
Arch. Rational Mech. Anal. 114 (1991) 313-333. @ Springer-Verlag 1991 

A Well-Posed Problem 
for the Exterior Stokes Equations 

in Two and Three Dimensions 
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Communicated by H. BREZIS 

Abstract 

This paper treats the Stokes problem in exterior Lipschitz-continuous domains 
of R 2 and R 3. Using the weighted Sobolev spaces of  HANOUZEr (in R 3) and 
GIRoIP, E (in t~2), we establish the inf-sup condition between the velocity and 
pressure spaces. This fundamental result shows that the variational Stokes prob- 
lem is well-posed in those spaces. In the last paragraph, we obtain additional 
regularity of the solution when the data are smoother. 

1. Introduction 

Let ~ be a bounded domain of R " (n = 2 or 3) with a Lipschitz-continuous 

boundary F, and let f2' denote the complement of ~.  This paper treats the steady- 
state nonhomogeneous Stokes flow in f2', which is governed by 

{--~ Au + Vp = f ,  div u = 0 in ~ ' ,  
(s )  uL r = g ,  

with a condition on u at infinity expressed by 

f II VUII 2 dx < + cx~, / 5  1[ u][ 2 dx < + oo 
.Q' .Q, 

for an appropriate weight function ~o that depends upon the dimension. This 
weight stems very naturally from Hardy's inequalities [Hr], under the implicit 
assumption that u is the limit of a sequence of smooth functions that vanish at 
infinity. The force .f is given in the dual of the velocity space, and the boundary 
value g is given in (H~(F)) ". As usual, the viscosity v is a positive constant. 

We shall put problem (S) in an equivalent variational form, show that it is 
well-posed, i.e., that it has a unique solution (u, p) that depends continuously 
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upon the data .f and g, and derive additional regularity results when the boundary 
/ '  and the data are smoother. In this case, the weak solution, i.e., the solution of 
the variational problem, coincides with the strong solution. 

The exterior Stokes (and Navier-Stokes) problem is very challenging; many 
authors, using different approaches such as semi-groups, potential theory, weighted 
spaces, and weighted equations, have contributed to it. Without being exhaustive, 
let us cite the work of BABENKO [Ba], FINN [Fill, [Fi]2, FUJITA [Fu], GILBARG 
& WEINBERGER [G1], HEYWOOD [He]~, [He]2, LADYZHENSKAYA ~:; SOLONNIKOV 
[La], LERAY [Le],, [Le]2, MA [Ma], MASUOA [Ms], SMITH [Sm]; and more recent- 
ly, the work of AMICI~ [Am], SEQUEmA [Se],, [Se]2 , [Se]3 , GUIRGUIS [Gu], SPE- 
COVIUS-NEUGEBAUER [Sp], SOHR & VARNHORN [Sol, and BOP.CriERS & SOHR 
[Bo]. Our present work follows the approach of [Se]~, [gel2 and completes it. 
As in the latter references, we seek the solution in the weighted spaces studied by 
HANOUZET [Ha] in three dimensions and by GIP.OIRE [Gr] in two dimensions, 
so that the same analysis applies to two and three dimensions. Moreover, we ex- 
tend the results of SEQUEIRA to the case of a Lipschitz-continuous boundary and 
we eliminate the restriction imposed by this reference (and others) on the boundary 
data, namely that f g .  n ds = 0. Finally, we derive further regularity results 

r 
when the data and boundary are more regular. Our proofs are simple and concise 
because we make constant use of sharp isomorphisms established by [Gr], as 
well as general results concerning saddle-point problems. 

This variational formulation has the advantage of being well adapted to 
numerical solution by finite elements coupled with boundary integrals. The nu- 
merical implementation can be found in [Se]3 for the Stokes problem, following 
a technique introduced by JOHNSON ~; NEDELEC [Jo] for the Laplace equation. 

2. Notations and Preliminary Results 

As mentioned above, to define a suitable functional setting for the variational 
solution of the exterior Stokes problem we need to use weighted Sobolev spaces. 
In this section we give some notation and a brief survey of  the most important 
results we shall need in the sequel. 

From now on, let Y2 be a bounded open set in R n (n = 2 or 3) with a Lipschitz- 
continuous boundary F, and let Y2' be the complement of its closure in N". We 
denote by n the unit normal to _P, pointing outside D, which exists almost every- 
where on _P. Furthermore, let x = (xi), i = 1, . . . ,  let n be a typical point in Rn, 
and let r = r(x) be its distance to the origin. We use the customary multi-index 
notation 

n 

[21 = Z 2 i ,  D " =  
,'=1 a ~ '  . . .  ax~,n 

for any nonnegative integers 21. Let q(r) = (1 + r2) �89 and lg r = In (2 + r2). 
For  arty nonnegative integer m and for any ~ E N, we define the weighted Sobolev 
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space wm(f2 ') by 

W~(-Q') = {u E ~'((2') : ~(r) ~-m+tzt (lg r) -~ D~u E L2(f2'), V 2, 0 <= i21 <= k; 

O(O ~'-m+l)'l D;'uEL2(.O'), u  k + 1 ~ 12[ ~ m}, 

where k is such that 

{ ( n )  n 
m - -  if -~- .. k =  -~-+o~ + ~  1,2, . ,m;  

- -  1 otherwise. 

