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Quantization Effects for —Au = u(l —|u|?) in R?

HaiM Brezis, FRANK MERLE & TRISTAN RIVIERE

1. Introduction

The study of the vortices associated with the Ginzburg-Landau energy (see
[t . .
E.(u) =— {|Vu|?+ — ulr =12,
) = V[Vu] 4£2§§(IJ )

where ©Q C R? and u:Q - C, leads in a natural way (after scaling) to the
equation

1
(1.1) —Aug =u,(1 —|uy|?) in Q,=— Q.

€ .
In the first part of this paper we study the limiting situation where u satisfies
(1.2) —Au=u(l —|ul?) in RZ,

Our main result is

Theorem 1. Assume u:R*— C is a smooth function satisfying (1.2).' Then

(1.3) I qul? =12 =2nd
R2
for some integer d =0, 1,2, ..., oo.

Remark 11. If d < oo, then one can prove (see Step 1 in Section 2) that
lu(x)| > 1 as |x| - co. Thus deg(u, Sg) is well-defined for R large, where S
is a circle of radius R. We shall prove that |deg(u, Sz)| =d for R large.

Remark 1.2. 1f d = 0, the only solutions of (1.2) are constant functions. This
follows easily from Theorem 1 and Liouville’s Theorem.

Remark 1.3. For every integer d =0, 1, 2, ..., oo there is a solution of (1.2)
satisfying (1.3):
a) For d = o we may choose a function # of the form

u(xy, x;) = Ae™

where A and k are positive constants such that 42 + k2 = 1.
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b) For every integer 0 < d < « we may find a solution of (1.2) of the form
(1.4) u(r, 0) = e f4(r)

where f(r) =f,(r) satisfies

—f"(r) - % S + i—j f=f—=f% on (0, +),

(1.5)
f(0) =0, f(o)=1.

It is well known (see, e.g., the assertion in [3]) that (1.5) admits a unique
solution. Moreover, we have

d* 1
f(”)zl”“P-f-O(—z) as r— o,
r

r
(1.6)

d? 1
f’(r)=—3+o(—3) as r— oo,
r r
Multiplying (1.5) by r2f’ and integrating the result over (0, R) we are led to
1 d? 1 R R?
=R R+ AR == § (1= rdr——(1-f*(R)?,
2 2 29 4

which implies (1.3).
In connection with this result we call attention to the very interesting

Open Problem I: Let u be a solution of (1.2) satisfying (1.3) with d < . Is
u of the form (1.4) (up to a rotation and translation)?

Remark 1.4. Theorem 1 extends to more general nonlinearities (see Theorem 17).
For example, any solution of the equation

~Au=u(l —|ul?)?
satisfies

§ (u]? = 1)* = 4nd>.
{RZ

In the second part of this paper we return to (1.1) and consider a sequence
u, of solutions of

1.7 ~Au, = u,(1 — |u,|?) in the disc Bg,

with R, — oo. Under some appropriate assumptions (see Section 4) we prove
that

(1.8) 1§ 1Vu,|* =z nd* log R, — C.
. Bg,

Theorem 1 is used in [1] and estimate (1.8) is related to lower bounds
in [1]. '
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2. Proof of Theorem 1

Let u be a smooth function defined on R?, with values in R? = C, satis-
fying

2.1) —Au=u(l —|ul?>) in R2.
We assume .that ‘
(2.2) I (ul?=12< .

[RZ

Step 1. We assert that

(2.3) lul =1 in R?,

(2.4) VueL®(R?),

2.5) lu(x)] =1 as |x| > o,

(2.6) § |Vu|? = CR for some constant C independent of R.
B

Proof. From (2.1) we have

Aul*z 2u hu =2]u|? (u]?=1).
Set ¢ =|u|2 -1, so that p€L2(R?) and satisfies
Q.7 —Ap +2|ul?p 0.

