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1. Introduction 

In a recent paper [1] ERICKSEN proposed a theory for liquid crystals that 
aims to overcome the difficulties that arise within the classical theory of OSEEN, 
Z6CHER, and FRANK when the orientation field exhibits defects other than isolated 
points. Though the new theory also generalizes the dynamical theory of LESLIE 
and ERICKSEN, in this paper we confine attention to statics. 

In [1] ERICKSEN gives a mathematical formulation of an idea that in recent 
years has been variously expressed in the literature on defects. Roughly speaking, 
in the vicinity of a defect, the energy per unit volume becomes so large as to affect 
the degree of microscopic order which underlies the very definition of orientation. 
If  the degree of microscopic order somehow enters into the energy density, the 
concentration of energy around the defects should "relax".  One would expect the 
liquid crystal to undergo a phase transition that makes it an isotropic fluid just 
where the discontinuities of the orientation field occur. Thus defects should cor- 
respond to regions with the least degree of microscopic order. 

In this paper we do not take over ERICKSEN'S new theory in its full generality. 
Rather, we employ an energy functional that is consistent with ERICKSEN'S (cf., 
in particular, equation (7.3) of [1]), but is much simpler. Functionals of the same 
sort have been recently considered by HARDT [2] and LIN [3]. Following ERICKSEN, 
we represent the degree of microscopic order through a scalar-valued function, 
the degree of orientation, which vanishes where the fluid becomes isotropic. 

In Section 2 we set up a variational problem in which both the orientation 
and the degree of orientation are prescribed on the boundary of the container 
filled with the liquid crystal. We deduce a qualitative feature of the solution from 
the general setting of the problem. Then we switch to a simpler version of the 
problem, which we can solve completely. Thus in Section 3 we assume that the con- 
tainer is bounded by two parallel plates and that the orientation lies everywhere 
in the same plane, which is generally not the plane of the plates. Both the orien- 
tation and the degree of orientation are taken as functions of the space variable 
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orthogonal to the plates, which ranges in the interval [0, l]. We provide an ex- 
haustive justification of these assumptions in the closing Section 9, where we show 
how a true three-dimensional problem reduces to the one-dimensional problem set 
up in Section 3. 

In Section 4 we prove that minimizers of the one-dimensional variational 
problem exist in a class of functions smooth everywhere except in a subset of 
[0, l], the singular set, where the degree of orientation vanishes. In Section 5 the 
analysis of the Euler equations leads us to conclude that the minimizers are actually 
far more regular than expected outside the singular set. Furthermore, we prove 
that the singular set must  be either a singleton or  the empty set (see Section 6). In 
the former case the orientation field actually possesses a plane of discontinuity. 
Two distinct solutions of the Euler equations correspond to the two possible sin- 
gular sets: their energy is evaluated in Section 7. A bifurcation with exchange of 
stability arises for a critical value of the material modulus entering the energy 
functional. Since one minimizer is smooth while the other is not, we examine 
in Section 8 whether the Lavrentiev phenomenon can occur; we prove that it does 
not. 

2. The variational problem 

Let N be the region of the three-dimensional Euclidean space g occupied by 
a nematic liquid crystal. The orientation of the liquid crystal is the vector-valued 
function n : M ---> ~9 ~ where 6 a2 is the unit sphere of Y/', the translation space 
of g. The degree of orientation is the scalar-valued function s : N --~ ]--�89 1 [ 
(cf Section 2 of [1]). When s = 0 there is no microscopic order, that is, the 
molecules do not lie along any preferred direction: defects of n arise. Different 
values of s correspond to different degrees of microscopic order. 

We take the following functional as the free energy of the liquid crystal: 

(2.1) s, nl := lvs?  + s2 IVn?), 

where k is a positive material modulus. ERICKSEN'S energy is far more general 
than (2.1) (cf. Section 5 of [1]). In particular, it possesses a term which depends 
on s and @ only: 

(2.2) f v,(s). 

