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A Well-Posed Problem
for the Exterior Stokes Equations
in Two and Three Dimensions
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Abstract

This paper treats the Stokes problem in exterior Lipschitz-continuous domains
of R? and R?. Using the weighted Sobolev spaces of Hanouzer (in R3) and
GIROIRE (in R?), we establish the inf-sup condition between the velocity and
pressure spaces. This fundamental result shows that the variational Stokes prob-
lem is well-posed in those spaces. In the last paragraph, we obtain additional
regularity of the solution when the data are smoother.

1. Introduction

Let 2 be a bounded domain of R” (n = 2 or 3) with a Lipschitz-continuous

boundary I', and let £’ denote the complement of 2. This paper treats the steady-
state nonhomogeneous Stokes flow in £, which is governed by

{——vAu—[—Vp:f, dive=0 in Q'
ulng,

with a condition on u at infinity expressed by

()

2 1 2
Q/IIVuII dx <+ oo, Q/;llu}\ dx < + o

for an appropriate weight function w that depends upon the dimension. This
weight stems very naturally from Hardy’s inequalities [Hr], under the implicit
assumption that ¢ is the limit of a sequence of smooth functions that vanish at
infinity. The force f is given in the dual of the velocity space, and the boundary
value g is given in (H¥(I'))". As usual, the viscosity » is a positive constant.

We shall put problem (S) in an equivalent variational form, show that it is
well-posed, i.e., that it has a unique solution (u, p) that depends continuously
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upon the data f and g, and derive additional regularity results when the boundary
I" and the data are smoother. In this case, the weak solution, i.e., the solution of
the variational problem, coincides with the strong solution.

The exterior Stokes (and Navier-Stokes) problem is very challenging; many
authors, using different approaches such as semi-groups, potential theory, weighted
spaces, and weighted equations, have contributed to it. Without being exhaustive,
let us cite the work of BABENKO [Ba], FINN [Fily, [Fi],, FunitA [Fu], GILBARG
& WEINBERGER [Gl], HEYwooD [He];, [He],, LADYZHENSKAYA & SOLONNIKOV
[La], LerAY [Le],, [Le],, Ma [Ma], MAsuDA [Ms], SMITH [Sm]; and more recent-
ly, the work of AMICK [Am], SEQUEIRA [Sel;, [Sel,, {Sels, GuirGuis [Gu], SPE-
COVIUS-NEUGEBAUER [Sp], SOHR & VARNHORN [So], and BORCHERS & SOHR
[Bo]. Our present work follows the approach of [Se];, [Se], and completes it.
As in the latter references, we seek the solution in the weighted spaces studied by
Hanouzer [Ha] in three dimensions and by GIroRE [Gr] in two dimensions,
so that the same analysis applies to two and three dimensions. Moreover, we ex-
tend the results of SEQUEIRA to the case of a Lipschitz-continuous boundary and
we eliminate the restriction imposed by this reference (and others) on the boundary
data, namely that f g-nds=0. Finally, we derive further regularity results

I

when the data and boundary are more regular. Our proofs are simple and concise
because we make constant use of sharp isomorphisms established by [Gr], as
well as general results concerning saddle-point problems.

This variational formulation has the advantage of being well adapted to
numerical solution by finite elements coupled with boundary integrals. The nu-
merical implementation can be found in [Se]; for the Stokes problem, following
a technique introduced by JouNnsoN & NeDELEC [Jo] for the Laplace equation.

2. Notations and Preliminary Results

As mentioned above, to define a suitable functional setting for the variational
solution of the exterior Stokes problem we need to use weighted Sobolev spaces.
In this section we give some notation and a brief survey of the most important
results we shall need in the sequel.

From now on, let 2 be a bounded open set in B” (n = 2 or 3) with a Lipschitz-
continuous boundary I, and let Q' be the complement of its closure in B*. We
denote by n the unit normal to I, pointing outside £2, which exists almost every-
where on I". Furthermore, let x = (x;), i = 1, ..., let n be a typical point in R,,
and let r = r(x) be its distance to the origin. We use the customary multi-index

notation
7 , 331\
W=i=ZIZ,-, D= o o

for any nonnegative integers 4. Let o() = (1 + r?)! and Igr=1In(2 + #?).
For any nonnegative integer m and for any x € R we define the weighted Sobolev
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space W7(£2) by
WD) = fue (@) : oy (gr) Due LA@), Y 4, 0= || < k;
o) D LAY,V 2k + 1= 2] < m},

where k is such that

[ i it L =12 :
k- m — —2~+zx it = Fo=12..,m;
I —1 otherwise.

