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A Regularity Theory for a General Class of
Quasilinear Elliptic Partial Differential Equations
and Obstacle Problems
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1. Introduction

We consider the following variational inequality involving p-Laplacian
functions,

[IVulP=2Vu- (Vo — Vuydx = [ b(x, u, Vu) (v — u) dx | )
+ [f(x) V(v —u)dx

forall v€ % = {v € W§P(Q) + u, and v(x) = p(x) a.e.in 2}. Here Qis a bounded
domain in R” and u, € W"(Q) with uy(x) = p(x) a.e. in Q. Naturally 1< p
< oo and ue Whr(Q).

When f= 0 and b satisfies a growth condition of Serrin type [12], namely

6%, u, )| < ¢y VR o [ulP ™+ cs,

where ¢;, ¢, and ¢; are positive constants, MiICHAEL & ZieMER [10] have proved
that u is Holder continuous when v is Hélder continuous.

Recently FucHs [3], LINDQUIST [7], and NoRANDO [11] proved the C!*-regularity
of u under various restrictions, LINDQUIST assuming that » =2, p=2, and
Fuchs and NORANDO assuming that p=2, b=0 and y€ W>*, CHOE & LEWIS
[1] moreover have obtained C'*-regularity for bounded solutions u when w¢
W t5(Q) and b satisfies the natural growth condition b(x, u, &) < c(g(x) + ||
where g€ L""%, > 0.

Here we shall prove that solutions of (1) have C{;3- or Cii-regularity under
various conditions on b, £,  in the spirit of [12]. Roughly speaking, we follow the
principle that solutions of the obstacle problem (1) should be as regular as solu-
tions of the equation

div (|Vu =2 Vi) = div (|Vp!? "2 V).
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Since we shall use well-known integral inequalities (e.g., the Morrey growth
condition and the Campanato growth condition) for solutions of elliptic equa-
tions, and a comparison principle, our proof thus lies closer to the standard
context of elliptic partial differential equation theory than the demonstrations
given in [3], [7] and [11]. Moreover our ClZ-regularity result under the assumption
p€ CY, B> 0, is new. We show in Section 3 that the condition p€ C** is ne-
cessary for ClzZ-regularity for u, while the condition p¢€ w2nte >0, implies
that p¢ C¥ for some $>0, by the Sobolev imbedding theorem. Finally we
shall examine in detail how the regularity of u depends on the regularity assump-
tions for b, f and .

We define ||f|ls as the norm of f in the space § and let B(r) = B(xq, 1) =
{x€R; |x — x| < r} with a typical point x,€ 2. Also we define (u), =

u dx. Throughout the paper ¢ denotes a given constant depending

|B(")IB(fr>
on n, p and various exterior data.

2. C%*-regularity

In this section we shall prove the CZ-regularity of solutions of the variational
inequality (1). We can assume that 1 << p<n, since C**regularity is immediate
and trivial when p > n in view of the Sobolev Imbedding Theorem. First we prove
a Morrey-type growth condition for solutions w¢& W'P(2) of the differential
relations

fle[”_ZVw-Vdnlx: fb(x,w,Vw)d)dx—l— ff-V<l> dx 2
Q Lo Q
for all ¢ € CP(RQ), where b and f satisfy the controllable growth condition
[6Cx, w, B | < eq(a(x) + |wP™! + [P, 3)
s n . Y _}}_
f(x) € L’(2), s>p_ s a(x) e L'(D), t> 7

for some ¢, = 0. As a preliminary to this result, we note that w € L (£2) by
Moser iteration (see Theorem 1 in [12]).
p np np
— and 6, =n— .
—1 t(p—1) : s(p —1)

Define 6; = n +
p

Lemma 1. Suppose that B(2r) C 2 and 0 << ¢ < min (6, —n + p, 6, —n + p).
Then Vw satisfies the following inequality

