W. J. BLOK and W. DZIOBIAK On the Lattice of Quasivarieties of Sugihara Algebras

Abstract. Let S denote the variety of Sugihara algebras. We prove that the lattice $\Lambda(K)$ of subquasivarieties of a given quasivariety $K \subseteq S$ is finite if and only if K is generated by a finite set of finite algebras. This settles a conjecture by Tokarz [6]. We also show that the lattice $\Lambda(S)$ is not modular.

1. Preliminaries

Let \mathfrak{S} be the algebra $\langle Z, \wedge, \vee, \rightarrow, - \rangle$ of type $\langle 2, 2, 2, 1 \rangle$ where Z is the set of integers with the usual ordering, $\overline{x} = -x$, and

$$x \rightarrow y = \begin{cases} \overline{x} \lor y & \text{if } x \leqslant y \\ \overline{x} \land y & \text{otherwise.} \end{cases}$$

By a Sugihara algebra we will understand any algebra in the variety S generated by \mathfrak{S} . The variety S is closely related to the deductive system RM of relevant logic (cf. Anderson and Belnap [1], Dunn [3]). More precisely, RM is strongly algebraizable in the sense of Blok and Pigozzi [2], and its associated variety is S.

Let \mathfrak{S}_{2n} denote the subalgebra of \mathfrak{S} whose domain is $S_{2n} = \{-n, \ldots, \ldots, -1, 1, \ldots, n\}$, and \mathfrak{S}_{2n+1} the subalgebra with domain $S_{2n+1} = S_{2n} \cup \{0\}$, for $n \ge 1$. We will use \mathfrak{S}_1 to denote the 1-element Sugihara algebra. The variety generated by \mathfrak{S}_n will be denoted by S_n . For a class K of similar algebras we denote the quasivariety generated by K by Q(K). For notions of lattice theory and universal algebra we refer to [4] and [5].

LEMMA 1.1.

(i) S is locally finite.

(ii) Up to isomorphism, the only finite subdirectly irreducible algebras in S are the $\mathfrak{S}_i, 2 \leq i < \omega$.

PROOF. (i): As any *n*-generated subalgebra of \mathfrak{S} is isomorphic to a subalgebra of \mathfrak{S}_{2n+1} , the free algebra $\mathfrak{F}_{\mathfrak{S}}(n)$ in \mathfrak{S} with *n* free generators belongs to $ISP(\mathfrak{S}_{2n+1})$ therefore, $\mathfrak{F}_{\mathfrak{S}}(n)$ is finite.

(ii): That every \mathfrak{S}_i is subdirectly irreducible follows from the observation that the least congruence relation on \mathfrak{S}_i that identifies -1 with +1 is a unique atom in the congruence lattice of \mathfrak{S}_i .

Let $\mathfrak{A} \in S$ be finite and subdirectly irreducible, and let $|\mathfrak{A}| = n$. Then $\mathfrak{A} \in HSP(\mathfrak{S}_{2n+1})$ since $\mathfrak{F}_{S}(n) \in ISP(\mathfrak{A}_{2n+1})$. Hence, by Jónsson's Lemma, $\mathfrak{S} \in HS(\mathfrak{S}_{2n+1})$. But every nontrivial algebra from $HS(\mathfrak{S}_{2n+1})$ is isomorphic to one of \mathfrak{S}_{i} 's, where $2 \leq i \leq 2n+1$. Thus $\mathfrak{A} \cong \mathfrak{S}_{n}$ for some $n, n \geq 2$.

2. Directly indecomposable Sugihara algebras

If $\mathfrak{A} \in S$ is finite, then \mathfrak{A} has a smallest and a largest element, denoted by $0_{\mathfrak{A}}$ and $1_{\mathfrak{A}}$ respectively. For $a \in A$ let $a^* = a \rightarrow 0_{\mathfrak{A}}$, and let the *center of* \mathfrak{A} , denoted $C(\mathfrak{A})$, be the set $\{a^* : a \in A\}$. If $\mathfrak{A} \simeq \mathfrak{S}_n, n \ge 2$, then $C(\mathfrak{A}) = \{0_{\mathfrak{A}}, 1_{\mathfrak{A}}\}$. More generally we have:

LEMMA 2.1. Let \mathfrak{A} be a subdirect product of a finite family $\langle \mathfrak{A}_i : i \in I \rangle$ of finite subdirectly irreducibles. Then $a \in C(\mathfrak{A})$ if and only if $a(i) \in \{0_{\mathfrak{A}_i}, 1_{\mathfrak{A}_i}\}$ for all $i \in I$.

