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Introduction 

The idea of a "line distribution of force over the edges of a body" seems 
to have occurred first to TouPIN in 1962 (see p. 403 of [Toll). However, his treat- 
ment suffered from the same defect as most treatments of distributions of forces 
prior to 1960, namely these distributions were only implicit in formulas for 
resultant forces. The systems of forces giving rise to these resultants were not 
brought into the open. (See the remark by C. TRUESDELL in "General References" 
on p. 156 of [Tr].) The present paper is a first attempt to bring into the open the 
systems of forces that give rise to distributions of forces over edges. 

The problem of how to give a precise definition of an edge interaction and 
TOUPIN'S early work on this problem were brought to our attention by MAURIZIO 
VIANELLO in a discussion in Pisa in June 1987. During this discussion, the three 
of  us came up with the germ of an idea from which the concept of regions in edge 
contact as described by Definition 4 of Section 3 and the corresponding Assump- 
tion I of Section 5 were developed later. 
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A precise concept of a "system of forces" was first proposed by one of us in 
1957 [N1] and has been extensively developed since. GURTIN & WILLIAMS re- 
alized in 1967 [GW] that an analogous concept describes "systems of heat fluxes". 
Both kinds of  systems were later subsumed under the abstract concept of an 
"interaction" (see Section 8 in [N2]). A definition of "interaction" that is suitable 
for the present context is presented in Section 4. In Sections 5 and 6 we show how 
"edge interactions" can be identified as special contact interactions. In Section 7 
we derive the consequences of  balance laws wizen edge interactions are present and 
when certain ad hoc assmnptions are made. In Section 8 we discuss the boundary 
conditions that apply when edge interactions are present. In Section 9 we show 
how some of TOUPIN'S results fit into the scheme of the present paper. Finally, we 
show how surface tension can be viewed as the manifestation of  the presence of 
certain edge interactions. 

Mathematicians often use terms such as "region with piecewise smooth bound- 
ary" without any further explanation (see e.g. axiom ($2) in [N1]), and they often 
give inequivalent and even obviously unintended precise definitions when chal- 
lenged to make this concept precise (see Appendix II of [F]). In the context of the 
present paper it is crucial to have a very precise definition that does not exclude 
"cusped" edges. Sections 1, 2, and 3 deal with this and related issues. Our defini- 
tion of "regular region" seems to be equivalent to the one given by KELLOGG in 
[K], p. 112. We also need to consider a somewhat more restricted concept, for 
which we use the term "biregular region". 

What we call "edge interactions" should not be confused with external actions 
concentrated along curves; our theory is not related to theories of "stress-concen- 
trat ion" in any sense. An edge interaction between two internal parts of a given 
body, in the sense of  the present paper, can occur only when a side of one of the 
parts is in "everywhere-cusped" contact with a side of the other part  along a 
common edge of the two parts (see Definition 2 of Section 3). The additivity prop- 
erties of interactions then show that if the edge is a "cusped edge" of one of the 
two parts, the interaction must be zero. It is for this reason that one must pay 
careful attention to "cusped edges", and that one can only consider what we call 
"biregular" contact (see Definition 4 of  Section 3). 

There are at least two issues which we could not settle. The first concerns the 
Assumptions I, II, III, and IV in Sections 5, 6, and 7. It would be desirable to derive 
them from other assumptions that have more transparent and natural physical 
interpretations. For  classical surface interactions, this issue has been studied at 
length only recently (see IS] and [GWZ] and the literature cited there). For  edge 
interactions, the issue is likely to be much more difficult. The second issue concerns 
a class of regions appropriate to represent parts of a given body (see conditions 
(i)-(iv) of Section 4). We do not specify explicitly such a class here, and we de- 
scribe our interactions only for special situations. Even for the case of classicM 
surface interaction, we found only recently a class (we call its members "fit re- 
gions") that we consider completely appropriate (see [NV]). The problem of 
finding a class that is appropriate when edge-interactions are present is likely to 
be extremely difficult and to require concepts from geometric measure theory that 
have not yet been invented. 

The present paper does not consider at all the type of  constitutive assumptions 
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that should govern edge interactions. For  a long time there has been evidence 
that non-simple materials cannot be accommodated by classical surface inter- 
actions alone and that edge interactions must necessarily occur in materials of  
second grade. Indeed, it seems to us that it was VIANELr.O'S interest in the theory of 
materials of second grade that motivated him to urge re-examination of TouPIN'S 
earlier work. We hope that the present paper will open a way to deal with these 
matters. 

Notation and Terminology 

Generally we use the notation and terminology of [FDSI]. For  example, P 
denotes the set of all positive reals including zero and 1, • : =  t' \ {0} denotes the 
set of all strictly positive reals. The range of a mapping f is denoted by Rngf .  
I f  A is a subset of the domain of a mapping f ,  thenfI  A denotes the restriction o f f  
to A. I f  B is a set that includes the range of a mapping f ,  thenf l  B is obtained f r o m f  
by changing its codomain to B. I f B  is a subset of a given set A, then 1Bc A denotes 
the inclusion-mapping from B to A, i.e., the mapping whose domain is B, whose 
codomain is A, and whose values are given by 1BcA(X) = X for all x E B. 

If  "U and ~g" are linear spaces, then Lin ( ~ ,  ~r denotes the set of all linear 
mappings from 4/" to ~K. The dualspaee ~/~* of~/K is defined by "/K* : =  Lin (~K,R). 

When we use the terms "inner-product space" and "Euclidean space", it is 
understood that they are genuine in the sense of the definitions in Chapter 4 of 
[FDSI]. Let "K" be an inner-product space. The unit ball of "U is denoted by 
Ubl ~ / ' : =  {v E ~/r ] Iv ] < 1} and the unit-sphere of  4 / b y  Usph ~ : =  {v E ~/2 1 
Iv t ---- I}. I f  5~ is a subset of  ~/', then 5 ~ •  {v E "U l v -  u = 0 for all u E 5e}. 

We often abbreviate q/ : =  Usph ~e ~ and use the notation 

( u2)i :=  {(-, E ] u .  = 0} 
for the set of  all perpendicular pairs of unit vectors. It is easily seen that (q/z)i 
is a 3-dilnensional analytic manifold imbedded in the 6-dimensional inner-product 
space ~ z .  

The gradient of a mapping ~0 at a point x in the domain of ~o is denoted by 
Vx~v if meaningful. Similar/y, divx h denotes the divergence of  a vector field h 
at a given point x of the domain of h. 

Let ~ be a subset of  a given Euclidean space g. The interior, closure, and bound- 
ary of  N are denoted by Int ~ ,  Clo 9 ,  and Bdy ~ ,  respectively. We say that 
is regularly open if  N = IntClo N. 

I f n  and m are integers, then n .. m denotes the set of all integers k such that 
n - - < k ~ m .  We abbreviate n 1 : =  1 . .n ,  n E : = 0 . . ( n -  1). 

To distinguish between integrals with respect to volume, surface-area, and 
curve-length, we write dr, da, or dl, respectively, after the integrand. 

1. Regular regions, surfaces, and curves 

We assume that a 3-dimensional Euclidean space J~ with translation space 
"K" : =  d o --  d ~ is given. 

Let a bounded connected CZ-manifold d/[ imbedded in d o be given (see Chap- 
ter 3 of  [FDSII]). I f  dim ~ = 3 then dg is just a region, i.e. a connected open set. 
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I f  dim d{ = 2, we call ~r a surface, and if dim d / =  1, 
I f  dim d / =  0, then M{ is just a singleton. 

We use the notation 

we call ~ a curve. 

Ede:d/-->Lin~//"  (1.1) 

for the mapping whose value at x E ~//g is the symmetric idempotent whose range 
is the tangent space Tan,g(x) to ~ at x, so that 

and 

E~t(x) ~ = ~d,(x), E#r ~ ( x )  

Rng E~(x) = Tan e(x) for all x E ~ ' .  

(1.2) 

(1.3) 

The border of d/l is defined by 

Bo d /  : =  Clo d l  \ d / .  (1.4) 

The border of de' coincides with the boundary Bdy Jg of ~ if dim ~ = 3, 
i.e. if d{ is a region. If  dim d / <  3, then Bdy ~ = Clo dr'. 

Definition 1. We say that the bounded connected CZ-manifold d[ is regular / f  
Clo ~r has a finite partition ~ with the following properties. 

(i) Every piece of ~ is a connected C2-manifold. 

(ii) Jr E ~3. 
(iii) For every piece ~ E ~, E~ has a continuous extension to Clo ~ .  Using poetic 

license, we denote this extension also by 

E~ : Clo ~ -+ Lin ~ .  (1.5) 

(iv) For every ~ E ~ and every ~r E ~ with cg ~ Bo N and dim N = dim (g @ 2, 
there are exactly two pieces 5 ~ E ~ such that 

50 Q Bo ~ ,  <g Q Bo 5 p . (1.6) 

We call a finite partition of Clo ~r the properties (i)-(iv) a regular partition 
for ~ :  For every k E 0 .. 3, we denote by ~k the set of all manifolds in ~ that 
have dimension k. 

