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1. Introduction 

In this paper we show the existence of a travelling wave solution of the equa- 
tion 

~u ~u 
8-7 + ~(y) ~ = ~u + g(u), (1.1) 

set in the infinite cylindrical domain X = {(xl, y) ~ R • o~}, where o~ is a bounded 
and smooth open domain in R n~l. This equation arises in combustion theory: it 
describes the propagation of a curved premixed flame in the infinite tube X, in 
the framework of the classical thermo-diffusive model, under the assumption 
that the Lewis number is equal to unity. 

Referring to [3], [4], [13], [15] e.g. for more details, we simply recall here the 
equations of the thermo-diffusive model, which is derived in the framework 
of the well known constant-density approximation. We consider a curved flame 
propagating in the infinite cylindrical tube S = R • o) ( R  N. For x E 27, we 
write x = (x l ,  y) with x l E R  and y E~o. With the assumption of a single 
one-step chemical reaction N -+ N, the equations of the thermo-diffusive model 
are 

ut + ~x(y) Uxl = A u + f (u)  v, 
(1.2) 

Av 
vt -l- o~(y) vxl = Le f(u)  v in X; 

Here u is the normalized temperature and v is the mass fraction of the reactant. 

Moreover, ec(y) is the xa-component of the velocity field V = (o~(y), 0) which is 
given, parallel to the tube walls 827 and divergence free. Lastly, the terms Au, 
Av  
L--e and f (u)  v correspond to the thermal diffusion, the molecular diffusion (the 

non-dimensional positive parameter Le is the Lewis number of the reactant ~), 
and the chemical reaction respectively. 
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The travelling-wave solutions u(xl + ct, y), v(x~ + ct, y) 
the equations 

(e + or ux~ = Au + f ( u )  v, 

Av 
(c + or Vx~ = ~ - - f (u)  v in 2:, 

of (1.2) satisfy 

(1.3) 

and the following boundary conditions (which are classical in combustion theory): 

Ou ~v 
~v O, ~v = 0  on 9X, (1.4) 

u ( -  = 0, v ( -  = 1, 
(1.5) 

u(+  cx~, y) _-- 1, v(+ 0% y) _-- 0 for y E e). 

In (1.5), ~ is the outward unit normal on ~27. When Le ----- 1, (1.3)-(1.5) obviously 
imply u q- v ---- 1. The travelling-wave solutions are then given by a single elliptic 
equation [we set g(u) ----- (1 -- u)f(u)], namely 

(c + o~(y)) ux~ = Au + g(u) in X, (1.6) 

associated with the boundary conditions 

~u 
~-  ---- 0 on OX, (1.7) 

u(-- ~ ,  y) = 0, u (+  0% y) = 1 for y E co. (1.8) 

This is the problem which we investigate in this paper. In (1.6)-(1.8), both 

uE cgz(Z) and c E R  are unknown. We will use the following hypotheses [(1.11) 
corresponds to an ignition temperature assumption]: 

or is a continuous function from ~ into R ,  

g is a Lipschitz-continuous function from [0, 1] into R+, g(1) = O, 

(1.9) 

(1.10) 

(1.11) 3 0 E  (0, 1) such that g ~ 0  on [0, O] and g >  0 on (0, 1). 

1 
With the notation (@ = z-y-r(or dy, we can now state our main result: 

IWl~; 

Theorem 1.1. For any functions ~ and g satisfying (1.9)-(1.11), there exists a 
solution (u, c) of  (1.6)-(1.8). This solution satisfies 

O <  u <  1 in X, 

u~, > 0 in X, 

( @ + e > O .  [ ]  

(1.12) 

(1.13) 

(1.14) 

Remark 1.2, If(u, e) is a solution of  (1.6)-(1.8), it is clear from the classical 
elliptic estimates that u E W~xdg(S) for all p E (1, + cx~) (see AGMON, DOUGLIS 
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&; NIRENBERG [1]). Moreover, from classical Schauder estimates, u E ff2(2J) and 
therefore satisfies (1.6) in the usual sense if the function 0~(y) is H61der-con- 
tinuous. [ ]  

