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Abstract. It is well known that the manner in which a definitely descriptive
term contributes to the meaning of a sentence depends on the place the term occupies
in the sentence. A distinction is accordingly drawn between ordinary contexts and
contexts variously termed ‘non-referential’, ‘intensional’, ‘oblique’, or ‘opaque’. The
aim of the present article is to offer a general account of the phenomenon, based on
transparent intensional logic. It turns out that on this approach there is no need to
say (as Frege does) that descriptive terms are referentially ambiguous:or to deny
(as Russell does) that descriptive terms represent self-contained wunits of meaning.
There is also no need to tolerate (as Montague does) exceptions to the Principle of
Functionality. The notion of an ordinary (i.e., ‘non-intensional’) context is explicated
exclusively in terms of logical structure and it is argued that two aspects of ordinariness
(termed ‘hospitality’ and ‘exposure’) must be distinguished.

0. Introduction

A great deal of recent logical research has revolved around the discon-
certing fact that the plausibly looking argument form

(%) The ¢ = the y; A(the ¢/z) .". A(the p/?)

[where A(Z/[z) is the result of substituting Z for free occurrences of z in the
sentence matrix A] is invalid. For let ¢ be ‘man who lives next door’
and y ‘man who runs the city’. Then although (x) is valid if A is ‘z is sick?,
it is invalid if A is ‘Muhammad Ali believes that 2 is sick’.

The fact is puzzling because it seems undeniable that whatever A
itself says about the unspecified individual 2z, A(the ¢/z) says about
the referent of ‘the ¢’ and A(the y/z) about the referent of ‘the ¢’. Thus
when those referents are one and the same, the latter two sentences are
bound to say one and the same thing about one and the same object.
How then can they differ in truth-value?

The conventional answer to the problem is to deny that an expression
like ‘the ¢’ or ‘the y’ is what it seems, namely a univocally referring term.
Some semanticists maintain that such a term never refers to anything,
that it does not represent a self-contained unit of meaning. Others grant
it the status of a referring term but insist that it refers ambiguously: it
designates one object in some syntactic contexts and a different object —
or nothing at aill — in other contexts.

According to Russell, the originator of the first of the two theories,
the subject matter of a sentence containing ‘the 3’ is not the unique
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individual (if any) instantiating ¢, but the property g itself. From a logical
point of view, the sentences ‘The ¢ is sick’ and ‘The y is sick’ are not
of the form ‘e is sick’ and ‘b is sick’; their logical (as distincet from syn-
tactical) form is represented by the formulas

(1a) (32 (Vo) (py
(Ib) (o) (V) (wy

no part of which names any individual. Similarly, the logical form of
‘Ali believes that the ¢ is sick’ and ‘Ali believes that the v is sick’ is (on
at least one reading)

2)& z is sick)
2)& 2 is sick),

i

Y
Y

(2a) - Ali believes that (32)((Vy)(gy
(2b)  Ali believes that (3z)((Vy)(yy

Y =2)& 2 iy sick)
Y =2)& 2 is sick),

I

where the only name of an individual is ‘Ali’. The logical form of ‘The ¢
= the y’, aceording to Russell, is not ‘a = b’ but

(3) ) (V) oy = .9 =)&(Vy)(yy = .y =2)}.

It is easily seen that while (3) and (1a) imply (1b), (3) and (2a) do not
imply (2b). '

Frege, the originator of the second of the two theories, did not question
the status of ‘the ¢’ and ‘the ¢’ as names, but maintained that they are
ambiguous. The reference of ‘the ¢’ in A(the ¢/z2) depends, according to
Frege, on the nature of the context A: if A is ‘2 is sick’ or ‘2z = x’, for exam-
ple, then ‘the ¢’ refers to the only individual (if any) instantiating ¢;
if A ig ‘Ali believes that z is sick’, the same term refers rather to an abstract
entity which Frege calls the (ordinary) sense of ‘the ¢’. On Frege’s view,
(=) is a perfectly valid inference schema. But, as with any such schema, one
must beware of equivocation. If A is ‘Ali believes that # is sick’, the term
‘the 3’ means one thing in the firgt premise and a completely different
thing in the conclusion. Thus the fact that in this case the conclusion
does not follow from the premises is nothing against the soundness of the
schema.

Neither of the two theories is satisfactory. Russell’s contention that
‘the ¢’ refers to nothing and is meaningless in isolation is difficult to square
with linguistic evidence, such as the facts that the term is invariably
pronominalizable and that it constitutes, by itself, a complete answer to
a question (e.g., “Who is sick ?’). Besides, Russell’s procedure for eliminating
such terms fails when applied to sentences expressing notional attitudes
like ‘Ali contemplates the ¢’, ‘Ali worships the ¢’ and the like, where the
descriptive term carries no existential import and yet does not oceur in
a subordinate clause.

Frege’s theory is also highly implausible. The term ‘the man who
lives next door’ does not seem ambiguous and does not seem to undergo
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a change in meaning when transplanted from ‘The man who lives next
door is sick’ to ‘Ali believes that the man who lives next dcor is sick’.
Indeed the two sentences can be conjoined and the second oceurrence of
the term pronominalized to avoid the anaphora: ‘The man who lives next
door is sick and Ali believes that ke is’. But if Frege is right, the ‘he’ has
no semantic antecedent to refer back to: what it refers to (namely a sense)
does not receive reference in the foregoing context.

There is a simple way of avoiding the shortcomings of the two theories
while refaining all their virtues. We have seen that Frege construes
‘the ¢’ as a name of a sense when it appears in special contexts like ‘Al
believes that...’. It is widely agreed that Frege’s Sinn is best explicated
as what in possible-world semantics goes by the name of intension: a func-
tion taking world-times to objects of some type. In particular, what
Frege calls the sense of ‘the ¢’ is plausibly seen as a function taking each
world-time to the unique individual (if any) which instantiates ¢ in that
world at that time. The function is fittingly spoken of as the office of the ¢,
and its value at & world-time ag the holder or occupant of the office in
that world at that time. It is thus this function or office that the term
‘the ¢’ refers to in epistemic and other ‘oblique’ contexts according to
this interpretation of Frege’s theory. Now all we need to do to remedy the
shortcomings of the two semantic theories under consideration is to
transfer this brilliant insight of Frege’s to all cther contexts. Why not
say that in the sentence ‘The man next door is sick’ the deseriptive term
also refers to the office of the man next door? Note that this move immedia-
tely resolves the anaphora problem mentioned above. But it forces itself
upon us on independent and much more general grounds.

It is hard to deny that the sentence tells us something about the office
of the man who lives next door: it tells us that the office has a sick holder.
The sentence cannot possibly be true without the office satisfying this
condition. It tells us, on the other hand, nothing at all about Ali, who,
we may suppoese, is the only man who lives next door. In particular, the
sentence does not tell us that Ali is sick, for it is perfectly possible for
it to be true without Ali being sick. It does not tell us that Ali lives next
door either, for it is perfectly possible for the sentence to be true without
Ali living next door. And it is hard to see what other information about
Ali the sentence might possibly have to offer. Russell was thus right in
maintaining that the term ‘the man who lives next door’ is not a name
of Ali even if it is Ali who lives next door. A name of an object in a sentence
which has nothing whatsoever to say about that object would clearly be
out of place.

