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Abstract 

We consider steady, two-dimensional motions of an incompressible, New- 
tonian fluid flowing under gravity down an inclined channel. If the bottom 
of the channel is flat, the flow is the classical Poiseuille-Nusselt flow and the 
free surface is then a plane parallel to the bottom. Motivated by the recent 
experimental and numerical studies of PRITCHARD, SCOTT ~r TAVENER, we look 
at bot tom configurations which possess some localized, non-uniform structure. 
We present an existence theory for steady, highly viscous flow over such con- 
figurations. An important consequence of our theory is that the steady flows 
whose existence is established decay exponentially rapidly to the unperturbed 
Poiseuille-Nusselt flow away from the local variation in the channel bot tom 
profile. 

1. Introduction 

The determination of the free surface in fluid flows not all of  whose 
boundaries are constrained is a problem of  both scientific and practical in- 
terest. Many industrial processes and natural phenomena exhibit fluid motion 
with steady or evolutionary free surfaces, and this has given a lot of impetus 
to the study of  such flows. 

Several years ago, PRITCHARD (1986) concluded a study of the flow of 
viscous fluid off  the end of  a finite, inclined channel. In his experiments, 
which turned up some very interesting phenomena, the flows were dominated 
by viscosity and surface-tension effects. While the range of both steady and 
time-dependent flows discovered is fascinating, it appears to be beyond the 
reach of  our present analytical or numerical tools. This prompted another, 
related experiment which held out more hope for both rigorous analytical 
treatment and computational analysis. In this experiment, fluid flows at a con- 
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stant rate under gravity down an inclined channel whose bottom is planar ex- 
cept for a pair of  smooth bumps (see Figure 1). The fluid pours off  the end 
of the channel into a reservoir and is then pumped back to the top of the 
channel. For relatively small flow rates, these motions are also dominated by 
viscous and surface-tension effects. PRITCHARD observed interesting steady 
flows in this situation, which are used to check the accuracy of a numerical 
scheme. This work is reported in a forthcoming paper by PRITCHARD, SCOTT 

TAVENER (1991). 

F :y0+y(x I 

Figure 1. -~- "" 

Our purpose here is to provide an analytical framework modelling these 
flows and a rigorous existence theory for steady motion corresponding to a 
wide range of  bot tom configurations including the one described above. The 
long, but finite channel used in the experiments is here modelled by an in- 
finitely long channel. An interesting and useful by-product of our theory is 
that the steady flows corresponding to a bot tom perturbation of  finite extent 
decay exponentially rapidly to Poiseuille-Nusselt flow away from the perturba- 
tion. This result is helpful in formulating and analyzing the aforementioned 
numerical scheme. The analytical model assumes an infinitely long channel as 
a way of  getting around the specification of potentially complicated boundary 
conditions inherent in the consideration of a finite channel. The numerical 
scheme must be constructed relative to a finite domain, however, and so the 
issue of boundary conditions cannot be ignored. Because of  the rapid decay 
to Poiseuille-Nusselt flow, it is reasonable to impose exactly the Poiseuille- 
Nusselt flow conditions at both the upstream and downstream boundaries, 
provided these are situated a reasonable distance from the part of the channel 
bot tom that has non-uniform (but two-dimensional) structure. 

Precursors of the present work include the work of  JEAN (1980) and SOUgN- 
NIKOV (1980, 1982, 1983), which was concerned with a finite channel. A more 
recent paper of  SOtONm~COV'S (1989) deals with a related, though somewhat 
different problem in which liquid pours down an inclined plane into an infinite 
reservoir. In this latter problem, the flow approaches a Poiseuille-Nusselt flow 
upstream and is matched to a Jeffrey-Hamel flow in a sector of  the reservoir. 
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While the present work was in editorial review, a manuscript by NAZAROV & 
PILECKAS (1991) came to our attention. While different in a number of 
technical ways, the underlying physical problem is the same and the general 
mathematical approach overlaps considerably the present work. A reader in- 
terested in our paper will certainly want to consult the NAZAROV & PII.ECKAS 
paper as well. 

The plan of  the paper is as follows. Section 2 lays out the model and the 
governing equations while Section 3 contains a reformulation of the 
mathematical issue as a fixed-point problem for a mapping T. A central, 
technical result, Theorem 3.1, concerning the mapping T is stated at this point. 
The proof  of this result occupies the next three sections. Under the provisional 
assumption that both the bottom configuration and the free surface are 
known, the flow domain is mapped to a fixed domain and the velocity field 
is determined from the stream function in Section 4. In Section 5, the 
associated pressure field is determined, leading to a short proof  of 
Theorem 3.1 in Section 6. The existence and uniqueness theorem for the free- 
surface flow is then shown in Section 7 to follow from an implicit-function 
theorem. Sections 8 and 9 are devoted to establishing the validity of the 
hypotheses that are needed to invoke the Implicit-Function Theorem. The last 
section contains the proof  of  a technical result that arose in Section 4. 

