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On the Lattice of Quasivarieties 
of Sugihara Algebras 

Abstraet. Let S denote the variety of Sugih~ra algebras. We prove that the lattice 
A (K) of subquasivarieties of a given qnasivariety K ___ S is finite if and only if K is 
generated by a finite set of finite algebras. This settles a conjecture by Tokarz [6]. 
We also show that the lattice A (S) is not modular. 

1. Preliminaries 

Let  ~ be the  algebra (Z ,  A, v ,  -->,--} of type  ( 2 , 2 ,  2 , 1 }  where Z 
is the  set of integers with the  usual  ordering, ~ = --x,  and  

=/~vy if x ~ y  
x - ~  [ ~ ^ y  otherwise.  

]~y a Sugihara algebra we will under s t and  any  algebra in the  var ie ty  S 
genera ted by  ~ .  The var ie ty  S is closely re la ted to the  deduct ive system 
~ M  of re levant  logic (cf .  Anderson and Belnap [1], Dunn  [3]). More 
prec ise ly , /~M is strongly algebraiz~ble in the  sense of Blok and Pigozzi [2], 
and its associated var ie ty  is S. 

Let  ~2~ denote  the  subalgebra of ~ whose domain is $2~ = {--n ,  . . .  
. . . ,  - -1,  1, . . . ,  n}, and  ~2~+1 the  subalgebra with domain $2~+1 = 8~nw {0}, 
for n ~ 1. We will use ~ to denote  the  1-element Sugihara algebra. The 
var ie ty  genera ted  by  ~ will be denoted by  S~. For  a class K of similar 
algebras we denote  the  quasivariety generated by  JY by  Q (K). For  notions 
of latt ice theory  and  universal  algebra we refer  to [4] and [5]. 

IJE~r~IA I.i. 

(i) S is locally finite. 
(if) Up to isomorphism, the only finite subdireetly irreducible algebras in S 
are the ~ 2 ~ i < co. 

P~ooF. (i): As any  n-generated subalgebra of ~ is isomorphic to 
subalgebra of ~2n+~, the  free algebra ~s(n)  in S with n free generators 

belongs to ISP(~2~+~) therefore,  ~s(n)  is finite. 
(if): That  every  ~ is subdirect]y irreducible follows f rom the  observa- 

t ion tha t  the  least congruence relat ion on ~ t h a t  identifies --1 with +1  
is ~ unique a tom in the  congruence lat t ice of ~ .  
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Let  91 e S be finite and subdirect ly irreducible, and let t911 = n.  Then 
9i e HSt)(~n+~) since ~s(n)elSt)(91~+~).  Hence,  by  J6nsson's Lemma,  

e HS(~:~+~). Bu t  every  nontrivial  algebra f rom HS(~:n+O is isomorphic 
to one of ~i~s, where 2 ~ i ~  2 n + l .  Thus 91 ~ ~ for some q~, n ~ 2. 

2. Directly indecomposable Sugihara algebras 

I f  91 ~ S is finite, then  91 has a smallest and a largest element,  denoted 
by  0u and lu  respectively. For  a e A let a* = a--->Ou, and let  the center of 91, 
denoted C(91), be the  set { a * : a e A } .  If  9 1 ~ , , n > ~ 2 ,  then  C(9~) 
= {0u, lu}. More generally we have:  

IJElv~L~ 2.1. Let 91 be a subdirect product of a finite family (9.I~ : i e I~ 
of finite subdirectly irreducibles. Then a e C(91) i f  and only ira(i)  e {0~, 1~i } 
for all i e I .  

P~ooP. I f  aeC(91),  then  a = b ' f o r  some b e A .  I f  b ( i ) = 0 ~ ,  then  
a(i) = b(i)-~O~i-~ 1~i. If  b(i) > 0~i , then  a(i) = b(i)~O~i -~ 0~.  Con- 
versely, if a(i) ~ {0~, 1~}, i e I ,  then  a ---- a**, ~nd hence a e C(91). 

Observe tha t  C(91) is closed under  v ,  ^ , 4 ,  and - ,  and hence is 
a subuniverse of 91 which is a Boolean algebra. 

