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Abstract. The problem of isolating structures from surface waves by open or filled trenches under conditions of plane strain 
is numerically studied. The soil is assumed to be an isotropic, linear elastic or viscoelastic nonhomogeneous (layered) half-space 
medium. Waves generated by the harmonic motion of a rigid surface machine foundatin are considered. The formulation 
and solution of the problem are accomplished by the frequency domain boundary element method. The Green's function 
of Kausel-Peek-Hull for a thin layered half-space is employed and this essentially requires only a discretization of the trench 
perimeter and the soil-foundation interface. The proposed methodology is used for the solution of a number of vibration 
isolation problems and the effect of soil inhomogeneity on the ware screening effectiveness of trenches is discussed. 

1. Introduction 

Use of open or infilled trenches as barriers for ground-transmitted waves generated by surface 
disturbances, succeeds in vibration isolation of structures through wave diffraction and consequent 
wave amplitude reduction behind the trench (Richart et al. 1970). A comprehensive account of 
the literature on the experimental, analytical and numerical treatment of vibration isolation and 
associated ware diffraction problems under plane and three-dimensional conditions can be found 
in two previous papers (Beskos et al. 1986; Dasgupta et al. 1990) published in this journal as 
parts 1 and 2 and dealing with homogeneous soils. The present paper is part 3 of this series and 
deals with vibration isolation analysis in nonhomogeneous soils under plane strain conditions. 

Most of the analytical and numerical work in soil mechanics and soil-structure interaction 
in the framework of linear theories is based on the assumption that the elastic parameters are 
uniform throughout the half-space soil medium. However, in reality the stiffness of soils generally 
increases with depth as a consequence of the increasing effective overburden pressure. Moreover, 
it is observed that real soils are orten stratified. Thus, the most general nonhomogeneous soil 
model in the framework of isotropic, litiear elastic behavior is the one consisting of a number 
of layers with moduli varying with depth. Density and Poisson's ratio are usually assumed to 
have constant values in every layer. Two types of inhomogeneous soil medium are usually 
employed in applications. The layered half-space with constant moduli values in each layer 
and the half-space with the shear modulus varying with depth. However, when a numerical 
method of analysis is employed, both of these soil types as well as the general soil model 
consisting of layers with variable moduli are usually treated as layered or piecewise homogeneous 
media. 

Wave propagation analysis in inhomogeneous soils presents many difficulties, especially when 
analytical methods of solution are employed. Analytic solutions of wave propagation problems 
in a half-space with the shear modulus varying with depth are very much involved and can lead 
to very complicated closed forms, only for special cases of inhomogeneity (e.g., Meissner 1921; 
Stoneley 1936; Hook 1961, 1962; Rao 1967, 1970, 1978; Vardoulakis 1981). Among the very 
many analytical-numerical and numerical works on ware propagation in layered media with 
constant material properties in every layer, one can mention here the classical text of Ewing 
et al. (1957) and the works of Thomson (1950), Haskell (1953), Harkrider (1964), Gupta (1966), 
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Waas (1972), Luco (1974, 1976), Kausel et al. (1975), Gazetas and Roesset (1979), Apsel (1979), 
Gazetas (1980), Tassoulas (1981), Apsel and Luco (1987), and Luco and Wong (1987). 

Analytic or even analytic-numerical treatment of wave propagation problems in layered media 
is restricted to very simple geometries and boundary conditions. Realistic wave diffraction 
problems involving complex geometries and boundary conditions, such as vibration 
isolation ones, can only be solved numerically. The Boundary Element Method (BEM) is ideally 
suited for elastic wave diffraction problems involving infinite or semi-infinite domains and, as it 
has been demonstrated in various places (e.g., Kobayashi 1987; Beskos 1987; Manolis and Beskos 
1988), it is more advantageous than either the Finite Element Method (FEM) or the Finite 
Difference Method (FDM). Waas (1972), Segol et al. (1978) and May and Bolt (1982) developed 
special FEM's to study the amplitude reduction of surface waves by open or infilled trenches in 
an isotropic, linear elastic or viscoelastic, layered half-plane. Their methods, however, required 
the use of complicated non-reflecting boundaries, which are sometimes applicable only when the 
layered soil is supported on rigid bedrock. 