We have omitted (2.2) for simplicity. The qualitative features of J are not greatly 
affected by it, as is shown in [4] by examples. Apart from this omission, when 
k = 2, equation (2.1) yields formula (3.12) of  [3]. I f  we take s as constant, f 
reduces to the so-called "one-constant approximation" of FRANK'S energy func- 
tional (see, e.g., [5], p. 239). 

For  any mapping ~0 of  a region ~ ~ g into R we def ine the  set 

(2.3/ 6e(~) : =  {p E .~ 19~(P) = 0}. 
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The pairs (s, n) admissible for ~- belong to the class 

:=  {(s, n) Is" ~ - +  1-�89 t[, n: ~ - +  5o~, s~ c~ c~(~  \ 5o(s)), 

n ~ c ~(~ \ 5o(s))}. 

Problem. Let the functions so " ON -+ ]--�89 1 [ and n o : OM --> 5 ~ be given in 
the classes C~ C1@~ \ 5o(So)) and C 1 ( ~  \ 5o(So)), respectively. Find 
(s, n) E cg that minimizes f f [ ~ ; . ,  .] subject to 

We are not able to solve this problem, yet we know a qualitative property 
of its solutions. 

Proposition 1. Let the function So be such that 

So(p) >: O .for all p E O~. 

I f  (s, n) E cg is a solution of the Problem, then 

s(p) >= O for all p 6_ M. 

This proposition is easily proved by evaluating ~-[~3; ~, n], where 

s(p) if s(p) >= o, 
s(P) :=  0 otherwise. 

Essentially the same argument leads also to the following conclusion: 

Proposition 2. I f  so(p) ~ 0 for all p E ~ ,  then every solution (s, n) 6_ cg of 
the Problem satisfies 

s(p) <~ O for all p E ~ .  

Remark. The same assertions as in Propositions 1 and 2 also hold when the pairs 
of functions admissible for ~ are merely absolutely continuous. The proof relies 
essentially upon Lemma 7.6 of [6]. 

3. The one-dimensional problem 

We take ~ as the set 

: = { p E ~ i O < ( p - - O ) ' e < l } ,  

where 0 E E and e E 5O2. Let el and e2 be orthogonat unit vectors. We assume 
that 

(3.1) n(p) = cos o~(x) el + sin 0~(x) e 2 for all p E ~ ,  
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where x : =  (p --  O) �9 e and or : ]0, l[ ~ ]0, zr[. Fur thermore ,  we assume that  
the funct ion s : : ~ - +  ]--�89 1 [ depends only on  x, and we define the function 
a : ]0, 1[-+ ]--�89 1 [ through 

(3.2) a(x) : =  s(p), where x = (p --  O) .  e. 

Let  e• e • E 6 ez both  be or thogonal  to e, and let e• �9 e • = 0. Thus the energy 
of  the cell 

: = { p E N I 0 < ( p - - O ) ' e ;  < l •  •  • 

is given by 

where 

(3.3) 

. ~ [ ~ ;  s, n] = I• ~], 

1 

F[a, cq : =  f [k(#) z + a2(o~')21. 
0 

Here  a pr ime ' denotes differentiation with respect to x. 
Assumptions (3.1) and (3.2) have been in t roduced with no justification other  

than their  simplicity. However,  we shall see in Section 9 that  the minimizers of  
o ~ [ ~ , . ,  .] in a suitable class of  functions that  depend on all the coordinates of  p 
do indeed obey (3.1) and (3.2). 

We assume that  a and o~ satisfy the boundary  conditions 

(3.4) a(0) = a(/) ~ no, 

(3.5) ~(0) = 0, ~(l) = ~o, 

where ao > 0 and 0 < o% ~ ~r. We could easily consider boundary  conditions 
less restrictive than (3.4), allowing, for  example,  different values of  a at x = 0 
and x = I. Despite a slight gain in generality, the analysis would become clumsier 
without  providing any new qualitative feature (cf. the Remark  in Section 7 below). 