Remark 1.3. Uniqueness of the solution of (1.6)-(1.8) has been proved by 
BERESTYCKI & NIR~NB~RG [7]. Assuming that g is a Lipschitz-continuous function 
in [0, 1], is cg2 in a neighborhood of 1 and satisfies g'(1) < 0, it is shown in 
[7] that if (u, c) and (u', c') are two solutions of  (1.6)-(1.8), then c = c' and 

u(xl, y) = u'(xl + s y) for all (x~, y) E Z, for some xl E R. Furthermore, 
that any solution u of (1.6)-(1.8) (with arbitrary c E ]g) is monotone has also 
been established by BERESTYCKI & NrRENBERG [6], [7] under the assumptions 
(1.9)-(1.11). This last statement of monotonicity has been extended to a somewhat 
more general class of nonlinearities by C. M. LI [14]. [ ]  

The existence of a solution (u, e) of (1.6)-(1.8) for any functions 0~ and g satis- 
fying (1.9)-(1.11) is proved in Section 2 below. 

Problem (1.6)-(1.8) had  been previously investigated by the first two authors 
in [3], under the additional assumption essentially that ~ does not differ much 
from a constant. More precisely, under the assumption that 

max ~(y) -- ~(y) <o~) -- rain ~(y) < 2 f g(s) ds, (1.15) 
x yE~o y~o~ 0 

i t  was shown in [3] that there exists a solution (u, c) to (1.6)-(1.8), and that this 
solution satisfies 

e + rain ~(y) > 0. (1.16) 

This inequality, which is derived from the additional assumption (1.15), is crucially 
used in [3] to derive some apriori estimates. In contrast with this situation, for the 
solutions we construct here, c + ~(y) may in general change sign in the domain 
to. This phenomenon may be interpreted as an "inversion of the velocity field". 
Indeed, (I.2)-(1.3) show that e + to(y) is the mixture velocity in the reference 
frame RT in which the solution is stationary (Rf is a reference frame attached to 
the flame and moves with the velocity --c with respect to the original reference 
frame Ro). Then, (1.16) means th at, at every point, the velocity in the reference frame 
Rf points from left to right, i.e. from the fresh mixture towards the burnt gases, 
a physically natural situation. But, for solutions satisfying 

c + min o~(y) < 0, (1.17) 

there are regions of the tube (where e § ~(y) < 0) where the velocity is directed 
in the opposite way, from the burnt gases towards the fresh mixture ! It is important 
to realize here that this non-classical situation is by no means unphysicM: it has 
indeed been known for a long time (not for a flame in a tube, but in other geo- 
metrical configurations~ such as for a counterflow diffusion flame; see WILLIAMS 
[15, p. 418]) that the mixture velocity in the neighborhood of the flame may be 
pointing from the burnt gases towards the fresh mixture. This simply means that 
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the convective effects are  locally dominated by the diffusive effects. Moreover, 
in these conditions, (1.14) says that the average velocity in the reference frame Rf  
is necessarily positive. 

Several results in this direction are shown in Section 3. We prove there that, 
the function g corresponding to the reaction term being given, one can choose 
the function o~ (far enough from a constant) so that the corresponding solution 
(u, c) of (1.6)-(1.8) actually satisfies (1.17) (such travelling wave solutions have 
been numerically computed in [2]). Moreover, we show that condition (1.15) is, 
in some sense, optimal to insure that the inversion of the velocity field does not 
occur (i.e. that property (1.16) is fulfilled). 

The existence of travelling fronts in two dimensions but with different boundary 
conditions has been examined in only one other work to our knowledge. In an 
interesting paper, R. GARDNER [8] establishes the existence Of c and u solution of 
problems of the type 

--A u + eux = f(u)  in 27, 

u(x, O) = u(x, L) = 0, (1.18) 

u(-- cx~, y) = O, u( + cx~, y) = r 

Here, 2~ = {(x, y) ER 2, 0 -< y < L},f(u) = u(1 -- u) (u --/3) with 0 < / 3  < �89 
and ~ is the maximal positive solution of 4/' + f($) = 0, 4~(0) = 4~(L) = 0 (for 
L sufficiently large). R. GARDNER [8] uses a method relying on the Conley index. 

2.  P r o o f  o f  Ex i s tence  

In this section we prove Theorem 1.1. As in [3], this proof reduces to studying 
an analogous problem posed on the bounded cylindrical domain R, = (--a, a) 
• for a E ~ and then in examining the passage to the limit as a - +  + co. 
Solving the problem in R~ is essentially the same here as in [3]. However [because 
the solution here does not necessarily satisfy (!.16)], the arguments in [3] would 
fail to yield the limit as a - +  + ~ .  Hence, we need here another approach to 
the derivation of the a priori estimates and to the limiting procedure. 