Similar considerations apply to identity sentences like ‘The man who
lives next door is (identical with) the man who runs the city’. Frege was
puzzled by the fact that such sentences are factually informative and
to resolve the puzzle he proposed his famous theory of Sinn and Bedeutung.

2 — Studia Logica 3/8
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It is quite remarkable how long it has gone unnoticed that Frege’s
theory does not solve the problem at all, for it leaves us with no coherent
account of the assertive content of such sentences. To see this, suppose
that Ali is unique not only in living next door but also in running the city.
Clearly any semantic account of the sentence “The man who lives next
door is the man who runs the city’ must yield an answer to the question,
Does the sentence convey any information about Ali? If Frege’s answer
is in the negative, has owes us an explanation of his insistence that the
sentence contains two names of that man. If, on the other hand, the answer
is in the affirmative, we are surely entitled to ask exactly what it is that
the sentence tells us about Ali. Should it be replied that the information
is to the effect that Ali is identical with himself, we would be back at
square one with puzzle still unexplained. And should i tbe replied that
what the sentence tells us about Ali is [perhaps inter alia] that he runs the
city, the question arises as to how it is that no amount of deductive in-
genuity will coax this information from the sentecnce.

But a perfectly natural aceount of the factual content of the sentence
suggests itself. The sentence conveys information about two offices, that
of the man who lives next door and that of the man who runs the city. It
gives us no clue as to who occupies those offices. But it tells us nevertheless
something about them that might not have been the case: namely that
they are co-occupied, that some individual or other holds them both.
We have seen that an office is a function whose value at a world-time is
the occupant (if any) of the office in that world at that time. The assertive
content of an identity sentence like the one just considered is simply to
the effect that two such functions happen to take the same value in the
actual world at the present time. Note that, quite generally, when two
funections are said to take the same value at a certain argument, it is the
functions themselves that are being stpoken of, not the common value of
those functions at that argument. When we are told that tan 45° = cot45°,
for example, we learn something about the tangent and cotangent funetions,
not about the number one, which is the common value of those functions
at 45°

Thoge followers of Frege who might agree with our analysis of the
agsertive content of the sentence “The man who lives next door is the
man who rung the city’ are saddled with the problem of squaring the
analysis with their view that the terms flanking the identity copula ‘is’
are names of Ali, Why is it that a sentence whose sole purpose is to tell us
something about two objects of a certain kind contains no expressions
referring to those objects but contains instead not one but fwo names of an
object of a completely different kind, one which it has nothing to tell
us about at all? In other words, adoption of the analysis renders it quite
untenable to resist the obvious move of construing the terms “the man who
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lives next door’ and ‘the man who runs the city’ as names of the respecti-
ve offices?.

Once made, the move results in a radical simplification of semantie
theory. The fallacious dogma that a descriptive term normally serves
to refer to the object (if any) which answers to the description is so en-
trenched that most semanticists no longer take it for a piece of theory
that it is, but for a brute fact that any theory must accommodate on pain
of inadequacy. Attempts to square the dogma with hard linguistic data
have lead to a cluster of spurious, ad hoc distinctions resulting in a chronie
obfuscation of semantic theory.

One case in point is Frege’s distinction between Sinn and Bedeutung,
which has itself gained the status of an unquestioned presupposition
of current semantic debate. Frege postulated the distinetion in an attempt
to reconcile the assumption that a descriptive term is a name of the
object described, with the undeniable fact that to understand the term
it is not enough to know which object it is. To solve the problem, Frege
aseribed the term two semantic functions: to refer to the object and to
express a Sinn. Once it is realized, however, that the term names what
Frege called Sinn, or something very much like it, the need to postulate
2 second dimension of meaning disappears. We ean say that the scle func-
tion of any meaningful expression is to name a definite object and that
to understand the expression consists simply in knowing which object
it is.

The recently popular distinction, due to Kripke, between rigid and
non-rigid designators can also be set aside. If the term ‘the ¢’ does not
stand for the only ¢-er but rather for the office of the only ¢-er, its designa-
tum is independent of world and time. We can say that all designators,
without exception, are rigid. A designator which stands for an object
in one world at one time, stands for it in all worlds at all times; or better
still, designation, i.e. the correspondence between names and what they
stand for in a given language, is absolute, not relative to world and time.
‘What a sentence of a given language says and what it says it about is
invariably an ¢ priori matter; extralinguistic facts only come in when it is
to be decided whether what the sentence says is the case.

Finally, the widely accepted distinction between so-called ‘referential’
and ‘non-referential’ contexts also turns out to be uncalled for. Authors
invoke this distinetion in order to deal with the problem raised by the
schema (x) and also with a related problem occasioned by the schema

{#x)  A(the ¢/z).". There is a z such that A,

1 Further arguments for this thesis can be found in [1]-[5]. For a detailed philo-
sophical defence, see [7].
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Having conjectured that a term like ‘the ¢’ refers in some contexts and not
in others, the authors then assert that (x) and (+#) are valid if A is a context
of the former kind (with respect to 2) and otherwise invalid.

Two flaws make this theory less than satisfactory. One is that it leaves
us in the dark as to what the semantic role of a descriptive term is in
contexts where it is said not to refer. The other, more serious, flaw is that
the theory is viciously circular. It invokes the notion of a referential
context to circumsecribe the class of contexts A for which (%) and (#*) are
valid. Yet the only explanation of the notion of referentiality it has to
offer is via () and (x*) themselves: a context is referential, we are told, if
the conclusions of () and (%) can be validly drawn from the premises. Thig
is hardly more enlightening than the theory that a substance will put one
to sleep just in case it is possessed of virtus dormitiva.

If the theory suggested above is correct, there are no contexts (other
than quotational ones) in which ‘the ¢’ fails to refer: the term invariably
refers to the office of the (only) g-er. There are no exceptions to. the Fune-
tionality Principle: what a compound expression refers to depends on only
one feature of its constituent terms, namely on what they refer to. A distine-
tion is to be drawn, of course, between contexts which generate valid
inferences of the form (*) and (*+) and those which do not. But it cannot
be drawn in terms of the alleged effect such contexts have on the semantic
behaviour of expressions like ‘the ¢’. Rather, it must be drawn in a Russe-
llian spirit, by reference to logical structure, i.e., to the mode in which
the fixed referent of the descriptive term is embedded in the logical con-
struction expressed by the whole context. The aim of the present article is
to develop a logical theory in which the distinction can be drawn rigo-
rously.

1. Frames

Logical problems can be given rigorous, mathematical treatment
only if they arise within a conceptual scheme which is itself mathematically
rigorous. In order to apply exact methods, therefore, we have to assume
that our conceptual scheme has been explicated, i.e., that it has been
specified exactly which objects belong to our universe of discourse, exactly
which systems of extensions for our concepts are to count as logically
possible, efe.

The conceptual system in which we actually think has not, needless
to say, been explicated in this way. Hence to make the above assumption
is to idealize the epistemic situation we find ourselves in. But idealization
has proven a fruitful method in natural as well as social sciences and there
is little reason to think that logic is an exception.

The notion of ‘frame’ introduced in this section is a mathematically
rigorous tool for explicating intuitive conceptual systems.
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A frame is a family of four non-empty collections, o, 7, ¢, and . Collec-
tion o has two elements, T (truth) and F (falsehood), called truth-values.
7 18 the linearly ordered collection of momenis of time; as moments of time
are uniquely representable by real numbers, T can be looked upon simply
as the set of reals. 1 and o differ from frame to frame; the elements of ¢ are
called individuals and the elements of w possible worlds.