[ |VwlPdx = ¢, [rs(f”” + (&) J [ IVw]Pdx - c3r” 7 4 ey ° )
Blo) r7 1 Bn

for all o0 < r[2, where ¢, depends only on n, p and where cs, c, depend on n, p,
1wl oocaeyy 1/ les Hallze and c;.
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Proof. Let w¢& W'?(B(r)) be the solution of
f ]VW}”‘Z Vw - Vodx =0 &)
B(r)

satisfying w = w on 0B(r). By the weak Harnack inequality for Vw, we have

f \W;pdxgc(i)n f \vmz’dxgc(%)"mfr)ww;v & (6

B(®) "] B

for all ¢ << r/2, where ¢ depends only on n, p. In turn,

[VwlPdx<2" [ |Vw]Pdx +2° [ |[Vw— Vw | dx
B Blo) B
; ™
gc(—g—) f |Vw P dx + 27 [ [Vw — Vw " dx.
"] B B(o)
If we assume that 2 = p << oo, then the last term in (7) can be estimated as
follows:

[1Vw—VwlPde< [ |[Vw— VW[’ dx
B(o) B(r)

¢ [ [P Tw — |VwpP 2 Ta] - [Vw — V] dx
B(r)

= [ bCrw, W) (0 — %) + [f = (D] (Vw — V) dx

B
=c [ (@x)+ 1+ |VwlPh) [w—w|dx ®

B(r)

Lo [ U= (] [V — ViF|dx

B(r)
=14 II.

Now assume that 2 < p < n. By Holder’s inequality,

np nptp—n np n—p
ISc [ [ (a(x) + Lyw+r=r dx] w [ [ |w—wp> dx] "
B(r) B(r) (9)

p—1

+c [B(fr) lw — W\”dx]% [B£)va\p dx] P

By Sobolev’s inequality and Holder’s inequality applied to the first term of the
right-hand side of (9) and by Poincare’s inequality applied to the second term,

we have
1

1< cral(z;_l) ta + 1l L(f) |Vw — Vwl]? dx]7
p_’l 1 (10)
+ cr [ [ |Vw| dx]T [ [ |[Vw— VW[”dx]F.

B(r) B(r)
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When p = #n, we see that

[ @)+ 1) |w—wldx=<[la+ 1 [lw—wl}
B() L’ Ly
t—] 1 ) - L
<r ' ]la—{—l]]Lr[f [w—wl* dx]”
B(r)
for all n<C p <Cco by Sobolev’s inequality and Holder’s inequality. Thus when
p = n, we obtain (10) with J, replaced by §; — &', for some small & > 0.
By Holder’s inequality,

nlp—1) n

_n 1
M<cr ? SN — (P lles L(f),vW— VW]”dx]". (11)

Combining (8), (10) and (11) and using Young’s inequality, we obtain

[ |Vw —VwlPdx = er’ ™ la + lII
B(r)

] (12)
+ e | f — (f)ll” el pemt [ |Vw] dx,
B(r)

where ¢ =0 when 1<<p<n and & >0 when p = n. Combining (7) and
(12) gives Lemma.l when p = 2.
Now assume that 1 << p<C 2. Then by Hoélder’s inequality we have

[ |Vw — Vw ) dx (13)

B()
<c [f (|Vw| + ]Vw{)"de [f (Vw| + |Vw)? 2 [Vw — Vw2 dx]

2-»

Sc[Bg)IVw]”dx] 2 [f(]Vw"’ 2Vw — [Vw P2 Vw) - (Vw—Vw)de

N|'w

As in the case p = 2, the last term in (13) can be estimated as follows:

[ (Vw2 Vw — |Vw P=2 Vw) - (Vw — Vw) dx

B(r)

gcrl’%1 [ 1Vwl dx (14)

mwip—n _n _, nlp—1) _n 1
+ ¢ [l‘ P t la+ 1pe+1 7 s If — (f)r”L{I [B_(f) |le17 dx]p.

Then by Young’s inequality, we obtain

f‘Vw-—Vw\”dx<c;s(” D [|VW|”dx

B(r) B{)

(15)
f ot a1 + el — (1
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for each 0<<s<<min(é, —n -+ p, 0, —n-+ p). Combining (7) and (15)
completes the proof. []

Remark 1. If t>n and f€C*>, >0, then 6; >n and &, > n.