These spaces have been introduced in [Ha]. We briefly mention some basic 
properties we shall need. The details can be found in [Ha], [Gr]. 

1. W~(f2') is a Hilbert space, provided with its natural norm 

[ ~ ii~(r)~-m+lZ/(lgr)_l z 2 lluilm,~,~, = D ull L~W'~ 
L O<_-IZl~k 

@ k-I- 1 <121Z ~mllq(r)~--m + I~'lazulI2'w')] ~ 

and associated seminorm 

/1 z 

2. The following imbeddings are continuous 

w ~ ( s ~ ' )  ~ w ~ - ? ( . Q ' )  4 . . .  ~ V /~  

3. The space @(~') of indefinitely differentiable functions with compact support 
in ~ '  is dense in wm(O'). 

4. Multiplication by a function of ~(,Q') is a linear continuous mapping from 
W"J(O') into H"(s This fact allows us to use the standard properties of the usual 
Sobolev spaces, especially the trace theorems. 
5. The completion of the space ~(s in W~(Y2') for the appropriate norm is 

1~m(s ' ) =  uE WH(f2'); 8n j l ; = O ,  j = O , . . . , m - -  1 , 

8 
where ~ denotes the normal derivative. Its dual space is w-m(.C2 ') with the 

norm 

sup 

6. For any nonnegative integer m and for any real number fl, multiplication 
by ~(r) ~ is an isomorphism from W~([2') onto W~_~(/2m t) and from I~z'Cc2'~ ~ ~ onto 
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ff'~_r provided that  neither n/2 + o~ nor n/2 + o~ -- 13 belongs to 
{1,2, . . . ,  m}. 

7. The seminorm I" Im,~,a' is a norm on l ~ ' ( O ' )  equivalent to [I "llm,%~'. (This 
result follows from Hardy 's  inequality;  the p roof  can be found in [Gr] or [Ha].) 
In particular, 

(2.1) llu[l,,o,o, ~ C [ul~,0,o,, V uE W0~(O'). 

n > 0. Then 8. Let  m - - - ~ - - - - o ~ :  

where PC is the space of  polynomials of  degree less than or equal to q', with 

/ " m ~ or if  k ~= --1,  

largest n integer strictly less than m -- -~- --  o~ if  k = --1.  

Thus setting q = rain (q', m -- 1) we have in particular 

W2(O')  ) ?q. 

9. The seminorm I'lm,~,~' is a norm on W~(~')/Pq equivalent to the quotient  
norm. 

Remark 2.1. W~163 ') = L2(~'). In the sequel we shall most  frequently use the 
following particular spaces: 
For  n -- 2, 

W~(f2') = {u E ~'(~2') : #(r) -~ (lg r) -~ u E L2(~') ,  Vu E r : ( ~ ' ) } ,  

E L  2 .Q ' ,  wz(f2 ') {u E ~ ' ( ~ ' )  : o(r) -2 (lg r) -1 u E L2(~2'), 0(0 -1 (lgr) -1 Vu ( ) 

D~u ~ L~(t2')}; 
For  n = 3, 

W~(ff2') = ~r E ~ ' ( ~ ' )  : ~o(r) -~ u E L2(ff2'), Uu E L2(-Q')}, 

w0~(~9 ') = {u E ~ ' ( ~ ' ) :  q(r) -2 u ~ L2(~') ,  e ( 0 -  ~ Vu E L~(O'), D2u ~ L2(S?')}; 

For  n = 2 o r 3 ,  

.�9 WI(~ ' )  = {u ~ ~ ' (~ ' )  : u 6 L2(~'), 0(0 Vu E Lz(s?')}, 

wkl(s9 ' )  = {u ~ ~ ' ( ~ ' )  : ~(r) -~ u E L~(sg'), ~(r) -~ Vu C L~(f2')}. 

All these spaces are equipped with their natural  norms and seminorms. 

Remark2.2. Property 8 implies that  Wl(~2') (for n = 2) and Wl(~2') and 
W01(/2 ') (for n = 3) contain no polynomials, that  W01(s ') and Wl_a([2 ') (for 
n ----- 2) and WI_I(D ') and W02(.Q ') (for n -- 3) contain ?0, and that  W2(D ') (for 
n = 2) contains Pl- 
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3. Variational Formulation of the Exterior Stokes Problem 
in the Primitive Variables 

F r o m  n o w  on we shall Often deal with vector-valued functions and extend 
natural ly  all the previous no rms  to vectors  as fol lows: I f  v = (v~ . . . . .  v,), then 

1 

v 2 ~- 

Fo r  such vectors  we recall tha t  the divergence opera to r  is defined by 

and we note the identi ty 

& 
div v = ~.j 

i=1 ~xi 

div (Vv) = Av. 