The most important ingredient of the BEM is the fundamental solution or Green's function. 
Use of the full-space time or frequency domain Green's function in a vibration isolation problem 
involving a foundation and a trench in a layered soil medium, requires not only a discretization 
of the trench surface and the soil-foundation interface, but also a discretization of a portion of 
the free soff surface and the layer interfaces around the region of interest. This increases 
considerably the size of the problem and effectively restricts the BEM to a small number of 
layers, especially in the three-dimentional case. Thus, treatment of the continuously 
nonhomogeneous case by this approach may not be practically possible due to the large number 
oflayers required to model the soil as piecewise homogeneous. However, it presents the advantage 
of treating layers of any geometry and not just horizontal ones. This approach has been 
successfully used in the frequency domain for vibration isolation analysis in layered soil media 
with a small number of layers by Beskos et al. (1986) and Banerjee et al. (1988) under plane strain 
and three-dimensional conditions, respectively. On the other hand, use of the layered half-space 
Green's function in vibration isolation analysis, requires only a discretization of the trench surface 
and the soil-foundation interface, thereby permitting the efficient treatment of a large number 
of horizontal layers. Among the various existing frequency domain layered half-space Green's 
functions orte can mention those of Apsel (1979), Luco and Apsel (1983), Apsel and Luco (1983), 
Kausel and Peek (1982), Hull and Kausel (1984), Wolf (1985), Herrmann and Wang (1985), 
Kundu and Mal (1985), Xu and Mal (1987), Chapel and Tsakalidis (1985), Chapel (1987) and 
Kawase (1988). 

The present work employs the frequency domain direct BEM for the solution of vibration 
isolation problems under conditions of plane strain. The time harmonic motion of a rigid sufface 
foundation generates surface waves which are diffracted by an open or filled rectangular trench. 
The soil medium is assumed to be an isotropic linearly elastic or viscoelastic layered half-plane. 
Use is made of the Kausel-Peek-Hull Green's function (Kausel and Peek 1982; Hull and Kausel 
1984) which assume the layers to be very thin, thereby requiring the sublayering of every thick 
layer. After validation of the method, the screening effectiveness of open or filled trenches in 
some layered soil models is studied in detail and the effect of inhomogeneity is assessed. The 
case of nonhomogeneous soils characterized by a shear modulus exhibiting a linear or nonlinear 
variation with depth is considered in another publication (Leung et al. 1990). The work presented 
in this paper is part of the doctoral dissertation of the first author (Leung 1989) which can be 
consulted for more details. Some preliminary results of his work have also been reported in 
Leung et al. (1987). 

2 Frequency domain BEM for layered half-plane 

For a time harmonic excitation, the response of a plane elastic body B with boundary S is also 
harmonic and the boundary integral equation (Manolis and Beskos 1988) 

cuj( ~ = (. U ji(x, /~, co)ti(x)dS(x) - S Tji(x, ,~, co)ui(x) dS(x), (1) 
s s 
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connects the amplitudes of boundary displacements ui and tractions ti with the aid of the 
displacement Uj~ and traction Tj~ Green's tensors, which depend on frequency co and are usually 
defined for the infinite elastic plane. In the above, body forces have been assumed to be zero, x 
and 4 are points on S and c = 1/2 if S is smooth at 4. For the numerical solution of Eq. (1), the 
boundary S is first discretized into a number of line boundary elements over which displacements 
and tractions are assumed to vary in a specific way and Eq. (1) is then written in the discrete 
matrix form 

{{u} = [ u ]  {t} - IT]  {u}, (2) 

where {t} and {u} are the vectors of the nodal values of boundary traction and displacement 
amplitudes, respectively and [U] and IT] are influence matrices with entries of the form 