Let B be the frame {o, 7, t, }. Each member of B is called a fype
over B. Moreover, if £, ..., £ and 5 are types over B then the collection
(n&t... &) of all m-argument (total and partial) functions from &, ..., &
into  is also a type over B. (Nothing is a type over B unless it so follows
from the above2) Elements of a type & over B will be called &-objects
over B.

For any type &, (of)-objects will be also called &-classes, (&7)-objects
&-chronologies, and ({&r)w)-objects &-intensions. o-intensions are also known
as propositions, and their type ((or)w) will be written, alternatively, as
73 (0&)-intensions are also known as properties of £-objects, and (0 ... &™)-
-intensions as m-ary relations of objects of the types £1,..., &%,

For the sake of a simple example, ¢onsider the miniature frame B, consist-
ing of o,7,:, and o, where ; has two members, X! and X2, and o has also
two members, W and W2, The function 0! which takes X! to T and X2 to F,
and the function 0% which takes both X! and X2 to F, are two of altogether 9
t-classes over B,. The function D! which takes every moment of time to T, and
the function D? which takes all moments prior to 1/1/1985 to T and all other
moments to F are two of continuum many o-chronologies over B,,. The function
P! which takes both W' and W2 to D!, and the function which takes W' to DV
and W2 to D?, are two of continuum many propositions over By. The function
! which takes all moments to €%, and the function E? which takes all moments
prior to 1/1/85 to O and all other moments to 02, are two of continuum many
(ot)-chronologies over B,. The function G* which takes W' to E* and W?2 to B2,
is one of continuum many :-properties over Bl

A &-intension I is said to be embodied by &-object X at time 7' in world W
iff I takes W to a &-chronology which in turn takes 7 to X. X ig said to
instantiate property § in W at T iff § is embodied, in W at T, by a class
which takes X to T. X is said to bear relation R to Y in W at T'if R is
embodied, in W at 7, by a function which takes X and Y to T. Finally,
a proposition P is said to be true (or false) in W at T if it is embodied, in W
at T, by T (or F). A class of propositions is said to imply proposition P
iff P is true in every world at every time at which every member of the
clags is true. :

2. Explication

A pretheoretical conceptual scheme consists of intuitive concepts
which ean be looked upon as various features or traits which objects of
various types can have or lack (either absolutely or relative to other

# Indirect clauses like the present one, which should, strictly speaking, be part
of every induective definition, will be omitted in what follows.
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objects). A collection of such features will be called intensional base. To
explicate an intensional base in a frame B = {o, 7, ¢, ®} is to assign to
each world-time couple (i.e., to each couple consisting of a member of w
and a member of 7) a unique, fully specifie distribution of those features
through the objects of appropriate type over B. Such an assignment is
called an explication of the intensional base in B. An intensional base
together with its explication in a frame form an epistemic framework.

For the sake of a simple example let us congider the intensional base whose
only member is the notion of belief, the intuitive relation which an individual
bears to the propositions he aceepts as true. Let us explicate this base in the
miniature frame By, All we have to do is to stipulate which individual believes
which proposition in which world (over B,). Let us stipulate as follows: in W1, X*
always believes Pl and X2 always believes P2, and in W2, X* believes P! until
1/1/85, then changes his mind and believes P? instead, while X? always believes
P2, Qall the epistemic framework thus defined F.

By specifying which particular, intuitively understood, course of
events is represented by each member of w, an explication gives intuitive
content not only to the possible worlds but also to every intension over
the frame. In particular, it specifies exactly what condition an object
must satisfy to instantiate a given property, or to bear a given relation
to another object. Most importantly, it specifies for each proposition over
the frame under what circumstances it comes out true; in other words, it

specifies exactly what those propositions say.

In the framework F, an individual instantiates G just in case he believes
proposition P*; P! is true just in case (and hence says that) X2 believes P%;
and P? is true just in case (and hence says that) X! believes P!. Observe that
a unique (o0uw),,-0bject i a rigorous counterpart (the explicans in F, of} the
intuitive concept of belief (the emplicandum): it is the (unique) relation which in
W1 is borne at all times by X! to P! and by X? to P2, and which in W2 is borne
by X! to P! until 1/1/85 and then to P%, and by X2 at all times to P2,

Let us assume that an epistemie framework F has been fixed; we can
then speak simply of types, objects, etc., meaning types, objects, ete. over

the frame F.

3. Constructions

Objects can be arrived at, singled out, or, as we shall say, constructed
by means of other objects. For example, if F is a function which is defined
at X, then a definite object, namely the value of ¥ at X, can be arrived
at or singled out by applying F to X ; we shall speak of the application of ¥
to X as a specific construction of that object.

For each type & there is an infinite supply of variables ranging over
g, called &-variables. An assignment of an object of appropriate type to
each variable is called a valuation. If o is a valuation and X*,. .., X™
objects of the same respective types as the distinct variables #%, ..., 2™
then »(X1, ..., X™/a!, ..., &™) is just like v except for assigning X*, ..., X™

respectively to 2%, ...,a™.
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Objects and variables will be called, coliectively, afoms. Atoms can be
combined into constructions. Constructions, their types, ranks, and what
they construct are defined as follows. Any atom of type & is a &-construciion
of rank 03 a &-object v-constructs itself and a §-variable v-constructs the
£-object assigned to it by the valuation ». Let X° X1, ..., X™ (0 < m)
be constructions of the respective types (n&'... &™), &, ..., &*. Then the
application [X0X!...X™] of X° to X1I,..., X™ is an #5-construction of
rank r+1, where 7 is the largest among the ranks of X°, X1, ..., X™,
[XeXt.,,X™] ig v-improper (i.e., constructs nothing on v) if one of
Xo, X1, ...., X™ ig o-improper; otherwise let X°, X*,..., X™ be the
cbjects v-constructed by X0, X1, ..., X™ respectively. If X° is not defined
at X0, ..., X™ then [X°X! ... X™] is v-improper; otherwise it v-construcis
the value of X° at X%, ..., X™. Let Y be an %-construction of rank r and
@i, ..., 4™ (0 < m) distinet variables of the respective types &',..., &".
Then the closure [Az' ... 2™ Y]of Y on #?, ..., 2™ is an (5&'... §™)-construc-
tion of rank r 41 and v-constructs the following function F': for any objects
X1, ..., X™ of the respective types &, ..., &,if Y is o(X1, ..., X"/, ...
..., @™)-improper then F is not defined at X1, ..., X™; otherwise the value
of Fat X1, ..., X™is the object (X, ..., X™/x1, ..., 2™)-constructed by Y.

The use of letter types exemplified by the foregoing paragraph will
be adbered to in the rest of the paper. In particular, capital Romans
will be used to refer to unspecified constructions, small Romans to unspeci-
fied atoms, capital italies to unspecified objects, and small italics to un-
specified variables. (Small italies will be also used as numerical variables,
but no confusion will ensue.) Small Greek letters other than ‘o’, ‘7, ¢/, ‘a’,
and ‘e’ will be used for reference to unspecified types. Brackets will be
omitted wherever no misunderstanding can arise. A dot will represent
a left-hand bracket whose right-hand mate is to be imagined as far to the
right as is compatible with other pairs of brackets.