Let  us introduce the Hi lber t  spaces 

M - - L E ( ~ Q  ') n o r m e d  by II ' l l~ = El'IIo, a ' ,  
(3.1) 

X = (/)/~(D,))n n o r m e d  by  ll'[Ix = II'111,o~', 

and let M '  ---- L2(~Q ') and X '  = (Wol(D.')) n be their  corresponding dual spaces 
with norms  l I ' l l ~ r = l l ' l l 0 , ~ ,  and l l - t lx , - -=l l . l l_ l ,o ,~ , ,  respectively. As usual; 
(-, .) denotes the duali ty pair ing between the spaces  M and M' or X and X' .  

Fu r the rmore  we require the following Hi lber t  spaces:  

V = {v E ( l ~ ( O ' ) ) "  : div v ---- 0 in ~ '} ,  

(3.2) V l = (v ff (#Zlo(~:))" : (Vv, Vw) = 0, u w E V}, 

v ~ = { l ~  ( W o ' ( ~ ' ) ) , :  ~L  w)  = 0, v ,~ c v}. 

In  order  to s tudy the nonhomogeneous  Dirichlet  p rob lem (S) in a velocity- 
pressure formula t ion ,  we begin by  lifting b o u n d a r y  values with divergence:free 
functions in D' .  

Lelmna 3.1. Let s Q 1R n (n = 2 or  3) have a Lipschitz-continuous boundary F 
that is not necessarily connected, but has no interior connected component (i.e., 
~Q has no "holes"). Then, for each g ff (H~(P))" such that 

(3.3) f g .  n d s  = O, 

there exists a .Nnction uo E ( H I ( ~ ' ) ) "  with compact support satisfying 

(3.4) 

(3.5) 

where the constant 
g---> Uo is linear. 

div Uo = 0 in .Q', u01 r = g, 

lluo!h,~, < C IlgIl~,r, 

C > 0 is independent of u o and g. Moreover, the mapping 
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Proof. Let B1 denote an open ball with boundary Z'~ such that ~ Q B~. We set 
s = B1 A ~2' (cf. Fig. 1). Since g-2~ is a bounded open set with boundary 
/ '  kJ Z', it follows from hypothesis (3.3), that there exists a uo E (H~(O~))" with 
div Uo = 0 in s Uolr = g, Uols = 0 satisfying tlUo[l~,~, ~ C Ilgil~,F. Clearly 

u o can be constructed so that the mapping g ~-~ Uo is linear. 

Fig. 1 

Now we extend Uo to Y2' so that it remains divergence-free. In fact the ex- 
tension 

Uo in ~1,  
rio = 0 in B~ 

belongs to (HI(Y2')) n, has compact support, and satisfies 

div Uo --=- 0 in f2', Uotr = g, 

with 

lliio[h,~ , ~ CllgH~,F. [ ]  

P 

Remark 3.1. Suppose that O has "holes":  f f  : k J Fi, where -To denotes the 
i=0 

exterior boundary of  $2 and Fi, 1 ~ i ~ p are the other "interior" components 
of  ft. Then the statement of Lemma 3.1 is still valid provided that the boundary 
value g satisfies the conditions 

f g . n d s = O ,  O ~ i ~ p .  
F i 

The theorem below is a fundamental tool in the theory of exterior Stokes equa- 
tions; its proof  can also be found in [Se]~. 

Theorem 3.1. Let s be as in Lemma 3.1 and let the boundary F be sufficiently 

smooth (in C2 for example). Then for each p C L2(~'),  there exists w E (I'V~(~')) n 
such that 

d i v w = p  in ~ ' ,  
(3.6) 

Ilw/ll,0,o, ~ g l[PlIo, o'.  
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Proof. For  p E L2(~Q'), let us solve the exterior Neumann problem 

Oq~ I = 0 .  A g ~ p  in t2', ~ r 

We set v = Vq0. It is shown ([Gr] Th. 7.I3, (for n = 2) and Th. 4.12. (for n ---= 3)) 
that this problem has a unique solution ~o E W~(~')/P~ and that the mapping 
p~-~p is continuous: In particular [~vIIt,0,a, ~ C1 [fP[[o,a'. Moreover, v l rE  
(H~(F)) " and obviously satisfies (3.3). Then, according to Lemma 3.1, there exists 
a Vo E (H~(L~'))" such that 

div Vo = 0 in f2', t, ol r = vtr  , 

II%lh,~, ~ C2 llvllu, r =< C3 !lVlll,0,ra, =< C,  Ilpll0,~,. 

The theorem follows by choosing w = v -- Vo. [ ]  

As an immediate consequence, we derive 

Corollary 3.1. Under the assumptions of Theorem 3.1 the following inf-sup con- 
dition (also called the Babugka-Brezzi condition, [Bu], [Br]) holds: 

(3.7) 
f p div w dx 

.o' 1 
inf  sup 1 > - -  

p~L2(I2t) w~(~VI(I2')) n IIP ,o,~' llwlh,o,~, -= K ' 

where K is the constant in inequality (3.6). 

We introduce the continuous bilinear form 

b(-, ") : iV• M - +  R 

defined by 

b(w, q) -~ -- f q div w dx = (w, Vq), 
-(2' 

(3.8) 

V wE (I~(.Q'))",  V qEL2(~Q'). 