PROOF. If $a \in C(\mathfrak{A})$, then $a = b^*$ for some $b \in A$. If $b(i) = 0_{\mathfrak{A}_i}$, then $a(i) = b(i) \rightarrow 0_{\mathfrak{A}_i} = 1_{\mathfrak{A}_i}$. If $b(i) > 0_{\mathfrak{A}_i}$, then $a(i) = b(i) \rightarrow 0_{\mathfrak{A}_i} = 0_{\mathfrak{A}_i}$. Conversely, if $a(i) \in \{0_{\mathfrak{A}_i}, 1_{\mathfrak{A}_i}\}, i \in I$, then $a = a^{**}$, and hence $a \in C(\mathfrak{A})$.

Observe that $C(\mathfrak{A})$ is closed under \lor, \land, \rightarrow , and \neg , and hence is a subuniverse of \mathfrak{A} which is a Boolean algebra.

THEOREM 2.2. Let $\mathfrak{A} \in S$ be finite. Then \mathfrak{A} is directly indecomposable if and only if $C(\mathfrak{A}) = \{0_{\mathfrak{A}}, 1_{\mathfrak{A}}\}.$

PROOF. If $\mathfrak{A} = \mathfrak{B} \times \mathfrak{C}$, with |B| > I, |C| > 1, then $\langle \mathfrak{0}_{\mathfrak{B}}, \mathfrak{1}_{\mathfrak{C}} \rangle \in C(\mathfrak{A})$, while $\langle \mathfrak{0}_{\mathfrak{B}}, \mathfrak{1}_{\mathfrak{C}} \rangle \neq \mathfrak{0}_{\mathfrak{A}}, \langle \mathfrak{0}_{\mathfrak{B}}, \mathfrak{1}_{\mathfrak{C}} \rangle \neq \mathfrak{1}_{\mathfrak{A}}$. For the converse, suppose $C(\mathfrak{A}) \neq \mathfrak{0}_{\mathfrak{A}}, \mathfrak{1}_{\mathfrak{A}}$ say, $a \in C(\mathfrak{A}), a \neq \mathfrak{0}_{\mathfrak{A}}, \mathfrak{1}_{\mathfrak{A}}$. We may assume \mathfrak{A} is a subdirect product of a finite family of finite subdirectly irreducibles $\langle \mathfrak{A}_i : i \in I \rangle$. By the previous lemma there is a $J \subsetneq I, \varnothing \neq J$, such that

$$a(i) = \begin{cases} 1_{\mathfrak{A}_i} & \text{if } i \in J \\ 0_{\mathfrak{A}_i} & \text{if } i \notin J \end{cases}$$

Let $\mathfrak{B} = \pi_J[\mathfrak{A}], \mathfrak{S} = \pi_{I \setminus J}[\mathfrak{A}]$. Then |B| > 1, |C| > 1, and clearly $A \subseteq B \times C$. Conversely, if $x \in B, y \in C$, then $x = \pi_J(x'), y = \pi_{I \setminus J}(y')$ for some $x', y' \in A$, and $\langle x, y \rangle = (x' \wedge a) \vee (y' \wedge a^*)$. Hence $\langle x, y \rangle \in A$, and thus $\mathfrak{A} = \mathfrak{B} \times \mathfrak{C}$, i.e., \mathfrak{A} is directly decomposable. This completes the proof of the theorem.

In the remainder of this section we will characterize the finite Sugihara algebras \mathfrak{A} whose center consists of $0_{\mathfrak{A}}, 1_{\mathfrak{A}}$ only. Clearly the $\mathfrak{S}_n, n \ge 2$ are among them, but these are not the only ones.