TF~EO~E~ 2.2. .Let 91 e S be finite. Then 91 is directly indecomposable i f  
and only i f  C(91)-~ {0~, :l~}. 

PROOF. If  9 1 = ~ • 1 6 2  with [ B ] > I , [ C I > I ,  then  (0s ,1~}eC(91) ,  
while (0s ,  l~} r  (0~,1r  r  For  the  converse, suppose C(91) 
r {0~, 1~} say, a e C(91), a r 0~, l u .  We m a y  assume 91 is a subdireet  

p roduct  of a finite family of finite subdirect ly irreducibles (91i : i e I} .  By  
the previous lemm~ there  is a J ~ I ,  ~ ~= J ,  such tha t  

a(i) = /1~* if i e J  
I O~t~ if i ~ J 

Let  ~ = Zg [91], ~ = z ] \  g [91]. Then IB[ > 1, I C[ > 1, and  clearly A ~ B • C. 
Conversely, if x e B ,  y e C ,  then  x = =j(x'),  y = az\](Y') for some x ' ,  y '  
c A ,  and ( x , y ) = ( x ' ^ a ) v ( y ' ^ a * ) .  Hence  ( x , y )  e A ,  and thus 91 
= ~ •  i.e., 91 is direct ly decomposable. This completes the  proof of the  
theorem.  

In  the  remainder  of this section we will characterize the  finite Sugihara 
algebras 91 whose center  consists o* 0~, 1~ only. Clearly the  ~ ,  n > 2 
are among them,  but  these are no t  the  only ones. 

Given 91 e S ,  we define an  extension 91+ of 91 as follows. The domain  
A+ of 91+ consists of A together  with two new elements,  _L and T .  The 
lat t ice order  of 91 is ex tended by  st ipulating 

. L ~ x ,  x e A +  
" y ~ x ,  x e A + .  
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The operations -> and - are ex tended  by  the  clauses: 

a, nd  

-V if x = •  or y - ~ - V  
x->y = x->y (in !~l) if x,  y e A 

otherwise 

[ ~  if x - - - I  
= ( i n  ~I) i f  x s A 

otherwise. 

Note t h a t  for n ~> 1, ~+ ~_ ~n+2. 

LE~I~A 2.3. I f  9.I e S ,  then 9~+ e S as well. 

P~ooF. In  view of L e m m a  1.1(i), it suffices to show tha t  every  f ini te 
subalgebra ~ of 9~+ belongs to S. I f  B contains only _L and -i-~ then  !~ 

~2 and so, in this ease, ~ e S.  Otherwise, let C = B \  (• -F}. Then C 
is the  domain of some subalgebr~ ~ of 9i. ~ is a subdirect  product  of 
a finite family  of finite algebras (9~ : i e I} ,  where  ?I~ is trivial or sub- 
direct ly irreducible, and hence !D is a subdireet  p roduct  of the  family 

If  9~ ~_ ~+  for some ~ e S,  let 9I- be the  subalgebra of 9~ with domain 
A \ ~ O u ,  1~}. I n  particular~ for n ~> 3, ~ = ~ _ : .  

I t  follows easily f rom the  definition of 9~+ tha t  C(9~+) = { •  
= {0~+,1,~+}. Conversely we have:  

TnEo~E~ 2.4. Zet 9I e S be finite and non-trivial. Then C(9~) = {0~ lu} 
i f  and only i f  9I ~ ~2 or ~ _~ ~ + for some ~ e S .  Furthermore, i f  9~ ~ ~ + 
for some ~ e S and 9i e S~, then ~ e Sn_ 2 . 