Let B E ~e(X, M') be the associated linear operator and let B' E 5a(M, X') be 
the dual operator of B, i.e., 

(3.9) b(w, q) = (Bw,  q)  = (w,  B' q) 

with 

(3.10) B w =  --div w; B ' q = V q ,  ' r  

In abstract terms (el ,  w 4 [Gi]), we know that B is an isomorphism from V • 
onto M'  if and only if B' is an isomorphism from M onto V~ these properties 
are equivalent to the inf-sup condition for the bilinear form b(., .). More precisely, 
we have 
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Corollary 3.2. Let the hypotheses of Theorem 3.1 hold. Then the operator div is 
an isomoiThism from V • onto M'. The operator grad is an isomorphism from M 
onto V ~ 

It follows from Theorem 3.1 that the constraint (3.3), which leads to a simple 
proof of Lemma 3.1, can be eliminated. To show this we first suppose that the 
boundary f '  is more regular. 

Lemma 3.2. Let the open set ~2 C R" (n -- 2 or 3) be as in Lemma 3.1, but let 
its boundary 1" be sufficiently smooth. Then there exists a lifting operator R E 
~ca((H~(/'))~; (Wol(O')) ~) such that 

Rglz. -= g, div (Rg) = 0 in ~ ' ,  

i.e., for each gE (H~(P) f ,  there exists a Uo E (W~(s ~ satisfying 

u0lr = g, div Uo : 0, [] Uo [tl,o,w ~ C ][g]]~,r. 

Proof. We retain the notation s of Lemma 3.1. For g E (H~(F))", let  Wo E (H 1 (~))" 
be the unique solution of the Dirichlet problem 

(3.11) Awo : 0 in f2~,  Wolz : O, Wolf : g. 

Its extension by zero outside B~ (still denoted wo) satisfies 

(3.12) llWo lh,0,o, ~ c t  Ilg[/~,r. 

Moreover, div Wo E L2(f2'), and by Corollary 3.2 there exists a unique function 
w E V  • such that 

div w = div Wo, l!wlh,o,o, ~ Klldiv WolI0,w. 

From (3.12) we can deduce that 

II wh,0,,~, _-<, K1/n lWo I1,0,t2' ~ KC~ ~n /]g]I~.,r. (3.13) 

Hence 

U 0 = ~V 0 - -  

is the required function, since Uo E (Wol(~')) ", 

div u o = 0 in ~ ' ,  Uolr = g. 

Combining the inequalities (3.12) and (3.13) we get 

Uuolh,o,~, ~ ci(1 -t- K t/n) ]!gllLr. 

We finally note the linearity of the mappings 

g ~  w o ~  W ~  Uo. [] 
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Remark 3.2. Note that in removing the constraint 

(3.3) f g . n ds = O, 
r 

we have automatically lost the compact support of the lift u o. Obviously (3.3) is 
necessary to obtain a divergence-free lift with compact support. 

Lemma 3.3. Let the assumptions o f  Lemma 3.2 hold. For each g E (H}(-P)) n and 
h E L2(s there exists a v E (W~(.Q'))" such that 

div v = h in f2', vlr = g 

and such that the mapping {g, h} ---> v is continuous: 

]lvlh,0,o, G C[llhll0,o, -I- Ilgll~,r] 

The proof follows immediately from Lemma 3.2 and Theorem 3.1. 

Now observe that when the domain is bounded, the Stokes problem is well- 
posed when the boundary is only Lipschitz-continuous. Intuitively, this property 
should remain true in exterior domains, since it should not affect the behaviour 
of the solution at infinity, Indeed, this is the case here. The theorem below, anal- 
ogous to Theorem 3.1, eliminates the regularity assumption on / ' .  

Theorem 3.2. Let [2 be as in Lemma 3.1. Then for each p E L2(s ') there exists 

uE (ffz~(f2'))n such that 

(3.6') 
div u --  p in ~ ' ,  

l[u[[1,o,~' G K' Ilpllo,~'- 

Proof. Again we keep the notations of Lemma 3.1. Let 9 2 denote another open 

ball such that B2 ) ffl and set /22 = B2/'1 B~, as in Fig. 2. Given p E L2(s 
let us define a function/3 in .Q1 k/s by 

/3 = in ~'Q2, 

2 

Fig. 2 
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where the constant C is chosen so that 

f /3dx=O, 
~,kJO2 

1 
C -  f pdx. 

mes (s ~, 

A simple calculation gives 

(3.14) ~ 2 2 mes (s 2 llpllo,o, < C~ z 2 = - -  IlPll0,o,. llpll0,~,vo2 < llpl]o,a, § mes (02)  - -  

Since/3 has zero mean value in the bounded domain s W s we know there 
exists w C (H~(s U s such that 

div w = /3  in O1 W s 

with 

(3.15) Ilwlh,~lv~2 <= c2 ll/3tlo,~,wx~2- 

By combining inequalities (3.14) and (3.15) we immediately obtain 

(3.16) wi t  = 0, IlwIh,o,vo2 ~ ClC2 Hello, o,.  