In the next  section we shall prove that  there exist minimizers of  F subject 
to (3.4) and (3.5). To  open the way to this conclusion we now seek a suitable 
class of  admissible pairs (a, 0r for  Y. The presence of  (o") z in (3.3) leads us to as- 
snme that  a belong to AC(]0, l[, ]--�89 1 D, the class of  all absolutely continuous 
functions of  ]0, l[ into ]-- �89 Let  (rE AC(]0, l[, ]--�89 1D be given. In accord 
with (2.3) we define 

(3.6) 6e(a) : =  (x E 10, l[ I a(x) = 0}. 

For  any open set K that  is relatively compac t  in ]0, l[ \ ~ ( a ) ,  i.e., such that  

K C ]0, l[ \ 5~ we have 

(3.7) F[~r, o~] ~ in fa  2 f (~,)2. 
K K 

Thus~we are led to assume that  oc belongs to ACIoc(]0, l[ \ 6e(a), ]0, vrD, the class 
of  all locally absolutely continuous functions o f  ]0, 1[ \ St(o) into ]0, ~r[. We 
define the class 

A : =  {(a, or AC(]0, l[, 1--�89 1Ox AGoc(]0, l[ \ 5~ 10, ~D}. 
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If (a, ~) E A, the function o~ need not even be continuous in ]0, l[. In particular, 
F is not defined on the whole of A. We extend F to the whole of A by setting 

(3.8) O'2(Ob ' )  2 = 0 in ~9~ 

We shall see in Section 8 that this assumption is indeed well justified. 
It is easy to see that if (a, ~) E A is such that F[a, o~] < ~ and a(0) = a(1) 
ao, then ~ takes definite values at the endpoints of the interval [0, l]. Thus we 

may define the admissible class of F as follows: 

(3.9) ~r : =  {(a, o~) ~ A 1F[a, 0~] < ~x~, (3.4) and (3.5) hold}. 

4. Existence of minimizers 

In this section we prove that minimizers of F do exist in s~. 

Lemma 1. Let a sequence {(ah, 0~h)}h~N of  elements o f  ~r be such that F[ah, gh] < C 
for all h E N and Jbr some C > O. Then there are a pair (cr, c~) E ~r and a sub- 
sequence {(ahk, O~hk)}kc N such that 

(i) ahk-+ a uniformly in [0, 1], 

(ii) O~hk--~ ~ uniformly in every compact subset o f  [0, l] \ ~(a) .  

Proof. To prove (i) it suffices to observe that 

1 

sup f (a;,) z < 
hGN 0 

and then recall a classical theorem (e.g., Theorem VIH.7 of [7]). 

For any given open subset K of ]0, l[ that is relatively compact in [0, l] \ 5e(a) 
we have 

(cf. (3.7) above). Thus we may find an absolutely continuous function ~K: 
-> ]0, :r[ such that a subsequence {~hk}kcN converges to cJ c uniformly in K. 

For all .jE N \ { 0 }  let Kj : =  {xC [0, l] [dist (x, 5a(a)) > l/j}. We denote by 
{0@}h~Z~ the sequence converging uniformly in /~ to oflg. Letting (0~(hJ+')}h~.~ 
agree in Kj with a subsequence of {o@}h~N for all j, we easily see that {~,h)}h~N 
converges uniformly to c~ E ACloc([0, l] \ 5~(a), ]0, ~r[) in every compact subset 
of ]0, l[ \ 5e(a). This completes the proof  of the lemma. [ ]  

Lemma 2. Let ((ah, O~h)}h~N be a sequence of  elements of  .~r and (a, cQ an element 
o l d  such that (i) and (ii) of  Lemma 1 apply. Then 

