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Quantization Effects for - k u  = u ( 1  - l u  2)  i n  ~ 2  

HAL'W BREZlS, FRANK MERLE & TRISTAN RIVI~RE 

1. Introduction 

The study of the vortices associated with the Ginzburg-Landau energy (see 
[ll) 

1 I 10~ Re(u) = 2 n  IguI2 + ~ e  2 (lU]2 -- 1)2' 

where /2 C ~2 and u:t '2-+ C, leads in a natural way (after scaling) to the 
equation 

(1.1) - A u ~ = u ~ ( 1 - [ u ~ [  2) in g2c =--1 ~ .  

In the first part of this paper we study the limiting situation where u satisfies 

(1.2) - A u  -- u(1 - [ U ]  2) in [~2. 

Our main result is 

Theorem 1. Assume u :~2__+ C is a smooth function satisfying (1.2). Then 

0.3) S (lul 2 - 1) 2 = 2~rd2 
~2 

for some integer d = O, 1, 2 . . . . .  c~. 

Remark 1.1. If d < ~ ,  then one can prove (see Step 1 in Section 2) that 
[u(x) I ~ 1 as l x [ ~  co. Thus deg(u, SR) is well-defined for R large, where S R 

is a circle of radius R. We shall prove that ]deg(u, SR)] = d  for R large. 

Remark 1.2. If  d = 0, the only solutions of (1.2) are constant functions. This 
follows easily from Theorem 1 and Liouville's Theorem. 

Remark L3. For every integer d = 0, 1, 2 . . . . .  oo there is a solution of (1.2) 
satisfying (1.3): 
a) For d = oo we may choose a function u of the form 

U(Xl , x2) = Ae ikxl 

where A and k are positive constants such that A 2 -t- k 2 = 1. 
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b) For every integer 0 < d < oo we may find a solution of  (1.2) o f  the form 

(1.4) u(r, O) = eidOfd(r ) 

where f ( r )  = fd(r )  satisfies 

1 d 2 
- f " ( r )  - - -  f ' ( r )  + 7Z f = f ( 1  _ f 2 )  

(1.5) r 

f ( 0 )  = 0, f(oo) = 1. 

on (0, + o o ) ,  

It is well known (see, e.g., the assertion in [3]) that (1.5) admits a unique 
solution. Moreover, we have 

d2 
f ( r )  = 1 2r 2 + o 

d3 0 f ' ( r )  = 7 + o 

as r--,  oo, 

a s  r - - + o o  . 

(1.6) 

Multiplying (1.5) by r2f  ' and integrating the result over (0, R) we are led to 

dZ f2  1 R R 2 
1 R 2 f , ( R ) 2  + (R) = ~ ( 1 - f 2 ) 2 r d r - - - ( 1 - f 2 ( R ) ) 2  

- 2  2 0  4 ' 

which implies (1.3). 
In connection with this result we call attention to the very interesting 

Open Problem 1: Let u be a solution of (1.2) satisfying (1.3) with d < oo. Is 
u of  the form (1.4) (up to a rotation and translation)? 

Remark 1.4. Theorem 1 extends to more general nonlinearities (see Theorem 1'). 
For example, any solution of the equation 

- A u  = u(1 - l u 1 2 )  3 

satisfies 
(lul 2 - 1) 4 =4~zd 2. 

~2 

In the second part of this paper we return to (1.1) and consider a sequence 
un of solutions of 

-ZXu~=u~(1 - l u l l  2) in the discBR n 

~ .  Under some appropriate assumptions (see Section 4) we prove 

(1.7) 

with Rn 
that 

0 .8)  • ~ ]Vun[2 > 7 c d 2 1 0 g R n _ C .  
2 ~--- 

BR~ 

Theorem 1 is used in [1] and estimate (1.8) is related to lower bounds 
in [1]. 
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2. Proof  of  Theorem 1 

Let u be a smooth  funct ion defined on R 2, with values in ~2 _~ C, satis- 
fying 

- A u  = u ( 1 - l u [  2) in [R 2. (2.1) 

We assume t h a t  

(2.2) 

Step 1. We assert that  

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(]ul 2 -  1)2< ~ .  
~2 

lu] < 1 in [R 2 

V u E L ~ ( ~ 2 ) ,  

l u ( x ) l - + 1  as ]xl -+ oo, 

I Vul 2 <= CR for some constant  C independent  of  R. 
B R 

Proof.  From (2.1) we have 

klul2>-_2uAu = 2 1 u l 2  (lu] 2 -  1). 

Set ~o = l u l  2 -  1, so that  (pEL2(~  2) and satisfies 

(2.7) -A~o + 21uI2~o _< 0 .  