Given $\mathfrak{A} \in S$, we define an extension \mathfrak{A}^+ of \mathfrak{A} as follows. The domain A^+ of \mathfrak{A}^+ consists of A together with two new elements, \bot and \top . The lattice order of \mathfrak{A} is extended by stipulating

$$egin{array}{cccc} \bot \leqslant x, & x \in A^+ \ op \geqslant x, & x \in A^+. \end{array}$$

The operations \rightarrow and \neg are extended by the clauses:

$$x \rightarrow y = \begin{cases} \top & \text{if } x = \bot \text{ or } y = \top \\ x \rightarrow y \quad (\text{in } \mathfrak{A}) & \text{if } x, y \in A \\ \bot & \text{ otherwise} \end{cases}$$

and

$$\overline{x} = \begin{cases} \overline{x} & \text{if } x = \bot \\ \overline{x} & \text{(in } \mathfrak{A}) & \text{if } x \in A \\ \bot & \text{otherwise.} \end{cases}$$

Note that for $n \ge 1$, $\mathfrak{S}_n^+ \simeq \mathfrak{S}_{n+2}$.

LEMMA 2.3. If $\mathfrak{A} \in S$, then $\mathfrak{A}^+ \in S$ as well.

PROOF. In view of Lemma 1.1(i), it suffices to show that every finite subalgebra \mathfrak{B} of \mathfrak{A}^+ belongs to S. If B contains only \bot and \top , then $\mathfrak{B} \cong \mathfrak{S}_2$ and so, in this case, $\mathfrak{B} \in S$. Otherwise, let $C = B \setminus \{\bot, \top\}$. Then C is the domain of some subalgebra \mathfrak{C} of \mathfrak{A} . \mathfrak{C} is a subdirect product of a finite family of finite algebras $\langle \mathfrak{A}_i : i \in I \rangle$, where \mathfrak{A}_i is trivial or subdirectly irreducible, and hence \mathfrak{B} is a subdirect product of the family $\langle \mathfrak{A}_i^+ : i \in I \rangle$.

If $\mathfrak{A} \simeq \mathfrak{B}^+$ for some $\mathfrak{B} \in S$, let \mathfrak{A}^- be the subalgebra of \mathfrak{A} with domain $A \setminus \{0_{\mathfrak{A}}, 1_{\mathfrak{A}}\}$. In particular, for $n \ge 3$, $\mathfrak{S}_n^- = \mathfrak{S}_{n-2}$.

It follows easily from the definition of \mathfrak{A}^+ that $C(\mathfrak{A}^+) = \{\perp, \top\}$ = $\{0_{\mathfrak{A}^+}, 1_{\mathfrak{A}^+}\}$. Conversely we have:

THEOREM 2.4. Let $\mathfrak{A} \in \mathbf{S}$ be finite and non-trivial. Then $C(\mathfrak{A}) = \{0_{\mathfrak{A}}, 1_{\mathfrak{A}}\}$ if and only if $\mathfrak{A} \cong \mathfrak{S}_2$ or $\mathfrak{A} \cong \mathfrak{B}^+$ for some $\mathfrak{B} \in \mathbf{S}$. Furthermore, if $\mathfrak{A} \cong \mathfrak{B}^+$ for some $\mathfrak{B} \in \mathbf{S}$ and $\mathfrak{A} \in \mathbf{S}_n$, then $\mathfrak{B} \in \mathbf{S}_{n-2}$.

PROOF. Only one direction needs verification.