On the other hand, since the boundary X is smooth, it follows from Lemma 3.3 
that there exists v ~ (WI (B; ) )  n such that 

t 
div v = p in BI, vlx = wlz,  

Ilvlh,0,B~ ~ C~[ltPll0,~ § llwll.,,~]. 

Using the trace theorem and inequality (3.16), we have 

llvIh,0,B~' ~ C~[llplloJx § c4 Ilwlh,o,] 

_< C~[llpllo,~ § c162c4 Itpllo,~,]. 

Finally, the function u defined by 

w on s 
U = p 

v on B~ 

belongs to (W1o(s and satisfies 

div u = p in g2', 

]luh,o,~, < c~ ][pl]o,~'. [ ]  

Remark 3.3. Now it is a simple matter to check that the lifting operators of 
Lemmas 3.2 and 3.3 still exist in the case of a Lipschitz-continuous b o u n d a ry / ' .  

This establishes the inf-sup condition for the exterior Stokes problem. 

i.e., 
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Theorem 3.3. Let  g2 be as #, Lemma 3.1. Then there exists a constant K'  > 0 
(the constant o f  inequality (3.6)') such that 

f p div w dx 1 .Q, 
(3.7') inf sup ~> K-W. 

~vw'>.,~(ir~w,)). ]lpll0,a, lIwlh,o,w --  

Since the assertions of Corollary 3.2 are still vallid, we readilyprove the follow- 
ing result. 

Corollary 3.3. Under the assumptions o f  Lemma 3.1, the mapping 

P ~-~ H v plI-l,o,~, 

is a norm on L2(Q ') equivalent to the usual norm II'llo,~,. 

Proof. Let pELZ(f2') .  We know that V p E ( W o ~ ( f 2 ' ) )  ~ with 

(Vp u, 5 
llVPlI-~,o,~' = sup 

.,~(~,g(o,)). l lwlh,o,a, 
(3.17) 

Moreover, 

(3.18) (Vp, w) = -- f p  div u, dx V u, E (1~o~(0')) ". 
.o, 

Now applying the Cauchy-Schwarz inequality we get 

(3.19) ]fpdivwdx ~, =< llp!!0,w ]/n [u" I,,0,a'," 

and by the inf-sup condition (3.7') we obtain 

(3.20) sup 1 ! p div w dx > liP [i0,~' 
,~ (~(~, )~ . / Iw lh ,o ,~ , . .  = K' 

Hence when we combine (3.17)-(3.20), the conclusion follows at once from the 
bounds 

1 
~-7 llpllo, a, ~ liVPll-,,o,w =< ]/n llpllo,a,. [ ]  

Now we turn to the nonhomogeneous exterior Stokes problem (S). More 
precisely, given f E  (Wol(-Q')) ", gE (H~(F)) " and r > 0, we want to find u E 
(W~(f2'))" and p E L2(~2 ') such that 

- - v A u + V p = j '  in ~ ' ,  

(S) div u -- 0 in .Q', 
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As in the bounded case, it is easy to see that this problem has the equivalent 
variational formulation: Find u E (W~(Y2')) n and p E L2(s ') such that 

v(Vu, Vv) -- (p, div v) = <f, v)  V v E (VV~o1(s ~, 

(Q) div u = 0 in ~ ' ,  

u l r  --  g. 

In view of  the inf-sup condition (3.7'), it follows from Corollary 3.2 that this prob- 
lem is also equivalent to the problem: 

Find u E (W01(~')) n such that 

~,(Vu, Vv) = (t', v> v v E V, 

(P) div u ---- 0 in ~Q', 

U l e :  g. 

Clearly problem (P) has a unique solution. Indeed let Uo be the divergence- 
free lift of  g: 

Uo~; = g, div Uo = o, Uo ~ (Wo~(~')) ". 

Then w = u -- Uo satisfies 

~,(Vw, Vv) - <f, v) - ~(Vuo, Vv) v v E V, 

div w : O, 

WlF = O, 

that is, w belongs to V. 
By the Lax-Milgram Theorem, this problem is well-posed and we have 

C 2 
llwlh,o,~, ~ -  llfll-~,o,~, + C lUo I,,o,,2', 

where C is the constant of (2.1). Therefore 

I ' ] Ilulh,o,~, ~ C1 Iluolh,o,~' § 
I. 

with a similar estimate forp,  thanks to the inf-sup condition. Thus we have proved 
our main result: 

Theorem 3.4. Suppose that f2 Q R n (n : 2 or 3) has a Lipschitz-continuous 
boundary F that is not necessarily connected, but has no interior connected 
component. Then for .f given in ( W o l ( ~ ' ) )  ~ and g given in (H~(I-)) n, the Stokes 
problem (S) has a unique solution (u,p)  E (W~(s • ') which depends con- 
tinuously on the data, i.e., 

Ilulh,o,~" § IlP[lo,~' ~ C[lI.t'[I-~,o/~, § llgIl~-,F]. 
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Remark 3.4. It clearly follows from Lemma 3,3 and Remark 3.3 that the following 
nonhomogeneous problem is also well-posed: Given ] E (Wol(O'))  n, h E L2(O'), 
g E( H~ (P) )  ~, find u E ( W I ( O ' ) ) "  and pEL2(O ') such that 

- - ~ A u + V p = ]  in ~ ' ,  

d i v u = h  in O', 

Ulr = g. 