Let a regular manifold J/l and a regular partition ~3 for dg be given. The only 
piece of ~3 of dimension m : =  dim J~' is dr ,  i.e. 

S~m = {d/} when rn : =  dim ~ .  (1.7) 

W e  have 
B o / d  = Lf ~J ~k. 0 .8)  

k~m[ 

Every piece N of ~ is again a regular manifold and {5 p E ~ I 5~ Q Clo ~} is 
a regular partition of N. We define the tangent space to J at a point x E Bo dd 
by Tandr : =  Rng E~(x), using the extended E ~  of (1.5). Then (1.3) becomes 
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valid for all x E Cto J#. I f  d / i s  a regular region (Le. if  dim JCd = 3), we call 
the surfaces in ~z sides of Jd. If  d/l is a regular region or a regular surface (i.e. 
if dim d l =  2), we call the curves in ~1 edges and the singletons in ~o vertices 
of Jr The only member of one of the latter is called a vertex-point. The condition 
(iv) of Definition 1 may then be restated as follows: Each edge ~ of a regular 
region is included in the border of exactly two sides; we call them the sides adjacent 
to W. Each side of a regular region is a regular surface. Each vertex-point x of a 
regular surface belongs to the border of exactly two edges; we call them the edges 
adjacent to x. The concepts of  side, edge, vertex, and vertex-point depend, of 
course, not only on ~ but also on the given regular partition ~ of ~ .  Usually 
no ambiguity will arise if the appropriate partition ~ is not explicitly described. 

Remark 1. A regular manifold of dimension 1 or greater always admits infinitely 
many regular partitions. Indeed given such a partition, new ones can always be 
obtained by subdivision. Of course, there always are regular partitions with a 
minimum nmnber of pieces, but there may be more than one such partition. 

Figure 1 

Figure 1 shows a regular surface with this property. A regular partition for the 
surface must have at least 5 pieces (the surface itself, two edges, and two vertices). 
There are infinitely many regular partitions with 5 pieces because one of the 
vertex-points can be put into infinitely many positions. [ ]  

Definition 2. Let J# be a regular manifold. Then the reduced border Rbo d l  of J/// 
is defined to be the union of all regular manifolds of dimension dim JCd --  1 that 
are included in Bo d/l. 

Let ~ be a regular partition of a given regular manifold Jet with m : = dim dr'. 
Clearly, we then have 

k.J ~m-1 ( Rbo d//. (1.9) 

The example given in Remark 1 shows that it may not be possible to find a parti- 
tion ~3 such that the inclusion (1.9) reduces to equality. However, one can easily 
show that for every x E Rbo JCl one can find a regular partition ~ for J/l such 
that x E N  for some ~ E ~ m _ ~ .  

Remark 2. Let ~ be a regular region. Then ~ is a fit region in the sense described 
in [NV]. Also, the reduced border of ~ is a subset of the reduced bound- 
ary of  r as defined in [NV]: Rbo ~ C Rby ~ .  Moreover, the set-difference 
Rby ~ \ Rbo ~ is a set of area-measure zero. [ ]  
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Proposition 1. Let a regular manifold ~/~ with dim J/t ~ 1 and x E Rbo dd 
be given. Then there is exactly one u E Usph Y/" such that 

(i) u E (Tanjc(x)) • f~ Tanr for every regular manifold Yf  of  dimension 
dim J / - -  1 that contains x and is included in Bo all: 

(ii) There is a 3 E Px such that 

(x + (Tan~z(x)) • -k Pu) /5  ~/d/5 (x + ~ Ubl Y/') = 0. (1.10) 

Rather than giving a formal proof  of  Proposition 1, we illustrate its geometric 
meaning in Figure 2 for the case when dim ~"  = 2. We note that ~ : =  x + 
(Tan~l(x)) ! q- Pu is, in this case, the half-plane that  touches J/[ at x and is per- 
pendicular to both the tangent-plane to ~ '  at x and to the edge Y that contains x 
and is included in Bo ~ .  

Figure 2 

Definition 3. Let x be a point on the reduced border of  a regular manifold ~#. 
We call the unit vector u described in Proposition 1 the outer unit normal to 
all/at x. The function that associates this outer unit normal with x E Rbo ~"  will 
be denoted by 

vdl:  Rbo ~g~-> Usph Y/'. (1.11) 

We note that v g is continuous and that 

E~(x)  v~(x)  = v~l(x ) for all xE Rbo J{ .  (1.12) 

I f  ~ is a regular partition for ~ '  we have 

Eso(x ) Vdl(X ) = 0 for all xE  50 (1.13) 

and all 5~ E ~,n-1 when m : =  dim d/ .  
Let a regular region N and a regular partition ~3 for N be given. Also, let 50 

be a side of  ~f belonging to ~,  i.e. 50 ff ~2. I t  follows from condition (iii) of  
Definition 1, applied to 50, that V~ls~ : 50 -+ Usph YP has a continuous exten- 
tion to Clo 50. We denote this extension by 

v~;s~ : Clo 50 --> Usph Y/~. (1.14) 

I t  follows from Definition 3 and condition (i) of  Proposition 1 that 

vso(x) �9 v~;so(x ) = 0 for all x E Rbo 50. (1.1 5) 

Let qf be an edge of N belonging to ~,  i.e. (dE ~1, and let 50 and 5 ~ be the two 
sides of  r adjacent to ~.  Given x E (g, we have v~;s~(x) = v ~ S ( x )  only in 
the exceptional case when x belongs to the reduced boundary of  r 
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2. Functions on manifolds, surface divergence 

Let # and "P~ and a manifold dg as in Section 1 be given. Also, let a finite- 
dimensional linear space ~ be given. I f  a function ~ : ~ ~ ~f" is differentiable 
one can define, for each x E J/t, the gradient V ~  E Lin (Tan~z(x), ~qf), of  ~/ 
at x (see, e.g., (33.4) of [FDSII]). 

Definition 1. Let ~1 : ~ -+ ~Y# be differentiable. We then define 

V~]: J{  --~ Lin ( ~ ,  ~K) 
by 

V~l(x) : =  V ~  :=  7~/Ed~(X)IT~dt (~) for all xE  J{ .  (2.1) 

We say that 71 is of class C z / fT~  is continuous. I f  Jd  is a surface, we call V~/the 
surface-gradient of ~/. 

We say that a function ~/: Clo J ~ - +  ~/g" is of class C 1 if~/[~ is o f  class C 1 
and i f  V(~],#) : ~ # - +  Lin (~//', ~/U) has a continuous extension to Clo J//, which 
will then be denoted by V~. 
We note that, if z / : ~ - - >  ~ is differentiab!e, we have 

Tan~(x)  ~ C Null 7 ~  for all x E d / .  (2.2) 

Definition 2. Let  50 be a surface o f  class C 2 and let h : 50 -+ "1/" be differentiable. 
The surface-divergence 

divsp h : 50 -+ • (2.3) 

is defined to be the value-wise trace of  Vh,  i.e., 

(divs~ h) (x) : =  tr (7h(x)) for all x E 50. (2.4) 

I f  H : 5 ~ -~ Lin (~f', ~f') is differentiable then its surface-divergence 

divy, H :  50 -+ ~ (2.5) 

is characterized by 

co(divs~ H(x)) = divs~ (HVco) (x) for all x E 50, co E ~#/'* �9 (2.6) 

(Compare this with the definitions of divergence in Section 67 of [FDSI].) 

Definition 3. Let 50 be a surface of  class C 2. We say that a function h : 50 -+ 
is tangential i f  h(x) E Tanso(x) for  all x E 50. We say that a function H: 50 --> 
Lin (U,  ~ )  is tangential /f  

Tany,(x) 1 C Null H(x) for all x E 50. (2.7) 

From use of (22.9) of  [FDSI], it is evident that H :  5 ~ -+ Lin (~f', ~/U) is 
tangential if and only if Hrco: 50-~ ~/" is tangential for every co E ~'f'*. I f  
:7 : 5" --> ~Y is differentiable, then 7 9 : 50 --~ Lin (J/', if/') is tangential by (2.2). 

The following result is an easy consequence of  the classical Stokes Theorem 
(a proof  will be given in [FDSII]). 
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Surface-divergence Theorem. Let  5e be a regular surface (in the sense of Defi- 
nition 1 of Section 1). For every function h : Clo 5 a -+ V that is o f  class C ~ 
(in the sense of Definition 1) and tangential (in the sense of Definition 3) we have 

f divs~ h da = f ( h .  va, ) dl, (2.8) 
,5 ~ R b o , C a  

where v y is the outer unit normal function o f  5e (as defined by Definition 3 of 
Section 1). 