S Q  + 1/2 

Uji(m, n) = S Uji(x, 4m)N(x) dS(x) (3) 
SQ - 1/2 

Tji(m , tl) = so i,/2 Tji(x, 4 , � 9  (4) 
S Q  - 1/z 

with N(x) being the shape function for node n in segment Q, 4,�9 being the node m in segment P 
and SQ+ 1/2 and Se_ 1/z being the end points of segment Q over which the integration takes place. 
For constant boundary elements, the noden  is chosen to be at the midpoint of the element and 
N(x) = 1, while for linear elements the nodes are chosen to be at the two end points of the 
element and N(x) is a linear interpolation function. 

In this work body B is a layered stratum resting on a half-space base under conditions of 
plane strain with N horizontal layer interfaces defined by z = z l ,  Z�87 and with layer j 
defined by zj < z < z . . . ,  as shown in Fig 1 The medium within each layer j of thickness hj 
is assumed to be hom¦ isotropic and linearly elastic. For this body, the frequency domain 
Green's function is obtained with the aid of the thin-layer theory of Waas (1972) and Kausel 
and Peek (1982) in conjunction with the half-plane impedance expression of Hull and Kausel 
(1984). Actually the Green's function for body B is obtained by an inversion of the thin-layer 
stiffness matrix through a spectral decomposition procedure (Kausel and Peek 1982). The 
advantage ofthis thin-layer stiffness matrix technique over the classical Haskell-Thomson transfer 
matrix technique for finite layers (Haskell 1953; Thomson 1950) and the finite layer stiffness 
matrix technique of Kausel and Roesset (1981) is that the transcendental functions in the layered 
stiffness matrix are linearized. 

According to the thin-layer theory (Waas 1972), the thickness of each layer in chosen to be 
small, i.e., less than 1/10 of the Rayleigh wavelength in that layer, so that the displacements 
within the layer can be assumed to vary linearly with depth, hut be continuous in the x direction. 
Thus, the displacements in the frequency-Fourier transformed with respect to x domain can be 
represented by a linear interpolation of the discrete "nodal" displacements at the layer interfaces 
and read, e.g., in layer j as 

• : [ ( Z j +  1 - -  Z) O j  "t- (Z -- z j )  • j+ 1]/hj  

7v~J)(z) : [ ( z j +  1 - z) feJ + (z - zj) 7v j+ ~]/hj ( 5 )  
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where • and fr'(�87 are the transformed displacements along x and z directions as functions of 
z in layer j and t7 j and ffr are their nodal values at layer interface z = zj. Application of the 
principle of virtual work to different virtual displacement states in each layer results in a set of 
equilibrium equations which can be assembled in a finite element fashion to form the global 
matrix equation for the layered stratum 

[/(] {~} = 0 (6) 

where 

[ g ]  = [A]  (~ + [BI ( + [C] (7) 

is the 2N x 2N global stiffness matrix, {~0} is the 2N x 1 vector with ~02j- l = U j and q~2j = W j for 
1 ~<j ~< N, where N is the number of layers and [A], [B] and [C] = [G] - o~2[M] are symmetric 
complex matrices involving algebraic expressions in terms of material properties. Equations (6) 
and (7) constitute a quadratic eigenvalue problem with ( being the eigenvalue corresponding to 
the eigenvector {~0}. A generalized Rayleigh quotient iteration scheme is used to solve for the 
2N eigenvalues and eigenvectors. For the case of a layered half-plane, a second-order paraxial 
approximation [/<(()]h for the exact impedance of thehalf-plane derived in Hull and Kausel 
(1984) is added directly to the global stiffness matrix [K] of the layered system to obtain [ / ( I .  