4. Regularity of the Solution 

In this section we show that if the boundary and data are smoother, then so is 
the solution {u, p} of the Stokes problem. To prove this, we shall apply a technique 
used by HANOUZEr and GmomE: First derive the desired regularity result in the 
whole space; then the same problem in the exterior domain O' can be reduced, 
by appropriate cut-off functions, to a problem in a bounded domain and a prob- 
lem in the whole space. We shall treat the cases o f R  z and R 3 separately because 
the spaces involved are slightly different, the case o f R  z being more technical. But 
once the problem is solved in the whole space, the reduction technique to an ex- 
terior domain is exactly the same, whatever the dimension. Therefore, to simplify 
the discussion, we shall describe the reduction technique only in the three-dimen- 
sional case. 

4.1. The Stokes Problem in R 3 

Let us first consider the homogeneous Stokes problem: 

Theorem 4.1. Let f be given in (W~ 3. Then the homogeneous Stokes problem 

--~ Au  ~- Vp = f in R 3, 

(4.1) div u = 0 in •3 

has a unique solution, u E (W~(Rz)) 3 and p E W](R3), with 

(4.2) ]lu]Iz,l,~3 -k IIP]t1,1,~.~ ~ C ll]llo, l,a~. 

Proof. First note that since ] E  (W~ 3 ~+ (Wol(Ra)) a, the problem (4.1) has 
a unique solution u E (W~(R3)) 3 and p E L2(R3). 

Now, by taking the divergence of (4.1), we reduce the Stokes problem to a 
Poisson equation for the pressure 

(4.3) A p = d i v f  i n a  3. 

Since f E  (W~ 3, it follows that d i v f E  W~-~(R 3) and clearly, d i v f  is ortho- 
gonal to constants: 

~div f ,  c) = 0 V c E R .  
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Therefore, d i v f C  (WI_I(Ra)/R) '. Hence, as the operator A is self-adjoint, we 
can use the following result, which is the dual of  a proposition established by 
GIROIRE [Gr, Prop. 2.11]: The operator A is an isomorphism from 

(4.4) (W2~0%3)) ' onto (WI_x(R3)/R) ' . 

Since (W-I (R3) ) '  = WI(R3), (4.4) implies that pE  WI(R 3) and 

Ilplh,l,a~ G C1 lldivYll-l,,,a3 G C2 UIIo,,,a~. 

Hence equation (4.1) implies that each component of  u is the solution of the 
Laplace equation in R a with right-hand side in W~ Then applying Propo- 
sition 2.2 of  [Gr], which states that the operator A is an isomorph&m from 

(4.5) W2(p~ a ) on to  W l~176 3), 

we find immediately that u E (W~(R3)) 3 and 

1 C4 
II u ]12,1,a3 =< C3 T [llYllo,,,a~ + llVpJIo,1,~d --< --v [lYlIo,I,E~. []  

Now let us solve the nonhomogeneous Stokes problem. 

T h e o r e m 4 . 2 .  Let  YE (W~ 3 and hE WI(R3). 
Stokes problem 

--v A u  -~ Vp = f in R a, 

(4.6) div u = h in R 3 

has a unique solution u E (wZ(R3)) 3 and p E WI(JR3), 

(4.7) 

Then the nonhomogeneous 

with 

llulh,,a, + llpFh,,,~ G C[llYlIo.,,a3 § Ilhlll,l,a,]. 

Proof. Let us reduce problem (4.6) to a homogeneous problem. For this, we solve 
the Neumann problem 

(4.8) A~o = h in p3 .  

Since hE WI(R3), Proposition 2.13 of [Gr], which states that the operator A 
is an isomorphism from 

(4.9) W~(R3)/R onto W~(Ra), 

implies that this problem has exactly one solution q)ff W3(R3)/R and 

rl~o II w3(R3)/~ < c l  llh lh,,,~3. 

Let us take uo = V~0. Then Uoff (W~(R3)) 3, d ivuo  = h, and 

IluolI=,l,~ G C1 Ilhlh,,,_a3. 
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Now, the function w = u - -  u o is a solution of the homogeneous Stokes prob- 
lem 

--~, ~_w + Vp : f + v Au o in p~3, 
(4.1o) 

div w = 0 in R 3, 

with right-hand side in (W~O(N3)) 3. Then the desired result follows from Theo- 
rem 4.1. [ ]  

4.2. The Case o f  an Exterior Domain 

Let us assume that  s is as in Lemma 3.1, except that its boundary / - ' i s  smooth 

(of class C 2) and, as usual, let ' -(2 denote the complement of  f2. Given f in (W~ 3 
and g in (H3/2(I')) 3/2, we want to show that the solution u E (W~(O')) 3, p E LZ(s ") 
of 

- - v / x u  + Vp ----- f ,  div u = 0 in o '  
(4.11) 

ULe ~ g 

is such that  u E (W2(-Q')) 3 and p E  Wl(O'). 
Let R E N be so large that  .(2 is contained in B R. (BR is the ball with center 

0 and radius R.) Consider the following partition of unity: 

% ~o E C~(R3), ~p + ~o ~ 1 in R 3, 0 :< ~o, ~o ~ 1 in M s , 

(4.12) ~olB R = 1, %B,v.+1 = 0 ,  

~IBR = 0, ~01B,R+ 1 = 1. 