These spaces have been introduced in [Ha]. We briefly mention some basic
properties we shall need. The details can be found in [Hal, [Gr].

1. W3(£2') is a Hilbert space, provided with its natural norm

Nl 0 = [ 2, NGy =" (gry™ Dull 1aan

WEAIE-

%

PN 1O Dl

k+1=liEm

and associated seminorm

tpmr = [ T ety D‘unim] ;

1Al=m

2. The following imbeddings are continuous
W) = W () — ... > Wi_ ().

3. The space 2(£2') of indefinitely differentiable functions with compact support
in 2" is dense in W¥(Q").

4. Multiplication by a function of Z(£2’) is a linear continuous mapping from
W3(£2) into H™(£'). This fact allows us to use the standard properties of the usual
Sobolev spaces, especially the trace theorems.

5. The completion of the space Z(') in WT(L’) for the appropriate norm is

&u

poy r=0,7=0,...,m—1;,

We@) = lue wre);

]
where o denotes the normal derivative. Its dual space is WZ"™(Q") with the
norm

<u, vy

liell—, o0 = sup .

= 1M O
oEW‘x(Q)

6. For any nonnegative integer /7 and for any real number 8, multiplication
by o()? is an isomorphism from W7(Q') onto Wi 5(2") and from W73 (2") onto
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VI;Z’_/;(Q’), provided that neither #/2 + & nor n/2 -+ —f belongs to
{1,2,...,m}.
7. The seminorm |+, .o is @2 norm on Vf/Z’(Q’) equivalent to ‘[l . (This
result follows from Hardy’s inequality; the proof can be found in [Gr] or [Ha].)
In particular,

@1 lulioo = Clulioe Yu€WH2).

8. Let m-——:——(x_E:O. Then

‘ w2y DO P,,
where P is the space of polynomials of degree less than or equal to ¢, with
n
Jm——j—{x if k94 —1,
q = o "
llargest integer strictly less than m — 5 if k= —1.

Thus setting ¢ = min (¢’, m — 1) we have in particular
W) D P,
9. The seminorm |-, .o is a norm on W3(L)/P, equivalent to the quotient

norm.

Remark 2.1. W{(£2) = L*(2’). In the sequel we shall most frequently use the
following particular spaces:
For n =2,

Wé(.Q’) ={uc D' (QY: 0 (gr)y ™t ue LX(Q), Vue LX (2},
W) = {ue 2'(Q2): o) (g r)™" u€ L2(2), o(r)~* (gr)™ Vue L*(£2),
Due LA(2)};

For n =13,

W) ={uc @(Q):o(r)t uc LA(2), Vue LA},

WQ) = {uc 2(Q):o() 2 uc LXQ), o()~* Vu € LX), D*uc L*(2)};
For n=2or 3

WY ={uc 2'(2): uc LA(2), or) Vu e LA(Q)},
WL () ={u€ D' (2): o) uc L>(2), o(r)y™" Vue L*(2)}.

All these spaces are equipped with their natural norms and seminorms.

Remark 2.2. Property 8 implies that W{(2) (for n=2) and Wi{(2") and
W2 (for n = 3) contain no polynomials, that W(Q") and WL (2" (for
n=2)and W, (2) and W}Q) (for n = 3) contain P,, and that W§(2") (for
n = 2) contains P,. N :
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3. Variational Formulation of the Exterior Stokes Problem
in the Primitive Variables

From now on we shall often deal with vector-valued functions and extend
naturally all the previous norms to vectors as follows: If v = (v,, ..., v,), then
1

0,00 = (é “%‘U%a,x,.@)i-

For such vectors we recall that the divergence operator is defined by

di 2 0y
v= ), —
v =1 0%

and we note the identity
div (Vo) = Awv.