Using (2.6), one immediately obtains the following 

Corollary. Let  5 ~ be a regular surface and qC a finite-dimensional linear space. 
For every tangential function H :  Clo 50---> Lin (Y/-, ~/U) of  class C 1 we have 

f dive, H da -= J~, (Hv~)  dl. (2.9) 
5 ~ R b  

3. Contact of surfaces and of regions 

Definition 1. Let  J/t and all' be regular manifolds with dim ~# = dim J l '  ~ 1. 
The contact of  ~/~ and rill' is defined by 

Ctc (rig, ~ ' )  : =  Bo Jd /~  Bo ~/d' (3.1) 

and the reduced contact by 

Rtc (3~, ~ " )  : =  Rbo ~ #~ Rbo J/l ' .  (3.2) 

I f  ~ is a regular manfo ld  included in Ctc (rig, J/['), we say that ~/~ and Jd" are in 
contact along cg; / f  cg Q Rtc (~ ' ,  d/t') we say that ._~ and J l '  are in smooth con- 
tact along ~.  

Definition 2. Let  6 ~ and 5e' be regular surfaces. We say that 5 a and 5 a' are in cusped 
contact at a given x C Rtc (5 ~, 5 e') /f  

vse(x ) = v~,(x).  (3.3) 

We say that 6e and 6 a" are in everywhere-cusped contact along a given curve 
Q Rtc (6 a, 6 e') if(3.3) holds for  all x E ~.  We say that 6P and 6 a' are in nowhere- 

cusped contact along ~ i f  

vs~(x ) + vse,(x ) (3.4) 

for  all x E c8. 

Every regular surface is in everywhere-cusped contact with itself along each 
of its edges. Of course, if 5 a and 6 a' are regular surfaces in contact along a curve 
~, (3.3) may hold for some x E cg while (3.4) holds for other x E c8. Then 5 a 
and 5 v' are neither in everywhere-cusped nor in nowhere-cusped contact along c8. 
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Definition 3. We say that a subset .~ of ~ is a biregular region/f it is a regular 
region and i f  there is a regular partition ~3 for ~ such that for every edge ~ in ~, 
the two sides in ~ adjacent to ~ are either in everywhere-cusped contact or in no- 
where-cusped contact along ~. We call such a partition a biregular partition for ~ .  
We say that an edge ~ in ~ is a cusped edge i f  the two sides in ~ adjacent to ~' are 
in everywhere-eusped contact along ~f. 

Remark 1. Given a regular partition ~3 for a biregular region .~, one can always 
find a refinement of ~3 that is biregular partition for N. [ ]  

Definition 4. Let ~ and ~ '  be disjoint biregular regions. We say that ~ and ~ '  
are in biregular contact/f one can find biregular partitions ~ and ~'  for ~ and ~ ' ,  
respectively, such that 

Ctc (~, ~ ' )  = U (~ f )  ~')  (3.5) 

and i f  for every c~ 6 ~1/q ~3'1, every 5, 6 ~z, and every cj, E ~ such that 
cg ( R t c  (5", 6e'), the surfaces 6 p and 6 e" are either in everywhere-cusped or 
in nowhere-cusped contact along cg. 

We say that ~ and ~ '  are in simple surface contact along a given regular sur- 
face 5: i f  they are in biregular contact and i f  the partitions ~ and ~'  above can be 
chosen such that 

9~2 #) ~2 --= { 5a} and Ctc (~, 5U) = Clo 5:. (3.6) 

We say that ~ and ~ '  are in simple edge contact along a given regular curve cg 
i f  they are in biregular contact and i f  the partitions ~ and ~" above can be chosen 
such that 

~1 f~ ~'~ = (oK) and Ctc (~, ~ ' )  = Clo oK. (3.7) 

Partitions ~ and ~'  that satisfy the conditions (3.5), (3.6), or (3.7), as appropriate, 
will be called appropriate partitions. 
If  ~ and ~ '  are in biregular contact and if ~g and ~3' are appropriate partitions, we 
have 

L/(~2 A ~;) C Rtc (~, ~'). (3.8) 

Remark 2. One can easily define a concept of regular contact of disjoint regular 
regions by a definition analogous to (and simpler than) Definition 4. At the present 
time however, we do not know how to deal with contact interactions when the 
contact is only regular and not biregular. [ ]  

Definition 5. Let ~ be a biregular region. We say that a subset ~ of  ~ is a section 
of ~ if 

O) ~ is a biregular region, 
(ii) Int (~  \ ~ )  is a biregular region, 

(rio ~ is in biregular contact with Int (~  \ ~).  

Let ~ be a biregular region and let ~ be a biregular region included in ~ .  
I f  CIo ~ Q ~ then ~ is necessarily a section of ~ ,  but if Clo ~ C ~ ,  then 
need not be a section of ~ .  
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4. Contact interactions 

We assume now that a biregular bounded region ~ in g and a collection 12 
of regularly open subsets of N with the following properties are given: 

(i) All sections of N (see Definition 5 of Section 3) belong to 12. 
(ii) The intersection of any two members of /2 belongs to ~2, i.e. 

f~ 2 E -(2 for all ~ ,  2 E/2.  

(iii) The join of any two members of 12 belongs to 12, i.e. 

v 2 : =  Int Clo(~ kJ 2) E 12 for all ~ ,  2 E 12. (4.1) 

(iv) The exterior in N of any member of 12 belongs to 12, i.e. 

~b : =  Int (N \ ~ )  E /2 for all ~ E/2.  (4.2) 

We call the members of 12 the parts of N. We denote the set of all disjoint pairs 
of parts of N by 

(122)dis : =  {(N, 2) E/22 I ~ #~ 2 = 0}. (4.3) 

The set of all sections of N will be denoted by 12see, so that 12see C 12 by condition 
(i). The elements of 

12int ' =  {~ ~ 12 I Clo N < ~} (4.4) 

will be called interior parts of N. If  N E 12i,t is a biregular region, then N E 12sec 
and Bdy N = Ctc (N, Nb). 

Given any part 0~ E 12, we put 

12e 12 12< } 

and call the members o f /2~  the parts of N. Of course, we have 124 = I2. The 
conditions (ii) and (iii) remain satisfied if 12 is replaced by D e or 12int and we use 
the notation (4.3) also when 12 is replaced by 12e or by 12int" 

NOW let a finite-dimensional linear space ~K be given. Given N E/2 and 
F :  12e -+ ~/r we say that F is additive if 

F(N v 2) = F(~)  + F(2) for all (N, 2) E (12e2)ais. (4.5) 

We say that 
I :  (122)dis --+ , '~ 

is an interaction if, forevery ~ E  D, both i(. ,~b) : Oe__ > ~/~ and I (~  b, "): 12~--~ #"  
are additive. We say that I is a contact-interaction if for all (~, 2) E (/22)a~ 

C t c ( ~ , 2 ) = 0  ~ I(N, 2 ) = 0 ,  (4.6) 

Definition 1. We say that a given contact-interaction is quasi-balanced /f  there is a 
continuous function f :  Clo N --> ~//" such that 

I(Y', ~ b ) =  f f d v  for all N E ~r (4.7) 
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Proposition 1. I f  I & a quasi-balanced contact-interaction, then I & skew in the 
sense that 

I (~ ,  2) = --1(2, ~a) for all (~,  2) < (K2in 2) dis" (4.8) 

The proof  follows immediately from Theorem A, p. 65, of [N2] because 
>-> I(N, ~b) : Di~t __> :/K is additive when (4.7) holds. 

Remark 1. If  the region ~ is identified with a continuous body that occupies N' 
in a "placement",  then a contact-interaction I may be interpreted as a system of 
internal forces or of internal heat-transfers as explained in Sections 9 and 10 of 
IN2]. In the former case we have qCr : =  q/" and in the latter q#" : =  R. 

The assumption that I is quasi-balanced is related, in the former interpretation, 
to the law of balance of forces, and in the latter interpretation to the law of 
balance of energy. [ ]  

Intermezzo: Wedge Interactions 

This short section aims to motivate Assumption I of  the following section. 
Let ~ be an open disc in a plane. We use the term wedge for an open sector 

of 9 .  We consider a collection aQ~ generated by wedges in the following sense: 
The members of  ~>  are unions of finite pairwise disjoint collections of wedges 
no two of which have a side in common. In particular, the wedges belong to .Q~. 
Figure 1 illustrates a member of ~9 .  

Figure 1 

It is easily seen that De is a material universe as described in the Appendix of  
[N2] if inclusion is taken as the relation "part  o f"  and meet, joint, and exterior 
are defined, respectively, thus: 

v 2 : =  Int Clo (~  U 2),  

y :=  Int (~  \ ~) .  

is the maximum of f2~ and the empty set is the minimum of K2~. The collection 
s defined in Section 4 is a material universe far richer than f2~ as defined here. 

We denote by (~i~2)dis the collection of all pairs of disjoint elements of  ~ .  
Let qU be a linear space as in Section 4. 
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Problem. Find all interactions I: (f2e2)ais--> ~/#" such that I (~ ,  ~) = 0 whenever ~ 
and .~ are wedges that have no side in common. 