The discrete displacement Green's tensor for body B is defined in the frequency-Fourier 
transform domain as the response vector {GU} to unit line loads {GP} acting in both horizontal 
and vertical directions at each discrete layer interface of the layered half-plane B, for which 
equilibrium equations read 

[g],{~7} = {P}. (8) 

Computation of { O} involves an inversion of [/(]t which is achieved by a spectral decomposition 
procedure based on knowledge of the eigenvalues ( and eigenvectors {r of the system. Thus, 
the frequency domain displacement Green's tensor, after inversion of the Fourier transform, can 
finally take the form (Kausel and Peek 1982) 

2N 
U']k" = ~ y162 ' (9) 

/ = l  

where j, k take the values x, z, y = y = - i/2, i = ~ 1, y = - 1/2, ~zx = -T- 1/2, the _ sign 
indicates a + when x ~> 0 and a - when x < 0, U~" denotes the jth displacement component 
at the mth layer interface corresponding to a unit load acting in the kth direction at the nth layer 
interface and ~0~, t denotes the eigenvector component in the kth direction at the nth layer interface 
of the/ th wave mode. Once the displacement Green's tensor Ujk is known, the traction one Tjk 
can be easily obtained. For more details about the computation of the above Kausel-Peek-Hull  
Green's tensors one can consult the aforementioned original references or Leung (1989). 
Viscoelastic soil behavior can be easily introduced in the present formulation by simply replacing 
the elastic constants ). and # by their complex values 

~.* = 2(1 + 2i“ #* = #(1 + 2i“ (10) 

where fl is the constant hysteretic damping coefficient. 

3 Vibration isolation by trenches in layered soil 

Consider the vibration isolation system of Fig. 2 consisting of a layered half-space under 
conditions of plane strain, a rigid, surface footing bonded on the soil and subjected to a vertical 
harmonic force 

P = Po ei~ (11) 

where co is the circular operational frequency, i -- ~ and t is time, and an open rectangular 
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G Fig. 2. Vibration isolation system on a thin layered halfspace 

trench, which reduces the amplitude of the surface waves generated by the motion of the machine 
foundation through wave diffraction. 

For a rigid footing in vertical motion with a displacement amplitude A, the compatibility 
and equilibrium equations take the form 

{u,x } =0,  {u,,} = {I}A (12) 

Po ~- - m~o2A + ~ lk~Ykzz, (13) 
k = l  

where {u,x} and {U,z} are the horizontal and vertical components, respectively, of the rigid 
foundation displacement amplitude {ur}, m is the foundation mass and lk and k k y = t= denote the 
length and the interface traction, respectively, of the kth foundation element. Equations (12) and 
(13) can be written in a compact matrix form as 

{ur} = {0, {I}}TA 

{F}  = - ~oZ[M]A + IL ]  {tr} 

where {I} stands for the unit vector and {t,} for the interface traction vector. 
Using Eq. (2) one can write for the soil medium 

�89 {~,} } :  [ Im,,] [u, =] ] ~'{,} "~- [ It, 1] IT,=] ]~" {u,}] 
( {u,} L IT2,] [ T;;]J t {u,} .~ L [u2,] [u=2] J [{t,} 

(14) 

(15) 

where the subscripts r and t correspond to the soil-foundation interface and the trench perimeter, 
respectively. Equation (15) does not involve any discretization of the free soll surface because 
use is made of the half-plane Green's function. One can rewrite Eq. (15) in the form 

[K2,][K22]_] t {u,} J [{0} 

where the boundary condition {t,} = {0} has been taken into account and where 

[K2,] [K22]J [U21][U22]J LL[T2,] [T~2]J 
Combining (16) with (14) one receives 

(18) 
L [Kz,] EK22-] J [  {u,} J ~ {0}) 

Solution of (18) provides A and {u~}. Then {t,} can be obtained from (16). Finally the soil surface 
displacements {us} and {ua} before and after the trench, respectively, needed for assessing the 
screening effectiveness of the trench, can be evaluated by using Eq. (1) with c = 1 in a pointwise 



142 Computational Mechanics 7 (1990) 

fashion without any additional discretization. Thus one has 

L [ U j  [u~~] J ( {t,}3 - {u,} 3 [ {u�8 L [ T j  [T443 J ~. 
rn view of the ract that {t,} = {0} and [r~33 = [7"43] = [0], Eq. (19) becomes 

{u,}.~ L [ T j  ~. {u,}.~ 
Constant boundary elements are used for the horizontal surfaces and linear boundary elements 
for the vertical trench walls in order to conform with the assumed displacement variation inside 
every thin layer. 