We now multiple (2.7) by ¢,¢* where {,(x) ={(x/n) and 0<{=<1is a
function in CZ([R?) such that ¢(x) =1 for x near 0. Hence we obtain

1
IVt P+2 [ul ot 2 == 1 (A8 |e*|?
R2 2 2 R

As n— o we see. that

§1Vet|2+2 § |u?lo*|*< 0.
R2 1

Hence ¢* is constant, say ¢ ¥ = c. If ¢ > 0, we would deduce that « = 0, but
this is impossible by (2.2). Hence ¢ =0, i.e., ¢ < 0. This proves (2.3).
Going back to (2.1) and using the fact that u€L® (R?) together with
standard elliptic estimates we obtain (2.4).
We now prove (2.5). Suppose that it were not true, so that there would
be a sequence |x,| — o such that |u(x,)| =1~ 6 for some &> 0. Hence
lu(x)| =1 —(8/2) for x€B(x,, 6/2M) where M = |Vu|,». Thus, we have

0% no?
2.8 ul =12z — —.
) B(xn,g/ZM) (ju] 4 4pm?
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On the other hand, since (2.2) holds, there is some R, such that

0% n6?
2.9 e | R
( ) |x|£R0 (’MI ) 4 4M2

Since |x,| — oo, this yields a contradiction.
Finally, we prove (2.6). We multiply (2.1) by u and integrate the result
over Bp: '

(2.10) SWZ: Sa—”u+ S]u|2(1—|u[2)
v

where S; = dBr and v denotes the outward normal to By. Note that

2.11) S %u = 2MnR,
ov
Sr
12
@12 [lufPa—-|u* =] (1—u|2)§\/ER[§ (1—1u|2)2] ,
Br Bg Bg

Combining (2.2), (2.10), (2.11) and (2.12) we obtain (2.6).

Step 2. From (2.5) we deduce that
(2.13) lu(x)| z2 for x| =R=R,.

Hence
d = deg(u9 SR)

is well-defined for R = R, and is independent of R. Without loss of generality
we may assume that d = 0 (the general case follows by complex conjugation).
Clearly, there exists a smooth real-valued function w(x) (which is single-
valued), defined for |x| = Ry, such that

(2.14) u(x) =|u(x)| @rvE) = p(x) ™
where |

(2.15) p(x) = |u(x)|,

(2.16) o(x) =df + w(x).

(Warning: ¢ is not well-defined globally as a single-valued function; however,
it is well-defined and smooth, locally on the set |x| = Ry). A basic estimate
is:

Proposition 1.

(2.17) § V|2 +|Vy|? < .
2

BRU
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Proof. We first express (2.1) in terms of p and w. Inserting (2.14) into (2.1)
we have

—Au= —(Ap) €'? = 2i(Vp- Vo) e — pe? (ihp — | Vo |?)
= pel?(1 — p%).
Separating the real and imaginary parts we obtain
(2.18) pAp +2Vp-Vo =0 for {x| > Ry,
(2.19) —Ap+p|Ve|?2=p(1 —p*) for |x] >Ry.
We rewrite (2.18) as
(2.20) div(p?Vep) =0 for |x| > Ry.
Note that, by (2.16),

d
2.21) Vo =dV0+Vy=—V+Vy
r

where V(x) is the vector field in R*\{0} defined by
V(rcos 0, rsin ) = (—sin 6, cos 8).

Combining (2.20) and (2.21) we have

d
(2.22) div <p2 (— v+ w)) =0 for |x| > Ry.
r
Step 1 (in the proof of Proposition 1). For every R > R, we have
d
2.23) S Priadyy
av
Sk

Proof. Consider the vector-field
D= (un~n Uy, U A uxz)
(which is well-defined and smooth on all of R?). Note that
(2.24) , divD=unltu=0
by (2.1). Integrating (2.24) over By we have

(2.25) {D-v=0 VR>O0.
SR

On the other hand, a direct computation (differentiating (2.14)) shows that
D =p*Vgp for |x| > Ry.