Then u • u~0 + u~0 and p = pq9 + p %  where u~0 and u ~  have the same regu- 
larity as u, and similarly, p~o and p~o have the same regularity as p. 

Let us first study u~o: 

u~oc (Wo~(O'))% u~o~, +~ = o.  

Hence u~E (H~(s BR+I))3; likewise, PqoEL2(O ' A  BI~+O and the pair 
{u~o, pg)} satisfies the equations 

- -v  A(u~0) + V(p~o) = f q- v A(u r )  - -  V(p~o) in O'  {'~ BR+I, 
(4.13) div (u~o) = - -d iv  (u~p) in ~ '  A Be+l ,  

u~0ir ~ g, u971~+ ~ = 0. 

This is a nonhomogeneous Stokes problem on a bounded domain with a smooth 
boundary. After some rearrangement, the right-hand side of  the state equation 
has the expression 

F = 99t' q- 2r 8iu 8i~ + ~u A~p - -  p V ~ .  

Since ~ and ~o are smooth, it is easily checked that  

~ (L2(O' A ~R+~)) 3. 
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Likewise, 

div (u~) = - -u  �9 V~pE HJ(s ' :~ BR+I). 

Therefore, it follows from the regularity results of CATTABRXGA [Ca] that the solu- 
tion pair {u% p~p} belongs to (H2(:2 ' :5 BR+I)) 3 • HI(f2 ' A BR+I) and satisfies 
the bound 

II u~ [I2,D,gSBR+I -~ IIP~ Ih,~'~BR+ 

<: C1{ll::llo,~'~.R + x + Ilullx,o'A~R+i 
+ IlPlI0,o'ABZ+I + llgll3/z,r}. 

As ~ is very smooth and has its support in BR+b we can extend u~0 and pep by 
zero in B~+I ; the extended functions belong respectively to (W~(s 3 and rvl(•') 
and satisfy the above bound in f2'. 

Now, we consider u~0. Since ~o vanishes in BR, we can extend u~p and p~p by 
zero in B~, and the extended functions belong respectively to (W~(R3)) 3 and 
Lz(Ra). Then as in the preceding case, we can easily check that 

- r  A(u~o) + V(pr )  = F = y~o - ~(2os~o osu + ~X~,u) + p V %  

div (u~0) = H = u"  V~0. 

Therefore the pair (u~, p~p} E (Wot(Ra)) a • a) is the solution of the Stokes 
problem 

--v d(u~o) + V(p~) : F, div (u~o) : H in R a. 

Since F belongs to (W~ a and H belongs to HI(R a) with compact sup- 
port, so that H is in WI(Ra), we can apply Theorem 4.2, which yields 

u~C (W~(R~)) ~, p ~  WI(R3), 

II u~ol[z,l,R~ -/- Ilpv:lh,a,_~ ~ C2(1[]11o,1,~'R + II u [Ix,o':~p.+x + [lPlI0,o':~BR+~}. 

Finally, combining the last two inequalities and Theorem 3.4, we obtain the 
regularity announced for the solution (u,p) of Problem (4.11): 

u E (W~(O'))~, p~  WI(S?'), 

IIull2,1,w § ][P]l~,~,w ~ C~{ll]]10,1,~, + 11g]I3/zr}. 

4.3. The Stokes problem in R 2 

The situation is more delicate in R 2 because some of the regularity results 
that we need do not hold in the W~ n spaces. Instead, we shall work with a slightly 
different family of spaces, the X~ +v spaces (ef. [Gr]), For the sake of simplicity, 
we do not define the most general X~ +p space, we only introduce the specific 
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spaces that we require, namely 

XI~ = {fE Wo 1(R2), x i f E  L z ( R 2 ) ,  i = 1, 2; f E  L~o~(Rz 2)}, 

XI-I(R 2) = {fE Wo2(R2), x i f c  Wol(~2) ,  i = 1, 2 ; fC  H1oc-l(R2)}, 

and their dual spaces, X~ 2) and X11(1{2), respectively. 

The properties of these spaces are established by [Gr], who proves (in Pro- 
position 10.1) that 

X~ 2) - - { f E  Wo ' (R2) ; fE  W~ 

and therefore X ~  2) is a proper subspace of W~ 2) because W~ 2) C Wol(~z). 
Moreover, it is established that the polynomial space P~ is contained in XI_I(R 2) 
(cf. Lemma 5.12 of [Gr]). Likewise, a straightforward argument shows that the 
constants are contained in X~ 

We shall prove the following result: 

If  f E  (X~ z, then u E (W2(]~2)) 2 and p E W~(1{2), 

In other words, we shall deduce the same regularity as in I{ 3 , provided we start 
with a slightly more regular right-hand side. 