We first consider the problem 

(c + ~x(y)) Ux~ = Au -]- g(u) in Ra, (2.1) 

with the mixed boundary conditions: 

8u 
- -  - -  0 on  ( - - a ,  a) • &o,  (2.2) 6v 

u(--a, y) = O, u(+a,  y) = 1 for y E co. (2.3) 

To this system we add the following normalization condition which we trade against 
the freedom to choose c: 

max u(xl, y) = 0. (2.4) 
(xl,Y)~Ra, x l  ~ 0  
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The role of  this condition (and also analogous normalization conditions) is 
discussed in BERESTYCKI & LARROUTUROtl [3] and in BERESTYCI<I, NICOLAENKO 
(~ SCHEURER [5]. 

On problem (2.1)-(2.4), we are going to prove 

Proposition 2.1. Under the assumptions (1.9)-(1.11) and for any a > O, there is 
a solution (u, 0 = (ua, ca) o f  problem (2.1)-(2.4). [ ]  

The proof follows the steps of the one given in [3] with a few minor modifica- 
tions. For the sake of completeness, we repeat it here. It rests on the following 
a priori estimates (in what follows we always assume that the definition of  g is 
extended to all of R by setting g(s) =--0 for s~  [0, 1]): 

Lemma 2.2. Suppose g ~ M on [0, 1] and o~ o ~ or <~ oq for all y E -~. Then 
there is a constant K, depending only on a, ~o, oq and M, such that any solution 
(u, c) of  (2.1)-(2.4) satisfies 

lel =< K, (2.5) 
and: 

Ilull l< a) g .  []  (2.6) 

Proof of Lemma 2.2. Since g(s) -~ 0 outside the interval [0, 1], it follows from 
the maximum principle that 0 < u < 1 in R a. Hence, by a result of BERESTYCKI 
& NIRENBERG [6, Theorem 4.1], we know that u~, > 0 in (--a, a ) •  (actually, 
it is assumed in [6, Theorem 4.1] that u satisfies Dirichlet data on the whole 
boundary of  Ra; but of  course the same result holds under the present conditions). 
Using this information, we infer some inequalities from the maximum principle. 
Let 0r and 0q be such that % -< 0~(y) ~ 6r 1 for all y C ~ ,  and denote Zo, zl 
the solutions of the following ordinary differential equations: 

--z  o' + (e + oq) z o = 0 in (--a,  a), (2.7) 

--z~' + (e + Or z~ : M in (--a,  a), (2.8) 

together with the boundary conditions 

zi(--a) = O, zi(+a) ---- 1 for i :  0, 1. (2.9) 

The maximum principle then yields 

Zo(Xa) ~ u(xl, y) <= zl(x~) in Ra; (2.10) 

for instance, the first inequality in (2.10) follows from the relation 

--A(u -- Zo) + (c q- oq) (u -- Zo)~ = g(u) q- (oq -- cffy)) u~ ~ O. (2.11) 

Now, since, for fixed a > 0 

lim zo(0)=  1 and lira z j ( 0 ) =  0, (2.12) 
C---~ - -  oO C--+ ~ -  OO 
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the condition Zo(0)~ 0 ~ zl(0) which follows from (2.4) gives the a priori 
estimate (2.5) on c, with a cons tan tK oa~  " depending on a, So, oq and M. Then, 
since 0 < u < 1 and c is bounded, we immediately derive by the elliptic estimates 
a ~x bound on u: l[u[[~e~(~a) ~ K. [ ]  

Proof of Proposition2.1. Consider the space E =  cg~(~) and o ~ = E •  
For (v, e) E g and for ~: E [0, 1], let u = 4~(v, e) be the unique solution of 

- - A u  -k (e q- o~(y)) u~, = ~g(v) in Ra, (2.13) 

with u satisfying (2.2) and (2.3). Hence problem (2.1)-(2.3) has been translated 
into the equation u = 4~(u, e). Next, let 

hdv, c) = max cb,(v, e). (2.14) 
(xl,y)~Ra, x i  ~ 0  

Thus our problem (2.1)-(2.4) with unknowns u and c is now written as a fixed 
point equation in the space g :  

u = 4,  (u, c), 
(2.15) 

h,(u, c) = O. 