The desired conclusion follows from the fact that V- v =0 on S;.
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Step 2 (in the proof of Proposition I). We assert that

S ]Vl//[2< o,
R\ Bg,

Proof. The main ingredients are (2.20), (2.6), (2.23) and a method suggested
by L. NIRENBERG [5] in proving a Liouville-type theorem for uniformly elliptic
equations in divergence form. In the Liouville-type situation, the elliptic equa-
tion holds on all of R?; here, the equation (2.20) makes sense only on
|x| > Ry, but we have instead the information (2.23). Set

=L
YR= ok g ¥

Multiplying (2.20) by (¥ — wg) and integrating the result over Az = Br\ Bg,
we obtain

(2.26) S e (E v w) Vy = S e (d . v+3"—’) (v = we)
I r av

AR Sr

d 3
- Sp2(7V-V+alvj) (v — wr) -

N R,

Note that ¥.v =0 so that, by (2.23),

d ad ad
(2.27) P (Ev v+ ) w-wp =\ rEy=c
r av av
SRy SRy
where C is independent of R.
We also observe that
d da
(2.28) SV-W=S——"”=0.
r r o7
Ap Ap

Combining (2.26), (2.27) and (2.28) we are led to

d
(2.29) Smwg S ";—"v”‘ W= vl + S (- Loyl +c.

R Sp R

By the Cauchy-Schwarz inequality, we have

‘ 1/2 1/2
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Recall the Poincaré inequality:

(2.30) §lv—wer?=R2 § V0|2
SR SR

[On §; this inequality is well known since the second eigenvalue of —y” on
S; is 1; we emphasize that the constant 1 is sharp and that it plays an essen-
tial role in the argument. Inequality (2.30) on S follows by scaling.]
Therefore we obtain

R

o R |oy]* R »_R 2
@.31) Sav“” ‘”R’%Hav +2SIW| —2S|W|.

R R R Sg

Going back to (2.29) and using (2.31) we see that

R d
(2.32) szlvwlzéig [V |? + S (1-p)~|Vy|+C.
r
R Sg 4g ’
Finally, we note that
1/2 1/2
2 4 d 232 2
(2.33) 1=p)—[Vy|=— 1 -p% |V |
r RO
AR A Ag

Recall (see (2.13)) that, for |x| = Ry,

(2.34) pPx)za>}
(a = 15). From (2.32), (2.33) and (2.34) we deduce that
R 1/2
(2.35) f IV =— §|VW2+C+C[§VU/|2}
Ag 200§, Ag

For R =z R, set

fR)y = § |Vy]?,

AR

so that, by (2.35),
2.36) FR) = 55 FUR) + C+ CF(R) 2,
(04

The desired conclusion of Step 2 now follows from

Lemma 1. Any function f satisfying (2.36) and
(2.37) fS(R)=CR VR=z=R

is bounded on (Ry, + ).
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Proof. From (2.36) it follows easily that
R
(2.38) f(R) = 5 f(R)y+C

with 8> 1 by (2.34). Set
g(R)=f(R) — C,
so that
R
(R) =—-g'(R),
4 p,g (

and thus
(R%g(R))" = 0.
We assert that
g(R) =0 VRzR,.

Suppose not, so that g(R;) >0 for some R;. Then

R\ A
g(R) =z <1?> g(Ry) VR=z=Ry,
1

which is impossible by (2.37).
This completes the proof of Lemma 1 and thereby Step 2.

Step 3 (in the proof of Proposition I).

(2.39) [ |Vp|?< .
R2\Bg,

Proof. We now use (2.19). First observe that

(2.40) | a=-mVplP< .
R2\Bg,

Indeed, we have

d d
|V¢|=’—V+V1,// =—+|Vy],
r r

and thus

2 d2 2
Vol*=2 (5 +|Vy|*).

1"2

1
Inequality (2.40) follows from Step 1 and the fact that -1 —=p) eL! by
2.2). r
Fix some smooth function # such that

n(x)=1for |x| =1, #5x)=0for|x|]=2.

Hr(x) =1n (%) .

Set
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Multiplying (2.19) by (1 — p) 7z and integrating the result over HQZ\BRD we
are led to

1
(2.41) S Wp)zmeé—‘g S V(1 —p)* Vg + S (1-p)|Vel|?