Solution. Let oR be the set of all plane unit vectors. We denote by 

(~2 )  1 : =  {(u, w ) ~  ~ z  I u" ~ = 0} 

the collection of  all disjoint pairs of unit vectors. Given an interaction I as in the 
problem there is exactly one function 

7 : (q/2)• + ~g/- (I.1) 

such that 
I (# ,  2) = y(u, w) (1.2) 

whenever # and ~ are wedges in contact along exactly one side and the unit vec- 
tors w and u are defined as follows: w is directed away from the side that N and 

have in common and u is orthogonal to w and away from # (see Figure 2). 

Figure 2 

On the other hand, given a function ~ as in (I.1), an interaction I satisfying (I.2) 
is uniquely determined by the biadditivity of  1 on the whole (K2e2)di~. [ ]  

Given any wedge g ,  the pairs (ul ,  w~), (u2, wz)~ (q[2)• are determined as 
shown in Figure 3. 

Figure 3 

It follows from (I.2) and the additivity of the interaction I that 

I(~,  ~e) = ~(u~, wl) + v(u2, w2). (I.3) 

Thus, by Theorem A of  IN2], I is skew in the sense that 

I (# ,  .9.) + I(& ~ )  = 0 for all N, .~ E (ff~2)dis 
if and only if 

~(u, w) + 7 ( - -u ,  w) ---- 0 for all (u, w) 6 (q/z)• 
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Let  @'Q ~ be a given open sector of  ~ .  We now consider the collection 
Y2~, of  all members of  ~ that are included in ~ ' .  zoo, is a material universe itself 
and (D~,~)ai~ is defined in the same way as (O~z)~i~. A wedge of ~ '  is internal if 
it has no side in common with ~ ' ,  it is peripheral otherwise. 

Let I :  (~ff)ai~ -~ ~/U be an interaction satisfying (I.2) for all pairs of internal 
wedges. Clearly, I (~ ,  ~) cannot be computed by mere use of biadditivity if ~ or 

or both are peripheral. We assume that 

~(~, ~) = ~,(u, ~) 

whenever both ~: and ~ are peripheral wedges and the unit vectors w and u 
are defined as follows: w is directed away from the side that N and N' have in 
common and u is orthogonal to w and is directed away from N (see Figure 4). 

Figure 4 

Thus it is easily seen that I :  (O2,)ai s --> qg" is again uniquely determined by y. 

5, Edge interactions 

We assume that a biregular bounded region ~2, a collection of parts of ~ ,  
and a contact-interaction I :  (O2)ai~-+ ~ f  are given as described in Section 4. 
In this section we will discuss the consequences of two special assumptions about 
the nature of L 

Let a section N of M be given. It easily follows from Definition 5 of Section 3 
that, if  ~3 is an appropriate biregular partition for N, every piece of ~3 either is 
included entirely in ~ or is included entirely in Bdy N. In the former case, we say 
that the piece is internal, in the latter, peripheral. Thus a given side, edge, or vertex 
of  N, if it belongs to ~, is either internal or peripheral. All pieces of ~ are internal 
if and only if N is an interior part of ~ .  

Definition 1. Let ~ and ~ be sections of  ~ that are in biregular contact and let 
and ~ be appropriate biregular partitions for ~ and .~, respectively. Also, let an 
edge ~r E ~31/~ ~ be given, so that ~ and ~ are in contact along cg. 

We say that ~ and .~ are in inessential contact along ~ either i f  ~r is a cusped 
edge of ~ and both sides of ~ adjacent to ~ are internal, or i f  ~ is a cupped edge of 

and both sides of  ~ adjacent to ~q are internal; otherwise we say that ~ and ~ are 
in essential contact along ~. 

We define the set ~(~), consisting of sides of  ~ ,  as follows: 
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(i) I f  ~ and ~ are in inessential contact along ~, then ~(cg) : =  0. 
(ii) I f  ~ and ~ are in essential contact along oK, then ~(~) := {60 E ~2 I 5e is 

adjacent to cg and either (a) or (b) below holds}, where (a) and(b) are the follow- 
ing conditions: 
(a) 5 ~ is an internal side of ~ that is in cusped contact with an internal side 

ofo~. 
(b) 5 ~ is a peripheral side of ~ that is in contact with a peripheral side of ~. 

If  we wish to emphasize the dependence of ~(cg) on N and .~, we replace 
by ~ , a .  It  is clear that ~(~)  is a set of  cardinality 0, 1, or 2. We illustrate the var- 
ious situations that determine ~(cg) in Figures 1-6 below. Each of these shows a 
cross-section orthogonal to cg. 

Figure 1 

Figure 3 

Figure 2 

Figure 4 

Figure 5 

In Figure 1, we have ~(cg) = 0 

Figure 6 

because ~ and .~ are in inessential contact 
along (g. The contact is essential in Figures 2-6. Specifically, we have ~(cg) ~ 0 
in Figure 2, ~(cg) _~ {6a} in Figures 3 and 4, and ~(cg) = {5 a, 3-} in Figures 5 
and 6. In Figures 3 and 5 we have 5 e E S~(~) because condition (a) is satisfied. 
In Figures 4 and 6 we have S e E ~(cs because condition (b) is satisfied. 

I f  N and .~ are in simple edge contact along the curve cg, then every cross- 
section of cg in a small neighborhood of (g looks like a wedge contact as described 
in the Intermezzo. The following assumption states, roughly, that the edge inter- 
action along qf is obtained by integrating wedge interactions on the cross-sections 
along oK. 
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Assumption I. There is a function 

7 : Clo ~ •  (p2)• ~ ~ (5.1) 

of  class C ~ such that 

~(~, ~) ---fy(x, v~;~(x), v~(x)) dl~ (5.2) 
cg 

whenever ~ and ~ are disjoint sections of  ~ in simple edge contact along the curve 
and ~(qr = {5O} (see Definition 1 above and Definition 4 of Section 3). 

Proposition 1. We have 

I (~ ,  ~) = f ~ 7(x, v~;~(x), v~(x)) dl~ (5.3) 

whenever ~ and ~ are disjoint sections of  N in simple edge contact along the curve ~f . 

Proof. First, we assume that N and ~ are in essential contact along cg. We then 
have the following three cases. 

(o 0 ~(~f) is empty. It is easily seen that we can then construct a section ~ '  
of N, disjoint from both ~ and .~, such that ~ is in simple edge contact along r163 
with both ~'  and ~ v ~'  and such that 

~,~,(~)  = ~,~v~, (4) = {s ~ 

for some surface 50 C Bo ~ (see Figure 7). It follows from Assumption I that 

I(r  ~') = I(~, ~ v ~'). 

~.///////////////////////// 

Figure 7 

Using the additivity of I(~,  .), we conclude that I (~,  .@) = 0, which is the same 
as (5.3) when ~(cr  0. 

(~) ~(~f) is a singleton. Then (5.3) simply reduces to (5.2). 
(7) ~(cg) is a doubleton, say ~(cg) : =  {~--i, J2}- It is easily seen that we can 

then construct disjoint sections ~.1 and ~z, both in simple edge contact with 
along cg, such that ~ = ~ v ~2 and ~ ,&( f f )  = {J'~}, ~.~,~(cg) = {5o2} (see 
Figure 8). 

Using the additivity of I (~,  .), we get 

~(~, 2) = i(~,  &)  + i(~,  &0. 

Now I(N, ~l)  and I (~,  ~2) can be evaluated using Assumption I. The result is 
(5.3) with ~(cg) = {3-i, 3-2}. 
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"<ql U~7 

Figure 

We now assume that r a and ~ are in inessential contact along cg, In particular, 
assume that g is a cusped edge of ca and both sides of ca adjacent to g are inter- 
hal, but that g is not a cusped edge of .~. We can then construct a section ca' 
of N, disjoint from both ca and ~, such that both •' and ca v ~a, are in essential 
simple edge contact with .~ along cg and ~ev~, ~(cg) = ~,,.~(cg) (see Figure 9). 

Figure 9 

Using the additivity of I(-, .~), we have I(ca v ca', 0~) = I(~ a, ~) q- I(ca', ~). 
Since (5.3) can be used to determine I(ca v Y ,  .~) and 1(ca', ~) and since they 
have the same value, it follows that I(ca, ~) = 0. All other cases can be treated 
in a similar way. [ ]  

The following result is an easy consequence of Proposition 1 and the additivity 
of I(ca, -). 