Let us introduce the Hilbert spaces

M = [*(L) normed by |[{lar = Iillo,»

3.1 e 2, ‘

G0 X=(WoQ))" normed by |-[x = ],00,

and let M’ = L*(2') and X' = (W3 (2)" be their corresponding dual spaces
with norms [|*[lar = 'llo,er and |y = |- || =10,0» rTeSpectively. As usual,

{, *> denotes the duality pairing between the spaces M and M’ or X and X'.
Furthermore we require the following Hilbert spaces:

V={ve (W) :divv =0 in Q73,
(3.2) Vi ={ve (W) : (Tv, Vw) =0,V we V},
Vo —{fe (Wgl(Q)": {f,wy=0,Vwe V}

In order to study the nonhomogeneous Dirichlet problem (8) in a veiocity-
pressure formulation, we begin by lifting boundary values with divergence-free
functions in f2'.

Lemma 3.1. Let QCR" (n =2 or 3) have a Lipschitz-continuous boundary I"
that is not necessarily connected, but has no interior connected component (i.e.,
Q2 has no “holes™). Then, for each g¢c (HXI"))" such that

(3.3) [g-nds=0,

by
there exists a function u, € (H*(Q))" with compact support satisfying
(3.4) divuo =0 in Q, uy,=4g,
(3.5) luollo = Cllgllrs

where the constant C > 0 is independent of u, and g. Moreover, the mapping
g— u, is linear.
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Proof. Let B, denote an open ball with boundary 2 such that Q C By. We set
2, =B, N2 (¢ Fig.1). Since £, is a bounded open set with boundary
I'U Z, it follows from hypothesis (3.3), that there exists a 1, € (H'(£2,))" with
divu, =0 in 2y, ug, =g, uys=0 satisfying {[to]l;,0, = C llglly,r. Clearly

u, can be constructed so that the mapping g u, is linear.

Now we extend u, to 2’ so that it remains divergence-free. In fact the ex-
tension

i u, in 2,
710 in B;

belongs to (H(£2)", has compact support, and satisfies
| divitg=0 in 2, uy, =g,
with

lole = Clglr O

P
Remark 3.1. Suppose that 2 has “holes”: I'=\/ I, where I'y denotes the
i=0

)

exterior boundary of 2 and I, 1 < i< p are the other “interior” components
of I". Then the statement of Lemma 3.1 is still valid provided that the boundary
value g satisfies the conditions

[g-nds=0, 0=<i=p.

I

The theorem below is a fundamental tool in the theory of exterior Stokes equa-
tions; its proof can also be found in [Se],.

Theorem 3.1. Let Q be as in Lemma 3.1 and let the boundary I' be sufficiently
smooth (in C? for example). Then for each p € L*(2"), there exists w € (W 2"
such that

divw=p in .Q’,
(3.6)

#1000 = K| Pllo,or-
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Proof. For pe€ L*(2"), let us solve the exterior Neumann problem

op
— 1 4 < = Q.
Ap=p in 2, |,

We set v = V. Itis shown ([Gr] Th. 7.13, (for n = 2) and Th. 4.12. (for n = 3))
that this problem has a unique solution g€ W3(Q2)/R and that the mapping
p+>¢ is continuous: In particular [v{ oo = C; [plo,o. Moreover, v,r€
(HX(I"))" and obviously satisfies (3.3). Then, according to Lemma 3.1, there exists
a vo€ (H'(£2))" such that

diV vo = 0 in Q’, 1'0]11: vuv,
lglly,or = C, HUHJ;,P =G [vl0.0 = Culiplo,o-

The theorem foliows by choosing w = v — vy, [

As an immediate consequence, we derive

Corollary 3.1. Under the assumptions of Theorem 3.1 the following inf-sup con-
dition (also called the Babuska-Brezzi condition, [Bul, [Br]) holds:

[pdivwdx 1

inf s 2 > 1
pELHL) we(y‘if(l)(g'))n “PHO,Q' lw 1]1,0,9’ K

3.7

where K is the constant in inequality (3.6).

We introduce the continuous bilinear form
b(, ) IXM—-R
defined by
b(w, q) = — Q[ gdivwdx = (w, Vg5, VY we (W), VqeL¥(Q).
(3.8)

Let Bc Z(X, M') be the associated linear operator and let B'€ #(M, X’) be
the dual operator of B, i.e.,

(3.9 b(w, g) = (Bw, g) = {w, B'g)
with
(3.10) Bw = —divw; Bg=Vq, VwecX VgcM.