P~ooF. Only one dh'ection needs verification. 
Suppose 9~ is ~ subdirect  p roduct  or the  finite family  (9~i : i  e I}  of 

finite subdirect ly irreducibles. Observe tha t  0u = ( 0 ~ i : i  e I } ,  and 1~ 
= ( lu i  : i e I } .  I f  b e A ,  b ~- 09~ then  for some i e I  b(i) > 0~,  and  hence 
b* (i) = 0~ .  I t  follows tha t  b* r  and since C (9~) = {0~, :tu} we conclude 
tha t  b* = 0u, and  thus tha t  b(i) > 0~i, i e I .  Since 9~ is subdireet ly  em- 
bedded in II  9~, we see tha t  b(i) ~ -0~ ,  i e I ,  and hence tha t  b is the  only 

ieI 
cover of 0u. If  b(j) = 1~i for s o m e j  e I ,  then  b(j) = 0~i ~ b(j), and hence 

= 0u and b = b = 1~. I n  this case 9~ ~ Ca. If  b(i) < 1~i for all i e I ,  
then  we have  0u~-4 b ( i ) ~  b(i)-~ lui , i e I ,  and  it follows tha t  [b, b ] _  
II  (92~- : i e I } ,  and  hence is a subuniverse of 9~. Let  ~ be the Sugihara 
ieI 
algebra with universe B = [b, b], then  it is easy to ver i fy tha t  9~ ~ ! D  +. 
Finally,  if, in this ease, 9~ e Sn, n~>3,  then  2 i e  Sn \Sa  for all i e I ,  and 
hence 9~- e S~_~. Thus !~ e S~_~. 
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COROLlarY 2.5. ~et 91 e S be f inite.  Then 92 is directly indecomposable 
i f  and only if92 ~_ ~ or 92 _~ ~ + for some ~ e S .  

We noticed before tha t  if 9 / e  S is finite, then  C(92) is a Boolean algebra, 

say, C(92) ~ (~2) ~. I n  view of Corollary 2.5, 92 is then  isomorphic to II!Di, 
where each !D~ is either isomorphic to ~ or to (!~-) + . ~=~ 

3. The lattice of quasi-varieties of Sugihara algebras 

In  this section we will characterize the  quasivarieties of Sugihara 
algebras which have  only a finite number  of subquasivarieties. If  H 
is a quasivariety,  let  A(K) denote the  latt ice of its subquasivarieties, 
ordered b y  inclusion. A finite algebra 9/is  critical if it does not  belong to 
the quasivariety genera ted by  all its proper subalgebras. 

L ] ~ A  3.1. Assume K is a locally f ini te quasivariety. Then A(K)  
is f ini te  i f  and only i f  K contains, up to isomorphism, a f ini te number of 
critical algebras. 

PROOF. ~ : Notice tha t  if 9/is critical, then  it is subdirect ly irreducible 
in Q(92). Hence,  for critical algebras 92 and !~ we have:  Q(92) --Q(!~) 
implies 9/~_ !D. F r o m  this the  s t a t ement  follows. 

: Since K is locally finite, each subquasivariety of K is genera ted by  
its critical members.  

The proof of the  following lemma is s traightforward.  

n 

L E ~  3.2. (i) Zet !D1, . . . ,  ~ e S .  I f  1-I ~ i  is critical, then ~1,  . . . ,  ~,,  
i = l  

are critical and pairwise non-isomorlahic. 
(if) .Let !D be a f ini te  and non-trivial Sugihara algebra. I f  ~+ is critical, 

then so is ~ .  

We are now r eady  to prove the  main  result  of the  paper :  

T~EO~E~ 3.3. Zet K be a subguasivariety of S.  Then A(K)  is f ini te  
i f  and only i f  K is generated by a f ini te  set of f ini te  algebras. 

P~ooF. ~ :  This is immedia te  f rom Lemma 3.1. 
: Since K is genera ted by  a finite set of finite algebras, it follows f rom 