R2\ By, R2\Bg, R\ B,
i)
+2 g (1—p)%+ H—”I.
v
R\ B, Sk,
Note that

§—59

I a=p)ang
R2\ By,

I 70 -p)?Vig
R\ B,
and therefore (by (2.40) and (2.2)) the right-hand side in (2.41) remains bound-
ed as R — oo. Passing to the limit in (2.41), as R = o, we obtain (2.39). This
completes the proof of Proposition 1.

Step 3: Completion of the proof of Theorem I. We assert that

(2.42) { (p? = 1?=2nd?.
[RZ

The PohoZaev identity applied to (2.1) shows that (see, e.g., [1], proof of
Theorem II1.3), for every r > 0,

2 2
(2.43) S Ou +lS (|u[2—1)2=S — +IS (Ju|?> — D2
v r ot 2
B S S

r r r T

ou

Set
E={ (u?-1?% E»=F§ (u>-12
R2 B,
Clearly E(r) - E as r — o and
R

1 [E
(2.44) ) g oE as Ro +oo.
log R r
0

Integrating (2.43) for r€ (0, R) we have
R

ou |2 E(r) ulr 1

2.45 —| + dr = —| + = E(R).
2.4) g av S r at 2 (®)

R 0 Bg
Note that, for r > Ry,

oul|? ap |? dp |2
2.46 —_— = | — 2| 27 < |V 2+ \% 2,
(2.46) Y ™ 3y =|Vpl® + [ Vy|
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and
p:] 2 2 2 2 2
(2.47) it _ |9 21907 |97 o (40N
o7 ot 0t ot r 0T
Hence
ou |2 d2 1—-p>d? 24
(2.49) H =)+ L My 4wy,

From (2.46) and Proposition 1 we deduce that
ou

av

2
=C asR—- oo,

(2.49) S

Bg

and similarly that

) 1l

Bg\Bg,

2

<C(logR)1 as R — oo,

Hence

(2.50) ! du
log R ot

B
Combining (2.44), (2.45), (2.49) and (2.50) we see that
E=2nd?.
This completes the proof of Theorem 1.

2
—21nd? as R— + .

3. Some Additional Results and Open Problems
3.1. General nonlinearities

Theorem 1 extends to a large class of nonlinear equations. More precisely,
let f:R—> R be a (smooth) function satisfying

3.1 f(0)y=0 and f(r)signt=0 V¢eR,
there exist constants y >0 and p >0

(3.2) such that f(z) ~ yt? for t> 0, ¢ small,

(3.3) there exist constants A >0 and 6 >0

such that | f(¢#)| =z d for 1= —A.
Theorem 1’. Assume u is a smooth function on R? with values into C satisfying
(3.4) —Au=uf(l—|ul?) in R?,
(3.5) fFA—|u|) <o
"RZ
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where :
ey = [ f(s) ds
and f satisfies (3.1)—3.3). Then
§ F( —|u|?) = nd?
[RZ

for some integer d=10,1,2,....

The proof of Theorem 1’ is essentially the same as the proof of Theorem 1
and is omitted.

3.2, Finite-energy solutions of (1.2)

In Theorem 1 we considered solutions of (1.2) satisfying

f(u?=12< .
R2

If we consider instead solutions of (1.2) satisfying

(3.6) [ 1Vu? < o,
[RZ

then # must be a constant function. More precisely, we have

Theorem 2 (CAZENAVE [2]). Assume u satisfies (1.2) and (3.6). Then either

u=0
or
u=Const. =C with |C| =1.

Proof. We divide the proof into several steps.
Step 1. We have
3.7 lu| = 1.

Set ¢ = (Ju| — 1) so that VpeL?(R?). By Kato’s inequality (see [4]) we
have

3.8) szﬁsignﬂluk—1>Au=lul(|ul + 1)

by (2.1). We now multiply (3.8) by {,(x) =¢ (x/n) where { is a fixed func-
tion, 0={=1, {(x) =1 for |x| =1 and {(x) =0 for |x| = 2. We find
C
§lul?0li= (V0| |1VGI=s= | |Vp|>0
Rz R2 N p<ix|<2n

since Vg € L?. Hence, we are led to

|u|?p =0,
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which implies that for every x either |u(x)| =0 or ¢(x) = 0. In both cases
we find that ¢(x) =0 and hence |u| =1 in R2

Step 2. Either

(3.9) [lul?< o
R2
or
(3.10) f 0 =ju?) <.
R2

Proof. Recall that :
Aul*=2|Vul® + 2ul*(u|* -1,
and thus

ul? (1= |ul?) = |Tul> =} Alul.