We now multiple (2.7) by ffnq~ + where ~ n ( x ) =  ~(x/n) and 0 < ~=< 1 is a 
funct ion in C ~ ( R  2) such that  if(x) -= 1 for x near 0. Hence we obtain 

1 12 5 CJV~~ 2 + 2  5 l u [2 r176  2 < 5 (Ar  ~ 
R2 R2 = 2/R 2 

As n -+ r we see. that  

< C i l(o+12" 
= n 2  2 

5 IV~o+[2 + 2 ~ 1b/]21(9+12~ 0. 
[~2 ~2 

Hence ~o + is constant ,  say ~o + = c. If  c > 0, we would deduce that  u ---- 0, but  
this is impossible by (2.2). Hence c = 0, i.e., ~o _< 0. This proves (2.3). 

Going back to (2.1) and using the fact that  u E L ~ ( E  2) together  with 
s tandard elliptic estimates we obtain (2.4). 

We now prove (2.5). Suppose that  it were not  t rue,  so that  there would 
be a sequence Jxn[ -+ oo such that  [u(xn)] _-< 1 - 6  for  some 6 > 0 .  Hence 
]u(x)]  _< 1 - ( 6 / 2 )  for  xEB(xn, 6/2M) where M=I/VuHL=.  Thus, we have 

~2 7~2 
(2.8) 5 (]Ul 2 -- 1) 2 ~ - - .  

B(xn,,~/2M ) 4 4M 2" 
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On the other hand, since (2.2) holds, there is some R0 such that 

~2 7~2 
(2.9) ~ ([u[ 2 - 1) 2 < 

Ixl >Ro 4 4M 2" 

Since ]xn I ~ co, this yields a contradiction. 
Finally, we prove (2.6). We multiply (2.1) by u and integrate the result 

over B R : 

S = - - u +  ]u[2(1 - l u [  2) 
av 

BR SR B R 

where SR = OBR and v denotes the outward normal to B R. Note that 

(2.11) s! OU Ovv u <__ 2MTzR, 

(2.12) 5 l u I 2 ( 1 - 1 u [ 2 ) ~  I ( 1 - 1 u l 2 ) < ~ R [ B ~  R (1-lul2) 2] 
B R BR 

Combining (2.2), (2.10), (2.11) and (2.12) we obtain (2.6). 

1/2 

Step 2. From (2.5) we deduce that 

(2.13) lu(x) l->-] for Ixl =R>=Ro. 

Hence 
d = deg(u, SR) 

is well-defined for R __> R0 and is independent of R. Without loss of  generality 
we may assume that d _> 0 (the general case follows b y  complex conjugation). 
Clearly, there exists a smooth real-valued function ~u(x) (which is single- 
valued), defined for 1x I_> R o, such that 

u(x)  = lu(x)  l e i(~~ = p(x) e ir176 (2.14) 

where 

(2.15) 

(2.16) 

p(x )  = lu(x)  l, 

O(x) = dO + ~(x)  . 

(Warning: ~o is not well-defined globally as a single-valued function; however, 
it is well-defined and smooth, locally on the set Ix l _ R0). A basic estimate 
is: 

Proposit ion 1. 

(2.17) S 
~2 \ BR ~ 

IVpl  2 + Iv~ , l  2 < ~, .  
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Proof. We first express (2.1) in terms of p and q/. Inserting (2.14) into (2.1) 
we have 

- -  / ~ U  = - -  ( A p  ) e i~~ - -  2i(Vp. V(o) e i~~ - -  peiO ( iS(o - [V(p I 2) 

= pei~(1 _ p2). 

Separating the real and imaginary parts we obtain 

(2.18) pAcp + 2Vp. V(0 = 0 for Ix[ > R0, 

(2.19) _ A p + p l V ( o [ Z = p ( 1  _p2)  for Ix] > R  0. 

We rewrite (2.18) as 

(2.20) 

Note that, by (2.16), 

(2.21) 

div(p2V~o) = 0 for Ix[ > R o. 

Vq~ = dVO + V~, =--d V + Vgl 
r 

where V(x)  is the vector field in R2\{0} defined by 

V(r  cos 0, r sin 0) = ( - s i n  0, cos 0).  

Combining (2.20) and (2.21) we have 

(2.22) d i v ( p 2 ( d v + v ~ , ) )  : 0  for I x , > R  o. 

Step 1 (in the proof of Proposition 1). For every R > Ro we have 

(2.23) f p2 0~, = 0. 
3 Ov 

sR 

Proof. Consider the vector-field 

D =  (u ^ Uxl, U ^ Ux2) 

(which is well-defined and smooth on all of ~2). Note that 

(2.24) d ivD = u ^ ku = 0 

by (2.1). Integrating (2.24) over BR we have 

(2.25) I D. v = 0 VR > 0. 
sR 

On the other hand, a direct computation (differentiating (2.14)) shows that 

D =pZV(,0 for Ix] > R  0. 