In abstract terms (¢f., § 4 [Gi]), we know that B is an isomorphism from V1
onto M’ if and only if B’ is an isomorphism from M onto ¥°; these properties
are equivalent to the inf-sup condition for the bilinear form b(-, ). More precisely,
we have
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Corollary 3.2. Let the hypotheses of Theorem 3.1 hold. Then the operator div is
an isomorphism from V% onto M’. The operator grad is an isomorphism from M
onto V°.

It follows from Theorem 3.1 that the constraint (3.3), which leads to a simple
proof of Lemma 3.1, can be eliminated. To show this we first suppose that the
boundary ["is more reguiar.

Lemma 3.2. Let the open set £ CR" (n==2 or 3) be as in Lemma 3.1, but let

its boundary 1" be sufficiently smooth. Then there exists a lifting operator RE
LHIN; (WH2))") such that

Rgr=g, div(Re)=0 in 2,

i.e., for each g (H¥IM)", there exists a u,¢ (WHQ)" satisfying

ugr=4g, divu,=0, [ugloe = Clglr
Proof. We retain the notations of Lemma 3.1. For g ¢ (H*( )", let wo € (H'(2))"
be the unique solution of the Dirichlet problem
3.1D Awog=0 in Q;, wez=0, wyr=4g.
Its extension by zero outside B, (still denoted w,) satisfies
(3.12) lwoll1,0,00 = Cy 118lly,r-

Moreover, div w, € L*(2), and by Corollary 3.2 there exists a unique function
we V1 such that '

divw =divw,, (Wl = K|[divwglo 0.
From (3.12) we can deduce that
(3.13) Iwlh0,00 = KVn o100 = KCy Vi ligl, e
Hence
' Uy =Wy — W
is the required function, since 1, € (W§(2))",
divuy =0 in £, uypr=4g.
Combining the inequalities (3.12) and (3.13) we get
‘_ leto 10,00 < Co(1 + K V) gy, s
We finally note the linearity of the mappings

g wot>wi—u,. []
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Remark 3.2. Note that in removing the constraint
(3.3) [g-nds=0,
r

we have automatically lost the compact support of the lift ©,. Obviously (3.3) is
necessary to obtain a divergence-free lift with compact support.

Lemma 3.3. Let the assumptions of Lemma 3.2 hold. For each g ¢ (H¥(I")" and
he LA ("), there exists a ve (W§Q))" such that

divv=h in Q, vr=¢g
and such that the mapping {g, h} — v is continuous:

vll0,00 = ClllAllo,or + gl r]-

The proof follows immediately from Lemma 3.2 and Theorem 3.1.

Now observe that when the domain is bounded, the Stokes problem is well-
posed when the boundary is only Lipschitz-continuous. Intuitively, this property
should remain true in exterior domains, since it should not affect the behaviour
of the solution at infinity, Indeed, this is the case here. The theorem below, anal-
ogous to Theorem 3.1, eliminates the regularity assumption on I

Theorem 3.2. Let 2 be as in Lemma 3.1. Then for each p ¢ L*(Q') there exists
u€ (WHR2Y)" such that
divu=p in ',
(3.6) ,
ltelly 0,00 = K {Ipllo,0r-

Proof. Again we keep the notations of Lemma 3.1. Let B, denote another open

ball such that B, > B, and set 2, = B, N\ B, as in Fig. 2. Given p¢ L*(2),
let us define a function p in 2, \V 2, by

. p in 2,
p:

C in £,,
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where the constant C is chosen so that

3
&
l

e

ove,
ie.,

C= ! d.
T mes (2,) Qflp X

A simple calculation gives

. [N
619 UlBova = 6B, + S lplho, = CHplha.