Multiplying by ¢, as above we deduce that
(3.11) flul?( —|ul® = §|Vu|’< o.
R R2
We assert that
B={xeR* 1 =|u(x)| =32} is bounded.

This follows easily from (3.11) and the fact that VueL*™(R?). Suppose
B C Bg,. Since fRZ\BRO is connected, we deduce that either

lu(x)| =4 on R*\Bg
or
|u(x)| g% on YRZ\BRO.

Combining this with (3.11) we obtain the desired conclusion.

Step 3: Completion of the proof of Theorem 2. The main idea is to use the
PohoZaev identity. We first assert that

(3.12) S (Au) <E X; ‘) & — 0.

"RZ
Indeed, a standard integration by parts yields

S (Au) (le ) " gcgtxllvulzlvcnl

]'RZ RZ

[iA

C (Vul> >0 asn—oo.
n=lx|<2n

On the other hand, using equation (1.2) together with (3.12) we are led to

(3.13) S u(l —|u)?) (le ) >

R2
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If (3.9) holds, we write
P ]

(3.14) gu(1—|u|2) (Zx,-—”—) Ly = S Yox— Glul?=5ul*)
ox; ox;

R? R?

- S (ul? = ul*) & + oD

]‘RZ
since

[ @ siuamaize | we-o.
R n<|x|<2n

Combining (3.13), (3.14) and passing to the limit as n - o we obtain
|| e =gum =0,
1223

which implies that # = 0 (since |u| = 1).
If (3.10) holds, we write

(3.15) S u(l —[u]?) (Zx%) { = - S Y [31 <|u12—-1>2] ¢,

) ax,- 4
R2 R2
1 2 2
=5 (lu]* =1L+ o(1)
"RZ

since
[Ixl (u> =D Vg =Cc | a-[uP-o.
R2

n<|x|<2n

In this case we conclude that
§ (u)?-1n%=0.

”32

Returning to (3.11) we see that Vu =0 and the conclusion follows.

3.3 Further open problems
Problem 2. Let u be a solution of (1.2) such that |u| — 1 at infinity. Is

ful>-1?2< ?
P2

We say that a solution u of (1.2) is a local minimizer if for every bounded
set Q C R? we have

UV +5 [ quP=02 =4 (12 +4 | (0] - 12
Q Q 0 0Q

for every ve H(Q; C) with v =u on Q.
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Problem 3. Prove that u = ¢‘?f, (r) defined by (1.4), (1.5) is a local minimizer.

Problem 4. Prove that every local minimizer # must be either of the form
u = Const. = C with |C| =1 or u = e'%f;(r) (modulo a rotation, a transla-
tion and complex conjugation).

Problem 5. Prove (or disprove) that any solution # of (1.2), (1.3) with d < o
has a single zero. If the answer is negative, what can be said about the con-
figuration of {# = 0]? Can any arbitrary finite set (with appropriate prescribed
degrees) coincide with [x = 0] for some u?

Problem 6. Prove (or disprove) that any solution # of (1.2), (1.3) (with d < o)
such that 0 is the unique zero of u must be of the form ¢'?’f,(r) (modulo
an isometry) as in (1.4), (1.5).

3.4. Further results

After our work was completed, I. SHAFRIR [6] proved that any solution u
of (1.2), (1.3) with d < oo satisfies, as |x| — oo,

d? 1
i — 2 _ 2 o
@ = o)
.. d? 1
(ii) |V|u||=W+O<EI—3>’
i) |A;u1|<3‘f+o(i>
=[x VA
(iv) |det(Vu)| =0 <—12) .
|x]

I. SuaFrIR [6] has also shown that any local minimizer which is not constant
must have a single zero of degree +1.

4. A Lower Bound for the Emergy

Let u be a (smooth) map from B = [|x| < R] into C. We assume that

4.0 |u| =1 in By,

(4.2) \u(x)] =a VxEAR’R():BR\BRO,
1

(4.3) — J(u?-1D?=sK
R§ B,

for some positive constants a, R; and K.
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Assumption (4.2) implies that
deg(u, S;) =d

is well-defined and independent of r for Ry < r < R. Since u does not vanish
on Ag g, we may write locally in Ag g

u = pe'?,
and then
|Vu|? =|Vp|* + p?| Ve |?.