Let 21, ..., 2™ be distinct and let Z2, ..., Z™ be of the same respective
types. By A(ZY,...,Z™[,...,2™) we shall understand the result of
supplanting the free occurrences of 2° in A by Z?, for each 1 < s < m.
Z is said to be free for z in A if no free occurrence of 2z in A is part of an
occurrence of Axl...s™Y, where one of !, ..., 2™ is free in Z. It is not
difficult to prove® the following

3.1. THROREM. (ZY, Z%, 2Y/CY; ... 2™, 27, "™ If for 1 <s<m,
77 is free for 2° in A and Z° v-constructs Z°, then A(ZY, ..., Z™ /2%, ..., 2™).
v-constructs A if and only iof A v(Z2, ..., Z™ [, ..., & )-constructs A.

In view of 3.1, constructions conform to the following Functionality
3 For a proof, see [6].

4 The notation ‘Z1, Z1, 2/ ...;Zm, Z™, cm (™ iy short for: ‘Z!, Z', and 2%
are {l.constructions;...; Z™,Z™, and 2™ are (™-constructions’.
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Principle: a construction which contains some subconstructions depends,
for what it constructs, on a single feature of those subconstructions,
namely on what they construct. Briefly, what a construction constructs
is a function of what its subconstructions construdét.

4. Linguistic constructions

We shall now define a certain elass of constructions over the framework
F. Constructions belonging to the class will be called ‘linguistic’, because
the expressions of a typical language serve to express constructions of
thig sort. In this section, however, we do not consider any particular
language; the Section is, of course, written in a definite language (English})
but what it deals with are constructions themselves, in abstraction from
the way they may be expressed in any particular system of communica-
tion.

Let w be a fixed w-variable and ¢ a fixed z-variable. w and ¢ will be
set aside to play a special role in combining linguistic constructions into
compound ones. It will be convenient to adopt the folowing notational
conventions: for any construction X of appropriate type, X, X,,, and
X, are [Xw]t, Xw and Xt respectively; X ), X gy X,y and X o are
X, Xy X4y and X respectively; similarly for types: &, &,, and £, are
(1) o, (67) and (Ew) respectively; &g .y, &n0) 1y 20 &y are &,
&, &,, and & respectively. The class of linguistic constructions is defined
inductively as follows.

4.1. DEFINITION. Every atom other than w or t is a linguistic con-
struction. Let each of 4, j, ¢°, j° (1 << s < m) be either 0 or 1. If 2°, 27, ...
ooy ™ are linguistic constructions of the respective types (n&'..., £%)y0 0,
5(151',51), veey f?}m’im), then
() Jwdt. Eio j0, K gty -+ Xim, jm)
is also a linguistic construction. Moreover, if @ is a linguistic construction
of type 0, and #, ..., ™ distinet variables other than w or ¢ then

(IT) Iwddxt ... Y ; ;)
is also a linguistic construction.

Capital seript letters (7, #,...) will be used to refer to unspecified
linguistic constructions. It is readily seen that any linguistic construction
is o-proper, and that w and ¢ are not free in it. For each 0 < s < m, the
displayed occurrence of Z° in (I) is a main constituent of (I), and (3%, §°)
is the supposition of that main constituent. Similarly, the occurrence of
% in (II) is the main constituent of (II) and its supposition is (i, j).

For the sake of illustration we shall consider an epistemic framework
{0, t, 7, w}, rich enough to contain objects A/t, 8/(0t)rw, B/ (0t)rews, B[ (0tt)z0r
such that A is Muhammad Ali, § is the property (i.e., the explication in the
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framework of the intuitive notion) of being sick, B is the relation (i.e., the
explication in the framework of the intuitive relation) whieh obtains between
believers and the propositions they believe, and ¥ is the relation (i.e., the expli-
cation of the intuitive notion) of weight equality. Moreover, let V/o(ot) be the
class of void :-classes (i.e., of those classes over the framework which have no
members), and let F be the the function which takes every time T to the class
of o-chronologies which are frequent at T'. For definiteness, let us call a o-chro-
nology (a class of times) frequent at time 7' if for any time 7" within six months
of T, at least one time within a week of 7" belongs to the o-chronology.

Let # and # be distinct variables of type ¢. According to the first clause of
4.1, each of w,2, 4,8, B, H,V, F iz a linguistic construction. By one or more
applications of the inductive clauses, the following constructions #'-° are
also linguistic:

(£ Awit. By 2

(£2)  dwht. Fy[Awlt. Sy 2y

(Z®) Atz [Awrt .y [Awit . Sy @l s

(£Y Awit JiwiAz . Fy [AwAt. Sy 2Ty hoe 2

(£5) Awit . By Adwit . 8 m

(£%) Jwdtde . By AIwit . Sy

(#7) Jawht. [Aw2tdw . Bup AAwit . Sy @l 2

) Jwhtdae [AawAt . By 02y

(£?) 2wt V [JawAtdx [AwAl . By 22 Lt e

P 22, 2t 5 27 and &0 are of the form (I); in #5 m is 2 and in the others 1.
#8 and %8 are of the form (II) with m = 1. The main constituents 8 and # of
2! have the respective suppositions (1,1) and (0,0). The main constituents F
and #! of #2 have the respective suppositions (0,1) and (1,0), the main consti-
tuent #2 of #% has the supposition (1,1), ete.

Let v be an arbitrary valuation which assigns individual Z to 2. Then the
above linguistic constructions v-construct the following objects: #* — the
proposition that Z is sick, %2 — the proposition that it is frequently the case
that Z is sick, %3 -— the property of being frequently sick, #* — the propo-
sition that Z has that property, #3 — the proposition that Ali believes that Z
is siek, ¥6 — the property of being believed by Ali to be sick, #7 — the proposi-
tion that Z has that property, .#8 — the property of being equiponderous with
Z, and ¥% — the proposition that the property has a void extension.

5. Hospitality

We shall say that supposition (7, j) is (weakly) deeper than supposition
(k, 1), symbolically (k,1) < (i,]), if k<4 and 1<j.

5.1. DEPINITION. Let 2z be a variable other than w or ¢. If &/ is of
rank 0, then z is (k, 1)-hospitable in o if 2z is not /. Now let </ be of rank
greater than 0. Then z is (k, l)-hospitable in </ if each main constituent
of &« In which z is free either is z itself and has supposition (6, 0) or has
supposition (weakly) deeper than (k, 1) and z is (%, I)-hospitable in it.

For example, in £, #%, #4, and #5-9°, z is (&, l)-hospitable for any %
and 7 (< 1). In #2 ¢ is (1,0)- and (0,0)-hospitable only and in %3 it is (0,0)-hospi-
table only.
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It is easily checked that if 2z is (%, I)-hospitable in o/ nad Z,y 18 of
the same type as 2, then /(& ,/?) is also a linguistic construction.
For the sake of illustration, let M/, be the office of the mayor. Then

LY Myyfe) is Awlt. Sy My and constructs the proposition that the mayor is
sick,

L2 (Mys/2) is Awit. Fy[AwAt. Sy Myl and constructs the proposition that it is
frequently the case that the mayor is sick

L My /2) is Awdt. [Awitde . Fy [AwAb. Syy#wlwt Moy and construets the proposi-
tion that the mayor is such that it is frequently the case that he is
sick (the de re counterpart of the foregoing proposition)

L5 (Myfz) is Awit. By AAwll. 8y My, and construets the proposition that Al
believes that the mayor is sick, and

LU Myilz) is Awit. [Awitdas . By AAwrt. Syl My and constructs the propo-
gition that the mayor is such that Ali believes that he is sick (a de re
counterpart, with respect to M, of the foregoing proposition).