This problem is of the form (u, c) -- ~ , ( u ,  c) = 0 where, for ~ E [0, 1] 

~~(u,  c) = (4~(u, e), e - -  h~(u, c) -{- O). (2.16) 

Clearly the mapping (7, (u, e)) -+ ~ ( u ,  e) from [0, 1 ] •  into g is continuous 
and compact. Now, let the reals Or and oq be given by 

~Xo = min (min o~(y), O), cq = max (max ~(y), O), (2,17) 

so that 

0r o ~ vet(y) ~ ~x, (2.18) 

for all yE  ~ and zE [0, 1]. Let K be the constant introduced in Lemma 2.2; 
K depends on a, So, cq and M. Since Tg(s) =< M, we know by the estimates in 
Lemma2.2 that (u, c) - -  ~ , ( u ,  c) :+: O for all ( u , c ) E ~ D  and all vE[0,1] ,  
where 

~r = {(U, e) E •, [1 u ][c~l(~a) ~ K, ]c 

Hence the Leray-Schauder degree d ( I - -  ~1, O, O) 

d ( I -  ~ l ,  O, O) = d ( I -  ~ o ,  

I ~ K}. (2.19) 

is well defined and 

Y2, 0) (2.20) 

by homotopy invariance. Now for T = O, 4,o(U, e) is independent of u. We per- 
form a new homotopy by substituting ~or for or in the definition (2.13) of ~b~ 
and subsequently in the definition (2.14) of hr. Continuity and compactness are 
left unchanged as are our estimates in Lemma 2.2 by the choice we have made of 
c% and cq. Therefore, by homotopy invariance, 

d(I  --  ~ 1 ,  ~ ,  O) = d(I  -- ~ * ,  ,(2, 0), (2.21) 
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where ~-~'(u, c) ---- (~p~, c -- h(c) + 0), with V'o = ~p~(xa) the solution of 

--~o'~' -k c~" = 0 in (--a,  a), 
(2.22) 

~p~(--a) ---- O, ~,~(+a) = 1, 

and: 

/t(c) = Wc(0). (2.23) 

and the equation (u, c) = ~ ( u ,  c) uniquely determines 
1 __  e - c ` `  

But h(c) -- eO`̀  _ e_C,,, 

c and consequently (u(c ---- c*)) E (--K, K) and u = %,) .  Then, by homotopy in- 
variance, the degree (2.21) is the same as the degree of  the mapping: 

(u, c) --> (u -- We*, h(c) -- 0). (2.24) 

By using the product property of the degree we obtain, letting B K stand for the 
ball of  radius K in E, the equations 

d(I -- ~ ,  Y2, O) = d(I -- ~pc., Bx, 0), d([~(c) -- 0, (--K, K), 0). (2.25) 

Since ~oo, E Bic and/~ is decreasing with /~(--K) > 0,/~(K) < 0, we finally con- 
clude that 

d ( I -  ~ 1 ,  ~ ,  0) ---- --1.  (2.26) 

Hence there is a solution (u, c) of  problem (2.1)-(2.4), which completes the proof  
of Proposition 2.1. [ ]  

Remark 2.3. Under the same assumptions as in Remark 1.3, uniqueness of the 
solution (u, c) of (2.1)-(2.4) has been proved by BnRESTYCKI & NmENBERG [7]. 

[] 

Now comes the newer part in the proof of Theorem 1.1. We will now derive the 
limit of the solution (u~, Ca) of (2.1)-(2.4) when a - +  + co. 

Proof of  Theorem 1.I, divided into several steps 

Step 1: A priori estimate on e~. 

Lemma 2.4. There is a constant K ~ 0 ,  independent of  a, such that for any a ~ 1 
the solution (u``, ca)of  (2.1),(2.4) satisfies 

[Ca I ~ K. [ ]  (2.27) 

Proof. We recall from the proof of Lemma 2.2 that the function 

e(Ca + ~ ) x i  __  e "  (Ca + ~ 

Zo(X1) : 2 sinh ( ( c  a --~ ocj.) a) (2.28) 
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satisfies 
--~ - -K '  

of 

Zo(Xl) ~ ua(x,, y) o n / ~ .  Hence Zo(0) ~ 0, which implies (e a -k oq) a 
for some constant K ' >  0, or 

K !  
c a :> --oq --  - -  (2.29) 

a 

Let us now derive an upper bound for % To this end, we use the solution z(x~) 

--z"  + (c a + o%) z' = MH(xl )  in (--a, a), 
(2.30) 

z(--a) = O, z(+a) = 1, 

with M defined as before and H(xO = 1 if x~ > 0 and 0 otherwise. Clearly 

z(xl) >= u,(xl, y) on Ra and therefore z ( 0 ) ~  0. A direct computation then 
yields the estimate ca =< K for all a ~ 1. [ ]  

Step 2: Existence of a limit. 