Our main result is:

Theorem 3. Assume u satisfies (4.1)—(4.3); then

“-4) [1Vul*z | p|V0|*zd? [2”1(’% <R£>—C]

B R,R,
where C depends only on a and K.
Proof. As in Section 2 we write on Ag g
u(x) = |u(x)| eidi+y(x) — peico(x)

where y is smooth and single-valued. We have

d
Vo=—V+ Vy
r

where V(x) is the vector field in R2\{0} defined by

V(rcos 6, rsin ) = (—sin 6, cos 6).

Thus,
d* 2do
@.5) Vo2 =% + =2 vy )2,
r r ot
3 .
where a—w = V.Vy is the derivative in the direction tangential to S,. We
T
write
2 42 2
d da
(4.6) S P Vep|* = S o+ S Eeyy S Py |?
r r ot
AR, R, AR,R, 4R, R, AR,
= 11 + ]2 + 13,

and we evaluate each integral separately. First we have

d? d? R d?

47 I = — - 1-p?)— =2nd*log — — 1—p)—.

@7 L S 2 S ( /))r2 gRO ( p)r2
Ag,R, Ag, Ry A, r,
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From the Cauchy-Schwarz inequality and (4.3) we obtain

1
4.8) g 1=p)5= (@K'
¥
Ag g,
and thus
R
4.9 I, =2n dzlogl?—— (k)12 42,
0

Next, we use the fact that

3
S—‘”=o Vre (R, R)
ot
Sf'
and we write
da
L=2 S (pP—1nLY.
r ot

AR, R,

Hence, we find by the Cauchy-Schwarz inequality and (4.3) that
1/2 de 2

4100 || =24k [ f lez] =255 +Z
a
0

R,R,

§ Vw2

2 AR,R,
Finally, we have by (4.2) that
4.11) Lza | |Vy|?.

AR,r,

Combining (4.9), (4.10) and (4.11) we are led to

R 2K
4.12) ] pzlvwizzhdzlogR——-dz[(nK)”2+—2],
a

AR, R, 0

which is the desired conclusion.

Remark 4.1. The above argument in fact gives more than (4.4), namely,

2
(4.13) | |Vu|?* =z a* |:27rlog<£>—C:l + [ V)24 % | |Vl
Ry Br 2

BR AR’RD

We now turn to a more general setting where there are several holes of

radius R, in Bg. More precisely, let a;, a3, ..., a, be points in B such that
R
4.14) 4] =5 Vi,
4.15) |l —a| z4Ry Vi k, Jj*k.
Set

Q =BR\ U B(dj, Ro)
Jj=1
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with

(4.16) Ry =

=

Let u be a (smooth) map from @ into C. We assume that

4.17) O<aslu|l=1 in Q,
1

4.18 — ul>?=1)?*=<Kk

4.18) Rég(ll )2 =

for some constants a and K.
Assumption (4.17) implies that
deg(u: aB(aja RO)) = d]
is well-defined. We consider the map
z—a \4 (- \% Z— ay \ %
Uy (Z) = N .
|z —a;] lz—a] |z — ay|

Our main result is:

Theorem 4. Assume that (4.14)—(4.18) hold. Then
(4.19) [1Vul> 2 [ [Vuo|* = Clld|>m?
0 2 .

where ||d| = 3 ;|d;| and C depends only on a and K.
The proof relies on the following simple

Lemma 3. Given a function y defined in Byg,\Bg,, there is an extension § of
w defined in By, such that

(4.20) § 1vellsc | |V

Big, Byg, \Br,
where C is some universal constant.