Remark 2. Suppose 0 << v < min (6, — ¢, 6, —¢, n). By iteration [4] there exists
a constant r, depending on ¢y, n, p, &, 5, £, Jullroseoys lalcs |flls and » such
that, for each 0 << r << ry,

[ |Vwldx < o
B(r)

where ¢ is a constant independent of r.

Remark 3. By the imbedding theorem of MORREY we have w € CYZ for some

o> 0.
We are now in position to consider the obstacle problem. Suppose p¢€
WD), m>n, and let u€ W'P(Q) satisfy the variational inequality
[1VulP=2Vu- (Vo — Vuydx = [ b(x, u, Vi) (v — u) dx
Q Q (16)
+ [f (Vo —Vu)dx
o

for all v€ ¥. We show that u is locally bounded by following a well-known
truncation idea going back to DE GIORGTI.

Lemma 2. u¢ Lx(0).
Proof. Let k= sup ¢(x) and u, = (u — k)*. Then
Q

u(x) = u(x) — u(x) n°(x) = p(x)
for all n€ C(2), 0 =% =<1, and v€¥. Then from (16) we get

fqu'ﬁ’n”fxéc f]an”|uk|”dx—[—c fa17z_1dx
uZk wk

uzk
r

+e [(ul+kYde+e [P dx.

uz=k u=zk

. n n .
Since > ? and s> b—_——i , we can us¢ Lemma 5.4 in [8] to show that u

is locally bounded. []

n
Define 63:n——n%>n—'-p.
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Theorem 1. Suppose that B(2Ry) C 2 and s is such that 0 < & << min (64, 6, d3)
— n 4+ p. Then there exists an 1y € (0, Ry) such that for each r < ry,

[ VPP dx < cs (rﬁ("”l) + (i) ) [ |Vulp dx + eer®™ = + cqr®7° 4 cgr’
B

B(e) r
(17

r
for all 0<<p < -, where cs depends on p and n, cs depends on |ul| o, for
and ||al|y+, ¢; depends on ||fllis, and cg depends on ||Vyl|pm. Consequently u ¢ co

Jor some o> 0.

Proof. Let uc W'P(B(r)) satisfy

[ |VaPp2Vi-Vde= [ |Vp[r~2Vy-Vdx (18)
B(r)

B(r)

for all ¢€ CP(B(r)) and # =u on 9B(r). Then by the maximum principle,
u(x) = (x) in B(r), since u =y on 0B(r). We also have

[ Vup?Vu-(Va — Vuydx = [ b(x, u, Vu) @ — u) + [+ (Vu — Vu) dx,

B(r) B@r)

since u — u€ WH(B()) and u =y in B().
Applying Lemma 1 to z we have

[ |Vapde=¢ (,,e(p—l) + (_9_) ) Vil dx + cg®~, (19)
B(o) r B()

where cg depends on #, p and ||Vyllym. With ¢ = u — u in (18), an application
of Young’s inequality and Hélder’s inequality yields

[IVafPdx=<c [ [Vufdx+c [ |Vy[dx
B(r) B(r) B(r)

(20)
=c [ |VuPdx+ cr® [Vll2,,.
B(r)
Now from (19) and (20),
[|VuPdx=c [ |VulPdx+c [ |Vu—Vuldx
Ble) B(e) B
=c (reﬂ’-” + (%) ) [ f ) |Vul? dx + uwug,] 21
B(r

+ e e [ |Vu— Vulfdx.

B(e)
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Assume p = 2. Then
[ |Vu —Vulfdx=c [ (Va2 Vu — |Vul?=* Vu] - [Vu — Vu] dx
B(r)

B(r)
=c | b(x, u, Vi) (u — v) + - (Vu — Vu) dx
B(r)
— [ VP2 Vy - (Vu — Vu) dx

B(r)

22

= III 4 IV.