From the estimate (2.27) on c a we see by the classical elliptic estimates (see 
AOMON, DOUGLIS & NIRENBERG [1]) that, for any p > 1, ua is bounded in the W 2,p 

norm in any rectangle (xl, xl  + 1)• contained in Ra, and this holds indepen- 
dently of a and xl .  In particular, there is a K > 0 independent of a such that 

II ua I]~,<~a) =< g ( 2 . 3 1 )  

for all a ~  1. 
Moreover, we can fred a sequence an -+ -k cx~ such that ca, -+ c in 1% and 

u,, -+ u locally in cgl norm. Obviously we obtain a solution of  the equation in 27 

(c -1- offy)) Uxl = Au -k g(u), (1.6) 

which satisfies 

Furthermore, 

u~l => 0 and 

~U 
- -  = 0 o n  ~ X .  & 

OUa 
since ~xt  > 0  and 0 < u  a <  1 

0 - - < u ~ < l  i n 2 ~  [ ]  

for all a > 0 ,  

(1.7) 

we obtain 

From now on in this section, (u, c) will always denote the limit of  (uan, Can). 

It now remains to study the limits of  u(x~, y) as x l - +  • cx~. In particular, 
we wish to prevent u a from converging locally to some constant 9 E [0, 0] W {1}. 

Step 3: Energy estimates 

L e m m a  2.5. The following integrals are bounded 

flVu?<+  
27 27 

[ ]  (2.32) 
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Here and hereafter the measure dx~ dy is understood to refer to integrals taken 
over ! or parts of  I .  

Proof. (the same as in [3] and repeated here): On B_x~o, we have g(u) ~ 0  
since u ~ 0. Besides, for z > 0, let Qz • ]0, z[ x ~ and U ( z ) =  f u(z, y) dy. 
Integrating equation (1.6) on Q~, we have 

f g(u) = A(z) -- A(O), (2.33) 
Qz 

with 

A(z) = c f o~(y) u(z, y) dy -- U'(z). (2.34) 
r 

I f  f g(u) ~ + oo when z - +  + oo, then U ' (+  c~) = - -  c~, which is impossible 
Qz 

sirlce Uis bounded. For  the second integral in (2.32), we multiply (1.6) by u before 
integrating on Qz, and we conclude in the same manner. [ ]  

Step 4: Existence of limits as x~ -~ ~ oo 

Since  ux~ ~ 0, we know that the limits lim u(x~, y) =/~•  exist. By 
xl-~- -k oo 

considering the sequence of  functions 

u~ (x,,  y) = u(x, • j, y) (2.35) 

for (xl, y) in the fixed domain R1, we derive from the classical elliptic estimates 
that u~ -+fl•  in the c~ sense. Since f 1Vul 2 < q -  0% we find that, necessarily, 

2: 

Vfl• = O, i.e. fl+ and fl_ are constants. Moreover, since u is monotone in the x~- 
direction, 

0 ~ /~_  ~ 0 = max u(0, y) ~13+ ~ 1. 
y e ~  

(2.36) 

Again using the uniform convergence of u + to fl+ and the finiteness of .f g(u), 
I 

we infer that g(fl+) = 0; thus, either 13+ = 0, or 13+ = 1. [ ]  

Step 5: The case 13+ ---- 0. 

Lemma2.6.  I f  13+=0, then 13_-~0 and u ~ O. [] 

Proof. I f  /5+ = 0, then u ~ 0 and g(u) ~-~ O. Integrating the equation (1.6) 
over the domain R m and letting m -+ -}- 0% we find (because lim IVu(xl, y)] 

x t - + ~  oo 
= 0 uniformly for y E ~o from Step 4) 

(/3+ -- fl_) (c + (oc)) = 0, (2.37) 
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1 
where (o~> = T ~  / c~(y) dy. 
that 

similarly, multiplying the equation by u, we find 

-- f Igu] 2 - ~-~- (/3~_ --/3~) (c q- Qx>) = O. (2.38) 
27 

Hence, by use of (2.37), it follows that 

f l V u  12 = 0, (2.39) 
Z 

and we have proved the claim: u must be constant, and /3_ = O. [ ]  

Step 6: An estimate for c + (~>. 