For any type &, let =* be identity between &-objects, i.e., the total
function of type 0£& which takes T at all and only at couples of the form
X, X (for some &-object X). We shall econform to the universal practice
of writing X =Y for =% XY. Linguistic constructions of the form iwit.
Loy = ff{,c,’,,) will be spoken of as identity constructions.

For example, iwl. A=A4, wit.A=DM,,;, and Awit. N, =M, , where N
is the office of my next-door neighbour, are identity comstructions. They con-
struct the respective propositions that Ali is Ali (or, equivalently, that Ali is
Cassius Clay?®), that Aliis the mayor, and that my next-door neighbour is the

mayor.
The symbol ¢.°.” will be used to indicate that for any valuation », the

propositions v-constructed by the constructions named to the left of it
imply the proposition v-constructed by the construction named on the
right.

The following is an easy consequence of Lemma 10.6 (proven in Section
10).

5.2. THEOREM (o [n; &[5 £ e s 2105 0< K, 1, B,V <1). Let
Z and Z' be free for z in 7 and let z be both (k,1)- and (k', 1')-hospitable
in . Then

Mokt Z gy = Zwewyr L (Z e l?) S (Z o) 7).

To illustrate, let us recall that z is (0, 0)-hospitable in #'. Hence by 5.2,
Awlt. A=A, $1(Ajz. .21 (4/2); and indeed, from the premises that Ali is
Cassius Clay and that Ali is sick one can validly conclude that Clay is sick.
Ag z is (1,1)-hospitable in 2! we have Awlt. 4 =My, L1(A[2) . L ( Myf?)
and Awdt. Nyg= My, L (Nyy/2) o L1 (M, /2); and indeed, from the premises
that Ali is the mayor and that Ali is sick, as well as from the premises that my

5 The propositions that Ali is Cassius Clay, that Cassius Clay is Cassius Clay, and
that Ali is Ali, are, I take it, one and the same, speaking, as they do, of one and the
same person (Ali) and saying the very same about him (that he is identical to himself).
But see Section 8.



Indiscernibility of identicals 263

neighbour is the mayor and that my neighbour is sick one can safely conclu-
de that the mayor is sick.

To see the importance of the theorem’s hypothesis, recall that z is not
(1,1)-hospitable in £2; thus neither Awlt. 4 =M,;, L2(4d/z. L2(My/¢) nor
wlt. Ny =My, L2 (Noyp/2) 5. L% (Myy/z) is an instance of 5.2. It is readily
seen that the eorresponding inferences are indeed fallacious: from the premise
that Ali (or my next-door neighbour) is the mayor and that it is frequently
the case that Ali (or my next- door neighbour) is sick it does not follow that
it is frequently the case that the mayor is sick; if the period of Ali’s (or my neigh-
bour’s) mayorship is sufficiently brief, the premisses may well be true and the
conclusion false.

In the de re construction %%, on the other hand, # is (1,1)-hospitable, hence
both Awii. 4= Myy, L2 (A[2) . LY (Myyfz) and Awit: Nyy= M, L (Nyy/2) . L*
{My/2) are cases of 5.2, And indeed, from the premises that Ali (or my neigh-
bour) is the mayor, and that Ali (or my neighbour) is such that it is frequently
the case that he is sick, one can safely conclude that the mayor is such that
it is frequently the case that ke is sick.

It is left to the reader to check that similar comments apply to the con-
struction #% and its de r¢ companion .#7.

6. Exposure

6.1. DEFINITION. If =7 is 2,z is exposed in of. If o/ is (I) [see 4.1]
and either z is exposed in one of 2°, 1, ... &,™, or &0 is of the form (IT),
and z is distinet from %, ..., 2™ and exposed in ¥, then z is exposed in 7.

For instance, z is exposed in %1, %2, 24, #5 and .7, but not in #8 or 9.
It is readily seen that if 2 is exposed in &/ then 2z is free in .

For any type &, let Z* be the existential quantifier over £-objects, ie.,
the total function of type o(o&) which takes T at a &-class just in case the
class is not empty. Where I is a o-construction and 2 is a {-variable, we
shall write (32)I for X%[AwAtdeI],,. Linguistic constructions of the form
Awit.(dz) o, will be spoken of as existential constructions.

The following are examples of existential constructions: Aol () 2L,

which constructs the proposition that at least one individual is sick, Awii. (32) 2%,
and Awit. (32) £4,, both constructing the proposition that at least one individual
is such that it is frequently the case that he is sick, Awit. (32) .25, and Awit.(Iz) Ll
both constructing the proposition that at least one individual is such that Ali
believes that he is sick, and Awit.(32)%,,, which constructs the proposition
that at least one individual is such that the class of individuals equiponderous
with him is void.

The following theorem follows easily from Lemma 11.6 (proven in

Section 11). :

6.2. THEOREM. (o [m; Z[041;2/0;0<Fk,1<1). Let & be free for
zin </ and let z be exposed and (1,1)-hospitable in 7. Then

A(Z gpl?) - dwdb . (T2) oL,
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To illustrate, let us recall that z is exposed, (0,0)-hospitable, and (1,1)-
-hospitable in #1. Hence by 6.2, both £1(4/z) .. wit.(3e) L., and LM, /0 .-
Jwit. (d2) £L;. And indeed, the conclusion that at least one individual is sick
is validly drawn from the premise that Ali is sick, as well as from the premise
that the mayor is sick. In %% ¢ is exposed, (0,0)-hospitable but not (1,1)-hospi-
table; henee while #2(A[z) .. Jwht.(Ae) Z2, is a case of 6.2, L2 My,/z) .
Jwit. (F2) £L, is not. The proposition that there exists an individual such that
it is frequently the case that he is sick, clearly follows from the premise that it is
frequently the case that Ali is sick. But it does not follow from the premise
that it is frequently the case that the mayor is sick: if the office of the mayor
changes holders often enough, the premise may be true and the conclusion
false. In 5, ¢ also fails of (1,1)-hospitality; hence #5(My/z) .. Awit. (=) &5,
is no instance of 6.2 either. As is eagy to see, from the premise that Ali believes
that the mayor is sick one cannot safely conclude that there is an individual
such that Ali believes that that individual is sick; for if Ali does not known
exactly who holds the mayoral office (especially if the office is in fact vacant)
the premise may be true and the conelusion false. In #® z is (1,1)-hospitable, but
not expoged. Thus 6.2 does not endorse the inference £9(Myy,/2) . Awit.(J2) Ly, .
And indeed, from the premise that the class of individuals who are equiponderous
with the mayor is empty it by no means follows that there is an individuaal
sueh that the class of those equiponderous with him is emypty; for if the office
of the mayor is unoccupied the premise is true and the conclusion is false.

7. Languages

To tell someone that Ali is sick I must somehow draw his attention
to the construction Awit.S,,A. Communiecation is exchange of linguistic
constructions over a frame.

Most constructions (variables and constructions of rank higher than 0)
over a frame are not &-objects over the frame for any &, and neither are
relations between individuals and constructions. Hence if communication
is to proceed within the frame in question, constructions must be coded, i.e.
represented by objects over the frame. Individuals can then communicate
constructions indirectly by relating themselves to the representing objects.

