f -  (V. -- W) d~ 
B(r) B(r) 

- f [IVvl ~-2  v~,  - (Iv~ol , - 2  v~o)r]. (Vu - Vu-) dx. 
B(r) 

An estimate of the right-hand side follows exactly as in the proof  of Lemma 3, 
it yields the proof  of  Theorem 2. 

Now assume 1 ~ p < 2. It is easy to see that IVy[p-2 V~o E C 0'!v(p-l) Again 
using H61der's inequality, we have 

f IVu - Vr, l'dx <= (IVu] § IV~t) p w -  (47) 
B(r) B ) 

We already know that 

f (lVul§176 f lVuiPdx§ f IV~plPdx<=c'F (48) 
B(r) B(r) B(r) 

for some R o > 0  and for all 0 < r < R o .  Also 

f (IVuL , - 2  v u  - IV~l , - z  v ~ ) - ( V u  - v~ )  dx 
B(r) 

<~ f b(x, u, Vu)- (u -- u-) dx § f f . (Vu - V~) dx 

- f [ lvwl  , - 2  v~,  - ( ]vv,  j , - 2  vv , )A .  (Vu - v ~ )  dx. 

The right-hand side of (49) can be estimated as in the proof  of Lemma 3; this 
estimate yields the proof  of Theorem 2. [ ]  
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