2. The Governing Equations 

Attention will be given to the situation depicted in Figure 1, namely the 
flow of  a viscous liquid down an infinitely long channel of  uniform width, 
the bed of  which is located at a height g(x)  above a plane P that slopes at 
an angle c~. It is supposed that the coordinate frame (x, y) is located in this 
plane and that g is measured in the direction y normal to the plane. In this 
set of  coordinates, we shall further suppose the bottom configuration g of the 
channel to be smooth and to have compact support, thus representing a per- 
turbation of finite extent of  a perfect, planar surface. (In fact, it will only 
be required that g rapidly approach zero both upstream and downstream.) It 
is assumed that the fluid motion is steady and two-dimensional. The resulting 
free surface is taken to be the curve y = Y0 + Y (x). The function y represents 
the principal unknown in the problem while Y0 is the height of  the free sur- 
face above P in the limit as I xl becomes unboundedly large. It is expected that 
the steady flow will tend to the classical Poiseuille-Nusselt flow corresponding 
to the liquid depth Y0 far upstream and downstream of the portion of the 
bottom that is not essentially flat. If  we let 

f2g ~ = {(x, y) : - c~  < x < ~,  g(x)  < y < Yo + y(x)} 

denote the flow domain, then this latter expectation leads to the following 
mathematical formulation of  our problem. 

Given a bot tom configuration g, find a function y:  ~ ~ (the free sur- 
face), a vector-valued function u (the velocity field) and a scalar function p (the 



74 E ABERGEL & L L. BONA 

pressure field) defined on f2g ~ such that 

- & u + V p =  ( C 1 )  i n f2~ ,  

G 

V .  u = 0 in g?g~, 

u(x, g(x)) = O, (u. n) (x, Yo + y(x)) = O, 

(VsU. n. t) (x, Yo + 7(x)) = O, 

(2.1) 

V"(x) 
(1 + (;~'(x))2) 3/2 = r [ - p ( x ,  Yo + y(x)) + (VsU. n. n) (x, Yo + y(x))], (2.2) 

lim u(x,y) =up(y) = 
j~j-.oo 1 lim p(x,y)  =pn(y) = C2(y -Yo). 

(2.3) 

In this formulation, we have taken both the kinematic viscosity and the density 
to have the value one. Additionally, the flows are taken to be sufficiently slow 
that inertial effects can be ignored, so the nonlinear term as well as the time 
derivative in the Navier-Stokes equations has been set to zero. For the equa- 
tions above, C1 = G sin (o~) > 0, C 2 = - G cos (c~) < 0 are the components of 
the gravitational force field in the chosen coordinate frame, (t, n) is the 
positively oriented Frenet frame on the boundary with n pointing outward, and 
G is the gravity constant. Furthermore,  VsU :=  ~ (Vu + Vu r) is the deviatoric 
part of  the stress tensor a : = - p l D  + VsU; the boundary conditions in (2.1) 
are a non-slip condition at the solid boundary, a contact condition at the free 
surface, and a zero-shear-stress condition at the free surface. Equation (2.2) 
is the condition of equilibrium for the free surface, and the positive constant 
r is the surface-tension coefficient, while (2.3) assigns a prescribed behavior 
of the velocity- and pressure-fields at infinity, that of the standard Poiseuille- 
Nusselt flow with height Y0. The latter, whose velocity and pressure field are 
represented by Up and pp, respectively, corresponds to g = y -  0. 

3. F o r m u l a t i o n  as a F ixed-Point  P r o b l e m  

The functional-analytic setting to be used in the analysis of  (2.1), (2.2), 
(2.3) is now introduced and the problem of finding a suitable solution of the 
equations is recast as the problem of  finding a fixed point of a certain 
operator. 