As in Lemma 1, we see that

P
M=<u [ |Vu—VuPdx + ™! [ |VulPdx + e~ + o’ (23)
B(r) B(r)

and
v=u f qu—Vﬁ[pdx—}—cr‘s’, 249

B(r)
for some small 4 depending only on #, p, where &' =0 for p<<n and &' >0
when p = n. Combining (21) through (24) we obtain Theorem 1 when p = 2.
Now assume that 1< p << 2. By Young’s inequality,

[ |Vu— Val dx
Bl
< [ |Vu— Valdx 25)

B(r)

= u) |Vul? -+ [Viil? dx]ig u)qvu] | ValP? |Vu — Vap dx]%
2-p
gc[f)]Vul"dx—!—r‘s3] 2 [B(f)(Wu]—{— Vi )=2 |V — Vi dx]

B(r

13
2

As in the proof of Lemma 1, we also have

f Vi — Vulp dx < e P [ [VulP dx + cr® = 4 er®27° + or® e, (26)

B(r) B()
Combining (21), (25) and (26) completes the proof of the theorem. []

3. CL*-regularity

First we prove a Campanato-type growth condition for solutions we W?(Q)
of
[IVwP2Vw -Védx = [bx,w,Vw)ddx + [f-Védx, X))
2 2 2
where b and f satisfy a controllable growth condition
1b6(x, w, B)| < ey(a(x) + |wlP~t + |h]P™Y), (28)
feCi(D), B>0; a(x)cL{(Q), t>n,
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for some ¢; = 0. Suppose »¢ (0, n) is fixed number and. define

I n N S SO
64—”+F_—1(1_ ), 65——n+p ,55—n+p_1+('))_‘n)

t —1

when p =2, and
n
de=ntp(l-T)H0-n@=. G=ntBtE—NC-D.

b6 =n-+p+@—n
when 1 <p<C2.

Lemma 3. Suppose B(2R,) C Q. Then there exists an 1o € (0, Ro), depending

7
on v, such that for each r<<r, and p < -,

7= Oz () L e ar s
Bl) r B
@

-}- c3r‘5“ - (:4r‘55 =+ csr‘j5

for some 8 > 0, where ¢, depends only on n and p, and ¢;, €4, Cs depend on n, p, &,
Ifes, and c;.

Proof. As in Lemma 1 we let we WP(B(r)) satisfy

[ |Vw]PVw-Védx =0, w=w on B()

B(r)

forall ¢€ CP(B(r)). By following a method due to G. LIEBERMAN (see the proof
of Lemma 5.1 in [6]), we obtain

0 nto
[ 9% — (Vi) dx < c (—) [ V% — (V) dx (30)
B ! B

for some 6 >0 and

[ |Vw— (V) Pdx=c [ |[Vw— (Vw),[Pdx +c [ |Vw—VwlPdx. (3D
B(r) B(r) B(r)

Hence,

[ 1Vw — (Vw), |7 dx
B
<c [ |VWw—(W,lPdx+ec [[Vw—Vw|[dx (32)
B(o) B(r)

[N nto
§c(—§—) f |[Vw — (Vw), [P dx + ¢ f [Vw — Vw [P dx.
B B(r)
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When p =2, we can show as in the proof of Lemma 1 that

e
f |Vw — Vw P dx < er® + ar® + P f |Vw P dx. (33)

B@) B(r)

By Remark 2 we see that for each 0 << » << n there exists an r, such that

[ 1Vwldx = (34)

B(r)

for all r<Cro. Lemma 3 for p = 2 now follows by combining (32), (33) and

(34).

When 1< p<C2, we see that
{f |Vw — Vw P dx (35)
B(r)

= (B(f)qvm + Vw2 |[Uw — Vw2 dx)%.

< (Bgr‘)qvw} + ]VWD”dx) 2

Also, as in Lemma 1,

[(Vw|+ [Vw)yrdx<c [ |Vw]Pdx<cr, (36)
B B(r)
[ (Vw] + [VW]yP=2 |[Vw — Vi | dx 37

B»
=c [ (@x) + 14+ [VwpP™w—Wwldx + [|f— ) |Vw— Vw|dx
B(r) B(r)
=V 4 VI.