(4.2) F[a, 0~] ~ lira inf F[ah, o~h]. 
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Proof. Let an open subset K of ]0, l[ that is relatively compact in ]0, I[ \ 5e(r 
be given. Since the sequence (r converges to tr uniformly in K, well-known 
theorems of semiconitnuity (e.g., Theorem 4.1.1 of [8]) ensure that 

f [k(a,)2 q_ ~2(~,)2] ~ lira inf f [k(~r~) z q- ~r2(~) 2] 
K h ~ + ~ 1 7 6  K 

G lira inf f [k(r z q- ~2(0~) 21 
h - + e o  K 

@ lira sup 11o 2 -- ~ II~cK~ j (0~L) 2" 

Since infr ~ CK, where CK is a positive constant depending on K only, we 
K 

get from (4.1) that 

sup ( f (~):) < o0. 
h~N \ K  

Thus 

f [k(~') ~ + a~(~')~] ~ lim inf f [k(a;) 2 + ~2(~)21 
K h - + o o  K 

l 

_< lim inf f [k(a~) 2 + az(o~Dz]. 
- -  h -+  

0 

Taking K closer and closer to ]0, l[ \ ~(a) ,  we then arrive at (4.2) 
o ' =  0 a.e. in ~(r (cf. Lemma 7.7 of [6]). [ ]  

Combining Lemmata 1 and 2 we reach the following conclusion: 

because 

Theorem. F attains a minimum in d .  

5. Euler Equations 

Let (a, o 0 be a member of  d .  For every ~ E C~(]0, l[ \ S~(a)) and for every 
s E C 1 (]0, l[ \ ~(r having compact support there is an eo > 0 such that 
(a + eb, x + e~) also belongs to ~ for all e E [0, eo]. If  (a, ~) is a minimizer 
of  F in d ,  then 

(5.1) lim inf F[cr + eb, e~ + s~] -- F[a, o~] > 0 

for all b E (701(]0, l[ \ ~ (a ) )  and all ~ E C~(]0, l[ \ ~(a)) .  One easily sees that 
(5.1) is satisfied if and only if 

( k ~ ' ) '  = ~(o~')~ 
(5.2) (tr2od) ' = 0 in ]0, l[ \ 5P(cr), 

where a prime now denotes differentiation in the sense of distributions. 
It follows from (5.2)2 that the function a2od is locally constant in ]0, l[ \ ~(a) .  

This implies that o~E C~(]0, l [ \  5~(a), ]0, z~[). Then, by (5.2)~, we see that 
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a 'E C~(]0, l[ \ St(a)). Hence aE C2(]0, l[ \ St(a), ]--�89 1D. By repeatedly apply- 
ing this argument, we prove that every minimizer (a, cr of F in s~r is such that 
a E C~(]0, l[ \ St(a), ]--�89 1D and c~ E C~(]0, l[ \ St(a), ]0, ~D. Thus (5.2) holds 
in the classical sense and 

(5.3) min {F[a, o~] I (a, o~) E sJ} : rain {F[a, c~] I (a, o~) E ~r 

where 

~r : =  {(a, ~) ~ d / a ~ C~(l 0, 1[ \ St(a), ]--�89 1 D, ~ ~ C~(] 0, l[ \ St(a), ]0, ~D}. 

6. The singular set 

So far we have learned nothing about the set St(a) when (a, o~) minimizes F 
in sO'. In this section we show that it must be either a singleton or the empty set. 

Proposition 1. I f  (a, o~) E ~r minimizes F, then St(a) is connected. 

Proof. Since a is continuous, St(a) is a closed subset of ]0, l[. Let m~ : =  rain St(a) 
and M~ :=  max St(a). We suppose for contradiction that the set {x E [m~, M~] [ 
a(x) @ 0} is not empty. We define the function ~" �9 ]0, l [-+ ]--�89 1[ as 

a(x) if x c 10, zE x Emo,  oa, 
(6.1) b(x) 

o otherwise. 

An easy computation shows that 

(6.2) F[a, cr > F[~, o~]. 