Proof. By scaling we may always assume that Ry = 1 and by adding a con-
stant to  we may also assume that

[ w=o.
B,\B,

Poincaré’s inequality implies that

{ lwiP=c | |vy|
B\B

2 1 1

We may then extend y inside B; by a standard reflection and cut-off tech-
nique.
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Proof of Theorem 4. Set p =|u|. We may write, locally in 2 (but not globally
in Q), :

u = pe'?
and then
4.21) |Vu|* =|Vp|* + p?| Vo |*.
Similarly, we may write, locally in Q,
uy = e'%
with |Vug| =|Vey| and
4;Vi(z)
4.22) Veo(z) = E
|Z - aj]

where V;(z) is the unit vector tangent to the circle of radius |z — a;| centered
at a;:
N

(4.23) Vi(z) = (—Iy"’“f , x““f'>.

z—a| |z—q

It is convenient to introduce the function y globally defined on Q by

4.24) u = puge'?

Thus, we have

(4.25) |Vul> =|Vp|* + p*|Voo + Vy |7,

and consequently

(4.26) FIval2z §1Vp1* + [ Vup|? + § a®|Vy |2 —
Q Q Q Q

with

X=!§ (1 = p*) | Vi |2 +S§2(1 —pz)Vcoo-Vl//—choo-W-

We write X =X; + X, + X; and estimate each term separately.

Estimate of X;. We have

@.27) Vg = ¥|z|ij|aj| =T
so that
@29 Tolsslal 3| 2] stam (g)
F Z— 44 Rj
Hence, by the Cauchy-Schwarz inequality and by (4.28) and (4.18) we obtain
(4.29) |X{| = K| d||* m*m/?
Estimate of X,. From (4.22) we have
(4.30) |Voo| = M,

Ry
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and thus, by the Cauchy-Schwarz inequality and (4.30), we find

“.31) L&I§2g(1—p%IV¢MIVWI§2K”%NdHHVwM-

Estimate of X;. We have

Sv%-w= E

0 J

V.-V
d,-g "

IZ_Clj|
Q

We extend y inside each disc B(a;, Ry) using Lemma 3 and we write, for
each j,

S N I A S W
7

z—al i-ql = t—al
! Bg\B(a;,Ry) k£7 Blag.Ry) I

Note that for k =+,

(4.33)

S v Vg|_ 1
B(ag, Ry) B(ax,Ry)

and thus, by the Cauchy-Schwarz inequality and Lemma 3,

V.- Vig
(4.34) ) S = a!-ul < Clm—1)|Vy ],
k1 Blay,Ry) T

for some universal constant C.
Finally, we observe that
oy
V.- Vig = —=0
S,(aj) S,(aj)
for every r€ (0, R —|g;|). It follows that, with p; =R —|a;|, we have

S Vi V| _ S V- Vig

1
] S 7y |
2 —a i—al | =)
By \B{a;,Ry) Bp\Blg;.p) Bg\B{as,p))

A

1 _
= — ||V, (zR* — mp})'2.
Pj
Hence we obtain

V.- Vi
4.35) L) < 0y .
|Z - a]|
Bg\B(a;,Ry)
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Combining (4.32), (4.34) and (4.35) we are led to
(4.36) [ Xs| = Cmlld]| | V|-
Combining (4.29), (4.31) and (4.36) we find
|X| = CK'2|d|*m® + ||d||m|| Yy |, 2K + C)

|d]?m?

1
§zaZHV¢/||% +—5— (4K + ).
a

Returning to (4.26) we obtain
2 d 2.2
[1Vul? 2 § 1012+ § 172+ % [ 1oy )2 = 19 a1 ¢
Q fol o 20 a
where C is some universal constant.

Remark 4.2. We emphasize that the above proof gives a stronger conclusion
than that stated in Theorem 4, namely,

2
@3n  [1VulPz {1012+ [|Vu|? + < [V |? = Clld)?m?
Q Q 0 20
where C depends only on « and K.

Finally, we give an estimate for |q|Vuo|? which is convenient to use in
conjunction with Theorem 4.

