w. J. Brox  On the Lattice of Quasivarieties
4 of Sugihara Algebras

W. DzI0BIAK

Abstract, Let S denote the variety of Sugihara algebras. We prove that the lattice
A(K) of subquasivarieties of a given quasivariety K < 8 is finite if and ounly if K is
generated by a finite set of finite algebras. This settles a conjecture by Tokarz [6].
We also show that the lattice A({S) is not modular.

1. Preliminaries

Let G be the algebra <Z, A, v, -, —> of type (2,2, 2,1)> where Z

iy the set of integers with the usual ordering, * = —x, and
_jEvy it <y
Y = {a‘:/\y otherwise.

By a Sugihara algebra we will understand any algebra in the variety S
generated by &. The variety S is closely related to the deductive system
RM of relevant logic (cf. Anderson and Belnap [1], Dunn [3]). More
precisely, RM is strongly algebraizable in the sense of Blok and Pigozzi [2],
and its associated variety is S.

Let &,,, denote the subalgebra of @ whose domain is 8,, = {—n,...
eeey —1,1, ..., n},and S,, ., the subalgebra with domain 8,,,, = S,,V {0},
for n > 1. We will use &, to denote the 1-element Sugihara algebra. The
variety generated by &, will be denoted by S,. For a class K of similar
algebras we denote the quasivariety generated by K by @ (K). For notions
of lattice theory and universal algebra we refer to [4] and [5].

LEMMA 1.1.
(i) S is locally finite.
(il) Up to isomorphism, the only finite subdirectly irreducible algebras in S
are the S, 2 <i < o.

PrOOF., (i): As any n-generated subalgebra of © is isomorphic to
& subalgebra of &,,.,, the free algebra Fg(n) in S with n iree generators
belongs to ISP(S,, ;) therefore, Fg(n) is finite,

(ii): That every &, is subdirectly irreducible follows from the observa-
tion that the least congruence relation on &; that identifies —1 with +1
is a unique atom in the congruence lattice of ;.
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Let U e S be finite and subdirectly irreducible, and let [%] = n. Then
A € HSP(S,, ;) since Fg(n) € ISP(WUs,,,). Hence, by Jonsson’s Lemma,
S e HS8(G;,,11)- But every nontrivial algebra from HS(S,, ) is isomorphic
to one of S;’s, where 2<¢<2r--1. Thus ¥ =~ &, for some n,n > 2.

2. Directly indecomposable Sugihara algebras

If 9 e S is finite, then % has a smallest and a largest element, denoted
by 0y and 14 respectively. For a € A let a* = a—>0y, and let the center of U,
denoted C(A), be the set {a*:aed}. If Y ~G,,n>2, then O(A)
= {0y, 1y4}. More generally we have:

LevmaA 2.1. Let U be a subdirect product of a finite family (N;:iel)
of fimite subdirectly irreducibles. Then o € C(A) if and only if a(4) € {Oq,, Iy}
Jor all iel.

Proor. If a € 0(%), then a = b for some b € A. If b(i) = Oy,, then
a(i) = b(8)—>0q,= Lo,. If b(i) > Oy,, then a(i) = b(i)—>0y, = Oy,. Con-
versely, if a(é) € {0y, 1y}, ¢ €I, then a = a**, and hence a € 0(%).

Observe that C(¥) is closed under v, A, -, and —, and hence is
a subuniverse of % which is a Boolean algebra.

THEOREM 2.2. Let A € 8 be finite. Then W is directly indecomposable if
ond only if O(A) = {O0g, 1o}

Proor. If A =B xE, with (B] >1,|C]>1, then {0g,1s> € C(N),
while (04, 1¢> # Oy, {0y, 1¢> # 1lyq. For the converse, suppose C(2)
# {0q, 14} say, a e O(A), a # 0q, 1y. We may assume U is a subdirect
product of a finite family of finite subdirectly irreducibles (N;:7 e I). By
the previous lemme there is a J § I, @ % J, such that

. 1y, if ced
al) = {oﬁ: if i ¢J
Let B =, [A], ©= 7z s [A]. Then |{B| > 1, |0} > 1, and clearly 4 < B xC.
Conversely, if # € B,y €C, then & = m;(2'), y = nz ;(y") for some 2',y’
€A, and {z,y> = (#'Aa)v(y'Aa*). Hence <{x,y>ed, and thus «A
=B XE, i.e., A is directly decomposable. This completes the proof of the
theorem.