Thus (a, o 0 does not minimize F, which is a contradiction. [ ]  

Proposition 2. I f  (a, or d minimizes F, then St(a) cannot be an interval. 

Proof. Let St(a) = [m~, M,] with mo < M~. We define a piecewise linear func- 
tion 2 : [0, l] --> [0, I] such that 2-1([m~, Mo]) = [m', M~] with m; > m~ and 
M" < Mo. The first derivative of 2 is the piecewise constant function defined by 

! 21 if xE [0, m'~[, 

(6.3) 2'(x) : =  22 if xE ]m;, M;[, 

23 if x E ]M;, 1]. 

21, 2 3 <  1 and 2 2 >  1. It is plain that the pair ( a o 2 , ~ o 2 )  belongs to 
St(a o 2) = [m;, M;]. It is easily seen that 

mcr 

F[ao 2, o~o 21 = X.z f [k(a') 2 -b a2(er 2] 
o 

l 

+ z~ f [k(~') 2 + a2(~') ~] < F[a, ~1. 
Ma 

where 
sr and that 

(6.4) 
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Thus (0, ~) is not  a minimizer of F in d ,  unless m~ = M~. [ ]  

Corollary. I f  (~, oO ~ d minimizes F and if  5r ~= O, then 5e(a) = (Xo} with 
Xo E ]0, l[. 

7. Minimizers 

In this section we determine the minimizers of F in d .  We first seek pairs 
(0, ~) E d ~176 that  satisfy equations (5.2) and are such that 5P(cr) = 0 .  It follows 
from (5.2)2 that there is a constant c such that 

C 

(7.1) or -- cr 2 . 

By inserting (7.1) into (5.2)1, we arrive at 

C 2 

(7.2) ka"  -- - - = 0 .  
O 3 

Hence a is convex (cf. Proposition 1 of Section 2). Equation (7.2) implies that 

C 2 

(7.3) k(a') 2 = a  a2 ,  

where a is a positive constant. It is easy to see that the only convex solution of 
(7.3) in ]0, l[ that  satisfies (3.4) is 

1/  
(7.4) a(x) = [ / a ]  

where we have set 

(7.5) 

and a is constrained by 

6/ 
+ x(x - 0 

Va(o al2  
e : =  -- 4k] 

al z 
(7.6) o 2 -- - ~ - >  0. 

Making use of (7.4) and (7.5) in (7.1), we get 

(7.7) ~ = l/k-arctg ( ~ / / ~  ~ ~/z--~-) ) 4 k  

for all x E [0, l], 

+ b ,  
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where b is an arbitrary constant. The constants a and b are determined by (3.5): 
A simple computat ion yields 

0r 
(7.8) b = --}-, 

(7.9) arctg k 2 O~o 
V a/2 = 

~r~ -- 4"--k- 

There is precisely one solution of  (7.9) satisfying (7.6), provided that  

0(- o 
(7 .10)  1/k > - - .  

7g 

If  this is the case, then (7.1) and (7.3) imply that  

(7.11) min {F[~r, o~] I (~, ~)E d }  ---- a l ,  

whenever there is a minimizer of  F such that  5~ = 13, where a is the solution 
of (7.9). If  (7.10) is not  satisfied, then there is no minimizer of  F in s~' such that  
s (o) = 13. 

We now seek minimizers of  F in d ~ such that  5"(0) = {Xo} with xo E ]0, l[. 
l 

Let ~ be given with ~(Xo) = 0. The function o~ that  minimizes f e2(o~')z is con- 
0 

stant in both the intervals [0, Xo[ and ]Xo, l]. Then (5.2)~ implies that  a is pieeewise 
linear. Hence the boundary  conditions (3.4) and (3.5) determine the solution: 

_ ~ro(X -- Xo) if x E [0, Xo], 
Xo 

(7.12) ~r(x) = ~o(X -- Xo) if  xE  [Xo, l], 
/ - -  X o 

(7.13) o~(x) = { 0 if x E [0, Xo [, 
~o if x E ]Xo, l]. 