Lemma 1.1 (if) t ha t  K c_ S n for some n < r We claim t h a t  the  varieties S~ 
possess, up to isomorphism, only f ini tely m a n y  critical algebras. I n  vi r tue  
of Lemma  3.2(i), it suffices to show tha t  each S~ has only a finite number  
of algebras which are  both  critical and directly indecomposable.  Since ~ 
is the  only directly indecomposable algebra in $2~ our claim holds t rue  
for $2. :Now suppose it has been verified for k < n, where 2 < n < o). 
I f  92 e S .  is critical and directly indecomposable~ then  by  Corollary 2.5 
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~ ~ ,  or ~ ~ ~+ for some ~ e S. In ~iew of Lemma 3.2 (if), in the 
latter case ~ ~ ~3 or 9/[ ~ +  for some non-trivial critical algebra ~.  
Furthermore,  by the second part  of Theorem 2A, ~B e S~_2. Since by our 
induction hypothesis S~_: has only a finite number of critical algebras, 
it follows that  S~ has only a finite number of critical, dh'ectly indecompo- 
sable algebras. This completes the proof of the claim. 

By the claim and Lemma 3.1~ the lattices A(S~) are finite, n < ~, 
and thus so is A(K). 

T~mo~E~ 3.4. A(S) is not modular. 

P~ooF. We prove that  A(S~) is not modular. As Ca is a homomorphic 
image oi a t ,  we have ~3,~deSd. Hence Q(~s),Q(~4) and Q(~s• 
are contained in $4. Since ~ is embeddable in as  x ~ ,  we have Q(~t) - 
Q(~a x ~ , ) .  Clearly as  X ~  e O(~s x ~ , ) n  (Q(~s)vQ(~)) .  Assume A(S~) 
is modular. Then ~ x CA e (Q ( ~  • ~ ) ^ Q  (~s))vQ ( ~ ) .  I t  follows from the 
proof of the previous theorem that  the critical directly indecomposable 
Mgebms in S~ are ~ and ~s, and hence ~ ,  ~s and ~ x ~s are the critical 
algebras in Q ( ~ ) .  Now ~ and ~ •  belong to g(~a  x ~ ) ,  but  ~ does 
not, because ~s is not embeddable in ~ x| We conclude that  Q(~,  • 
x ~ ) A Q ( ~ )  = Q ( ~ x ~ ) .  Thus ~ x ~  e Q ( ~ x ~ ) v Q ( ~ ) .  Let 

: ~ s  x ~ - > - ( ~  x ~ )  I x ~  

be ~n embedding, with I, J finite index sets. Since S is congruence distri- 
butive, every congruence relation on as  x~4 is a product of its factors. 
But Cs is simple and the congruence lattice of ~ is a three-element chain 
A < O < V, hence the congruence lattice of ~s x ~ is 

- ~x~ 

~xV ~ O  
4x8 ~Vx 

txt 
The map ~ is 1 - -1 ,  and therefore AielUJ ker zion0 -- A xA.  Clearly ker 
~o~0 > A xA,  for all i, and hence for some i e I u J ,  ker ~ o ~  = A xO, 
or ker zion0 = A xV.  In  the first case, x io~[~sx~4]  ~ - ~ 3 x ~ 8 ,  which 
is not embeddable in either of ~ .  x~a  or ~4. In  the second case, ~ioF [~s x 
x ~ , ]  ~ Cs, which likewise is not embeddable in ~ x ~s or in ~4. We have 

thus arrived at a contradiction, and must conclude that  A(Sd) is not 
modular. 
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Theorem 3.3 confirms a conjecture by Tokarz [6]. I t  follows from the  
results of Dunn [3] that  the system R M  of relevant implication (cf. Ander- 
son and Belnap [1]) is strongly algebraizable in the sense of [2], and tha t  
the class of algebras associated with it is precisely S. Tokarz investigated 
certain deductive systems, stronger than /~M:  the standard strengthenings 
of/~M. Their associated classes of algebras are precisely the quasivarieties 
of Sugihara algebras, ~nd the correspondence is 1-1 and order reversing 
(see [2]). Let us denote by C~ the deductive system whose associated 
quasivariety is Q ( ~ ) .  The eardinality of the set of standar4 strengthenings 
of C~ equals that  of A(Q(~,)), and hence is finite by Theorem 3.3. I t  follows 
that  the degree of maximality of C~, dmC~, equals IA(Q(~n))l as well, and 
hence, in particular, is finite. This was proven in Tokarz [6] for n ~ 4~ 
and conjectured for n ~ 5 .  
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