We will now show that c q- (o~> is bounded away from 0 by a positive number. 
We first need the next conclusion about the solution (u,, Ca) of (2.1)--(2.4): 

Lemma 2.7. There is a constant 0 > 0, independent o f  a such that for  any a >= 1 
the solution (U~, Ca) o f  (2.1)--(2.4) satisfies: 

f g(ua) ~ O > O. [ ]  (2.40) 
R a 

Proof. Choose a n u m b e r 2 w i t h  0 < 2 <  1. Let a ~  1. For some XoE(0, a) 

and Yo E co we have u,(Xo, Yo) = 2. Since [Vual ~ K in R~ with Kindependent 
1 - - 2  2 - - 0  

of a, we see that a - - X o  > ~  Xo > Then we can find ~7>0,  
= K ' = K 

t r > 0  and e > 0  independent of a such that 

and 

g(u(x,, y)) >= a for all (x,, y) E 27 A B~(xo, Yo), (2.41) 

We thus obtain 

IS  A B~(xo, Yo) ] >= e. (2.42) 

fg (u , )>=e~,  (2.43) 
R a 

which completes the proof. [ ]  

A consequence of Lelnma 2.7 is the following result. 

Lemma 2.8. Let ~ > 0 be the constant defined in Lemma 2.7. Then c satisfies 

0 
+ c > ,w., . [ ]  (2.44) 

?o l 
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Proof. We will separately Consider both cases /3+ = 0 and /3+ ----- 1. 

a) Assume first that t3+ = 0, a n d  integrate the equation (2.1) satisfied by ua, " 
on the domain R~ = (0, a,,) • o.  We get 

f g(u,,.) = (Ca,, + (~)) Io)[-  f (Ca n "@ ~(Y)) Ua,,(O, Y) dy 
R~ ,o 

gl "-~xl (an, y) dy + j ~x (~ y) dy �9 (2.45) 

But we know from Lemma 2.6 that ua,, converges in the cgl sense to 0 on any com- 

pact subset o f f .  Then the third and fifth terms in (2.45) converge to (c + (or 0 I~o[ 
8u~,, 

and 0 respectively. Moreover, using the fact that ~ > 0 and Lemma 2.7, we 
obtain 

(1 - o)[ ,o l(c + (o,)) > 8, (2.46) 

whence (2.44). 
b) Assuming now that /3+ = 1, we can argue as in the proof of Lemma 2.7 

to show that u (and not ua) also satisfies 

f g(u) ~ ~ > O. (2.47) 
2J 

Integrating now equation (1.6) on all of Z (as in the proof of Lemma 2.6), we find 
that 

[ ~176 I (fl+ - -  13-) (c + (,x)) = f g(u),  (2.48) 
X 

from which (2.44) again follows. []  

Step 7: Conclusion. 

We can now conclude the proof of Theorem 1.1, using the following lemma. 

Lemma 2.9. Under the assumption (o~) + 7 > O, there are a unique 2 > 0 and 
a corresponding "eigenfunetion" ~ = W(y) (which is strictly positive in -~) that 
solve the following problem: 

8 ~  
= 0 on &o.  ~_! 

(2.49) 

This result is a particular case of Theorem 3.4 in BERESTYCKI • NIRENBERG 
[7]. We refer the reader to "[7] for the complete proof. 
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Here we use Lemma 2.9 to define a barrier function for u. First we choose a 
real 7 in such a way that (o~) q- 7 > 0 and 7 < ca for large a (i.e. 7 = c -- 
for some small e > 0). Since ~ is defined up to a multiplicative constant, we may 
as well assume that ~(y)  ~ 0 on N. Then we consider the function qi defined by 

~(xl ,  y) = e z~' ~(y) .  (2.50) 

Since (ua)m ~ 0, for large a 

- - A ( ~  - -  Ua) -]- (7  -[- O(.(y)) ( ~  - -  I, la)xj - ~-. (C a - -  7 )  (Ua)xt ~.~ 0 

with the boundary inequalities 

(~  - -  u.) ( - -a ,  y) ~ O, (q~ - -  Lla) (0, y) ~ 0 

and 

in ( - - a ,  0 ) •  

(2.51) 

for y E co, (2.52) 

e(~ - uo)  
=- 0 on ( - a ,  O) • ~co. 