Since p has zero mean value in the bounded domain Q,\V Q,, we know there
exists w € (H{(Q,V Q,))" such that

with

(3.15) fwllio,ve, = Caliploeue,-

By combining inequalities (3.14) and (3.15) we immediately obtain

(3.16) wr=0, [wl] oue,=CiClple,-

On the other hand, since the boundary X is smooth, it follows from Lemma 3.3
that there exists ve€ (W{(By))" such that

divv=p in B, vz=wy,
Wiz, = Csllpllos, + Iwlysl.
Using the trace theorem and inequality (3.16), we have
vl = Csllpllos, -+ Callwlol
< Gsllipllos;, + C1CoCallplloe,l-
Finally, the function u defined by

w on £,

u =
v on B,

belongs to (WA(Q"))" and satisfies
divu=p in £,
Tteliy,0,00 = Cs Il llo, o O

Remark 3.3. Now it is a simple matter to check that the lifting operators of
Lemmas 3.2 and 3.3 still exist in the case of a Lipschitz-continuous boundary I,

This establishes the inf-sup condition for the exterior Stokes problem.
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Theorem 3.3. Let 2 be as in Lemma 3.1. Then there exists a constant K' >0
(the constant of inequality (3.6)") such that

fpdlvwdx 1

fiv

3.7) inf su Fd
PELX(2) we(Wl?p Wy Ipllo, o il 0,0 K

Since the assertions of Corollary 3.2 are still vallid, we readily prove the follow-
ing result.
Corollary 3.3. Under the assumptions of Lemma 3.1, the mapping
PV pll_yoe
is a norm on L*(Q) equivalent to the usual norm || |o o
Proof. Let pc L2(2). We know that V pe (Wi (2)" with
<Vp w)

3.17 VPl-toer = su

(B3.17) Vpl-1,0, we(vi’/(l,l(jn'))" 10,0
Moreover,

(3.18) Vp, wy = — QJ,-P divwdx Vwcg (pf/(l’(g))n'

Now applying the Cauchy-Schwarz inequality we get

(3.19) < lploo Va |wlioe;

fp div w dx
&

and by the inf-sup condition (3.7') we obtain

(3.20) sup [pdivwdx = ”pg) .

we( Jay “Wih 0,0 o

Hence when we combine (3.17)~(3.20), the conclusion follows at once from the
bounds

1 —_
7Pl = VP00 =Vrlploe. O

Now we turn to the nonhomogeneous exterior Stokes problem (S). More
prec1sely, given fe (Wal(2), g€ (HXI))" and »> 0, we want to find uc
(W) and pe LA(L2) such that

—vAu-+Vp=f in 2,
(S divu=0 in 2,

up=g.
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As in the bounded case, it is easy to see that this problem has the equivalent
variational formulation: Find u€ (W §(2))" and pe€ L*(2’) such that

WV, Vo) — (p, divv) = (f, 05 Y ve (W),
©Q divae=0 in &,
ur = g.

In view of the inf-sup condition (3.7"), it follows from Corollary 3.2 that this prob-
lem is also equivalent to the problem:
Find u¢ (Wi(£2))"* such that

y(Vu, Vv) =<f,vy YveVl,
® divu=0 in Q,
ulng.

Clearly problem (P) has a unique solution. Indeed let 1, be the divergence-
free lift of g:

ugr=2g, divu,=0, u,c(Wy2))".
Then w = u — u, satisfies
v(Vw, Vv) = vy —o(Vuy, Vo) Yvevr,
divw =0,
wpr =0,

that is, w belongs to V.
By the Lax-Milgram Theorem, this problem is well-posed and we have

CZ
Iwlo,er = > Mili00 +C luo [1,0,9',

where C is the constant of (2.1). Therefore

1
lullio0 = C; hluo ll1,0,0 + _v‘”f”—m,g'}

L

1
=C [Hglk,r + 7Hf”—1,o,9'},

with a similar estimate for p, thanks to the inf-sup condition. Thus we have proved
our main result:

Theorem 3.4. Suppose that Q CR" (n=2 or 3) has a Lipschitz-continuous
boundary I' that is not necessarily connected, but has no interior connected
component. Then for f given in (Wg MY and g given in (H¥(I"))", the Stokes
problem (S) has a unique solution (u, p) € (W) X L") which depends con-
tinuously on the data, i.e.,

Null00 + lollo,or = Cllfll-1,0,00 + 181 1]
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Remark 3.4. 1t clearly follows from Lemma 3.3 and Remark 3.3 that the following
nonhomogeneous problem is also well-posed: Given fe (W ()", he LA(2),
ge (HY )", find ue (WHR))" and pe LX(Q") such that
—vAu+Vp=f inQ,
divu=~h in Q,

ulng.