The desired conclusion follows from the fact that V. v = 0 on SR. 
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Step 2 (in the proof of Proposition 1). We assert that 

f Ivg/l 2< ~ .  
R2 \ BR0 

Proof. The main ingredients are (2.20), (2.6), (2.23) and a method suggested 
by L. NIRENBERG [5] in proving a Liouville-type theorem for uniformly elliptic 
equations in divergence form. In the Liouville-type situation, the elliptic equa- 
tion holds on all of •z; here, the equation (2.20) makes sense only on 
Ix I >  R0, but we have instead the information (2.23). Set 

1 ~g/.  
g/R = 2 ~  SR 

Multiplying (2.20) by ( g / -  g/R) and integrating the result over AR = BR\BR o 
we obtain 

(2.26) p2 V + Vg/ Vg/= p2 V. v + ~-v ( g / -  g/R) 

AR SR 

_ p2 V. v + ( g / -  g/R)- 

sR 0 

Note that V. v = 0 so that, by (2.23), 

(2.27) p2 V. v + ( g / - -  g/R) = OV g/ = C 

SRo sRo 

where C is independent of R. 
We also observe that 

f d f d Og/ (2.28) V. Vg/= - 0 .  
r r Or 

A R AR 

Combining (2.26), (2.27) and (2.28) we are led to 

(2.29) f p2lVg/[2 

aR 

S 0g/ 
7v I 

SR 

g / - ~ l  + S 
AR 

(1 _p2)  _d ivg// + c .  
r 

By the Cauchy-Schwarz inequality, we have 

f o g /  ( g / -  g/R) 
sR 

z/2 
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Recall the Poincar6 inequality: 

(2.30) 5 l ~ ' - ~ n l 2 -  -<R2 l l V ~ ]  2 
sR sR 

[On $1 this inequality is well known since the second eigenvalue of - ~ , "  on 
$1 is 1; we emphasize that the constant 1 is sharp and that it plays an essen- 
tial role in the argument. Inequality (2.30) on Sn follows by scaling.] 
Therefore we obtain 

(2.31) 

sR 

"S 0;2 "S "S 2 
--<~ + 2  I%~,  =~ IV~ 

sR sR sR 

Going back to (2.29) and using (2.31) we see that 

S RS f (2.32) P2]Vl//12~ 2 IV~l~ + 
AR SR AR 

Finally, we note that 

(1 - p~) ! [%'1 + c .  
Y 

(2.33) s d[! 2jxJ 2 (1 - p2) _d IVq/I < (1 - p2) 
r =Ro 

A R A 

Recall (see (2.13)) that, for Ixl e R0, 

(2.34) p2(x) => o~ > �89 

(o~ = 9 ) .  From (2.32), (2.33) and (2.34) we deduce that 

(2.35) I [vv,12< SI%,I2+C+ c IV~l 2 
AR = ~ SR 

For R ____ R o set 

f(R) = J[Vq/I  2, 
AR 

so that, by (2.35), 

R 
(2.36) f ( R )  <__ 7 -  i f ( R )  + C +  C f ( R )  1/2 

2oe 

The desired conclusion of Step 2 now follows from 

1/2 

Lemma 1. Any function f satisfying (2.36) and 

(2.37) f (R) < CR Y R >= R o 

is bounded on ( Ro , + c~ ) . 
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Proof. From (2.36) it follows easily that 

R 
f ( R )  <= : f ' ( R )  + C 

lS 

so that 

and thus 

We assert that 

g(R) = f ( R )  - C, 

<R, 
g(R) = ~ g  (R) ,  

(R -Sg(R) )  ' > 0 

g(R) < 0 V R > Ro. 

Suppose not, so that g(R1) > 0 for some R 1. Then 

g(R) >_ g(R1) VR _> R1, 

which is impossible by (2.37). 
This completes the proof of Lemma 1 and thereby Step 2. 

(2.40) 

Indeed, we have 

Step 3 (in the proof of Proposition 1). 

(2.39) I ]VP[ 2 < oo. 
~2 \ BR ~ 

Proof. We now use (2.19). First observe that 

l ( 1 - p ) ] V ~ 0 ] 2 <  r 
~2 \ BR ~ 

and thus 

Vg/ d IV l= d r +  -<_ +lV ,l 
r r 

(de ) 
Irma[2 ~ 2 7 + l v ~ 1 2  . 

1 L1 Inequality (2.40) follows from Step 1 and the fact that 7{ ( 1 -  p)~  by 
(2.2). 

Fix some smooth function r/ such that 

Set 
t/(x) = 1 for Ix I __< 1, r/(x) = 0  for Ix I _>2. 

~/R(x) = */ ( R )  " 
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Multiplying (2.19) by ( 1 - p )  I/R and integrating the result over [RZ\BR0 we 
are led to 

S 1f f (2.41) 1VplZr/R < -- --  V(1 - p)ZVr/R + (1 -- p) IVtpl 2 
= 2 

R 2 \ B% FRZ \ BRO R2 \ BR~ 

Note that 

S S~ + 2  ( 1 - p ) 2 +  Ovv " 

R2 ,, BRo SR o 

V~/R ) 2 A~ R C v ( 1 - p ) ~  =1 J ( l - p )  __<~, 
~2\BRo ~2\BRo 

and therefore (by (2.40) and (2.2)) the right-hand side in (2.41) remains bound- 
ed as R ~ co. Passing to the limit in (2.41), as R ~ co, we obtain (2.39). This 
completes the proof of Proposition 1. 