Proposition 2. Let ca and ~ be disjoint sections of ~ in biregular contact and let 
and ~ be appropriate biregular partitions for ca and ~, respectively, so that 

Ctc (ca, ~) = ~] (~ f~ ~)  (5.4) 

(see Definition 4 of Section 3). I f  g} and ~ have no surfaces in common, i.e. i f  
~2 A ~2 = 0, we have 

z(ca, ~.) = >_2 f ~ y(x, v~;s~(x), vs,(x)) dlx. (5.5) 

Assumption IL For every biregular part ca o f  ~ there is a continuous function 

v~ : Rbo ca \ Bdy N ---> qr (5.6) 

such that 
1(ca, ~) = f v~ da (5.7) 

5o 
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whenever (a) ~ is a section of ~ disjoint from ~ that is in simple surface contact 
with ~ along the regular surface 5:. (b) ~ has exactly one side other than 5 a, say 
~-, and ~-- is an internal side, and (c) all edges of  .~ are cusped. 

Figure 10 illustrates a situation for which (5.7) is valid. 

Figure 10 

Proposition 3. We have 

V(x, u, - -w)  = --V(x, u, w) for all x E Clo ~,  (u, w)E (q/J)• (5.8) 

Proof. Let x E N and (u, w)E (o#2)j_ be given. We consider a line-segment 
cg included in N whose midpoint is x and which is perpendicular to both u and 
w. We can easily construct five interior sections N, ~1, ~ ,  ~.2, ~ with the follow- 
ing properties (see Figure 11): (i) The sections are pairwise disjoint and in bi- 
regular contact. (ii) The sections ~1 and ~-2 are in simple surface contact with 
along the two sides 6al, 6e2 of ~ that are adjacent to cg in some biregular partition 
for ~ .  (iii) The sections ~1 and ~2 satisfy the conditions (b) and (c) of Assump- 
tion II. (iv) The sections ~'1 and .~; are in simple edge contact with ~ along cr 
such that ~,.~(cg) = {6:~} and ~,~(<g)  = {~/~2). (v) ~ - '=  ,991 k.J ~ 2  k,] (~r 

is a regular surface and ~ :---- -~i v ~; v -~2 v -~2 is a section that is in simple sur- 
face contact with ~ along 5: such that the conditions (b) and (c) of Assumption II 
are satisfied. (vi) 5: is a subset of a plane and v~Is~ is a constant with value u. 
The functions vr l~e and vs. ~ [~ are constants with values w and --w, respectively. 

It/1 : ,,l////till/, ,,/II 
Figure 11 

It follows from (i) and (v) and Assumption II that 

I (~,  ~1 v ~.', v ~ v *~'2) = I(~,  .~) = f v : a a .  
Sa 

It follows from (i), (ii), (iii), and Assumption II that 

I(~, ~ )  = f r :  da, I(~, .~) = f ~ da 
5al 5a2 

(5.9) 

(5.10) 
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and fro m (i), (iv), (vi), and Assumption I that 

I(t~, 2',) = f ~(y, v~;s~(y), v~(y)) dly = f ~(y, u, w) dly, 
cg 

(5.11) 
I (~ ,  ,~)  = f y(y, v~;s~=(y), vso (y)) dly = f 7(y, u, - w )  dly. 

Using the additivity of I(N, -) and the additivity of  surface integrals, we conclude 
from (5.9)-(5.11) that  

o = f (7(y, ,,, ~) + ~(y, u, - w ) )  dl,. 

Since the line-segment cg centered at x can be made arbitrarily short, it follows 
that (5.8) holds. I f  x 6 Bdy ~ rather than x 6 N, then (5.8) follows from the 
assumed continuity of y. [ ]  

Definition 1. Let St be a regular surface. A continuous function n : Clo 50 -+ q/ 
is called an orientation of  St i f  n(x) 6 (Tanse(x)) l for all x 6 Clo 50. We say 
that 5" is orientable i f  admits an orientation n. 

By an oriented regdar  surface we mean a pair (St, n) of  a regular swface 
St and an orientation n of St. 

An orientable regular surface 5~ admits exactly two orientations, and if n is 
one then - -n  is the other. Let (50, n) be an oriented surface. Then 

Eso = 1:~ -- n | n (5.12) 

and n is of class CL If  n is constant then St must be subset of a plane. 

Proposition 4. For every oriented regular surface (st, n) with St Q 
a continuous function 

a(s~,.~ : Clo St -+ 

such that 
a(se,,0 = ~ I s  o (5.13) 

whenever ~ is a biregular part of  ~ with St ~ Rbo @ and n = v~cs~. 
Moreover, i f ( s t ,  n) and (5"', n') are oriented regular surfaces such that St' ~ St 

and n' = nls~, , then 

cr(se,,n, ) = a(se,,Ol~,. (5.14) 

there is 

The proof  of Proposition 4, which will not be given here, is only slightly more 
complicated than the proof  of the corresponding proposition for classical surface 
interactions (see e.g. Theorem 1 on p. 271 of [N1]). 

Proposition 5. Let ~ and 2 be sections of ~ in biregular contact and let ~ and 
be appropriate biregular partitions of ~ and 2, respectively. Then 

I (~,  2) = Z f a(s~,v~,s~ da + Z f Z 7(x, v~;s~(x), v~(x)) dlx. 
~ ~  5" ~ge~3~n~ ~ 5 ~ ( g  ") 

(5.15) 
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Proof. Let 50 6 ~2 n ~2 be given. I t  ,is ::easily seen that one can construct a 
section Ns~ of 2 with the following properties (see Figure 12): (i) Nso is in simple 
surface contact with N along 50; (ii) Ns," has exactly one side other than 50, say 
50', and 50' is included in 2;  (iii) all edges of N~, are cusped. Moreover, the con- 
struction can be done in such a way that the collection {~so 1 5~ 6 ~2 f~ ~2} is 
pairwise disjoint and Ctc (N~,, N~,) Q Bdy ~ for any two distinct 5 ~ 50' 6 
~3~/5 ~ .  

Bdy 

f / 
. / - / -  ,~o t - -  

Figure 12 

It is easily seen that 

2 '  : =  Int (2 \ k] {.~so l 50 6 ~z f~ ~z}) (5.16) 

is a section of 2 that has an appropriate biregular partition ~ '  such that ~32 f~ 
~ = 0 and ~1 f~ ~ = ~ , / 5  ~1. The section 2 '  is in biregular contact with 
and Proposition 2 can be used to evaluate I(N, 2'). In view of condition (iii) 
above, we also have ~,s(cg) = ~,a,(cg) for all cg 6 ~1 f~ ~1, so that (5.5) 
gives 

I(m, 2') = ~ f ~] ~,(x, v~;so(x), Vs,,(x)) dl~ (5.17) 

when ~ : =  ~ , a .  Using (5.16) and the additivity of I(N, .) one easily proves 
using induction that 

I (~ ,  2) = I (~,  2') @ ~ I(~,  ~so). (5.18) 
5:e~2As 

Now, in view of the conditions (i), (ii), and (iii) above. Assumption II can be used 
to evaluate I(N, N: ) .  Using also Proposition 4, we get 

I(~, ~so) = f a(s:,~:[:) da. (5.19) 
5o 

Combining (5.17), (5.18), and (5.19), we get the desired result (5.15). [ ]  

Proposition 6 shows that the values of the interaction I for sections in biregular 
contact are uniquely determined by the function ): and the functions a(so,,o. The 
problem of how to express the values of I in more general situations is open. 

If  7 = 0 we say that the interaction/is  a pure surface interaction. If  ~(so,,,) = 0 
for all oriented regular surfaces (5 ~ n) we say that I is a pure edge interaction. 
Every interaction satisfying Assumptions I and II is then the value-wise sum of a 
pure surface interaction and a pure edge interaction. 
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Remark 1. Suppose that a function 

9' : Clo ~ •  (q/2)• @ ~/C 

of class C 1 satisfying 9,(x, u, --w) = --7(x, u, w) for all (x, u, w)E C l o ~ •  (q/2)• 
has been prescribed. Also suppose that, for each oriented regular surface 
(6", n) with 6 e Q ~ ,  a continuous function aCs,,,~) : Clo 6 e --.'- ~ has been pre- 
scribed in such a way that (5.14) holds. We can then define 1(#, ~) by (5.15) 
for all disjoint pairs (~,  .~) of sections of ~ in biregular contact. One can then 
prove that I is conditionally biadditive in the sense that 

I(#,  -~a v ~z) = I (# ,  ~x) + I(#,  ~a) 
and 

hold provided that: (i) # ,  -~1 and -~2 are pairwise disjoint sections of ~ ;  (ii) 
.~  v ~a is a section o f ~ ;  (iii) # is in biregular contact with ~a, ~2, and ~ v ~2. 

[] 

6. Resultant actions 

We assume that a region N and a contact interaction I as described in Section 5 
are given. In particular, we assume that the Assumptions I and II are satisfied. 

The following result describes the resultant action on a given section of N, 
i.e. the action I ( # ,  #b) on a section # of 9~ by the exterior #b of ~ in o~, provided 
that the condition (6.1) below is valid. We will see in Section 7 that (6.1) is auto- 
matically satisfied if I is quasi-balanced in the sense of Definition 1 of Section 4. 