4. Regularity of the Solution

In this section we show that if the boundary and data are smoother, then so is
the solution {u, p} of the Stokes problem. To prove this, we shall apply a technique
used by HaNoUzET and GIROIRE: First derive the desired regularity result in the
whole space; then the same problem in the exterior domain ' can be reduced,
by appropriate cut-off functions, to a problem in a bounded domain and a prob-
lem in the whole space. We shall treat the cases of B2 and R3 separately because
the spaces involved are slightly different, the case of R? being more technical. But
once the problem is solved in the whole space, the reduction technique to an ex-
terior domain is exactly the same, whatever the dimension. Therefore, to simplify
the discussion, we shall describe the reduction technique only in the three-dimen-
sional case.

4.1. The Stokes Problem in R?
Let us first consider the homogeneous Stokes problem:

Theorem 4.1. Let f be given in (W(B3))3. Then the homogeneous Stokes problem
—vlu+Vp=jf inR?,
“.1 . ,
divu=0 inR3
has a unique solution, uc (Wi(R)* and pc WI(R3), with
4.2) Neelloazs + 1ol rs = Cllfllo,z2-

Proof. First note that since f€ (W)(R?)* < (W5 '(R%)3, the problem (4.1) has
a unique solution u€ (W§R3))? and pc L*(R3).

Now, by taking the divergence of (4.1), we reduce the Stokes problem to a
Poisson equation for the pressure
“.3) Ap=divf in R3.
Since fe (W{[R?))3, it follows that div f€ W (R3) and clearly, div f is ortho-
gonal to constants:

ddivf,e)=0 VceR,
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Therefore, div fe (WL (R?)/R). Hence, as the operator 4 is self-adjoint, we
can use the following result, which is the dual of a proposition established by
GIROIRE [Gr, Prop. 2.11]: The operator A is an isomorphism from

4.9 (WZiR3)"  onto (WL (R3HR)".
Since (W_{(R%)) = W{[R?), (4.4) implies that pc WI([R?) and
”pul,l,R3 =C ”divf”—l,l,R3 = Gy [fllo,1,53-

Hence equation (4.1) implies that each component of u is the solution of the
Laplace equation in R® with right-hand side in W9(R?). Then applying Propo-
sition 2.2 of [Gr], which states that the operator A is an isomorphism from

(4.5) WiR?) onto  WI(R?),

we find immediately that u¢ (WiHR?)® and

1 C4
lulhi g = Cs > MAflo,izs + IVPlogre] = T”f”(),l,Rﬁ- O]

Now let us solve the nonhomogeneous Stokes problem.

Theorem 4.2. Let fc (WXR3)3 and he Wi(R3). Then the nonhomogeneous
Stokes problem

—vAu+Vp=f inR3,
divu=~h inR3

has a unique solution uc (W3i(R>)* and pec Wi(R?), with

4.7 llbzs + Pl irs = Clllfllog,zs + NAlli,1,Rs]-

4.6)

Proof. Let us reduce problem (4.6) to a homogeneous problem. For this, we solve
the Neumann problem

(4.8) Ap=h inR3.

Since A€ W1{(R?), Proposition 2.13 of [Gr], which states that the operator A
is an isomorphism from

4.9) WIRR  onto WIR?),

implies that this problem has exactly one solution ¢ € Wi(R%*)/R and ‘
lelwiwaym = Co Al 1rs.

Let us take uo = V. Then u,¢ (Wi(R?)3, divu,=~h, and

luolz = Cy Al 5s-
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Now, the function w = u — u, is a solution of the homogeneous Stokes prob-
lem
—v w4+ Vp=f4vAu, in R3,

divw =0 in R3,
with right-hand side in (W$(R3))3. Then the desired result follows from Theo-
rem4.1. [1

(4.10)

4.2. The Case of an Exterior Domain

Let us assume that £ is as in Lemma 3.1, except that its boundary I"is smooth

(of class C?) and, as usual, let 2’ denote the complement of Q. Given fin (WUD))?
and g in (H*(1"))*?, we want to show that the solution ue (W42")3, pe LA(2)
of

—vdu+Vp=f, divu=0 in 2,
=g
is such that ue€ (W3(R))* and pc Wi(Q").