The generality of our considerations will not be diminished if we
restriet ourselves to numerical codes, i.e., to codes in which constructions
are represented by numbers. (Codes of other sorts are easily reduced to
numerieal codes via Godelization.) Thus, by a code over {rame F we shail
understand a mapping of a class of numbers (7-objects) into the class of
constructions over F. If Q is a code which takes number N to a construc-
tion, then N is said to be a code number of the construction in Q.

A typical code Q is many-one: it assigns, in some cases, one and the
same construetion to more than one number. Two code numbers of the
same construction will be called Q-equivalent. An arithmetical function
is a syntactic function relative to Q if it preserves Q-equivalence; in other
words, if it takes Q-equivalent values at Q-equivalent arguments.

If N is a code number in Q of a construction which is closed and con-
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structs object X, then N is also said to be a name of X in RQ, or briefly
a Q-name of X.

For any type & let Q° be the function which takes a number N to
&-object X iff N is a Q-name of X. Although [Q itself is not an object
over the frame, QF is and has type &r. Numbers at which Q7 is defined
are called Q-sentences. A sentence is Q-true if Q° takes it to a true proposi-
tion.

By itself a code is not yet a communication system. In order to commu-
nicate a construction by means of its code number, a communicator must
somehow single out that number, or, as we shall say, he must display it.
Ag there are many different methods of displaying numbers, some incom-
patible with others, a particular communication system is not specified
until one such method is fixed upon, i.e., until it is agreed exactly what
it takes for any given individual to display any given number at any given
time. Any such agreement can be represented by what will be called
a display operation, an operation which, in any world at any time, takes
each individual to the number, if any, he displays in that world at that
time. A display operation is thus simply an object of type (v¢),, over the
frame in question.

An ordered couple of the form (2, D), where {Q is a code and D a display
operation, will be called a language (over the framework in question).
£ 18 the semantic component of the language; it determines which objects
are meaningful in the sense of signifying constructions. D is the pragmatic
component; it determines how a user of the language must relate himself
to such a meaningful object in order to communicate the construction
signified by it.

In the English language, code numbers are displayed by uttering or in-
sceribing finite sequences of phonemes or graphemes, called ewpressions. For
example, by saying or writing ‘Muhammad Ali’, any person can display a name,
say U, of Muhammad Ali, and by saying or writing ‘Cassius Clay’, any person
can display another name, say V, of Muhammad Ali. By saying or writing ‘T°,
any person can display a name of himself; let I€ be the function which takes
every person to the name so displayed.

Modes of combining English expressions into compounds correspond to
syntactic functions. For example, any person who can display a name of an
individual X/ by uttering or inscribing expression X and a name of individual ¥
by uttering or inscribing expression Y, can display a code number of the identity
construction Awii.X = ¥ by utbering or inscribing the concatenation of X
with ‘i¢’ and Y. Let H® be the syntactic function which takes any two such
names to the corresponding code number of the identity coastruction.

8. Linguistic attitudes

Relations which individuals bear to numbers qua names of a language
are called linguistic attitudes. A typical linguistic attitude is the assert-irue
relation, the relation which an individual bears to a sentence he displays
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with the intention that his audience accept it as true. Another example
is the believe-true relation; it is the relation which an individual bears to
a sentence he displays to himself and considers it true.

Linguistic attitudes differ from propositional attitudes in logical type:
the propositional attitudes of assertion and belief are of the type (o¢n),,,
whereas the corresponding linguistic attitudes are of the type (o:7),,.
Linguistic attitudes also differ from their propositional counterparts in
being relative to languages. There is no assert-true or believe-true relation
simpliciter, only the assert-true relation with respect to a given language
(Q, D) — callit A®D) —  the believe-true relation with respect to (Q, D) —
call it B®D) — ete. One and the same individual may believe-true a senten-
ce as a name in one language but not as a name in another.

It is readily seen that there is no logical connection between the belief
and the believe-true relations. An individual who knows no language may
believe a proposition (Fido may believe that there is meat in the fridge)
without believing-true any name of that proposition in any language. On
the other hand, a language speaker who does not know, or is mistaken
about, which particular proposition is named by a sentence of the language,
may adopt the believe-true attitude to the sentence without believing the
proposition, and vice versa.

From the fact that someone takes the believe-true attitude to a senten-
ce, it does not follow that he takes the same attitude to every other sentence
which names the same proposition. The difference between propositional
and linguistic belief is thus also manifested in the faet that although

Moi. P = 2, okt By &P Jwil. By X2

is & valid inference form (indeed a case of 5.2), the linguistic counterpart
ol [t . QN Yy = [AwAt. Q"M Ny, Iwit. BSO XN 2 Jwit. BSGD Xl

is not. .

Let € be the English language. Does uttering (or writing) the verb ‘believe’
amount to a reference, in €, to the propositional attitude B:(as was taken for
granted in Section 4) or to the linguistic attitude B®?

Sometimes the reference is undeniably to B. When one says ‘Fido believes
that there is meat in the fridge’, one hardly implies that Fido is adopting a lin-
guistic attitude, or that he is capable of doing so. For all one says, Fido may have
no language at all.

On the other hand, if Ali is afflicted with amnesia one may wish to say that
although

(a)  Ali believes that Ali is Ali,

it is not the case that

(b)  Ali believes that Ali iz Clay

or that

(¢)  Ali believes that he himself is Clay.

Yet the proposition that Ali is Ali is the same ag that Ali is Clay. It is clearly
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not this proposition that Ali has forgotten. His problem rather is that he has
forgotten that he is called ‘Clay’; as a result, he does not know that the sentences
displayable by him by means of the expressions ‘Ali is Clay’ and ‘I am Clay’
stand for that proposition. Thus (a), (b), and (¢) must in this case be construed
as reporting Ali’s linguistic attitude to these different sentences. They must be
construed as expressive of the constructions

(a%)  Jwit.BCA[dwit . HEU Uy,
(b*)  Jwit.BEA [Awit. HEUV Iy
(c*)  Awit.BCA [Jwit. HE [hwit T ALy Vet

The propositions constructed by (a*), (b*), and (¢*) are logically independent.

9. Natural deduction for partial type logic

The aim of the last three sections is to prove the lemmas appealed to
in connection with Theorems 5.2 and 6.2. The present section gives an
exposition of a deductive system which is then applied in Sections 10
and 11 to prove the respective Lemmas 10.6 and 11.6.

An ordered couple whose first component is a &-atom a and whose
second component is a &-construction A, symbolically a : A, will be called
a match. Valuation v is said to safisfy a: A if a and A v-construct one
and the same object. We shall also allow for matches whose first compo-
nent is missing, symbolically :A. Valuation v satisfies :A just in case A
is v-improper. Two matehes are said to be patently incompatible if they
are of the form A4':A, A?: A, where A and A2 are distinct objects,
or of the form a : A, :A, Patently incompatible matches are clearly never
satisfied by one and the same valuation. If 9t is a : A then x is free in I
just in case « is free in a or Aj; moreover, I (x:,...,x"/zt..., 2™) is
a(xly oo, 2@, oo, ™) A(RY, L, XM, L, 2™) IE I8 :A then o s
free in M just in case x is free in A; moreover, M(x, ..., x" [z, ..., 2™)
is tA (x1, .., XY, ..., 2™). I @ is a class of matches, x is free in @ just
in case it is free in at least one member of @; moreover, &(x, ..., x"[r!, ...
..., &™) i3 the class of matches of the form I (x!, ..., x"/z1, ..., 2™),
where 9 is in @. '

A couple whose first component is a finite set @ of matches and whose
second component is a match I is called a sequent and symbolized thus:
O—IP. We shall write ML, ..., M"->IM for N, ..., M"}->M.O-M
is valid if every valuation which satisfies all members of @ also satifies 9t.