Step 3: Completion of  the proof of  Theorem 1. We assert that 

(2.42) f ( p2  _ 1)2 = 27~d 2. 
[R 2 

The Poho~,aev identity applied to (2.1) shows that (see, e.g., [1], proof of 
Theorem III.3), for every r > 0, 

S u2 i s 2 f 'f (2.43) Ov + - r  (lu - 1)z = Or + 2 (lul2 - 1)2 
Sr Br Sr Sr 

Set 

E= f ( l . i  ~ -  ,)% e ( r ) =  ~ (l,,l ~ -  t)2. 
R 2 B r 

Clearly E(r) --* E as r ~ c~ and 
R 

1 f E(r) d r ~ E  as R ~  +oo .  
(2.44) log R r 

0 

Integrating (2.43) for r6 (0, R) we have 

R 

f O~ 2 f f(r)r f I Ou 2 (2.45) + d r =  + E(R) . 

B R 0 B R 

Note that, for r > Ro, 

ovOU 2 ] ovOP 2 p20(OOV 2 (2.46) = [~-  + _< IVpl ~ + Iv~,] ~, 
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and 

(2.47) 

Hence 

(2.48) 

= 0 r  + = o r  + 

0~2 dT~ - __ [Vpl 2 + 
(1 - p2) d 2 

r 2 + 2dlv~ul r + IV~[2" 

From (2.46) and Proposition 1 we deduce that 

(2.49) f 0 2 2 < _ C  asR-- - , r  

and similarly that 

Orr - _< C(log R)1/2 

BR\~R0 
Hence 

(2.50) 1 I Ou 2 
l ogR ,j 0rr --+2~zd2 

BR 

as R ~  oo. 

as R ~  + ~ .  

Combining (2.44), (2.45), (2.49) and (2.50) we see that 

E = 2~zd 2 

This completes the proof  of  Theorem 1. 

3. S o m e  Addi t ional  Results  and Open Prob lems  

3.1. General nonlinearities 

Theorem 1 extends to a large class of nonlinear equations. More precisely, 
let f :  N 4 ~ be a (smooth) function satisfying 

(3.1) f ( 0 )  = 0 and f ( t )  sign t__> 0 Vt~  R, 

(3.2) 
there exist constants y > 0 and p > 0 

such that f ( t )  ~ 7t p for t > 0, t small, 

(3.3) 
there exist constants A > 0 and fi > 0 

such that I/(t) l---~ for t __< - A .  

T heorem 1'. Assume u is a smooth function on [R 2 with values into C satisfying 

(3.4) - - A u = u f ( 1 - l u l  2) in [R 2, 

(3.5) ~ F(1 - l ul 2) < 
pR 2 
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where t 
F( t )  = i f ( s )  ds 

0 

and f satisfies (3 .1) - (3 .3) .  Then 

J F(1 - l u l  2) = red 2 
IR2 

for some integer d = 0, 1, 2 . . . . .  

The  p roo f  of  Theorem 1' is essentially the same as the p roo f  o f  Theorem 1 
and is omitted.  

3.2. Finite-energy solutions of (1.2) 

In Theorem 1 we considered solutions o f  (1.2) satisfying 

f ( [u l  ~ - 1) 2 < c o .  
~2 

I f  we consider instead solutions o f  (1.2) satisfying 

(3.6) I [Vul 2 < ~ ,  
Rz 

then u must  be a constant  function. More  precisely, we have 

Theorem 2 (CAzENAVE [2]). Assume u satisfies (1.2) and (3.6). Then either 

u _ = 0  

o r  

u - C o n s t . = C  with ICI = 1 .  

(3.7) 

Set 09= (]u I - 1 )  + 
have 

Proof .  We divide the p roo f  into several steps. 
Step 1. We have 

lul_-<l. 
so that  V09~L2(R2). By Kato's inequali ty (see [4]) we 

u 
(3.8) ZX09 => ~ sign + (jul - 1) Au = tul (lul + 1) 09 

by (2.1). We now multiply (3.8) by (n(x) = ( (x /n )  where ( is a fixed func- 
tion, 0 __< (__< 1, ( (x)  = 1 for Ixl _-< l and ( (x )  = 0 for Ix] _-__ 2. We find 

C 
I lul209~._- < ~lv0911V~,l-<- f Iv091-~o 

R2 Re n n<lxl <2n 

since V09EL 2. Hence ,  we are led to 

lul209~o, 
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which implies that for every x either lu(x) l = 0 or co(x) = 0. In both cases 
we find that co(x) = 0 and hence lu[ =< 1 in N2. 