When the trench is filled with some other material, e.g., bentonite or concrete, an additional 
BEM equation describing the frequency domain dynamic behavior of the filling has to be written 
down and conditions of compatibility and equilibrium at the soil-filling interface have to be 
enforced. For details one should consult Dasgupta et al. (1990), who describe this coupling 
procedure under three-dimensional conditions. In this work, however, the frequency domain 
BEM in conjunction with the Kausel-Peek Green's function for a layered stratum is employed 
for the filling and this requires no discretization of the top surface of the filling and succeeds in 
a perfect node-matching between soil-infill at their interface along the vertical walls and the 
bottom of the trench. 

The special nature of the semi-analytic-numeric Green's function of Kausel-Peek-Hull 
employed here [Eq. (9)], makes possible the explicit closed form evaluation of the integrals (3) 
and (4) needed in the present BEM. Details can be found in Leung (1989). 

In the numerical examples of the following section, the methodology just described was 
applied in conjunction with substructuring in order to increase the accuracy of the results. This 
substructuring involves the subdomains ABB'A', CDD'C'  and A'B'C'D'G shown in Fig. 2, which 
are connected to each other through equilibrium and compatability at their interfaces. It was 
found in Leung (1989) that displacements obtained without substructuring are not very accurate, 
especially along the horizontal direction where constant elements are used. This indicates that 
the order of the elements employed in the discretization affects the accuracy of the solution. 

4 Numerical examples and discussion 

The methodology presented in the two previous sections is utilized here for solving some typical 
vibration isolation problems in layered soil after validation of this methodology on the basis of 
the homogeneous soil case. 

Examp|e 1: Consider the passive vibration isolation problem of Fig. 2 assuming that the soil is 
homogeneous with shear modu lus / t  = 132 MN/m 2, weight density ~;-- 17.5 KN/m 3, Poisson's 
ratio v = 0.25 and hysteretic damping coefficient fl = 5~. It is further assumed that Po = 1000 KN/m 2, 
f = ~o/2n = 100 Hz, Rayleigh wavelength LR = 2.5 m, W-- W/LR = 0.4, T = t/LR = 1 and B = b/L R = 0.2, 
where w is the width of the massless footing [-it was found in Beskos et al. (1986) that the footing 
mass does not affect the screening effectiveness of the trench], and t and b a r e  the depth and 
the width of the open trench. The trench is located at a dimensionless distance S = s/LR = 4 from 
the footing, while the dimensionless distance ofinterest after the trench is taken to be D = d/L R = 6. 
Discretization along the horizontal direction involves 20, 40, 4 and 60 constant boundary elements 
for w, s, b and d, respectively, while discretization along the vertical direction involves 94 thin 
layers in a depth of 7 LR arranged fi'om the top to bot tom as follows: 36 elements of (LR/30) size 
from 0-3.0m, 12 of (LR/20) from 3.0-4.5m 8 of (Lr/13.33) from 4.5-6.0m, 6 of (LR/10) from 
6.0-7.5 m and 32 (LR/8) from 7.5-17.5 m. Figure 3 shows the real and imaginary parts of the vertical 
surface displacement amplitudes versus the dimensionless distance ~ = X/LR as computed by 
the present thin-layer BEM and the BEM of Beskos et al. (1986) employing the full space Green's 
function. The agreement between the two methods is very good. The same is also true for the 
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Table 1. Values of actual  L R and  computed  L~ 
Rayleigh wavelengths  for the three soil models  