But first of all, let us observe that, in contrast to what happens for 1%3 or for 
exterior domains of R 2, a necessary condition for the Stokes problem to have a 
solution in R'- is that 

(4.14) .f 5_ 1{2. 

Indeed, let f E  (WoI(R2)) a be such that 

f = --~ Au q- Vp in R 2 

with uE(W~(IR2)) z and pEL2(Rz).  Then 

( f ,  v} = v(Vu, Vv) -- (p, div v), V V E (WI(R2)) z, 

and since R Q WoX(R2), this equation implies that 

(4.15) ( f ,  c)  = 0, V cE1{ 2. 

Furthermore, the velocity u can only be determined up to an additive constant 
since the mapping v ~ ltvvlI0,~= is a norm on the quotient space W~(1{z)/R, 
equivalent to the quotient norm. Thus, taking into account these two remarks, 
we can apply the argument of Section 3 to prove the following lemma. 

determines a unique 

(4.16) 

Lemma 4.1. Each f C  (Wol(][~2)) 2 satisfying 

( y , c } = 0 ,  V c E R  2 

u C (W~(R2)/]R) z and p C L z (IF; z) such that 

- -v  &u -}- Vp - f in ~2~2 

div u = 0 in 1{2, 
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and there exists a constant C1 such that 

II u II(wg(~2)/~)2 + lip llo,a2 ~ C1 Ilfll-1,0, Ez. 

Now, let us take f E  (X~ a with (4.15). Then f also belongs to (Wol(Ra)) a, 
and therefore the Stokes problem (4.16) has a unique solution u E. (W~ z 
and p E Lz(F~2). As in R 3, we know that p is a solution of Laplace's equation 

(4.17) Ap = d i v f  in F: 2. 

But Propositio n 11.1 of [Gr] implies that 

f E  (X~ 2 ~ divfE Xi-I(F~2). 

Furthermore, using (4.15), we easily see that 

div f _[_ Pl.  

Therefore, we can apply to div f the dual proposition of the following isomor- 
phism result established by [Gr, Th. 5.11 ]: The Laplace operator A is an isomor- 
phism from XI_I(F~:)/P ~ onto X-_ I(R2). The dual proposition reads : & is an isomor- 
phism from XI (R  2) onto the subspaee o f  Xll(R 2) that is orthogonal to P1. Since 
XI(R 2) =WI(R 2) (eft [Gr, Prop. 9.1]), this means that Problem (4.17) has a 
unique solution p E W~(F~ 2) which coincides with the pressure of the Stokes 
problem) and 

(4.18) lip Ila,l,a2 < C2 II d ivf  !Ix i- i(_~) ~ C3 Ilf[(xO(a~))~. 
Thus, the velocity u satisfies Laplace's equation 

(4.19) --v Au = f -- Vp in g2,  

with right-hand side f -  Vp E (X~ 2 and 

< f , c > = 0 ,  <Vp, c>=O,  v c E R ~ .  

Then f -  Vp E ((X~ ', and it follows from [Gr, Prop. 5.2] that (4.19) 
has a unique solution u E (W2(E2)/I~) 2 (which coincides with the velocity of the 
Stokes problem) and 

(4.20) Ilull(w~(R~)zR)~ =< C4 Hf - VpllcxO(~m =< c5 [[fI(xoc~2)v. 

These results furnish the proof of 

Theorem 4.3. Let I E (~,-0(~2))2 with 

( f ,  c) = 0, V c E ]%2. 

Then the solution {u, p} of  the Stokes problem (4.16) has the regularity u E (W~(R2)/ 
R)~, pc  w l (a  ~) ana 
(4.21) Ilull(w~(a=)z~)= + liplh,~,~ <= c6 llflcxO(a=)):. 
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Finally, we can easily derive the same regularity for the nonhomogeneous  
Stokes problem 

(4.22) --~, Au  - -  Vp = f ,  div u = h in R 2, 

w i t h f  as above and h given in W](R:) .  For  this, it suffices to solve Laplace 's  equa- 
t ion:  

(4.23) ~cp = h in R z . 

Accord ing  to [Gr, Lemma 5.14], this problem has a unique solution ~0 C W~(R2)/P1 
such that  

(4.24) ll~011w3(~2)/p, <: c~ llhlh,l,R2. 

Then no = V~o belongs to (W2(R2))]R) 2 and 

div Uo - -  h.  

Therefore u - -  Uo is the solution o f  the homogeneous  Stokes problem 

--v A(u  - -  Uo) 4- Vp = y 4- ~ AUo, div (u - -  Uo) = 0, 

with r ight-hand side f 4- ~, Auo C (X~ 2. Theorem 4.3 and (4.24) then imply 

u c p w l ( E  2) 

with the following analogue of  (4.21): 

(4.25) llull(w~(~2)/~)~ 4-llplh,l,a~ ~ Cs[llYllc~%=))= 4- Ilhlll,a,a~]. 
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