Step 2. Either 

(3.9) 

o r  

(3.10) 

S l 4 I ~ < ~  
~2 

S (1-1ul  2 ) < ~ .  
R2 

Proof. Recall that 
Alul 2 = 21Vu[ 2 + 21412 ( l u l  2 - 1 ) ,  

and thus 
1412 (1 - I , [  2) -- [Vu[ 2 - �89 A[ul 2 . 

Multiplying by G as above we deduce that 

(3.11) 11412(1-1412) = S lVul2< ~ .  

We assert that 
B = {x~ JR2; J <__ [u(x)[ _< 3} is bounded. 

This follows easily from (3.11) and the fact that VuEL~([R2). Suppose 
B C BR 0 . Since ~2\BR0 is connected, we deduce that either 

Lu(x)l-<_�88 on ~2\~R ~ 
o r  

[u(x)l __>3 on ~2\~Ro. 

Combining this with (3.11) we obtain the desired conclusion. 

Step 3: Completion of the proof of Theorem 2. The main idea is to use the 
Poho~aev identity. We first assert that 

(3.12) ( Au) xi #n ~ O. 

R2 

Indeed, a standard integration by parts yields 

X (Au) (Zxi ~ (, <= c x ,xllVul2lV~,l 
R2 rR 2 

___C { [Vu[2-,  0 as n--, c~. 
t/ 

n<lxl<=2n 

On the other hand, using equation (1.2) together with (3.12) we are led to 

X (3,13) u ( 1 - 1 u l  2) ~ x i  G - - ' 0 .  

~2 
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I f  (3.9) holds,  we write 

(3.14) f u(1-[ul2) (~_.xi O~ixi) & = 
R2 

since 

S 
~2 

Ixl (-~ I ~ ! 21u + i lu /4 ) l%/~c  
n<lx] <2n 

s {~lulZ-ilul4)~ 
[R 2 

=_ s (]ul21�89176 
p2 

I.[2-,0 

Combin ing  (3.13), (3.14) and passing to the limit as n ~ oo we obtain  

f ( ] u l 2 _ l l u  4 ) = 0 ,  

R2 

which implies tha t  u - 0 (since ]u] =< 1). 
I f  (3.10) holds, we write 

( 3 . 1 5 )  f U(1 llbt[2) (s ~n: -- 5 
R 2 R2 

2 
N2 

since 

l lxl (lu] 2 - 1)2IVCl  < c j" (1 - lu l  2) - - , o .  
R z n<lxl<2n 

In  this case we conclude that  

(lu[ 2 -  1)2 = O. 
~2 

Returning to (3.11) we see that  Vu = 0 and the conclusion follows. 

[01 ] 
(lul 2 - 1)2r -t- 0(1) 

3.3 Further open problems 

Problem 2. Let u be a solut ion o f  (1.2) such tha t  l u]--+ 1 at  infinity. Is 

5 (lul 2 - 1) 2 <  ~ 9  
R2 

We say tha t  a solut ion u o f  (1.2) is a local minimizer if  for  every bounded  
set s C ~2 we have 

-~2 5/Vul 2 + �88 5 (I/AI 2 -- 1) 2 = < i ~IVUI 2 "}- i I (I/312 -- 1) 2 
s s t? 1"2 

for  every v E H 1 (s C) with v = u on 0s 
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Problem 3. Prove that u = ei~ (r) defined by (1.4), (1.5) is a local minimizer. 

Problem 4. Prove that every local minimizer u must be either of  the form 
u = Const. = C with [C[ --- 1 or u = ei~ (modulo a rotation, a transla- 
tion and complex conjugation). 

Problem 5. Prove (or disprove) that any solution u of  (1.2), (1.3) with d < co 
has a single zero. I f  the answer is negative, what can be said about  the con- 
figuration of  [u = 0] ? Can any arbitrary finite set (with appropriate prescribed 
degrees) coincide with [u = 0] for some u? 

Problem 6. Prove (or disprove) that  any solution u of  (1.2), (1.3) (with d < co) 
such that 0 is the unique zero of  u must be of  the form eid~ ) (modulo 
an isometry) as in (1.4), (1.5). 

3.4. Further results 

After our work was completed, I. SHAFRIR [6] proved that any solution u 
of  (1.2), (1.3) with d <  oo satisfies, as Ixl--+ c~, 

(i) a - [ u l  2 ixl~+O , 

(ii) IVlull-- + o , 

(iii) I&lu]l =-< ] x ~  + o , 

(iv) /det (Vu)] = O ( ~ )  . 