First, the function spaces that are central to our analysis are defined. Given 
c > 0, m _> 0 an integer and it with 0 < it < 1, we define By"t(~) to be the 
linear space 

[ fECm'~(R):  o<-k<-m~a supeclXl'Dkxf(x)'<~176 1 (3.1) 
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where cm"~(~) is the usual HOlder class. The space Bm'Z(R) is a Banach 
algebra with the norm 

IlfHm, d : =  ~ supedZl ID~f (x )  I + sup IDmf (x ) -Dxmf (x ' ) l  
~ R  u , x ' ) ~ 2  I x - x'p ;~ 

k=O x~x' 

, (3 .2)  

or with the equivalent norm 

[ D~*f (x) - D'ff f(x')] 
I flm, e,z :=  sup [e el:q (I f ( x ) l  + ]Dxmf(x)l )] + sup 2 

x ~  u , ~ ' ) ~  i x  x'l  ~" 
x.x' (3.3) 

m,2 Remark3.1. In addition to defining a Banach-algebra structure on B e (R),  
the bilinear mapping (f, g) ~ f . g  is continuous as a mapping of Bm'~(R) X 
Cn'~(~) into Bm"~(~) where m ' =  rain {m, n}. This easy result will find use 
later. 

The operator T central to the subsequent analysis is now introduced. Sup- 
pose that (g, y) lies in 42 Bc' (R) xB4 '~(~)  and suppose that g and y are 
restricted in size in a way to be made precise in the next section. Then the 
domain f2g ~ is well defined, and one can solve in principle equations (2.1) 
with the asymptotic conditions (2.3) for the velocity field u and the pressure 
p. Taking these as determined, we can then solve the differential equation 

2 T : =  D3xT- rClYoD2xT + rC2DxT + 37: Cj T 
Yo 

= 7:Dx{ ( 1 + (y '  (x))2)3/2 [_p (x, Yo + Y (x)) + ( VsU. n. n) (x, Yo + Y (x))]  } 

- rClyoDZy + rC2Dxy + 37: - -  C1 y (3.4) 
Y0 

for x E R, with zero boundary conditions at + o~. The correspondence 
(g, y ) ~  T will be viewed as an operator which happens to map B4';~(R)x 

4,)~ 4,4 Bc (R) into B c (~) .  The solution T =  T(g, y) of  (3.4) is not in general a 
solution of  the original surface-tension equation (2.2). Indeed, equation (2.2) 
has been considerably modified for technical reasons. However, it happens that 
if T(g, y) = y, then (3.4) and (2.2) are indeed equivalent. 

The idea behind our theory is to apply the Implicit-Function Theorem to 
the operator y -  T(g, y). This approach seems natural since T(0, 0 ) =  0, a 
relation that corresponds to the fact that if the bottom of  the channel is 
perfectly planar, then the Poiseuille-Nusselt flow ( u , p ) =  (ue, pp) with a 
planar free surface at height Y0 above the channel bed is a solution of the 
flow problem (2.1)-(2.3).  The seemingly awkward choice for T in (3.4) will 
appear as quite natural in the calculations to appear subsequently. 

Here is the principal qualitative result concerning the operator T. The proof  
of the result is somewhat lengthy, and comprises most of  the content of Sec- 
tions 4, 5 and 6. 



76 E ABERGEL & J. L. BO~A 

Theorem 3.1. Let a value z of the surface-tension parameter and a HOlder expo- 
nent 2 ~ (0, 1) be given, and let Yo > 0 be specified. Then there exists a value 
el > 0 and Po > 0 such that ifO < e = sin (c~) < el and 0 < c < min [~, r2(e)}, 
where g and r 2 ( e) are defined in Proposition 4.2 and Lemma 4.1, respectively, 
then (i) T is well defined from the open ball B o of radius Po centered at the origin 

4,2 in Be '~ x B  4'~ into B c , and (ii) T is continuously Fr~chet differentiable on B o. 

As mentioned before, the proof  of this qualitative theorem will require 
some effort. In the next section, for sufficiently small g and y, we will map 
f2g y onto a fixed, infinite strip. The velocity field may then be determined as 
a function of (g, y). In Section 5, a similar determination of  the pressure is 
made. In Section 6, the differential equation (3.4) is analyzed, and this puts 
the finishing touches on the proof  of Theorem 3.1. 