In what follows we shall state a number of validity-preserving operations
on sequents, called rules of derivation. Rules of derivation will be stated
in the following form:

DM ; D2IN2; ... 5 OF | DM

The rule says that whenever the sequents to the left of the double slash
are valid, so is the one on the right.
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The definition of validity and 3.1 justify the following rules of deriva-
tion (the type distribution being as follows: f, £, g, F/n& ... &; o1, x1, X1/.
[0 50™, X", X"y, y, Y [n):

91  [[/®->I provided M belongs to D.
9.2 ¥/ /O provided ¥ is a subset of .
9.3 D,N->M; DN/ [DP->M

94 Jly:vy
9.5 O 9-Q%[P->M provided Q' and Q? are patently incompa-
tible.

9.6 @,:Y->M;P,y:Y/[//d>IM provided y is not free in &, Y,IM.
9.7 Py :FX1... X", @,f:F,at: X, ..., 2" : X"/ [O->IN provi-
ded f, #', ..., 2™ are distinct and not free in &, F, X1, ..., X™, Ii.

9.8 D=y :FX1.,. X" @xl: X, ; O>x": X"y : Fx1.,. X",

9.9 &>y :Fx'...x"; O->x1: Xt ... ; Ox": X"[/D->y: FX1, K X™,

910 @,y:fxt.. ">y :grt... a2 Doy igat.. gy cfat L. ™)
||@->1f : g provided «*, ..., 2™, and y are distinct and not free in
D,1,¢.

911 @, f: ... 2" Y >IM//O—-IM provided fis not free in @, Y, and M.

912 Oy :[lpt... 2"Y]X ... X" />y : XY (XL, ..., XM 2L, ..., &™)
provided for 1 < s < m, X°is free for 2°in Y.

013 P-x1: XL .. ;0" X7 Oy Y (XD, ..., XP 22, ..., ™)/
Dy [ ... a™Y]XL... X" provided for 1 <s<m, X® is free
for 2° in Y.

Where R is a class of rules of derivation and H a class of sequents,
we shall write H/;S to say that the sequent & is derivable from members
of H by means of members of R. Moreover, we shall write &, ..., @"/zS
for {&1, ..., G"}/;G.

In the rest of this section ¢/’ shall stand for /i ;_g 5. 1t 18 easy to show
that
914 O-MW/D(xL, ..., x" L, ..., ™) I, ..., X2, ..., ™) prOVI-

ded x!,...,x™ are free for 2!, ..., ™, respectively, in 9 and in
every member of @.

In what follows, by @ {A<-.B} we shall understand the couple of sequents
O, x:A»x:Band &,x:B->x: A, and by @{A<-B} we shall understand
@ {A <, B}, where z is the first variable of appropriate type which does not
occur in @, A or B. The following are simple derivability results listed for
future reference®.
9.15 [D{Y<Y}
9.16 O{Y'«Y?%; O{Y2<-Y?} /D {Y1<Y?}
9.17 O{F<G}; o{X'<xY1}; ... ; O{X"=Y"}/OEFX? ... X"=GY! ...

Lo Y™

¢ For proofs, see [6].
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918 [®{[ixt...a™Y]x ... XY (x, ..., x" /0t ..., 4™)} provided for
1<s<<m x°is free for #° in Y.

9.19 O{X<Y}/P{Ar'... s™X<Ax' ... 2™Y} provided none of 2, ..., 2™
is free in @.

9.20 [B{[[2e2yY]a]y<-Y)

9.21 @ :Z|P{Y<Y(Z/z)} provided Z is free for z in Y.

10. Hospitality revisited

10.1. THEOREM. (&(B4.05 Z/Cumn; £ 8em; 218 0<g, by k, 1, k', V
<1). Let both & and Z' be free for z in <7, (k,1)<(g, h), and (',1) <
< (g, h). If z is both (k, 1)- and (k', U')-hospitable in <7, then

(©) DA (Z oy [2) .1y (Z 1y [€) g}
18 derivable from
(Sh D{Z (8] <Z fk',z')} .

Proor by induction on the rank r of /. First consider the case
r = 0. If & is # then 2 is not (%, l)-hospitable in «7; if <7 is other than 2
then G is derivable by 9.15. Assume (as an induction hypothesis) that the
Theorem holds for any & whose rank does not exceed r. Now consider
an & of rank r-+1 in which 2 is (%, 1)- and (%', I')-hospitable. If 2 is not
free in 7, S is derivable by 9.15. Assume therefore that 2 is free in /. Let
w™ and ¢* be variables which are distinet from and of the same type as w
and ¢ respectively and which do not occur in @, &/, %, Z’'. Let w' be w*
or w according as g is 0 or 1. Then

(&% D(w' [w) {g(k,t)ég@',z')}

is derivable from & For if ¢ =0 then k =%’ = 0 and &2 is derivable
from &! by 9.14; otherwise G2 is the same as G, Let ¢’ be {™ or ¢ according
as kis 0 or 1, and let @’ be & (w’, t'/w, t). An analogous argument shows
that

(&) P{ZuneZun
is derivable from &2

Case 1: < is of the form (I) (see 4.1). If 0 < s < m, then
(&) DAL (Z g [2) s, 19 % (Z o [0)as 4oy}

is derivable from &2. For if # is not free in &°, &} is derivable by 9.15.
Otherwise, since 2z is (k, 1)- and (%', I')-hospitable in 7, either Z* is 2z and
iy =J, =0 or Z° is both (k,l)- and (%', 1')-hospitable, (k,1) < (¢°, j°),
and (&', 1) < (4%, j°). In the former case, S} is the same as &3; in the

latter case S} is derivable from &* by the induction hypothesis.

3 — Studia Logica 3/88
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Case 2: s isoftheform (II). Aszisfreein o and both & and £’ are
free for z in </, none of %, ..., 2™ is free in & or Z’. Let ¢, ..., y™ be
distinct variables which are of the same respective types as 21, ..., 4™ and
do not oceur in @, &/, %, &', w,t. By 9.14

(&) DYy Y e "V L o)
is derivable from &3. Now the sequent
(&) DYy ..., y" [0y ..., 8™ {@(-ﬂf(k,z) /z)(i,j)c’@(gzk’,l’) /z)(i,j)}

is derivable from &;. For, since # is free in «/ and 2 is both (k, I)- and
(k', I')-hospitable in 7, either # is zand ¢ = j = 0 or 2z is (k, )- and (&', V')-
-hospitable in %, (k,1) < (i, j), and (K", V') < (4, j). In the former case S}
is the same as &} ; in the latter case 8 is derivable from S by the induction
hypothesis. The sequent

(Gg) @1 (yl’ ) ,’ym/ml, ceny .%‘m) {Ml ces $m@(g(k'l)/z)(i'j)¢>ml ens
o Y Z 1) [2) 0,00}

is derivable from &} by 9.19.
Now let Q be such that o is AwAiQ. We shall show that the sequent

(©") @’ {Q(."Z(k,l)/z)<¢Q(ﬂ‘('k.’,,)/z)}

is derivable from &'. In Case 1, &’ is derivable by 9.17 from &} ,— &} ,,,
which, as we have seen, are derivable from &!. In Case 2, & is derivable
by 9.14 from &%, which, as we have seen, is derivable from S!. Now
sequent

(&% D {[MQ(Z 1) 12) Yo,y [HQ(Z ,(k’,l') [?) ](o,h)}

is derivable from &'. For if h = 0 then ¢ is not free in @', hence G° is
derivable from &' by 9.19. If, on the other hand, # = 1 then the sequents
{[HQ(Z gy 0,1y QU Zw,yf2)}  and {[th(g('k',l’)/z)](o,h)éQ(ng’,l')/z)}
are derivable by 9.18, hence &® is derivable from & by 9.16. Now from &*
we can derive

(&) P {[IwMQ(Z, %)) / z)}(g,h) < [JwMQ(Z Zk’,l’) [2) ](g,h)} .