I. SI-IAF~R [6] has also shown that any local minimizer which is not constant 
must have a single zero of  degree • 1. 

4. A Lower Bound for the Energy 

Let u be a (smooth) map from Be = [Ix l < R] into C. We assume that 

(4.1) lu] _-< 1 in Be, 

(4.2) lu(x) l >__a VxEAR, I~o=BR\BRo, 

] ~(luL2 1)2_<K (4.3) R2 BR 

for some positive constants a, R0 and K. 
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Assumption (4.2) implies that 

deg(u, Sr) = d 

is well-defined and independent of r for Ro < r < R. Since u does not vanish 
on AR, Ro, we may write locally in AR, Ro 

U = pe ir 

and then 
IVul2--  IVpl 2 + p2tV(o [2 

Our main resutt is: 

Theorem 3. Assume u satisfies (4.1)-(4.3); then 

(4.4) ~ 'VU'2>_~  ~ p2[g~o[2>d2 [2rclog(~oo ) - 
BR AR, R o 

where C depends only on a and K. 

q 

Proof. As in Section 2 we write o n  AR, Ro 

U(X) = [U(X)[ e i(dO+~(x) ) = pe io(xl 

where gt is smooth and single-valued. We have 

g(0 = _d V + g~, 
r 

where V(x) is the vector field in ~2\ (0}  defined by 

V(r cos 0, r sin 0) = ( - s i n  0, cos 0) .  
Thus, 

d 2 2d Ogt 
(4.5) IV(OI 2 ~- / .2 -t- - -  - -  - t - IVq/]  2 

r 0"t" 

where Oq/= V.Vq/ is the derivative in the direction tangential to Sr. We 
0r 

write 

f S 2d2 S (4.6) p2lVgo 12 = - - + 2  - - - - +  p 2 I V ~ / ] 2  
r 2 r Or 

AR, R o AR, R o AR, R o AR, R o 

= I 1 - t - I 2 + I 3 ,  

and we evaluate each integral separately. First we have 

f d2 (4.7) I 1 = r2 

AR, R o 

f d2 5 d2 (1 - p2) 7 = 2rid2 log R _ (1 --  p 2 )  -r 2" 
Ro 

AR, R 0 AR, R 0 
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From the Cauchy-Schwarz inequality and (4.3) we obtain 

(4.8) ! ( 1 - p 2 ) ~  <= (zrK)1/2 

AR, R o 

and thus 
R 

(4.9) I 1 __> 2re d 2 log 7-  - (TrK) 1/2 d 2 " 
/% 

Next, we use the fact that 

0r 
sr 

and we write 

/ 2 = 2  f 

AR, R o 

= 0 V r ~  (Ro, R) 

- 1) d_ 
r Or 

Hence, we find by the Cauchy-Schwarz inequality and (4.3) that 
[ ] a 2 ~ R  

(4.10) 112I < 2 d K  1/2 J IV 'l 2 1/2 d:K+ iv 12. 
= _-__ 2 a2 2 A  

R, , o 

Finally, we have by (4.2) that  

(4.11) 13 ~ a 2 ~ IV~/I 2. 
AR, R o 

Combining (4.9), (4.10) and (4.11) we are led to 

(4.12) j p 2 i g ( o l 2 > _ 2 n d 2 1 0 g R - d  2 (7~K)1/2 + 7 , 
AR, R 0 Ro 

which is the desired conclusion. 

Remark 4.1. The above argument in fact gives more than (4.4), namely, 

[ (R~)  C] a2 (4.13) j IVul 2 >_ d 2 27~ log - + J IVpl 2 + -  J IV '[ 2. 
BR BR 2 AR,Ro 

We now turn to a more general setting where there are several holes of 
radius R0 in Be. More precisely, let a 1 , a 2 . . . . .  am be points in BR such that  

< R  
(4.14) la j l  = ~ V j ,  

(4.15) laj - ak] _-> 4R0 V j, k, j # k. 

Set m 

s = Be\  U B(aj, Ro) 
j = l  
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with 

R 
(4.16) R o < - .  

= 4  

Let u be a (smooth) map from g2 into C. We assume that  

(4.17) 0 < a _ < _ [ u [ _ < l  in g2, 

1 S (lul2 1)2__< K (4.18) R2 

for some constants a and K. 
Assumption (4.17) implies that 

deg(u,  OB(aj, Ro) ) = dj 

is well-defined. We consider the map 

u~ = (~z - a l ~ ) z  - al 

Our main result is: 

z 

- a 2 1 /  " (Iz �9 ~ j )  

Theorem 4. Assume that (4.14)-(4.18) hold. Then 

(4.19) I lVul 2 _> I iVuol 2 - C[]dll2m 2 
Q ~2 

where II dll -- Z j l 4 1  and C depends only on a and K. 

The proof  relies on the following simple 

Lemma 3. Given a function q/ defined in B2R ~ \BRo , there is an extension ~ o f  
~/ defined in B2R ~ such that 

(4.20) ~ IV~l 2 < c  ~ IV~l 2 
B2Ro B2R o \ BRo 

where C is some universal constant. 