Proposition 1. Assume that the function 7 of  Assumption I satisfies 

7 ( x , - - u , w ) ~ - - - y ( x , u , w )  foral l  x E C l o ~ ,  (u,w)E(qla)• (6.1) 

Let ~ be a section of  ~ and let ~ be an appropriate biregular partition for # .  Then 

I (# ,  #b) = ..~]-i.t ( f  a(se'v~]~)da q- Rbo "fse 7(x' v ~ ; . ~ ( x ) ,  vse(x)) dlx) 
~'~gs 2 

+ ~ f 9,(x, v~;/x), v/x))  dZx (6.2) 
SaE ~2Per Rbo~ABdy~ b 

where ~ , t  is the set of  all internal sides of  # and ~ r  is the set of  all peripheral 
sides of  ~ .  

Proof. It is easily seen that we may choose an appropriate biregular partition 
for #b such that 

~2 /~ ~ 2  = ~ n t .  (6.3) 

i.e. such that the internal sides of # are exactly the sides that # and #b have in 
common. 
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Let cg E ~3~ f~ s i.e. an edge that ~ and ~b have in common, be given, 
and let 5el, 502 E ~2 be the two sides of ~ adjacent to c~. There are two cases: 

(i) cg is not an internal cusped edge of ~ .  Then cg cannot be an internal cusped 
edge of ~b either and ~ and ~b are in essential contact along c~ (see Definition 1 
of Section 5), In this case, the set ~(cg) is easily seen to be given by ~(~) = {5al, 5a2} 
so that 

f 7(x, v,~;s~,(x), vs~,(x)) dI~ -+- f 7(x, v~;~=(x), ~,~=(x)) dtx 

= f Z dl . (6.4) 
~ ( ~ )  

(ii) cg is an internal cusped edge of ~ .  Then # and ~b are in inessential contact 
along cg and hence ~(cg)~ 0. Hence the right side of (6.4) is zero. We also 
have v~;s~,(x)=--v~;~,(x)  and v~ , (x )=v~, (x )  for all xECg. Hence, by the 
assumption (6.1), the left side of (6.4) is also zero. 

We conclude that (6.4) is valid no matter what cg E ~ t% ~1 is. I f  cg is an 
internal edge of # ,  then 5el, 5e 2 E ~ , t .  I f  cg is a peripheral edge of # ,  then one 
of 5ca and 502, say 5ca, is internal while the other, 5~ ,  is peripheral and cg C 
Rbo 5a2/5 Bdy #~. 

Since the edges of every 5 e E ~3~ nt and the edges included in Bdy #b of every 
5 e E p~r  all belong to ~ t~ s it follows from (6.3) and (6.4) that (5.15) reduces 
to (6.2) when .~ :---- ~b. []  

Remark 1. If  a given edge cg E ~1 is included in the reduced boundary Rby 
of ~ ,  then the contributions from cg to the line integrals in (6.2) corresponding to 
the two sides adjacent to ~ cancel by Proposition 3 of Section 5. Hence the right 
side of (6.2) does not change when ~3 is replaced by a refinement, as it shouldn't. 

[] 

We now add an assumption which is consistent with (5.8), but does not follow 
from it. 

Assumption I lL There is a function 

G : Clo ~ • ~ -+ Lin (r "/r 

of class C ~ such that 

y(x, u, w) = G(x, u) w for all x E Clo 9~, 

(6.5) 

(u, w)E (y/2)• (6.6) 

The function G is not uniquely determined by 7. Indeed, if G' is a C1-function 
of the type (6.5) that satisfies (6.6), then 

G(x, u) : =  G'(x, u) (1r -- (u | u)) for all x E Clo ~ ,  u E ~ (6.7) 

defines another one. The function G defined by (6.7) satisfies, in addition to (6.6), 
the following normalization condition: 

u E Null G(x, u) for all x E Clo ~ ,  u E qg, (6.8) 
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It is easily seen that 7 determines uniquely a C~-function G that satisfies both  
(6.6) and (6.8), and from now on we will assume that G denotes this function. 

Remark 2. One can prove that Assumption III is implied by the following 

Assumption III ' .  There is a k 6 ~• such that for ever), biregular oriented surface 
{5% n) with 50 Q ~ we have 

RbfoS: y(X, n(x), vsdx) dl~ ~ k area (5 9 . (6.9) 

Unfortunately, we do not know of any convincing physical reasons that one 
might use to justify Assumption III '  or Assumption III. [ ]  

Now let an oriented regular surface (5 e, n) with 5" Q Clo N be given. Then 

G(ls:ce, n) = (x ~ G (x, n(x)) : Clo 5: -+ Lin (~:, ~U) (6.10) 

is a mapping of Class C ~ in the sense of Definition 1 of Section 2. We use the 
abbreviation 

~(:,,) : =  divs: (G(lsoce, n)) : 5 ~ -+ ~g# (6.11) 

for the surface-divergence of G(ls:ce, n) as defined in Definition 2 of Section 2. 
Using (5.12) and the fact that 

Tans:(x ) : {n(x)} • for all x 6 Clo 50, (6.12) 

one can use the chain rule and the definitions of Section 2 to show that ~(so,n) 
is determined by the following explicit formula: 

~o~(s:,,o(x ) : o) divx (G(., n(x))) -- n(x) .  Vx(coG(., n(x))) n(x) 

+ t r  (V,(x)(coG(x, ")) V~n[ {'(~))• for all x 6 Clo 50, (9 6 ~r 

(6.13) 

In the case when ~ : B  and Lin ($/ ' ,B) : "U* ~ ~ ,  (6.13) reduces to 

O(so,,)(x) = div~ (G(', n(x))) -- n(x) . VxG(', n(x)) n(x) 

+ tr(V,(~) G(x, .)V~nl("(x)}• ) for all x 6 Clo 50. (6.14) 

The normalization condition (6.8) ensures that G(ls:ce, n) is a tangential mapping 
in the sense of Definition 3 of Section 2. Hence we can apply the Corollary to 
surface-divergence Theorem stated in Section 2 to obtain the following 

Proposition 2. Let ~ be a section of  ~ and let ~ be an appropriate biregular 
partition for ~.  For every internal side 5:6 ~nt  of ~ we then have 

f a(s:,~ls: ~ da q- f y(x, v~;sp(x), v~(x)) dl. 
Rbo 

= f (a(s:.~l~) -]- ~(~,~1:)) da, (6.15) 
5," 

where ~ is characterized by (6.13). 
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Since StE ~i2t implies St Q N, one needs functions of 'the form ~(so,,~) only 
for surfaces St included in N when applying Proposition 2. Nevertheless, it is 
important to note, for use in Section 8, that ~(so,,,), as given by (6.11) or (6.13), 
is meaningful even when St is a regular surface included in the boundary of N. 

7. Quasi-balanced interactions 

We assume again that a region N and a contact interaction I as described in 
Section 5 are given. We assume that Assumption III of Section 6 as well as the 
Assumptions I and II of Section 5 are satisfied. Finally, we assume that the inter- 
ac t ion / i s  quasi-balanced in the sense of Definition 1 of Section 4. The continuous 
function f :  Clo N - +  r162 for which (4.7) holds is clearly uniquely determined 
by L 

For each oriented biregular surface (st, n) with St C ~ we now define 

(P(s~,,,) : =  a(~, , , )+ ~(~,,,) : St ~ 'r (7.1) 

where a(s~,.) is characterized by Proposition 4 of Section 5 and ~(s~,.) is given by 
(6.11) or (6.13). 

It follows from Proposition 4 of Section 5 and from (6.13) that the functions 
9~(s~,n) defined by (7.1) satisfy the following two conditions: 

(A) For every oriented biregular surface (st, n) with St Q N, ~0(se,,,) is continuous. 

(B) If  (st, n) and (5"', n') are oriented biregular surfaces such that 50' ( St ( 
and n' =his,,, , then 

g(se,,,,) = ~0(s~,n)]s~,. (7.2) 

It follows from Proposition 1 of Section 4, applied to the case when ~ and 
are suitably chosen biregular interior parts of ~ in simple edge contact, that the 
function ), of Assumption I of Section 5 satisfies y(x, - -u ,  w) = --7(x, u, w) 
for all x E M and all (u, w) E (q/2)• In view of the assumed continuity of 
on its entire domain Clo ~•177 we conclude that 

7(', - -u,  w) ----- --V(-, u, w) for all (u, w)E (q/2)• (7.3) 

i.e. that the assumption (6.1) of Proposition 1 of Section 6 is automatically 
satisfied. Using this fact and the fact that an interior section ~ does not have any 
peripheral sides, we conclude from (4.7) and Propositions 1 and 2 of Section 6 
that the functions q~(se,n) also satisfy the following third condition: 

(C) There is a continuous function f :  Clo ~ -+ "If such that, for every biregular 
part ~ E ,(21nt and every biregular partition ~ for ~ ,  we have 

Z f q~{s~,,,)da = f f d v .  (7.4) 
5a~32 5" ,~ 
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Now let x E N and u EYr be given. Then the plane section (x -k {u} l) A 
includes biregular plane surfaces ~-- that contain x. For  each such surface ~--, 
the constant u is an orientation of 3- and hence ~0(~-,u), a(9-,,), and 0(j-.,,) are 
all meaningful. It follows from condition (B) that 

O(x, u) : =  (P(3-,u)(X) (7.5) 

depends only on x and u and not on what particular plane surface g has been 
selected. Similar statements apply to 

0~(x, u) : =  ~r(j-.u)(X ) (7.6) 

and 
fl(x, u)  : =  ~(~-,u)(X) (7.7) 

because of Proposition 4 of Section 5 and (6.13). 
We now add one more assumption. 