Theorem 5. Assume (4.14), (4.15) and (4.16) hold. Then

R | — ay
4.38 Vug|? = d?)log — - Y did;log ——— + O0(m*||d|?),
@39 {|7u| @])gRokzﬂk,gR o al?)
where O(m?| d||*) stands for a quantity X such that |X| <= Cm?||d|? and where
C is some universal constant.

Proof. With obvious notations we may write

iX.d:0;
ug=e 197,

so that
| Vg | =12djV9j|.

On the other hand, the functions 6; and log |x — g;| are harmonic conjugates
and thus

|Vu0| =2V (Zdjlog|x — a]|)| .
Set
vi(x) =loglx —g|, wv= E d;v;.
We have ]

ov

2o | %, il
(4.39) S|vv| = S P E S P
Q

3Bg ! 8B(a; Ry)
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where v denotes the outward normal to By and to B(a;, Ry). On 3B we have

—=lx—a|=2R
and hence
ilog|x——aJ| —logR| =C,
so that
(4.40) lv— (X d)log R| = C|d|m.

On the other hand we have

Aloglx — a;| =276,
and therefore
ho=2mY, djéaj,
so that
ov
(.41) P oY d.
av
3By

Combining (4.40) and (4.41) we see that

0 0
S & 2 (L 4)*1ogk| = Clalm S o
N
8B 9By
Finally, we observe that on dBg,
d xX—a x
—loglx —g;| =——-. =
v d d x—a|* R
and consequently
9 log| [| = 2
— X — d; = —.
av £ TR
Hence
d 2 i)
l=2ld)m, 2| < an)d|m.
av R av
Br
Thus, we are led to
P .
(4.42) S a—”v=2n(z‘, d)*log R+ O(|d|*m?).
y
0By
Next, we have to evaluate
B [
dkdl aij vy

.
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It is convenient to distinguish several cases:
Case l:j=1, k=I,
Case2: j=1, k=l,
Case3:j=*1, j=k,
Cased: j=1, j+k.
Case I: j=1, k+ 1. We have

d a
(4.43) T% 4 = log Ry AL
av av
3B(a;, Ro) 8B(aj, Ry)
since v is harmonic on B(a;, Rp).
Case 2: j =1, k=1. We have
] v,
(4.44) % 4, = log Ry % = 2nlog Ry
dv av

3B(a;,Ry) 0B (a;,Rp)

since Av; =27 Jaj on B(a;, Ry).

Case 3: j#*1, j =k. We have

9 1
(4.45) Py = = v,
Bv RO
3B(a;, Ry) 3B(aj, Ry)

= 2ny(a;) =2n log|a; —

since v; is harmonic on B(g;, Ro).

Case 4: j* 1, j ¥k On 0B(a;, Ry) we have

x —a

|op(x) — v(a;)| = |log

la; — a
But '
lg; —a| —Ry=|x~a| slag~a] + Ry

so that, by (4.15),

3 Jx—a] _5
L — =< < =
4 |a] — al| — 4
and thus
|o(x) —v(a)| = C on 0B(a;, Ry).
Hence
ov oy
5 U= o (= u(a))

Ry) aB(ﬂj;Ro)
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and consequently

0 0
S ﬂ vy = 27TCRO ﬂ .
9B(a;, Ry)
On the other hand, on dB(a;, Ry), we have
a’l)k 1 1 1
- =< é = ——
v | |x—a|  |a—a| — Ry~ 3R

and therefore we have

(4.46) —* 4| = cC.
9B(aj, Ry)

Combining all the cases we see that

31)k _ 2
4.47) Z S did, 5 U= 2n (E dj> log R,
Jikl 3B(a;,Ry) J
+ 27 E did; log |a, — a;| + O(m?||d|?) .
k1
Combining (4.39), (4.42) and (4.47) we obtain

J1vol? = 271(2 dj>210gR—27z<Z dﬁ) log R,

=27 Y, didylog g — | + O(m?||d]|?)
k=*l

and this yields the desired conclusion.

Remark 4.3. In the special case where d; = 0 for all j, we deduce from (4.14)
and Theorem 5 that

R
2 2 2y 7112
g|Vuo| = <§] dj> log Ro+0(m d1%).
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