Proof. By scaling we may always assume that R 0 = 1 and by adding a con- 
stant to ~u we may also assume that 

~ = 0 .  
B2\B 1 

Poincar6's inequality implies that 

.~ l~,l*__<c S IV~,l ~ 
B2kB 1 B2kB 1 

We may then extend ~ inside B 1 by a standard reflection and cut-off  tech- 
nique�9 
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Proof of Theorem 4. Set p = l ul. We may write, locally in s (but not globally 
in ~2), 

u = pe ie 
and then 

(4.21) IVuI 2 = IVpl 2 + pZlVfp 12 

Similarly, we may write, locally in sg, 

U 0 : -  ei(~ 

with I Vuol = ]V~po] and 

(4.22) 
4 Vj(z) 

V o z) = I2 Iz- T 
J 

where Vj(z) is the unit vector tangent to the circle of  radius [ z -  ajl centered 
at aj: 

( y - aj x - aj ) 
(4.23) Vj(z) = [z ajl'lz a j [ "  

It is convenient to introduce the function q/ globally defined on f2 by 

(4.24) 

Thus, we have 

(4.25) 

and consequently 

(4.26) 

with 

u = puo ei~' . 

IVul 2 : IVpl 2 + p21V~Oo + V~l 2 

l lVul2~ ~lVpl2+ ~lVuol2+ 5 a 2 ] V ~ ' 1 2 - X  
f2 Q ~Q .Q 

X = 5 (1 - p2) lVuol2 + ~ 2(1 - p2) Vfpo. V q / -  5 2V(p o. Vg/. 
s 12 s 

We write X = 321 + X2 + X3 and estimate each term separately. 

(4.27) 

so that 

Estimate of  X1. We have 

1 
Idjl </tdll 12 iz I' IVuot <= 12 Iz ajl = . aj 

J J, 

 428, vuo 4 d=  4<Ldm  )1/4 
J 

Hence, by the Cauchy-Schwarz inequality and by (4.28) and (4.18) we obtain 

(4.29) Ixll --< K1/2HdH2 m 2 7 g  1/2 �9 

Estimate of  X2. From (4.22) we have 
ml[dll 

(4.30) I V(oo I _-< - - ,  
Ro 
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and thus, by the Cauchy-Schwarz inequality and (4.30), we find 

(4.31) IX2[ __< 2 ~ (1 - p2) IV~ool IV~,l -< 2gl/2mnd][ IIV~,ll=. 
E2 

Estimate of X3. We have 

J J v 0. = E r 
f2 J f2 

We extend ~u inside each disc B(aj, Ro) using Lemma 3 and we write, for 
each j, 

(4.32) I Vj. Vg, 
iz- i- f t/  

Y2 BR \ B( aj,Ro) 

Note that for k =~j, 

v rV~ [ v r v ~  
lz-ajl ~ J Iz-ajl 

k*j B(ak,Ro) 

VrV~ 1 I (4.33) ]z--~j [ -< ~ IV~I 
B(ak, Ro) B(ak,Ro) 

and thus, by the Cauchy-Schwarz inequality and Lemma 3, 

vj.v~ 
(4.34) ~ f z - -~i  <= C(m - 1) IIV~'llz 

kscj B(ak,Ro) 

for some universal constant C. 

Finally, we observe that 

f V j ' V ~ =  f 0~=00r 

Sr(aj) Sr(aj) 

for every r E (0, R - [ aj ] ). It follows that, with pj = R - [ aj 1, we have 

f vrvc z 
Iz - e l  

BR \B(aj,Ro) 

Hence we obtain 

vj.v~ 
Iz -ajl 

BR\B(aj,Pj) 

<1 f pj 
BR\B(aj,Pj) 

1 
- I I  v~  I12 (~R 2 - ~ p ~ ) ~ / 2 .  pj 

IV~l 

(4.35) 
Iz - e l  

BR \B(aj,R o) 

=< Cll v~  II2. 
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Combining (4.32), (4.34) and (4.35) we are led to 

(4.36) [X3I --< Cm[ldl] IIV~'ll2- 

Combining (4.29), (4.31) and (4.36) we find 

]XI <-_ cfl/2lld]12m2 + lld[lmllVq/]12 (2K I/2 + C) 

( 4 K +  C).  
l i d i i 2 m  2 

= a 2 I J v ~ , l l ~ +  a ~ 

Returning to (4.26) we obtain 
a 2 

~lVui~> S lVpl 2 + S lVuol ~+ ~lV~' l  2 t7 = t? t2 2- a 2 

where C is some universal constant. 

- -  ( 4 K  + C) 

Remark 4.2. We emphasize that the above proof gives a stronger conclusion 
than that stated in Theorem 4, namely, 

a 2 
(4.37) t?5 IVul2 --> ~5 IVpl2 + ~51Vu~ + 2 ~  tv~ul2 - Clldll2m2 

where C depends only on a and K. 

Finally, we give an estimate for ~Q[ VU0[ 2 w h i c h  is convenient to use in 
conjunction with Theorem 4. 