Suppose \mathfrak{A} is a subdirect product of the finite family $\langle \mathfrak{A}_i: i \in I \rangle$ of finite subdirectly irreducibles. Observe that $\mathfrak{O}_{\mathfrak{A}} = \langle \mathfrak{O}_{\mathfrak{A}_i}: i \in I \rangle$, and $\mathfrak{1}_{\mathfrak{A}} = \langle \mathfrak{1}_{\mathfrak{A}_i}: i \in I \rangle$. If $b \in A, b > \mathfrak{O}_{\mathfrak{A}}$ then for some $i \in I$ $b(i) > \mathfrak{O}_{\mathfrak{A}_i}$, and hence $b^*(i) = \mathfrak{O}_{\mathfrak{A}_i}$. It follows that $b^* \neq \mathfrak{1}_{\mathfrak{A}}$, and since $C(\mathfrak{A}) = \{\mathfrak{O}_{\mathfrak{A}}, \mathfrak{1}_{\mathfrak{A}}\}$ we conclude that $b^* = \mathfrak{O}_{\mathfrak{A}}$, and thus that $b(i) > \mathfrak{O}_{\mathfrak{A}_i}, i \in I$. Since \mathfrak{A} is subdirectly embedded in $\prod \mathfrak{A}_i$, we see that $b(i) > \mathfrak{O}_{\mathfrak{A}_i}, i \in I$, and hence that b is the only cover of $\mathfrak{O}_{\mathfrak{A}}$. If $b(j) = \mathfrak{1}_{\mathfrak{A}_j}$ for some $j \in I$, then $\overline{b}(j) = \mathfrak{O}_{\mathfrak{A}_j} \not\geq b(j)$, and hence $\overline{b} = \mathfrak{O}_{\mathfrak{A}}$ and $b = \overline{b} = \mathfrak{1}_{\mathfrak{A}}$. In this case $\mathfrak{A} \cong \mathfrak{S}_2$. If $b(i) < \mathfrak{1}_{\mathfrak{A}_i}$ for all $i \in I$, then we have $\mathfrak{O}_{\mathfrak{A}_i} \prec b(i) \leqslant \overline{b}(i) \prec \mathfrak{1}_{\mathfrak{A}_i}, i \in I$, and it follows that $[b, \overline{b}] \subseteq \prod_{i \in I} \mathfrak{A} \subset \mathfrak{A}_i \subset I_{i}$, $i \in I$, and hence is a subuniverse of \mathfrak{A} . Let \mathfrak{B} be the Sugihara algebra with universe $B = [b, \overline{b}]$, then it is easy to verify that $\mathfrak{A} \cong \mathfrak{B}^+$. Finally, if, in this case, $\mathfrak{A} \in S_n, n \geq 3$, then $\mathfrak{A}_i \in S_n \setminus S_2$ for all $i \in I$, and hence $\mathfrak{A}_i^- \in S_{n-2}$. Thus $\mathfrak{B} \in S_{n-2}$. COROLLARY 2.5. Let $\mathfrak{A} \in S$ be finite. Then \mathfrak{A} is directly indecomposable if and only if $\mathfrak{A} \cong \mathfrak{S}_2$ or $\mathfrak{A} \cong \mathfrak{B}^+$ for some $\mathfrak{B} \in S$.

We noticed before that if $\mathfrak{A} \in S$ is finite, then $C(\mathfrak{A})$ is a Boolean algebra, say, $C(\mathfrak{A}) \simeq (\mathfrak{S}_2)^n$. In view of Corollary 2.5, \mathfrak{A} is then isomorphic to $\prod_{i=1}^n \mathfrak{B}_i$, where each \mathfrak{B}_i is either isomorphic to \mathfrak{S}_2 or to $(\mathfrak{B}_i^-)^+$.

3. The lattice of quasi-varieties of Sugihara algebras

In this section we will characterize the quasivarieties of Sugihara algebras which have only a finite number of subquasivarieties. If K is a quasivariety, let $\Lambda(K)$ denote the lattice of its subquasivarieties, ordered by inclusion. A finite algebra \mathfrak{A} is *critical* if it does not belong to the quasivariety generated by all its proper subalgebras.

LEMMA 3.1. Assume **K** is a locally finite quasivariety. Then $\Lambda(\mathbf{K})$ is finite if and only if **K** contains, up to isomorphism, a finite number of critical algebras.

PROOF. \Rightarrow : Notice that if \mathfrak{A} is critical, then it is subdirectly irreducible in $Q(\mathfrak{A})$. Hence, for critical algebras \mathfrak{A} and \mathfrak{B} we have: $Q(\mathfrak{A}) = Q(\mathfrak{B})$ implies $\mathfrak{A} \cong \mathfrak{B}$. From this the statement follows.

 \Leftarrow : Since **K** is locally finite, each subquasivariety of **K** is generated by its critical members.

The proof of the following lemma is straightforward.

LEMMA 3.2. (i) Let $\mathfrak{B}_1, \ldots, \mathfrak{B}_n \in S$. If $\prod_{i=1}^n \mathfrak{B}_i$ is critical, then $\mathfrak{B}_1, \ldots, \mathfrak{B}_n$ are critical and pairwise non-isomorphic.