For if g = 0 then w i3 not free in @’ and, since the type of <7 is of the
form &,,, b = 0; hence &’ is derivable from G® by 9.19. If, on the other
hand, g = 1 then the sequents {[AwAQ(Zy,y/?)]y.0MQ(ZLy,y/?)} and
{DwAQ(Z 19 /2) ) g, 0> HQ(Z 4,10 [2)}  are derivable by 9.18 and the
sequent {{<>t} by 9.15. Hence by 9.17, the sequents {{AwAQ(Z /)] 1
<[MQ(Z ¢ [2)]o,mt and  {[AwAHQ(Z w1 [ Jg. = [HQUZ fk',z')/z)](o,h)} are
also derivable. Consequently, & is derivable from &® by 9.16. But & is
derivable from &° by 9.14. []
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The following are three rules of derivation involving identity:

10.2 @D, :xX =y->M//DP->M provided ¢ is not free in P, x,y,M.
103 O-x:X[/d-T:x =X
104 O-T:x =X/[[P-»x:X.

Writing ; for /1, .., 13,10.2,...,10.4y 1t 18 €asy to show that
105 O-T:X =Y /0 {X<Y}.
10.6 LEMMA. On the hypothesis of Theorem 5.2,
T: [szt-g(k,z)= g(’k',l’)]wt? T:M(g(k,l) /z)wt"“)T:M(ng',l')/z)wt'
PrROOF. Let M be T:[iwd.Zu = L4 nla- By 9.20, [M->T:2,

= % 1> Hence by 10.5, I{Z . y<ZL e rn}. Thus by 10.1, [R{A (L ,/
12> (Z g 1) [€)ui} s Whence 10.6 follows by 9.4. [

11. Exposure revisited

11.1 THEOREM. (/.05 & [lam; % ©/5;DIB; 0 <k, 1<1). Let Z be
free for z in < and let © not occur in @, &, %, w,t,IM. If 2 is exposed
and (1,1)-hospitable in </ then

(&) [ %) 14
is derivable from
(SY) Db A (Zppldw ond (%) B, z: Zy,)—M.

ProoF by induction on the rank r of /. First consider the case
r = 0.If /i 2, 2z is not (1,1)-hospitable in &7; otherwise z is not exposed
in &/. Assume (as an induction hypothesis) that the Theorem holds for
any & whose rank does not exceed r. Now consider an & of rank -1 in
which 2z iz exposed and (1,1)-hospitable. By 6.1, < is of the form (I),
hence by 9.20 and 9.3,

(&) Db Z (L 20, X (L )ity - F™ (L [2)am,3my

is derivable from &*'; moreover, one of the following two cases obtains.
Case 1:zis exposed in one of 2°, Z1,..., Z™, say in Z°. Let u be a va-

riable of type & which is not free in @, 2*, &, w, t, M. We ghall show that

is derivable from &2, By the definition of (1,1)-hospitality, either Z* is 2
and ¢ = j* = 0, or z is (1,1)-hospitable and ® = j* = 1. In the former
case G} is derivable from &2 by 9.14; in the latter case it is derivable from
©?* and the derivable sequent @, u: Z°(Zsy/e)u—>u: E°(Z /2l OY
the induction hypothesis. Thus in either case, S} is derivable from &2.
But & is derivable from &3 and & by 9.7.
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Case 2: Z%° is of the form (II) and 2 is distinet from a1, ..., ™ and
exposed in %. Then zis {ree in % and consequently (since # is (1,1)-hospitable
in &)z is (1,1)-hospitable in Z° and i® = j° = 1; moreover (since Z is free
‘ for z in <), none of 2%, ..., 4™ is free in Z. Let ¥, ..., y™ be variables

of the same respective types as #',...,2™ and not occur in @, o, & ,
w, t, M. Fuarthermore, let &', MW, V', ..., and ™ be D(y, ..., y™ /2, ...
ey ) MY, o Y B o, ) THYY, Y 8™, L, and E(YY,
ooy Y[z, ..., &™) Tespectively. By 9.14,

(S3) D', 2: g(k,l)*gﬁ'

is derivable from &2 and

(&) Db By [D)i0,i0 (L g gy -« ™ (Z gy 2)iih 1)

is derivable from &2. By 9.20, {£°(Z 4, [2)0, 0 <A ... 4™ Y (Zwn)ap}
is derivable, hence by 9.15, 9.17, and 9.3, ’
(Gg) @’—>'b H [Ml “ee xm@(g(k’l)/Z)(z’j)] %‘1’(3(]‘7'” [IZ)(il,jl) cos '%lm,(g(k,l)
is derivable from &;. Let ¥ be the sequemce ': 2% (Z, /%) ),
G ™ (X 4o [2)m ymy - BY 9.1 and 9.8, |
(&) &', V—b: Q& ... "YU (Z o [2) i, 5] ... 8™

is derivable from &%, whence

is derivable by 9.12. Now the sequent

(&) o', V-

is derivable from &} and &;. For, as z is (1,1)-hospitable in #°, either
% ig zand i =j =0, or 2 is (1,1)-hospitable in ¥ and ¢ =j = 1. In the
former case, & is derivable from &} and &} by 9.14 and 9.3; in the latter
case by the induction hypothesis. Now

(&) o'W
is derivable from &} and &) by 9.7, and S is derivable from G’ by 9.14. [

eeey

3¢ obeys the following rules of derivation:

112 ©,i: M/ /O—>M
11.83  &—T:CX//0-T: ZC
114 @-T:X°0; @, T: Co—>IM//O—>M provided  is not free in &, C, M.
Writing [ for [g1,...,0.13,10.2,...,10.4,11.2,...,11.p5 i 1S €asy to show that, in
view of 9.13, 9.20, 9.17 and 11.3, we have
115  O—x:X; 0T : L(X[2)/P->T:(32)I provided X is free for z
in I
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11.6. LEMMA. On the hypothesis of Theorem 6.2,
[T: ﬂ(g(k,z)/z)wt—;r t (A2)

Proor. Let x be a {-variable which does not occur in &, %, w,t.
By 10.1 and the (1,1)-hospitality of 2z in &7, &: Zy ,{F (L n/?)w
<o/ (x[e),,} is derivable, and consequently, T : o/(Zyp/2)uss @+ Z
~T: o (2[z) is derivable. By 11.5,T : o (Z . 1/e) s @ : Z o= T 2 (F2) Ly
is then derivable, whence 11.6 follows by 11.1 and the exposure of 2z in 7.
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