Theorem 5. Assume (4.14), (4.15) and (4.16) hold. Then 

(~j  ) R i l k - a l l  (4.38) ~SlVu~ 2 -- 4 log Ro - ]~ 4dr log ~ + O(m211dl12), 
keel  

where O(m2lldl] 2) stands for a quantity X such that IX] _-< Cm2lldll 2 and where 
C is some universal constant. 

Proof.  With obvious notations we may write 
izS:oj 

U 0 = e  

so that 
[Vu0l =ls 

On the other hand, the functions 0j and log i x - a j ]  are harmonic conjugates 
and thus 

[Vu0l = IV (]]dj log i x - a/l) [ . 
Set 

We have 

(4.39) 

vj(x) = l o g l x - a j [ ,  v =  E djvj. 
J 

f S S IVvl 2= ~ v -  ~ oNv 
f2 OB R J OB ( aj, R o ) 
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where v denotes the outward  no rma l  to BR and to B(aj, Ro). On OBR we have 

R 
2 <= [x - aj] _<2R 

and hence 

so tha t  
[ l o g l x - a j l - l o g R I  = C ,  

(4.40) I v - ( ] ~  d j ) l o g  R I < Cildllm. 

On the other  hand  we have 

and therefore 

so tha t  

A log lx - aj [ = 2~z Gj 

Av = 2zc ~ dj 6aj, 

(4.41) f 3~v=2=Zd j. 
Ov 

OB R 

Combin ing  (4.40) and (4.41) we see tha t  

f Ov 
OB R 

OV 
- - v - 2 ~ z ( ] ~ d j ) 2 1 o g R  ~ CIIdllm 

Finally, we observe tha t  on OBR, 

and consequent ly  

0 l o g l x _ a j l =  x - a j  x 
Ov [x - a.12"R ".1 

0 2 
l o g [ x - a j [  <_-. 

Ov - R 

Hence  

; 2,, So; <-_ d l lm ,  _-< 4zclldllm. 

abe 
Thus,  we are led to 

(4.42) f Ov - -  v = 27~(]~ 4)  2 log R + O(lldll2m2). 
Ov 

osR 
Next, we have to evaluate 

OB R 

f Ov k 
F., dkd, Ov v,. 

j , k , l  OB(aj,Ro ) 
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It is convenient  to distinguish several cases: 

Case 1: j = l, k 4: I, 

Case 2 : j = l ,  k = l ,  

Case 3: j :# l, j = k, 

Case 4 : j : r  j 4 : k .  

Case 1: j = l, k 4: l. We have 

S S (4.43) ~-v vl = log R0 

OB(aj,R o) 3B(aj,R o) 

since vk is ha rmonic  on B(aj ,  Ro). 

Ov~k = 0 
Ov 

Case 2: j = l, k = l. We have 

f 3v~ (4.44) ~0v vl -- log R 0 

3B(aj,R o) 

since •vj = 2u 5aj on B(aj ,  Ro). 

Case 3: j 4: l, j = k. We have 

(4.45) f 

OB(aj,Ro) 

3vj = 2~z log Ro 
Ov 

OB(aj,Ro) 

Ro 
3B(aj,R o) 

= 27rvl(aj) = 2)z log laj - as] 

since v l is ha rmonic  on B(aj ,  Ro). 

Case 4: j 4: l, j • k. On 3B(aj,  Ro) we have 

Ix - all Ivl(x)-vl(a;)l = logla j 
a l l "  

But 

laj - all - Ro <= l x - a l l  <= ]aj - all + Ro 

so that ,  by (4.15), 
3 I x -  all 5 
4 - ] a j  - all 4 

and thus 
]v1(x) - vl(aj) I <-_ C on OB(aj, Ro). 

Hence  

f Ovk f Ovk 3vv vl = 3v  (vl - vl(aj)) 
3B(aj,R o) OB(aj,Ro) 
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and consequently 

f Ov k Ovk 
Ovv l  <-- 2zrCR~ Ov LOO(OB(aj,Ro)) 

OB(aj,Ro) 

On the other hand, on OB(aj, Ro), we have 

Ovk 1 1 1 < <_ 
Ov <-- I x ak [ = ] aj -- ak I -- Ro 3R0 

and therefore we have 

f Ov k vl ( 4 . 4 0  ~-v _< C. 

OB(aj,Ro) 

Combining all the cases we see that 

(4.47) ~ d~dt vl = 2zr d log R 0 

j ,k , l  OB(aj,Ro ) 

+ 2re ~ d~dl log la~ - az] + O(m2lldll2). 
k * l  

Combining (4.39), (4.42) and (4.47) we obtain 

~IVvl 2=2~z ~ dj l o g R - Z z ~  d 2 logR0 
s 

- 2 r e  ~ 4 d l  log la ~ - a l l  + O(m211d]l 2) 
k:# l 

and this yields the desired conclusion. 

Remark 4.3. In the special case where dj >= 0 for all j ,  we deduce from (4.14) 
and Theorem 5 that 

IV.012 ____ log ~ + O(m2lldII2). 
12 
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