4. The Dependence of the Velocity on (g, 7) 

Because the velocity field is divergence-free, we can write u as V x 7 j. Tak- 
ing account o f  the asymptotic conditions (2.3) we expect the flow to satisfy, 
we find it prudent to write ~ - -  cb + q/ where q~ is a stream function in f2g ~ 
closely associated to Poiseuille-Nusselt flow, chosen to satisfy as many bound- 
ary conditions as possible. One then envisions working with the perturbation 
stream function qJ as a primary dependent variable, and expects that it will 
decay to zero at infinity. An appropriate choice for q~, which will be used 
throughout,  is 

q S ( x , y ) = c l f Y o  ( y o ( y - g ( x ) )  " ~ 2 1  ( y o ( y - g ( x ) )  ~3"~ (4.1) 

\Yo + Y(x) ~ g((x),] 6 \yo + ?(~) ~ g(x) ] .)" (2 

Naturally, the bot tom profile g and the putative free surface y are not 
unrestricted in size here. However, if 

f ),o max sup lg(x) [ ,  s u p l y ( x )  I < 2- '  (4.2) 
xE• xE• 

then ~gY is indeed a well-defined, connected domain and ~ is a smooth func- 
tion of g and ), in this domain. The assumption (4.2) will be in force 
throughout our analysis. If one takes the curl of the equation in (2.1) and 
rewrites everything in terms of ~, one obtains the following boundary-value 
problem for ~,: 

A21ff = - -  ~ 2 t ~  i n  (2g ~, 

O~ (x, g(x))  = 0 ~'(x, g ( x ) )  = for x E R ,  

q/(x, y o + Y ( x ) )  = 0  for x E R ,  
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1 / t o21ff O21ffl \ (X, + y(x)) - 2 y ' ( x )  o21ff (x,  -]- ~ ( x ) )  
(1 -- ~)t2(X)) kO ~ 0 ~ - /  YO ~ y  Yo 

= -- 1 (1 -- y ' 2 ( x ) )  ( 0 2 ~  02~ '~  0 2 ~  (x,  + y ( x ) )  
2 k'aY 2 OX2) (x, yo+7 (x )  ) + 2y'(x) ~ Y0 

for x E R (4.3) 

3 4 3 4 3 4 
where •  + 2 - -  + - -  is the bi-Laplacian. The boundary  condi- 

OX 4 3X 2 03; 2 Oy 4 

tions follow from those imposed on u, except that in principle one only has 
q/(x, g(x)) = ~,(x, Yo + y(x))  = constant, but we have chosen this constant 
to be zero. 

Consider the change of variables 

Yo(Y - g(x)) 
2 = x, :9 = , (4.4) 

Yo + y(x) - g ( x )  

which maps f2g y onto the strip X = R x ( O ,  yo). Let 0 be defined in Z" by 
~(2,  :9) = g (x ,  y) and introduce the space 

B~"~(X):={  (v~Cm''z(2): sup sup ecl*l k ' ^  (,,,)Ez IDxDy~~ y)' < +ool 

modelled after Bm'Z(R). The norm of  a function 0 in B2'~(2) is defined 
to be 

H01P ,c,  sup e< l = [D,D,p(p(x, y)] 
k+l<=m (2,Y)r (X) 2 

k l ^ * k l ^ D~Dy~o + sup sup ~ IDxDy('~ :9) - (2', :9')1 
k+l=m ((~,y),(~',y'))~(Z> ((2 _ 2 , ) 2  + (:9 _ :9,)2)~/2 (4.5) 

(x,y). (#,y) 

The space B~'X(2) equipped with this norm is a Banach algebra. One can 
also define 101~,c,~, the analogue of  (3.3); furthermore,  Remark 3.1 is easily 
extended to the case of  functions defined on X. 

With these preliminaries in hand, we now state the main result of  this sec- 
tion: 

Theorem 4.1. There exists an open ball ~ of radius r 0 > 0, centered at the 
origin in B4'z(~)• such that whenever (g, y ) ~ 3 ,  the following 
statements hold: 
(i) Problem (4.3) has a unique solution ~,. 
(ii) ~t, the image of ~t through the change of variables (4.4), is in B 4'~ (2). 
(iii) The mapping S: (g,y)--*~/ is continuously differentiable from 2 into 
B 4,;~ (2 ) .  

The following proposit ion will aid materially in the proof  of  Theorem 4.1. 
Its somewhat technical proof  is postponed until Section 10. 
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Proposition 4.2. Consider the boundary-value problem 

A2V = bl in X; v(2, 0) = b2(2) ,  2 E ~ ;  

0V 
- -  (2, O) = bs(2), 2fi ~; 
o33 

2 k033 2 

with the assumptions that 

~(2, Y0) = b4(x), 2 E ~; (4.6) 

0% 
022j  (2, Y0) = bs(2), 2~ ~; 

(b 1, b2, b 3, b 4, b5) E B2 '2(2)  XB4 '2 (~ )  x B 3 ' 2 ( ~ )  x 
B4c'X(R) xBZ';~(R). There exists ~ > 0 depending only on Yo such that whenever 
0 < c < g, Problem (4.6) has a unique solution v~B4"~(Z,). Furthermore, the 
solution map is a topological isomorphism between the corresponding spaces. 
Finally, the norm of the solution map is bounded on any compact subinterval of 
[0, e). 