(ii) Let \mathfrak{B} be a finite and non-trivial Sugihara algebra. If \mathfrak{B}^+ is critical, then so is \mathfrak{B} .

We are now ready to prove the main result of the paper:

THEOREM 3.3. Let **K** be a subquasivariety of **S**. Then $\Lambda(\mathbf{K})$ is finite if and only if **K** is generated by a finite set of finite algebras.

PROOF. \Rightarrow : This is immediate from Lemma 3.1.

 \approx : Since **K** is generated by a finite set of finite algebras, it follows from Lemma 1.1 (ii) that $\mathbf{K} \subseteq \mathbf{S}_n$ for some $n < \omega$. We claim that the varieties \mathbf{S}_n possess, up to isomorphism, only finitely many critical algebras. In virtue of Lemma 3.2(i), it suffices to show that each \mathbf{S}_n has only a finite number of algebras which are both critical and directly indecomposable. Since \mathfrak{S}_2 is the only directly indecomposable algebra in \mathbf{S}_2 , our claim holds true for \mathbf{S}_2 . Now suppose it has been verified for k < n, where $2 < n < \omega$. If $\mathfrak{A} \in \mathbf{S}_n$ is critical and directly indecomposable, then by Corollary 2.5 $\mathfrak{A} \cong \mathfrak{S}_2$ or $\mathfrak{A} \cong \mathfrak{B}^+$ for some $\mathfrak{B} \in \mathbf{S}$. In view of Lemma 3.2 (ii), in the latter case $\mathfrak{A} \cong \mathfrak{S}_3$ or $\mathfrak{A} \cong \mathfrak{B}^+$ for some non-trivial critical algebra \mathfrak{B} . Furthermore, by the second part of Theorem 2.4, $\mathfrak{B} \in S_{n-2}$. Since by our induction hypothesis S_{n-2} has only a finite number of critical algebras, it follows that S_n has only a finite number of critical, directly indecomposable algebras. This completes the proof of the claim.

By the claim and Lemma 3.1, the lattices $\Lambda(\mathbf{S}_n)$ are finite, $n < \omega$, and thus so is $\Lambda(\mathbf{K})$.

THEOREM 3.4. $\Lambda(S)$ is not modular.

PROOF. We prove that $\Lambda(S_4)$ is not modular. As \mathfrak{S}_3 is a homomorphic image of \mathfrak{S}_4 , we have $\mathfrak{S}_3, \mathfrak{S}_4 \in S_4$. Hence $Q(\mathfrak{S}_3), Q(\mathfrak{S}_4)$ and $Q(\mathfrak{S}_3 \times \mathfrak{S}_4)$ are contained in S_4 . Since \mathfrak{S}_4 is embeddable in $\mathfrak{S}_3 \times \mathfrak{S}_4$, we have $Q(\mathfrak{S}_4) \subseteq Q(\mathfrak{S}_3 \times \mathfrak{S}_4)$. Clearly $\mathfrak{S}_3 \times \mathfrak{S}_4 \in Q(\mathfrak{S}_3 \times \mathfrak{S}_4) \wedge (Q(\mathfrak{S}_3) \vee Q(\mathfrak{S}_4))$. Assume $\Lambda(S_4)$ is modular. Then $\mathfrak{S}_3 \times \mathfrak{S}_4 \in (Q(\mathfrak{S}_3 \times \mathfrak{S}_4) \wedge Q(\mathfrak{S}_3)) \vee Q(\mathfrak{S}_4)$. It follows from the proof of the previous theorem that the critical directly indecomposable algebras in S_3 are \mathfrak{S}_2 and \mathfrak{S}_3 , and hence $\mathfrak{S}_2, \mathfrak{S}_3$ and $\mathfrak{S}_2 \times \mathfrak{S}_3$ are the critical algebras in $Q(\mathfrak{S}_3)$. Now \mathfrak{S}_2 and $\mathfrak{S}_2 \times \mathfrak{S}_3$ belong to $Q(\mathfrak{S}_3 \times \mathfrak{S}_4)$, but \mathfrak{S}_3 does not, because \mathfrak{S}_3 is not embeddable in $\mathfrak{S}_3 \times \mathfrak{S}_4$. We conclude that $Q(\mathfrak{S}_3 \times \mathfrak{S}_4) \wedge Q(\mathfrak{S}_3) = Q(\mathfrak{S}_2 \times \mathfrak{S}_3)$. Thus $\mathfrak{S}_3 \times \mathfrak{S}_4 \in Q(\mathfrak{S}_2 \times \mathfrak{S}_3) \vee Q(\mathfrak{S}_4)$. Let