Let RE N be so large that Q is contained in ER. (Bg is the ball with center
0 and radius R.) Consider the following partition of unity:

?, pECR?), o+yp=1 inR3,0=¢ p=1in R3,
(4.12) ‘piBR == 1, qjiB’R—{—l = 0,

(4.11)

Yigg = 0, Ve = L.

Then u = ugp 4 uy and p = pp + py, where ug and uyp have the same regu-
larity as u, and similarly, pp and py have the same regularity as p.
Let us first study ug:

upe (WHQ),  upp,,, = 0.

Hence uge (H'(Q'N By, )®; likewise, ppc L*(Q' N Br.;) and the pair
{up, pp} satisfies the equations
—v Mug) + V(pp) = f +v Muy) — V(py) in QN By,
(4.13) div (up) = —div (up) in Q' N\ Bg,,,
ugr=4g, uppp, ., =0.
This is a nonhomogeneous Stokes problem on a bounded domain with a smooth

boundary. After some rearrangement, the right-hand side of the state equation
has the expression

F=gf+ 2vdudwy-+ vuly—pVy.
Since ¢ and o are smooth, it is easily checked that
Fe (LAQ N By )P
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Likewise,
div (up) = —u - Vo H{(Q' N Bry).

Therefore, it follows from the regularity results of CATTABRIGA [Ca] that the solu-
tion pair {ug, py} belongs to (H*(2'N Bz ()3 x HY(2' N Bg ) and satisfies
the bound

lugly,ong  + IPollonsg
= C1{!.]f”o,9'r\BR+l =+ ”Wh,!)’/\BRH
+ ”P”o,g'nBR+1 + gl

As ¢ is very smooth and has its support in By, we can extend ug and pyp by
zero in By ,1; the extended functions belong respectively to (W3(£2'))% and W (L")
and satisfy the above bound in 2.

Now, we consider u#. Since o vanishes in By, we can extend uyp and py by
zero in By, and the extended functions belong respectively to (W{(R?))* and
L*(R3). Then as in the preceding case, we can easily check that

—v Nuy) + V(py) = F = fo —vQ20pp d;u -+ Dyu) + p Vy,
diviupy)=H=u-Vyp.

Therefore the pair {uy, py} € (WHR)3 x LAR?3) is the solution of the Stokes
problem

—vA(uy) + V(py) =F, div(uyp)=H in R>.

Since F belongs to (W{(R?)* and H belongs to H*(R?) with compact sup-
port, so that H is in W1(R3), we can apply Theorem 4.2, which yields

upe (WiRY))®,  pye Wi(R?),
luyll,irs + lpplirs = Coll fllomg + ul,onsg + I2llo,onBg . -

Finally, combining the last two inequalitics and Theorem 3.4, we obtain the
regularity announced for the solution (u, p) of Problem (4.11):

ue (WiQ))?, pewi(Q),
)0 + 1pliLe = Cs{llfllos,o -+ 18321}

4.3. The Stokes problem in B>

The situation is more delicate in R? because some of the regularity results
that we need do not hold in the W}’ spaces. Instead, we shall work with a slightly
different family of spaces, the X,**7 spaces (c¢f. [Gr]). For the sake of simplicity,
we do not define the most general X, *? space, we only introduce the specific
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spaces that we require, namely
XURY) = {fc Wi (BY); x,f€ LR, i = 1, 2; fe LL (B},
X7U(RY) = {fe WX R?; x,f€ Wi'BY), i =1,2; ¢ Hd(BY},
and their dual spaces, X° (B*» and XL ,(R?), respectively.

The properties of these spaces are established by [Gr], who proves (in Pro-
position 10.1) that

X{R?) = {fe W' (BY);f€ WiRA},

and therefore X9(R?) is a proper subspace of W9(R?) because WIR?) ¢ Wy '(R).

Moreover, it is established that the polynomial space P, is contained in X' ;(IR?

{¢f. Lemma 5.12 of [Gr]). Likewise, a straightforward argument shows that the

constants are contained in X ,(R2). /
We shall prove the following result:

If fe (X3®?)% then uc (Wi®R?)? and pe WiR?).

In other words, we shall deduce the same regularity as in R3, provided we start
with a slightly more regular right-hand side.