In the remainder of this section we will characterize the finite Sugihara
algebras 9 whose center consists of Oy, 1y only. Clearly the &,,n >2
are among them, but these are not the only ones.

Given % € S, we define an extension A+ of A as follows. The domain
A+ of 9+ consists of A together with two new elements, | and T . The
lattice order of U is extended by stipulating

l<e, zedt
T>=x, wedt,
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The operations — and - are extended by the clauses:

T fe=_1lory=
gy ={ov—>y (in W) ifwr,yed
A otherwise
and
T ife=_1
Z =1Z (in U) if xed
4 otherwise.
Note that for n >1, G} 2

LeMMA 2.3. If A eS8, then At e S as well.

Proor. In view of Lemma 1.1(i), it suffices to show that every finite
subalgebra B of A+ belongs to S. If B contains only [ and T, then B
~ &, and so, in this case, B € S. Otherwise, let ¢ = B\ {1, T}. Then C
is the domain of some subalgebra € of %. € is a subdirect product of
a finite family of finite algebras (¥, :7 € I>, where ¥, is trivial or sub-
directly irreducible, and hence B is a subdirect product of the family
QU riel).

It A =~ B+ for some B ¢ S, let A~ be the subalgebra of A with domain
AN{0y, 14}. In particular, for n=3,8, =6, _,.

It follows easily from the defmltxon of A+ that CAY) ={L, T}
= {Og+, 1g+}. Conversely we have:

THEOREM 2.4. Let U € S be finite and non-trivial. Then C (M) = {0y, 14}
if and only if U =~ S, or A == B+ for some B € S. Furthermore, if Y ~ B+
for someBeSandAeS,,thenBeS,_,.

ProoF. Ounly one direction needs verification.

Suppose A is a subdirect product of the finite family <A;:4¢eI) of
finite subdirectly irreducibles. Observe that Oy = {0y, :7 €I}, and 1y
= 1y, :0€I). I bed,b > 0y then for some ¢ €I b(i) > Oy, and hence
b* (i) = Oy,. It follows that b* # 1y, and since C(A) = {0y, 14} We conclude
that b* = Oﬁ, and thus that b(é) > Oy, 4 € I. Since ¥ is subdirectly em-

bedded in [T, we see that b(i) > Oy, s ¢ € I, and hence that b is the only
tel

cover of Oy If b(j) = 1QI for some j € I, then b(j) = Oy, % b(j), and hence
b=0gand b =5 = 19[ In this case A = S,. If b(i) <1y, for all i1,
then we have 0y, < b(i) < b(i) < by @ el, and it follows that [b, 5] =

I <A i el and hence is a subuniverse of A. Let B be the Sugihara
il

algebra with universe B = [b, b], then it is easy to verlfy that A =~ B+.
Finally, if, in this case, A e S,,n>3, then A, e S, NS, for all iel, and
hence A; € S,_,. Thus B e Sn_z.
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COROLLARY 2.5. Let U € S be finite. Then U is directly indecomposable
if and only if W =~ S, or A =~ B+ for some B € S.

‘We noticed before that if % e Sis finite, then () is a Boolean algebra,

say, C(U) = (S,)". In view of Corollary 2.5, U is then isomorphic to H?B
where each B, is either isomorphic to &, or to (B;)™*.

3. The lattice of quasi-varieties of Sugihara algebras

In this section we will characterize the quasivarieties of Sugihara
algebras which have only a finite number of subquasivarieties, If K
is a quasivariety, let A(K) denote the lattice of its subquasivarieties,
ordered by inclusion. A finite algebra U is critical if it does not belong to
the quasivariety generated by all its proper subalgebras.

LemmA 3.1. Assume K is a locally finite quasivariety. Then A(K)
is finite if and only if K contains, up to isomorphism, a finite number of
critical algebras.

Proor. =:Notice that if 9 is critical, then it is subdirectly irreducible
in Q(%). Hence, for critical algebras A and B we have: Q(A) = Q(B)
implies A =~ B. From this the statement follows.

<=: Since K is locally finite, each subquasivariety of K is generated by
its critical members.