Clearly, as before (see Lemma 1),

n

n-+ _nr __n o 1/p
V<clla+1er 7 ’[f;vW—vW;deJ
B()

2=l 1/p (38)
+cor ? z(f ]Vw—VW}”dx) ,
B(r)
where we used Poincaré’s inequality for the last term.
Similarly VI can be estimated by
p_r=l iip
Vi< [ [ - (f),\v—l] 7 [ f v — v dx]
B(r) LB(r) 39
214 e )
Zer ? [f |Vw-—‘7w\"dx] .
B(r)
Combining (35)-(39), we have
(2B [ poy B 1 y2=1
| }Vw——vmpdxgcr(z )(i’ T 4 P i
o)
B (“0)

W=l 2 12
+r 7 )2(f]Vw—VW’”dx) s

B(r)
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whence by Young’s inequality

n
tr-Frt0 ")(z—p)+crn+p+(v—n)+crn+l3p+(1‘—n)(2~P).

(41)

[ |Vw—VwpPdx<ecr
B(r)

The required estimate now follows from (32) and (41). [J

By using Lemma 3 we can show C;%-regularity for obstacle problems. Suppose
we CY(Q), y>0, and let uc W'P(Q) satisfy the variational inequality
[|VulP=>Vu- (Vo — Vuydx = [ b(x, u, Vu) (v — w) dx + f- (Vo — Vu) dx
2 2
(42)

for all v€¥%. Again we assume that »¢€ (0,n). Define 6; =n-4y 1;]:—1
when 2=<p<loo, and d;=n+yplp -1+ @ —n2—p when 1<
p <2

Theorem 2. Suppose B(2R,) C Q. Then there exists an ro € (0, Ry) depending
on v, such that for each r<r,

[ |Vu — (Vu),|? dx (43)
B(o)

n+4é
<c (i) [ Vu— (Vu),[? dx + cr’ - er® + er® + cr’
B

P
for all 0 < p<r[2. Consequently uc Ci3(82) for some «> 0.

Proof. As in the proof of Theorem 1, we define u € W'?(B(r)) to be the solution
to
[ |Vulp=2Vu -V dx = | [V [r~2 Vy - Vo dx

B(r)

for all ¢ € Cg°(B(r)), with u =wu on 0B(r). Then by Lemma 3 we have
0 nto
[ 1Vu—(Vw),Pdx = ¢ (—’-) [ IVu — (V) |P dx + cr. (44)
B(@) B(r)

As before,

n+9
[ |Vu—VapPdx < ¢ (ﬂ) [ 1Vu— (Vu),Pdx + ¢ [ |Vu— Vul? dx.
B@ r B Bln
45)

As in the proof of Theorem 1, it is evident that u is an admissible competing
function in the class ¥ for the domain B(r). Assume that 2 =< p < oo. In this
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case |Vol?~2 Ve C*. Hence

[ |Vu— vl ax
B(r)
<c [ (VuP™2Vu— |VaP~2 Va) - (Vu — Vi) dx (46)
B(r)

sc [bx,u, Viy(u—w)dx + ¢ [ f-(Vu— Vu)ydx
B(») B(r)
— [ Ve Ve — (VP2 V)] - (Vu — Vi) dx.
B(r)

An estimate of the right-hand side follows exactly as in the proof of Lemma 3,
it yields the proof of Theorem 2.

Now assume 1 << p < 2. Itis easytoseethat |Vy[?"2Vype C*?~D, Again
using Holder’s inequality, we have

2—p
[ [Vu—Vapas<| [ (70 + [Tapas] T 7
B(r) B(r)

pl2
X [f (\Vulp~2 Vu — |Va[p~2 V&)-(Vu—-Vﬁ)] :
B(r)

We already know that
f (|Vu| + \Vupdx < ¢ f |Vul?dx + ¢ f |VyplPdx<c-r (48)
B(r)

B(r) B(r)
for some R, >0 and for all 0 < r<< R,. Also
f (\VuP=2Vu — \VaP~2Va) - (Vu — V) dx
B(r)

< [b(xu, V) (u— w) dx + [ [+ (Vu — V) dx
= J UV Ve — (VP2 V)l - (Vu — Vi) dx.

The right-hand side of (49) can be estimated as in the proof of Lemma 3; this
estimate yields the proof of Theorem 2. []
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