But first of all, let us observe that, in contrast to what happens for R® or for
exterior domains of R2, a necessary condition for the Stokes problem to have a
solution in R? is that

4.14) f 1 R2,
Indeed, let fe (W3 (R?)* be such that
Jf=—vAu+4+Vp inR?
with u€ (Wi(RY))* and pe€ L*(R?). Then
{fovy =v(Vu, Vo) — (p,divy), VY ve (WRH)?,
and since R C W§[R?), this equation implies that
(4.15) {f,e>=0, VcecR2

Furthermore, the velocity u can only be determined up to an additive constant
since the mapping v [[Vollpg: is a norm on the quotient space W{R»/R,
equivalent to the quotient norm. Thus, taking into account these two remarks,
we can apply the argument of Section 3 to prove the following lemma.

Lemma 4.1. Each fc (Wi '(BR?)? satisfying
{f,e> =0, VcecR?
determines a unique uc (WyR*R)* and pc L*(R?) such that
—vAu+Vp=Ff inR2,

(4.16) .
divu=0 inR?,
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and there exists a constant C; such that

"u”(W(l)(Rz)/R)z + ”p HO,RZ _S_ Cl ”f“~1,0,R2 -

Now, let us take f€ (X9(R?)? with (4.15). Then f also belongs to (W '(R?))?,
and therefore the Stokes problem (4.16) has a unique solution u € (W)(R»/R)?
and p€ L?(R?). Asin R3, we know that p is a solution of Laplace’s equation

4.17) Ap=divf in R
But Proposition 11.1 of [Gr] implies that
fE(X®Y)? = div fe XT(R?).
Furthermore, using (4.15), we easily see that
divf | P,.

Therefore, we can apply to div f the dual proposition of the following isomor-
phism result established by [Gr, Th. 5.11]: The Laplace operator A is an isomor-
phism from X' (R?)/P, onto X —}(R?. The dual proposition reads: A is an isomor-
phism from X\(R?) onto the subspace of X{'(R?) that is orthogonal to P,. Since
XIRY) =WI®R? (cf. [Gr, Prop.9.1]), this means that Problem (4.17) has a
unique solution p € WI(R? which coincides with the pressure of the Stokes
problem) and

(4.18) Pl = Co 1AV fllx 1m0 = Cs I llx9ay: -
Thus, the velocity u satisfies Laplace’s equation
4.19) —vAu=f—Vp in R2,
with right-hand side f— Vp¢ (X3(BR?)* and
{fe>=0, <Vp,e>=0, VceR2

Then f— Vpe (X°(RH)/R)?), and it follows from [Gr, Prop. 5.2] that (4.19)
has a unique solution u ¢ (W§(R*/R)? (which coincides with the velocity of the
Stokes problem) and

(4.20) ”u”(W%(Rz)/R)z SCIf—Vp ”(X(l)(RZ))z =Cs ”f”(X?(Rz))z .

These results furnish the proof of

Theorem 4.3. Let fc (XIR?)* with
{f,e>=0, VcecR2

Then the solution {u, p} of the Stokes problem (4.16) has the regularity u € (W3(R?)/
R)?, pe WIR? and

(4'21) "u”(W%(RZ)/R)z -+ Mp ”1,1,]R‘2 = C6 ”f”(X(l)(RZ))Z'



The Exterior Stokes Equations 331

Finally, we can easily derive the same regularity for the nonhomogeneous
Stokes problem

(4.22) —vAu+Vp=f, divu=h inR?

with f as above and % given in W !(R?). For this, it suffices to solve Laplace’s equa-
tion:

(4.23) Ap=h in R,

According to [Gr, Lemma 5.14], this problem has a unique solution ¢ ¢ W3(R?)/P,
such that

(4.24) 1ol = Co Al
Then u, = Vg belongs to (Wi(R?/R)* and
divu, =
Therefore u — u, is the solution of the homogeneous Stokes problem
—v NMu — uy) +Vp = f-+vAu,, div(e —uy) =0,
with right-hand side f -+ » Au, € (XJ(R?)% Theorem 4.3 and (4.24) then imply
ue WiRHR), pe Wi(BY)
with the following analogue of (4.21):

(4.25) Nt lew2maymye +1Pllisre = Calll flix0ay: + IAllsz:]-
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