I f  we evaluate F on this pair, we get 

(7.14) F[a, c~] -- 

which is minimized when 
tha t  5e(a) @ 0, then 

x o ( l  - Xo) ' 

Xo = t /2 .  Hence, if there is any minimizer of  F such 

4a~k 
(7.15) rain {F[cr, o~1 ! (~r, o~) E d }  = l 

Comparing (7.15) and (7.1I), and using (6.5) we conclude that  if (7.I0) is 
satisfied, then 

rain {F[cr o~1 I (o or E d }  ----- rain {Fta o~] I (o', c~) E d ,  5P(a) = 13}. 
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If  (7.10) is not satisfied, t h e n  

min {F[a, o~1 i (a, o~) E d }  = rain {F[a, o~] J (or, o 0 E d ,  6a(a) 4= 0}. 

Thus for k --~ kc : =  a bifurcation occurs: The orientation field that mini- 

l 
mizes the energy possesses a plane disclination at Xo = -~- when k ~ kc, while 

it is smooth everywhere when k > kc. 

Remark. Had we allowed a to take different values at the endpoints of the inter- 
val [0, l], we should have found different minimizers of F with the same qualita- 
tive features illustrated in this section and just the same value o f  kc. 

8. The Lavrentiev phenomenon 

We have pointed out in the preceding section that when k <= kc the mini- 
mizers of F in d are not of class C 1 in [0, l]. Let 

(8.1) ~r  : =  {(a, ~)E ~ l a, ~E C~([0, t])}. 

It is easy to see that r is dense in ~4 with respect to the convergence specified 
in Lemma 1 of Section 4. We raise the question: Does 

(8.2) rain {F[a, or I (a, o 0 E d }  = inf {F[a, o~] [ (a, o 0 E fir}? 

We show in this section that the answer is yes. In other words, the Lavrentiev 
phenomenon (cf,  e.g., Ch. 18 of [9]) does not occur in the problem we have 
studied here. 

If  k > kc, equality (8.2) is obviously satisfied. We assume that k ~ k,  and 
seek a sequence {(ah, 0~h)}h~N of members of r such that (a h, o~h) converges to the 
minimizer (a, e~) of F in d in the sense of Lemma 1 of Section 4, and such that 

4k4 
(8.3) lim F[ah, o~h] -- 

h>ec / 

l 
(cf equation (7.15) above). For all e E ]0,-~-[ we define the function ~, :=  

[0, l] -+ [0, st] as follows: 

(8.4) 

[ [ ' ]  0 i f x E  O, -~- - -e  , 

l , ) . o  , ]  
0% i f x  E - ~ @ e , l  . 
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An easy computation shows that 

(8.5) F[8, ~ ]  = 

f o r a n y  ~E C~(]0, l[, ]--�89 1D. 

l 

(8.6) f k(r z -  
0 

Thus for all 

(8.7) 

and 

l 
~E]O,-z[ 

! 
2 ~ - + s  

f ~(a')~ +47-  
~2 

d 
0 -~---e 

l 
If  r is given by (7.12) with Xo = - ~ - ,  

l 

4keg -2+~ 8r 3 
l t f  r  , 3 l  z �9 

there is a G E C~(]0, l[, ]--�89 1D such that 

l lr - r < e 

t 4kr 2 
(8.8) f/~(r < + ~, 

o l 

l 
T +~ 9r 

2 _ _  
; f r < 3/2 �9 

~-- -~  

then 

Combining (8.8) and (8.5), we get 

4kr 2 9r 
(8.9) F[G, oq] < - - - f -  § e + 41-----5-- 

l 
for all e E ]0, 7 [" 

Taking the limit as e -+  0, we see from (8.9) that 

rain {V[r ~] i (G g) E d }  = inf {F[r o~] [ (or, o~) E s (8.1o) 

where 

(8.1 I) 

=~ : =  {(G o~) E ~ I r is of  class C ~ and o~ is Lipschitzian}. 