Model  1, computed  L R = 3.71 m 
Satura ted  sand, actual  L R = 3.728 m 

Difference - 0.48% 

Model  2, computed  L R = 2.77 m 
Saft clay, actual  L R = 2.796 m 

Difference - 0.93% 

Model  3, compu ted  L R = 3.33 In 
Dry sand, actual  L R = 3.355 m 

Difference - 0.75% 
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horizontal surface displacement amplitudes (Leung 1989). The full-space BEM required a 
discretization involving the same number of constant elements along the horizontal direction as 
in the thin-layer BEM and 10 elements along every sidewall of the trench. It was found that 
more CPU time is required for the thin-layer BEM than for the full-space BEM, indicating that 
for vibration isolation problems in plane strain, the thin-layer BEM should be mainly used for 
layered soil. 

Example 2: In this example, the effect of horizontal layering of soils on the screening effectiveness 
of the rectangular trench of Fig. 2 is studied by examining the three soil models of Fig. 4, on 
the assumption that Po = 1000 KN/m 2, f =  50 Hz and B = 0.1. These models involve saturated 
dense sand (# = 85616.5 KN/m 2, ? = 21.0 KN/m 3, v = 0.33, fl = 5%, LR = 3.728 m, v a = 186.40 m/s), 
saturated soft clay (#=44518 .0KN/m z, ? = 1 9 . 4 1 K N / m  3, v=0.33,  fl=5%, LR=2.796m, 
V R = 1 3 9 . 8 0 m / s  ) and dry sand (#=59449 .5KN/m 2, ~ = 1 8 . 0 0 K N / m  a, v=0.33,  f l=5%, 
LR = 3.355 m, v R --' 167.76 m/s). The thin-layer BEM is applied here with the discretization pattern 
of the previous example. A dynamit analysis of the three soil models without the trench is done 
first for further validation of the method and bettet understanding of their behavior to the 
dynamic disturbance of the foundation. Figure 5 depicts the real patts of the vertical component 
of the free field surface diaplacement amplitude versus distance for all three soil models. By 
measuring the distance between two successive peaks from the graphs (at a location of several 
wavelengths from the source of disturbance), the effective Rayleigh wavelength L~ for each model 
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can be determined. The L~ is very close to the actual L R of the soll material at a depth of L'R/2 
(Richart et al. 1970). For model 2, a depth of L'R/2 = 1.385 m is in the soft clay region, while for 
model 3, a depth of L'R/2 = 1.665 m is in the dry sand region. The comparison of the computed 
L~ and the actual LR at L'R/2 described in Table 1, clearly shows a close agreement. The wave 
screening effectiveness of trenches is studied next for the soll models 2 and 3 as a function of 
trench depth. Nondimensionalization is affected by the LR of the superficial layer of the layered 
soll medium and surface displacements are plotted with origin the middle of the rigid foundation. 
Figure 6 portrays the horizontal and vertical amplitude reduction factors A R versus nondimensional 
trench depth for soll model 2, while Fig. 7 the same things for soll model 3. The factor An is 
defined as the average normalized surface displacement amplitude behind the trench over a 
distance D - - d / L  a = 4. Adopting the suggestion of Richarts et al. (1970) that AR ~< 0.25 for a 
successful vibration isolation design, one can conclude from the above figures, that trench depths 
of T~> 1.75 and T~> 1.5 for soll models 2 and 3, respectively, are required for this to be achieved. 
In view of the fact that only T~> 0.6 is required for homogeneous soll cases (Beskos et al. 1986), 
one can conclude that deeper trenches are required in layered solls (soft layer(s) on strong 
half-plane) to achieve the same level of screening as in homogeneous solls (stong half-plane). 