The maximum principle then yields 

u,,(x~, y) ~ q}(xl, y) (2.54) 

for all - - a ~ x ~ 0  and yEco. Hence 

u(xl, y) ~ e ~':1 ~(y)  (2.55) 

Since 2 > 0, this shows that /3_ = 0; Step 5 then 

(2.53) 

for all xl ~ 0 and yEco. 
shows that t3+ cannot be equal to 0. Thus /3+ : 1 and the proof of Theorem 1.1 
is complete. [ ]  

3. Inversion of the Velocity Field 

As we said in the introduction, we consider in this section the inversion of the 
velocity field c -k o~(y) in the reference frame Ry attached to the flame; that is, 
we examine the sign of c + rain 0fly), (u, c) being the solution of (1.6)-(1.8). 

y~o9 
The existence of solutions with c + mi_n ~ ( y ) <  0 rests on the following 

y~oJ 
observation concerning a sequence (u., cn) of solutions of the problem 

gu_ 
(e,, + oc,(y)) ~ = Au, + g(Un) in 27, 

~u,~ 
= 0 on  ~X, 

u . ( - - ~ , y ) = O ,  u . ( + o o ,  y ) = l  f o r y E ~ ,  

max u,,(xi, y) = O. 
(x~ ,y )~  x~ <0 

(3.1) 

( 3 . 2 )  

(3.3) 

(3.4) 
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Proposition 3.1. Let or o and oq be two real numbers with ~Xo < oq. For n ~ 2, 
let a n be a continuous function on -~ such that lira oct(y) exists for almost all y 

n--> @ oo 

into: 

lim o~(y) = o~(y) a.e. in to, (3.5) 

and that, for all n >~ 2, 

er o ~ %,(y) ~ oq in "~. (3.6) 

Let g satisfy the hypotheses (1.10)-(1.11), and let (u,, c,) be the solution of  (3.1)- 

(3.4). Then (u,, G) converges in Cg~o~(2J)• towards (u, c) satisfying (1.6)-(1.8). [ ]  

Proof. From Section 2, the estimates on u, in W2'p(Rb) for any positive b, on e, 

in 1% and the estimate (o~,) § c, > ~-T only depend on go, oq and g (and not 

on n). We can therefore extract a subsequence (u,k, e,~) which converges in cg~oc(27 ) 
•  to (u, e). Then (u, e) satisfies the boundary condition (1.7) on 82; and 

m a x  U(X1, y) = 0, Ux~ ~ 0. (3.7) 
(xl.y)~Z'. x~ _-<0 

Moreover (using Lebesgue's bounded convergence theorem), we easily see that 
(u, c) satisfies (1.6) in the sense of the distributions in 27. Lastly, we have u (§  e~, y) 
= /3+E~0,1}  and u(-- e~, y) = /3_ E [0, 0] for all yEo} as in Steps3 and 4 
above. But we also know that 

(o~) + c = ,-,+~lim ((%,k) + c,~) ~ ~ > 0. (3.8) 

Arguing as in Step 7 above, this shows that t3_ = 0,/3+ = 1 and it completes the 
proof; by use of the uniqueness theorem of Remark 1.3 above, it is classical to 
show that the whole sequence (un, cn) converges to (u, c). [ ]  

It easily follows from Proposition 3.1 that there are solutions (u, c) of (1.6)- 
(1.8) having an inversion of the velocity field, i.e. such that e -t- offy) changes sign 
in to, or, equivalently, 

c + min of fy)<  0. (1.17) 

Indeed, starting with a solution (u, e) for some o~, one can modify c~ about  some 
point Yo E to without changing c much. Hence one obtains a solution with 
e + o~(yo) < 0. This procedure is detailed below. 

Proposition 3.2, Let g satisfy (1.10)-(1.11). Then there is a continuous function 
o~(y) such that the corresponding solution (u, c) of  (!.6)-(1.8) satisfies (1.17). [ ]  
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Proof. Let 0q be a positive real, to be chosen later. Let Yo E oJ. 
n we define the function o~ by 

I 1 
oq if [ y - - y o I  > ~ ,  

n 
~(y )  : 

[ n0q [y -- Yo I if ]y - yo I < 1 
n 

For any integer 

(3.9) 

For all n, or n is continuous on N; furthermore, min ocn(y) = 0, max ~,(y) = oq, 
and ye~ ye~ 

v y ~ ~ - {yo}, lira an(Y)  = o,1. (3.10) 
n - > +  oo 

Then we know from Proposition 3.1 that the solution (u~, cn) of (3.1)-(3.4) con- 
verges as n--> + ~ to (u, c) satisfying (1.7)-(1.8) and 