By mollifying the members of ~ that do not belong to qg', as illustrated in Theo- 
rem VIII.6 of [7], we prove that 

(8.12) inf{F[r o~] [ (a, o~)E ~C~~ = inf{F[a, o~] 1 (G ~) E ~C}. 

Then from (8.10) and (8.12) we deduce the desired conclusion (8.2). 

9. Justification of the one-dimensional problem 

Let the region ~@ and the unit vector e be defined as in Section 3. Let the func- 
tional 

(9.1) ~ [ ~ ;  s, nl :-- f (k IV~l z + ~/V,,I ~) 
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be subject to the boundary conditions 

(9.2) slso 1 =Sls:~ = S o ,  

(9.3) n [ s ~ l = n l ,  n[so2=n2, 

where 5~ and ~/9 2 a r e  the faces of ~ orthogonal to e, So is a positive constant, 
and nl, n2 are constant unit vectors not pointing in opposite directions. We show 
that all the minimizers of (9.1) in a suitable class of functions satisfying (9.2) 
and (9.3) are such that (3.1) and (3.2) hold. 

Let the class ~ be defined as follows: 

(9.4) (g : =  ((s, n) [ s E HI'2(~), sn E HI'E(~), s(~) C ]--�89 1[, n(~) Q 502}. 

It  is shown in [10] (cfi also Section 3 of [3]) that (9.1) attains a minimum in 
fq even when boundary conditions more general that (9.2) and (9.3) apply. In 
[11] and [12] the regularity of minimizers is explored from different perspectives. 
Furthermore, given a pair (s, n) in ~ that satisfies (9.2) and (9.3), the restriction 
of s and n to ahnost every segment of N parallel to e gives rise to pairs (t, v) such 
that 

(9.5) t E A C(]0, l[, ]--�89 1 [), t(0) = t(l)  = So, 

(9.6) v E AC~oc(]0, l[ \ 5~ 5p2), v(0) = n~, v(/) = n2. 

Thus, defining 

{0:' } (9.7) L :--~ inf [k ( t ' )  2 @ t2(v ' )2] l t ,  v satisfy (9.5) and (9.6) , 

we easily find that 

(9.8) f f [ ~ ;  s, n] >= l•177 

where l• and l I are defined as in Section 3. In (9.8) the equality sign holds if 
and only if both s and n depend on p only through x : =  (p -- O) �9 e, and the 
functions t, s defined by t (x)  = s(p), v(x) = n(p) are such that 

l 

f [k(t ') 2 @ t2(v') 21 = L. 
0 

Again applying the method illustrated in Section 4, we can show that L is indeed 
attained. Let (t, v) be a minimizer. The same dichotomy as in Section 6 applies 

1 4ks  2 
now to 5"(0. Furthermore, if 5:(t) = {Xo}, then x0 = -~--, L -- l ' and v is 

piecewise constant; hence (3.1) obviously holds. If, on the contrary, 5:(t) = 0, 
then by using the change of variables 

y 

(9.9) ~(y) " :  f t-2(X) dx  
0 
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we easily prove that 

l ~(1) 

(9.10) f t2(z') 2 = f (w') 2, 
0 0 

for all z E A C ( ] O , I [ , ~ 2 ) ,  where w : = z o ~ 7  - i .  Equality (9 .10)shows  that 
v o ~-~ is a geodesic on 5 e2 connecting n 1 to n2. Hence v(x) lies in the plane defined 
b y n i  a n d n 2  for all x E [ 0 ,  l]. 

Remark. L~N has proved in [3] (c:f. Theorem 3.5) that when k = 2, the Hausdorff  
dimension of the singular set 5r is at most 1 for the minimizers of ~-. We have 
shown here that  when k is sufficiently small, the dimension of the singular set 
may well be 2. 
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