$$arphi:\mathfrak{S}_3\! imes\!\mathfrak{S}_4\!
ightarrow\!(\mathfrak{S}_2\! imes\!\mathfrak{S}_3)^I\! imes\!\mathfrak{S}_4^J$$

be an embedding, with I, J finite index sets. Since S is congruence distributive, every congruence relation on $\mathfrak{S}_3 \times \mathfrak{S}_4$ is a product of its factors. But \mathfrak{S}_3 is simple and the congruence lattice of \mathfrak{S}_4 is a three-element chain $\Delta < \Theta < \nabla$, hence the congruence lattice of $\mathfrak{S}_3 \times \mathfrak{S}_4$ is



The map φ is 1-1, and therefore $\bigwedge_{i\in I\cup J}$ ker $\pi_i\circ\varphi = \varDelta\times\varDelta$. Clearly ker $\pi_i\circ\varphi > \varDelta\times\varDelta$, for all *i*, and hence for some $i\in I\cup J$, ker $\pi_i\circ\varphi = \varDelta\times\varTheta$, or ker $\pi_i\circ\varphi = \varDelta\times\lor$. In the first case, $\pi_i\circ\varphi[\mathfrak{S}_3\times\mathfrak{S}_4]\cong\mathfrak{S}_3\times\mathfrak{S}_3$, which is not embeddable in either of $\mathfrak{S}_2\times\mathfrak{S}_3$ or \mathfrak{S}_4 . In the second case, $\pi_i\circ\varphi[\mathfrak{S}_3\times\mathfrak{S}_4]\cong\mathfrak{S}_3$, which likewise is not embeddable in $\mathfrak{S}_2\times\mathfrak{S}_3$ or in \mathfrak{S}_4 . We have thus arrived at a contradiction, and must conclude that $\Lambda(S_4)$ is not modular.

Theorem 3.3 confirms a conjecture by Tokarz [6]. It follows from the results of Dunn [3] that the system RM of relevant implication (cf. Anderson and Belnap [1]) is strongly algebraizable in the sense of [2], and that the class of algebras associated with it is precisely S. Tokarz investigated certain deductive systems, stronger than RM: the standard strengthenings of RM. Their associated classes of algebras are precisely the quasivarieties of Sugihara algebras, and the correspondence is 1–1 and order reversing (see [2]). Let us denote by C_n the deductive system whose associated quasivariety is $Q(\mathfrak{S}_n)$. The cardinality of the set of standard strengthenings of C_n equals that of $\Lambda(Q(\mathfrak{S}_n))$, and hence is finite by Theorem 3.3. It follows that the degree of maximality of C_n , dmC_n , equals $|\Lambda(Q(\mathfrak{S}_n))|$ as well, and hence, in particular, is finite. This was proven in Tokarz [6] for $n \leq 4$, and conjectured for $n \geq 5$.

References

- A. R. ANDERSON and N. D. BELNAP, Jr., *Entailment*, Vol. I, Princeton University Press, 1975.
- [2] W. J. BLOK and D. PIGOZZI, The deduction theorem in algebraic logic, manuscript.
- [3] J. M. DUNN, Algebraic completeness results for R-mingle and its extensions, Journal of Symbolic Logic 35 (1970), pp. 1–13.
- [4] G. GRÄTZER, General Lattice Theory, Birkhauser Verlag, Basel, 1978.
- [5] G. GRÄTZER, Universal Algebra, 2nd expanded ed., Springer Verlag, 1979.
- [6] M. TOKARZ, Degrees of maximality of three- and four-valued RM-extensions, Reports on Mathematical Logic 9 (1978), pp. 63–69.

DEPARTMENT OF MATHEMATICS STATISTICS AND COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT CHICAGO CHICAGO, U.S.A. SECTION OF LOGIC POLISH ACADEMY OF SCIENCES LÓDŹ, PIOTRKOWSKA 179 POLAND

Received May 15, 1985