The proof of the following lemma is straightforward.

k(]
LemmA 3.2. (i) Let By, ..., B, € S. If 11 B, is critical, then By, ..., B,
i=1

are critical and pairwise non-isomorphic.
(ii) Let B be a finite and non-trivial Sugihara algebra. If B+ is critical,
then so is B.

We are now ready to prove the main result of the paper:

THEOREM 3.3. Let K be a subgquasivariety of S. Then A(K) is finite
if and only if K is generated by a finite set of finite algebras.

Proor. =: This is immediate from Lemma 3.1.

< : Since K is generated by a finite set of finite algebras, it follows from
Lemma 1.1 (ii) that K = S, for some # < «. We claim that the varieties S,
possess, up to isomorphism, only finitely many critical algebras. In virtue
of Lemma 3.2(i), it suffices to show that each S, has only a finite number
of algebras which are both critical and directly indecomposable. Since S,
is the only directly indecomposable algebra in 8,, our claim holds true
for S,. Now suppose it has been verified for k < n, where 2 < # < .
If A 8, is critical and directly indecomposable, then by Corollary 2.5
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A ==S, or A =B+ for some B e S. In view of Lemma 3.2 (ii), in the
latter case Y =S, or A =~ B+ for some non-trivial critical algebra B.
Furthermore, by the second part of Theorem 2.4, B € §,_,. Since by our
induction hypothesis S,_, has only a finite number of critical algebras,
it follows that S, has only a finite number of critical, directly indecompo-
sable algebras. This completes the proof of the claim.

By the claim and Lemma 3.1, the lattices A(S,) are finite, n < o,
and thus so is A(K).

THEOREM 3.4. A(S) is not modular.

ProoF. We prove that A(S,)is not modular. As &, is @ homomorphic
image of &,, we have S,, S, € 8,. Hence Q(S;), @(S,) and Q(S; xXS,)
are contained in S,. Since &, is embeddable in &; xS,, we have §(S,) =
Q(S; XSy, Clearly S; xS, Q) (S; XS )A (Q (S,) VQ(64))- Assume A(S))
is modular. Then G; xS, € (@ (G5 xS AQ(S,)) v@(S,) . It follows from the
proof of the previous theorem that the critical directly indecomposable
algebras in §; are €, and S;, and hence ©,, S; and S, XS, are the critical
algebras in (S;). Now &, and &, XS, belong to Q{S, XS,), but &, does
not, because S; is not embeddable in S; xS,. We conclude that Q(S; x

XGIAQ(S;) = Q (S, XS;). Thus S; XS, € @ (S, XS,) vO(S,). Let

P83 XG,—~ (8, xS, x&7

be an embedding, with I, J finite index sets. Since S is congruence distri-
butive, every congruence relation on S; XS, is a product of its factors.
But &; is simple and the congruence lattice of &, is a three-element chain
4 < 6 <, hence the congruence lattice of S, xS, is

vxy

AXxV vx@

Ax@ Vx4

AxA

The map ¢ is 1—1, and therefore A, s ker mop = 4 x 4. Clearly ker
m0@ > A XA, for all ¢, and hence for some 4 € Iud, ker mop = A X6,
or ker mop = A XV . In the first case, mo09[S;x3,] =~ S, XxS,, which
is not embeddable in either of S, xS, or &,. In the second case, m,09[S; X
X&,] == &, which likewise is not embeddable in &, xS, or in &,. We have
thus arrived at a contradiction, and must conclude that A(S,) is not
modular,
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Theorem 3.3 confirms a conjecture by Tokarz [6]. It follows from the
results of Dunn [3] that the system RM of relevant implication (cf. Ander-
son and Belnap [1]) is strongly algebraizable in the sense of [2], and that
the class of algebras associated with it is precisely S. Tokarz investigated
certain deductive systems, stronger than EM: the standard strengthenings
of RM. Their associated classes of algebras are precisely the quasivarieties
of Sugihara algebras, and the correspondence is 1-1 and order reversing
(see [2]). Let us denote by C, the deductive system whose associated
quasivariety is Q(S,). The cardinality of the set of standard strengthenings
of C, equals that of 4(Q(S,)), and hence is finite by Theorem 3.3. It follows
that the degree of maximality of C,,, dmC,, equals |4(Q(S,))] as well, and
hence, in particular, is finite. This was proven in Tokarz [6] for n < 4,
and conjectured for nz=3.
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