Assumption IV. For each u E qZ, the function off., u):  ~ -+ ~ given by (7.6) 
is continuous. 

It follows from (6.13) and (7.7) that 

o)fl(x, u) = ~o div x (G(., u)) - -  u . Vx(coG(. , u))  u (7.8) 

for all x E ~ ,  u E q/, and o9 E ~r Since the function G of  Assumption III 
was assumed to be of  class C 1, it follows from (7.8) that the function /3(., u) : 
~--> qr is continuous. Hence, since ~-----or fl by (7.1) and (7.5)-(7.7), we 
conclude that the functions q)(so,,,) also satisfy the following fourth condition: 

(D) For  every u E og, the function ~(., u) : ~ ~ ~ given by (7.5) in terms of 
~0(~,u ) is continuous. 

The main result of [N3] is that the conditions (A)-(D) imply the existence 
of a continuous function 

F :  ~ -+ Lin ("/'~, ~/U) (7.9) 
such that 

F(x) n(x)  = ~0(~,,o(x ) = a(s~.,,)(x) -}- ~(se,,,)(x) for all x E 5 a (7.10) 

for  all oriented biregular surfaces (6 a, n) with S e ( ~ .  

Remark 1. If  (D) is replaced by a stronger condition that need not be satisfied 
by the functions ~0(sp,,) here (namely that ~0(so,,,) is uniformly bounded with respect 
to 6~ the conclusion above was already obtained by one of us in 1957 (see IN1]). 
If  one assumes that the values of ~'~(x) of the functions ~ of Assumption II of 
Section 5 depend on x and 9 ~ only through x, re (x ) ,  and the tangential gradient 
of ve~ at x and if one also assumes that this dependence is of class C 1, then the 
conclusion can also be obtained from the recent result of  FOSDICK & VIRGA [FV]. 

[] 



Edge Interactions and Surface Tension 25 

It follows from (7.3) that, under the present hypotheses, the function G of 
Assumption III of Section 6 must satisfy 

G(., - -u)  = --G(-, u) for all uE  ~ .  (7.11) 

Putting the results above together with Proposition 5 of Section 5, we obtain 
the following conclusion 

Theorem I. Let I be a quasi-balanced contact interaction for which Assumptions 
1-IV are satisfied. Then there is a function 

G : Clo ~ •  ~r___> Lin ("//', qr (7.12) 

of class C 1 satisfying (7.11) and a continuous function 

F : ~ --> Lin (r ~K) (7.13) 

such that, for any two disjoint sections ~ and .~ of ~ in biregular contact, we have 

I(#,  .~) = ~ f (Fv~ -- div~ G(I~ce, v~[~)) da 
5 P e ~ 2 A ~ 2  

f X (x, v/x)/dlx, (7.14) 

whenever ~ and s are appropriate biregular partitions of  ~ and,~, and when R(cg) 
for each r E ~1 f~ ~i ,  is defined according to Definition 1 of Seetion 5. 

Remark 2. If  an interaction I satisfies the hypotheses of Theorem I, it cannot be 
a pure edge interaction as defined at the end of Section 5. To see this, assume 
that I is a pure edge interaction and that x E ~ is given. Then, by (7.1) and 
(7.10), 

0 = a(~,,o(x ) = F(x) n(x) -- Q(~,,o(x) (7.15) 

for all oriented surfaces (50, n) with x E ~  and A" C ~J. I f  (7.15) holds, then 
~(so,0(x) can depend on (A", n) only through the value n(x). But (6.13) shows that 
this can be the case only when G(x, .) has a zero gradient, i.e. only when G(x, u) 
does not depend on u E ~ .  In view of (7.11) it follows that G(x, .) = 0. Since 
x E N was arbitrary, G must be zero. [ ]  

The following result follows from Propositions 1 and 2 of Section 6 and from 
(7.10) and (6.6). 

Theorem II. Let I be a quasi-balanced interaction for which Assumptions I - I V  
are satisfied and let G and F be the functions described in Theorem L For every 
section ~ of ~ and every appropriate biregular partition ~ for ~ we then have 

I(~,  Nb) = ~_a f Fv~ dv § ~ f C(x, v ~ ; / x ) )  v~(x) dl~. 
5p~3ignt 5 ~ 5 , , ~ p e r  RboZPf~Bdy~ b 

" 2  

(7.16) 
In particular, i f  ~ is an interior biregular part of  ~ we have 

I(#,  ~b) = f F v j d v  = f f d v .  (7.17) 
Rbog  r ~ '  
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I f  the function F : N -+ Lin (~/", ~/r is of class C ~, it follows from the diver- 
gence theorem and the fact that (7.17) holds for all biregular ~ E Oi.t that 

f = div F.  (7.18) 

8. Boundary conditions 

We continue to assume that an interaction I satisfying the hypotheses of 
Theorems I and II of the preceding section is given. We have seen in the preceding 
section that the field equation (7.18) is the same as it would be if there are no edge 
interactions, i.e. if  G = 0. The presence of edge interaction becomes manifest 
only when suitable boundary conditions are imposed. Physically, such boundary 
conditions describe the action of the environment on the boundary of the body 

under consideration. We consider only the case when the action of the environ- 
ment is a pure surface action, i.e. when there are no edge interactions between 
and the environment. Thus, we strengthen our assumption that I be quasi-balanced 
as follows: 

Assumption V. There are continuous functions f :  Clo ~ --> r and h : Rbo N -+ "/K 
such that 

I (~ ,  ~b) = f f dv + f h da (8.1) 
J Clo~'{~Rby 

for all parts ~ E I"2. 

The function h describes the surface action of the environment on N. 
Proposition 1 of Section 4 can now be strengthened as follows: 

Proposition 1. I f  Assumption V is valid, then I is skew in the sense that 

I (~ ,  .~) = --I(~, ~ )  for all ~,  ~ E (D2)di~. (8.2) 

The proof  follows again from Theorem A, p. 76, of [N2] because ( ~  
I (~ ,  Nb)): D - +  ~g/" is additive when (8.1) holds. 

Theorem III. Let I be an interaction for which Assumptions I - V  are valid and let 
G be the function determined by I as described in Theorem L I f  ~ is a biregular 
partition for ~ and cg E ~1 is an edge of ~ ,  we have 

G(x, Ve;s~ (x)) Vs~(x) + G(x, v~;~(x) )  Vs~(x ) = 0 for all x E cg, (8.3) 

when 5Pl, 5r E ~2 are the two sides adjacent to the edge ~r 

Proof. IfCg is a cusped edge of  N, we have Vs~ 1 = Vs~, and Ve;sp I = --v~;s~ and 
(8.3) is valid because of (7.11). Assume, then, that cg is not a cusped edge of 
and let x E ~ be given. For  every curve ~ '  with x E cg, and cg, Q cg, we can 
construct disjoint sections ~ t  and ~2 of N with the following properties: (i) ~ 
and N2 are in simple edge contact along cg,, (ii) one of  the sides of ~1  adjacent 
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to cg,, say 5~1,' is included in 5~ (iii) one of the sides of ~2 adjacent to ~g,' say ~2,' 
is included in 5~2, and (iv) the internal sides of N~ and N2 that are adjacent to 
cg, are not in cusped contact. Figure 1 illustrates this situation by showing a cross- 
section orthogonal to <g. It follows from Definition 1 of  Section 5 that 

) = { s ~  = 

s,  A%. 

Figure 1 

Since I(Na, ~2) = --1(~2, ~1) by Proposition 1 above, it follows from Assump- 
tion I of Section 5 that 

f T(z, v~;s~(z), vs~(z)) dl~ = -- f v(z, v~;s~(z), vs~(z)) dl~ (8.4) 

because v~;sq[w = v~;so, l~, , v~;s~l ~, = v~;so,[~, , Vs~,] ~, = v~[~,  and vso, I~, 

= Vs~[~,. Since the curve ~ '  satisfying x ~ c~, and ~ '  ~ c~ was arbitrary, it 
follows from (8.4) and the continuity of  7 that 

r(x, = - r ( x ,  

In view of Assumption III, (6.6), the desired result (8.3) follows. [ ]  

I f  ~ is not a genuine edge, i.e. if vs~l(x ) = --Vs~(x) for all x E c~, then 
Ve;s~(x) = v~;s~(x ) = re(x) for all x E c~ and hence (8.3) is trivially satisfied. 