(c + ~xl) Ux~ = Au -[- g(u). (3.11) 

Besides, it is known (see BER~TYCKI, NICOLAENKO & SCHEUR~R [5], JOHNSON [9], 
JOHNSON & NACm3AR [10], and KAN~L' [11], [12]) that the one-dimensional 
problem, 

(3.12) 
~ ( -  ~ )  = 0 ,  h ( 0 )  = 0, ~ (+  ~ )  --- 1 

(where fi = fi(x~) and ~ are unknown), has a unique solution (~, ~). The uniqueness 
statement recalled in Remark 1.3 then implies that 

U(Xl, y) = ~(xl) for all (xl, y) C 2;, (3.13) 

and 

c -1- ~l = c. (3.14) 

Observe that b only depends on the function g. I f  we choose from the start to 
take o% > b, then (3.14) says that c < 0. For n large enough, we have c, < 0, 
whence 

c + rain ~,,(y) ~-- c, < 0, (3.15) 
yffco 

which completes the proof. The choice c~(y) = or for n large enough gives a 
solution of (1.6)-(1.8) which satisfies (1.17), i.e. which exhibits the inversion of 
the velocity field. [ ]  

We conclude this section by deriving conditions for the inversion of the velocity 
field to occur. First we recall from [3] that this inversion never occurs when the 
condition 

)( >) , max or -- c~(y) (o~) -- mi_n or < 2 f g(s) ds (1.15) mi_n 
y~o) y~o~ 0 

is satisfied. 
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Proposition 3.3 [3]. Let or and g satisfy (1.10)-(1.1 1) and (1.15). Then the sohttion 
(u, c) of  (1.6)-(1.8) satisfies 

c + 0fly) > 0 V y E ~ .  [ ]  (3.16) 

Proof. We give here a more direct proof of this property than in [3]. Multiplying 
(1.6) by 1 - - u  > 0 and integrating in 27 (recall from Section 2 that lim 
IVu(xl, Y) I = 0 uniformly for y E o9), we get :,,-+• o~ 

lm] (c + <@)- -  f tVul 2 > 0. (3.17) 
~, 

Notice that this inequality again shows that (~)  -t- c > 0. Besides, multiplying 
(1.6) by ux~ and integrating in 27 yields 

1 
lo9 ] f g(s) ds = f (c -k o~(y)) uZ~. (3.18) 

0 

This implies that 
we have 

' ( )J  g(s) ds <~ c -t- max or [Vu [ 2, whence, using (3.17), 

i 
2 f g(s) ds <= (c -k max offy)). (c -k (o~)). (3.19) 

0 y~o 

When (1.15) holds, this inequality shows that c > --minoc(y), which concludes 
the proof. [ ]  yc~, 

Our last result says that condition (1.15) is optimal in the following sense. 

Proposition 3.4. Let e > 0 be given. One can find two functions or and g satisfy- 
ing the assumptions (1.9)-(1.11) and the inequalities 

, ( )(  ) , 2 f g(s) ds <~ max or -- min offy) (0r -- mi_n or < 2 f g(s) ds + e, 
0 \ y~oJ yG~o y ~ o  0 

(3.20) 

such that the corresponding solution (u, e) of  (1.6)-(1.8) includes an inversion 
of  the velocity field (Le. satisfies (1.17)). [ ]  

Proof. The proof is mainly analogous to the previous one, and uses the asymptotic 
analysis for high activation energies of the one-dimensional problem (3.12). 
Referring to [5] for the details, we just recall here that the solution (h, b) of (3.12) 
always satisfies 

1 

2 f g(s)ds < b 2 . (3.21) 
0 
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This can also be inferred from the proof  of  Proposition 3.3. Moreover,  it is shown 
in [5] that one can choose g (corresponding to a high activation energy) such that 

1 1 

2 f g(s) ds < b 2 < 2 f g(s) ds + �89 e. (3.22) 
0 0 

Having chosen g such that (3.22) holds, we set 

= 2 f g(s) ds + (3.23) 
0 

and define the sequence of  functions a n as in (3,9). Again the corresponding solu- 
tion (u,, cn) of  (3.1)-(3.4) converges to (~, b - -  ~1). For  n large enough, an satis- 
fies (3.20), and c n is strictly negative since b - -  ~1 < 0 f rom (3.22)-(3.23); we 
can then conclude as in the preceding proof. [ ]  
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