Example 3: Since the possible formations of multilayered solls and the parameters involved are 
numerous, it is very difficult to perform general parametric studies for assessing the screening 
effectiveness of trenches in multilayered solls. This example concentrates on the case of soll model 
2 with variable soft clay depth. All the other material and geometric parameters are as in Example 
1. Figure 8 depicts the horizontal and vertical A R factors versus the nondimensional layer 
thickness H = h/LR,  where L R corresponds to soft clay and for various values of T. It can be 
observed that the soll layer thickness has a significant effect on AR, especially in the range 
1.0 ~< H ~< 2.5 where A R shows a considerable increase for decreasing values of T. When H > 2.5, 
a trench with T>~ 1.0 can provide satisfactory screening. Figure 9 shows the horizontal and 
vertical Ag factors versus T for various values of H. It can be observed that a trench of T~> 1.0 
is effective for H -- 0.0 and 3.0, while a trench of T~> 1.75 is needed for H = 1.0 and 2.0. For the 
case of H = 0.0, which corresponds to a homogeneous half-space, the finding that a T~> 1.0 is 
required for acceptable design is in agreement with Beskos et al. (1986). For the case of H -- 3.0, 
since the bulk of Rayleigh waves travels through a zone near the surface, the presence of a 
different soll material at a depth of three wavelengths is not as significant as it is at shallower 
depths. However, if the half-space is composed of a stronger material or hard rock, different 
results may be expected. Finally, it should be noticed that the finding that for H = 1.0 and 2.0 
the trench is effective for T~> 1.75. is in agreement with the results of the previous example. 
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Example 4: Here the effect of filling the trench of the previous example with concrete having 
material properties as described in Beskos et al. (1986) is investigated. Figure 10 shows the 
horizontal and vertical AR factors versus H for various values of T. As before, the soil layer 
thickness has a significant effect on A R in the fange 1.0 ~< H ~< 2.5. In this case, however, this 
effect, especially for the horizontal AR, consists of much higher values of A R than before and is 
independent of T. It is also observed that for H > 2.5, A R factors are close to 0.70 for almost all 
T indicating that it is not possible to really improve the screening effectiveness by increasing the 
trench depth, as in the case of the open trench. Figure 11 provides the horizontal and vertical 
AR factors versus T for various values of H. It clearly shows that the decrease of AR, for increasing 
T is, in general, small and that the effect of H is more pronounced for the horizontal AR than 
the vertical AR, as also observed in Fig. 10. It is also shown in Fig. 11 that for 1.0<~ T~<2.5 it 
is the case with H = 2.0 that leads to the best (A R ~ 0.6) results. For T>~ 2.5, best results can be 
achieved for H = 0.0 or H >i 3.0. 

5 Conclusions 

On the basis of the results presented in this paper, the following conclusions can be drawn: 
(1) The present thin-layer BEM presents a very good tool for studying wave propagation 

problems in multi-layered soils. The soil layer interfaces do not need any discretization since the 
soil body, which is assumed to be composed of thin layers, is treated as a whole. 

(2) In layered soils (soft layer(s) on strong half-plane) deeper trenches are required to achieve 
the same level of screening as in homogeneous soils (strong half-plane) with this trend being 
more pronounced for concrete filled trenches. 

(3) From the case study of a saturated soft clay layer resting on the top of a half-space of 
saturated dense sand, it s found that (a) ifthe clay layer is shallower than 2.5 Rayleigh wavelengths, 
the screening trench effectiveness is significantly reduced and a trench depth of two Rayleigh 
wavelengths or more is needed for an acceptable design, (b) if the clay layer is deeper than three 
Rayleigh wavelengths, the trench screening effectiveness is similar to that for the homogeneous 
half-space case. 

(4) The screening effectiveness of concrete filled trenches in a soll medium consisting of a 
soft clay layer on the top of a half-space is much lower than in the case of open trenches. 
Furthermore, increase of the trench depth does not help much to improve the situation. 

(5) More extensive parametric studies covering a wide range of geometrical and material 
properties of layered soil media are required for a thorough investigation of the screening 
effectiveness of open or filled trenches. The case of transient disturbances has also to be 
investigated. This can be easily done by the present methodology in conjunction with Laplace 
transform as explained in Beskos et al. (1986). 
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