Theorem IV. Let I be an interaction for which Assumptions I - V  are satisfied 
and which therefore determines the functions F and G as described in Theorem I. 
For all regular surfaces 5" included in the boundary o f  the body ~ we then have 

lira (F(y) v~(x)) = 0(~,o~[~)(x) -- h(x) for all xE 5 e, (8.5) 
y--~X 

where O(s~,~lsp ) is given by (6.11) or (6.13). 

Proof. Let a regular surface 50 included in Bdy N and x E 5~ be given. It is not 
hard to construct a section N of N with an appropriate biregular partition 

: =  {N, ~-, j - , ,  c~} for N such that (i) ~ is an external side of  N with x E Y 
and Clo Y Q 5~ (ii) 9- '  is an internal side of  ~ ,  and (iii) c6 = Bo J"  = Bo ~-' 
is the only edge of # and cg is a cusped edge (see Figure 2). Furthermore, N can 
be constructed in such a way that ~ is included in an arbitrarily small neighbor- 
hood of x and the values of v~]~-, differ arbitrarily little from --v~(x). Since 
~2nt = {~--,}, ~ e r  = {~-} and Rbo ~-- Q Bdy ~b, we see that the formula (7.16) 
of Theorem II gives 

I (# ,  ~b) = fFv~ da + f c(~,  v~;,-(~)) vs~(~) dl~. (8.6) 
J "  Rbo~"  
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Figure 2 

Using the corollary to the surface-divergence theorem stated in Section 2, the 
notation (6.11), and the fact that v ~ ; j - :  v~lcloJ- , it follows from (8.6) that 

I(~, ~b) = f F v~da § f e~9-,~[~-) da. (8.7) 
~'-, 

On the other hand, since Clo ~ / 5  Rby ~ = Clo ~--, it follows from (8.1) that 

i (~ ,  ~b) : f f d v  § f h  da 

and hence, by (8.7), that 

f Fv~ da = f (h -- ec~-,v~t~_)) da § f f d v .  (8.8) 
~.-, ~.- 

Since v~lj-, differs arbitrarily little from --v~(x), we obtain the desired result 
(8.5) by dividing (8.8) by the area of Y- and then taking the limit as ~ shrinks to 
(x}. [] 

9. Examples,  surface tension 

As a special example, we now consider the case when the function G of  As- 
sumption III, Section 6 can be expressed in the form (6.7) when G'(x, u) depends 
linearly on u. More precisely, we assume that there is a function 

A : Clo ~ --> Lin (~/', Lin ( ~ ,  ~r)) (9.1) 

of class C 1 such that G : Clo ~ • ~ --> Lin (~/', ~f)  is given by 

G(x, u) : (A(x) u) (1~ --  u | u) for  all x E Clo ~ ,  u E q/. (9.2) 

Let an oriented regular surface (50, n) with 5" Q Clo ~ be given. I f  we sub- 
stitute (9.2) into (6.11), we obtain 

~(sp,,O : divs~ ((A ]9" n) (1~- --  n | n)) .  (9.3) 

In view of (2.6), (9.3) is equivalent to 

co~(s~.,~) = div~ ((1~ -- n | n) (coA [~ n)) for all co E ~g/'*, (9.4) 

where ogA E Lin (z/r, ~/P*) ~ Lin ~/" is characterized by 

((oJA) u) .  v = oJ((Au) v) for all u, v E ~/', co E ~r �9 (9.5) 

Now let ~o E ~//r, be given and put 

B : =  coA ]s~ : 5~ ---> Lin ~ (9.6) 
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so that (9.4) gives 

09~(~,, 0 = div~ (Bn --  (n . Bn)  n) .  (9.7) 

In order to evaluate the right side of (9.7) we observe that the surface divergence 
satisfies rules that are analogous to the rules stated in Section 67 of [FDSI] for 
the ordinary divergence. In these rules, ordinary gradients must be replaced by 
surface-gradients defined according to Definition 1 of Section 2. The analogue 
of  Proposition 2 of Section 67 gives 

divse (Bn) = n .  divso (B r) + t r  (B T V n ) .  (9.8) 

The analogue of Proposition 1 of Section 67 gives 

divso ((n �9 Bn) n) ~- (n �9 e n )  divs~ n + 7 (n  . e n )  . n .  (9.9) 

Now, if ~7 : 6a - + ~  is of  class C 1, then V~ 7 is tangential (see Definition 3 of  Sec- 
tion 2) by (2.2), which means that (7~7) �9 n ---- 0. Hence the second term on the 
right side of (9.9) is zero. Therefore, using (9.9), (9.8), and (9.6), we see that 
(9.7) yields 

o90(se,n) = n �9 divso (B T) + tr  (B r 7n )  -- (n �9 Bn) divse n .  (9.10) 

Given xE  6 a, the lineon L ---- - - 7xn  has the following significance (see Chap- 

ter 3 of [FDSII]): L- is symmetric, one of  its spectral values is zero and the other 
two are the principal curvatures of 6 a at x. The mean curvature of 6 a at x is given 
by 

Hsa(X) : = 1 t r L  = --�89 tr Vxn = --�89 (divs~ n) (x) (9.11) 

(L- is  closely related to what are often called the "Weingarten map"  and the 
"Second Fundamental Form").  Using (9.11), (9.6), and the fact that Vn has values 
in Sym ~e', we see that (9.10) becomes 

o~(~,,, o = n -  div~ ((o)A)rr~) + tr (Tn(~oA]s~)) + 2H~(n �9 (o, al ) o) ,  (9.12) 

valid for all o) E ~//'*. The use of (9.12) leads to a more explicit form for the 
boundary condition (8.5). 

I f  we substitute (9.2) into (8.3) and observe that v ~ ( x ) ,  v~;~(x)  ---- 0 = v~2(x ) 
�9 v~ ;~(x)  for all x E cg we see that the boundary-edge condition (8.3) becomes 

(a(x) v~yl (x) )  v ~ ( x )  + (A(x) v~;~,(x)) v~(x ) )  ---- 0 for all x E  (g (9.13) 

when G has the form (9.2). 

Remark 1. If  we substitute (9.12) into the boundary condition (8.5), we obtain a 
result that is consistent with one of boundary conditions that TOUPIN obtained 
in his treatment of  non-simple elastic materials (see equations (10.9) or (10.14) 
on p. 102 or [To2] or equation (7.9) on p. 402 of  [Tol]). The boundary-edge 
condition (9.13) is also consistent with a condition found by TouPIN (see (7.11) 
on p. 402 of  [To1]). [ ]  

We now specialize further. We assume that the space W" coincides with r  
and that the function A of  (9.1) is defined by 

A(x) u : =  ( k ( x ) . u )  1r for all x E  Clo ~ ,  u E  r (9.14) 
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in terms of  a given function 

/e : Clo ~ --> r (9.15) 

of  class C ~. Let w E ~/" be given, so that w" E 4/~* (see the explanation of the 
identification ~r ~ r  in Section 41, p. 134, of  [FDSI]). We then have 

w - A  = w | k, (w" A) r =  k | w .  (9.16) 

Substitution of (9.16) and co : = w- into (9.10) gives 

w. e(N,,,) = n .  diVN (kin | w) + tr (7n(w | kiN)) + 2HN(k]N" n) (I t .  w). 

Using analogues of  the rules (67.10) and (66.9) of  [FDSI] we obtain 

w. ~(N,n) = 7(klN " n)"  w @ 2HN(kIN" n) ( n .  w). 

Since this equation is valid for all w E ~ ,  we conclude that 

~(N,~) = VaN + 2~NaN n where aN : =  k i N - n .  (9.17) 

I f  (9.14) and hence (9.17) is valid and if the function F : N --> Lin "F" has a con- 
tinuous extension (also denoted by F) to Clo N', then the boundary condition (8.5) 
becomes 

FV~[ N = VaN @ 2HNaNV~IN - -  biN. (9.18) 

We now assume, in addition, that F has the form F : =  - - p l ~  for a given 

p :  Clo N - - > R  (9.19) 

and that h = --poV~ for a given 

Po : Rbo ~ -+ IZ. (9.20) 

In this case, (19.8) reduces to 

(P0 - -  P) v~is~ : VaN -[- 2HNaNV~Is~. (9.21) 

Since Va N is tangential by (2.2), it follows from (9.21) that VaN = 0 and 

Po - - P  = 2HNaN, asp = constant. (9.22) 

Remark 2. (9.22) is the classical formula for surface tension in fluids. I t  has been 
derived here without assuming that the interface between different fluids behaves 
like a material skin. The classical derivations of  (9.22) are based on the assumption 
that Bdy N is a "material  surface" in some sense. A rigorous modern treatment of  
such material surfaces is given in [GM], which also contains the derivation of a 

formula similar to (9.18). [ ]  
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