An immediate corollary of the proof of Proposition 4.2 is the following 
result. Commentary about this result appears in Section 10 after the proof of 
Proposition 4.2. 

Corollary 4.3. The conclusions of Proposition 4.2 hold when 

(fi)l__<i~5 eB~c'~(2) x BcS'~(~) xB4'~(R) xB2'~(R) x~2'z(R), 

provided that the norm on v is that of Bs"z(X) throughout. 

Proof of Theorem 4.1. The boundary-value problem (4.3) for ~u transforms 
under the change of variables (4.4) into a boundary-value problem for 0 on 

Z. Consider for instance the differential operators --0 and --,0. they transform, 
respectively, into 0x 0y 

0 (_g,y2 _ g'Yo7 - YoYY' + YoYg' + Y0gY') 0 Y0 0 
+ and 

02 (Yo + Y - -  g ) 2  033 Yo + Y - g 033" 

Iterating this result, one sees that the differential operator 

forms into 

O k 

Ox p Oyk-p 
trans- 

O k 1 0 ql+q2 

OX p Oyk-p + Pqt,q2 , (4.7) (Yo + Y - g)n(k) E OXql Oyq2 q1+qz <k 

where Pqvq2 is a polynomial in the (2k+  2) functions (g, g', . . . .  Dkxg, 

y, y', . . . .  D~y) such that Pql,qz(O) = O, and where n(k)  is an integer depend- 
ing on k. It follows that the boundary-value problem for 0 is a perturbation 
of Problem (4.6) on X. More precisely, denote by t i t h e  linear operator defined 
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by 
S :B4 ,4(2)__ .  0 4 -  24 Be, (Z) xB4,4(R) 44 34 XBc' (~ )XBc '  (~ )XBc '  (~ ) ,  (4.8) 

V ~ 2V, V(., 0), V(., YO), ~y (', 0), I \ay2 ax2j  ( ,  yo , 

and let S ~  be the corresponding operator, for g, 7 non-zero, resulting from 
the change of variables (4.4). Denoting by ~ / the  target space of  d and using 
the expressions in (4.7), we easily verify that 

II ( s -  sW) vll  _-< L(llgll4,c,4, II yll4,c,4)l[ (4.9) 

where L is a continuous function with L(0,  0) = 0. In fact, because of Remark 
3.1, one can replace the norms of g and y in B4'4([1~) by their norms in the 
(unweighted) HOlder space C4';~(R), and (4.9) remains valid; indeed, L is in- 
dependent of the value of c. Now, we use the fact established in Proposition 
4.2 that S is a continuous isomorphism to assert the existence of  an r0 such 
that S g  ~ is also an isomorphism provided that 

HgH4,c,4 + ][ yH4,c,;~ --_< r0. (4.10) 

In order to prove (ii) (and, by the same token, (i)), one just needs to verify 
that the right-hand sides for the boundary-value problem for ~/belong to ~ ,  
a fact that is established by straightforward calculations. 

Attention is now given to the differentiability of S. Define two mappings 
S1 and Sz as follows: 

$1: ~ - ~ ( B e ' z ( 2 ) ,  y ) ,  

(g, v) 

(B c (X), ~ g ) ~ I s o m  ( ~ ,  ~4,;~(~,)) $2: Isom 4,4 - 

L ~ L  -1 

Then it follows that 

S(g, y) = ($2 ~ Y)) (---~(g, Y)), 
where J~(g, y) is the right-hand side of the boundary value problem for ~/; 
in fact, 2.~(g, y) = -HgY(~)  + (0, O, ~ Cly3,0, O) where & is the image of 
q~ defined in (4.1) under the change of  variables (4.4), i.e., ~(2,39) = 

(1 y .~,2 ~3 C1 g 0y - ~  ). As it is well known that $2 is a continuously differen- 
tiable mapping, it is simply a matter of  combining the chain rule, the product 
rule and Lemma 4.4 below together with the fact that ~ is independent of 
(g, ?~) to conclude the validity of Theorem 4.1. [] 

Lemma 4.4. Let P be a rational function of k variables which is devoid of poles 
in a neighborhood of the origin in ~k (k a positive integer) such that P(O) = O. 
Then the mapping 

~'~: (gl . . . . .  gk) ~ P(g~ . . . . .  gk) 
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k ni,2 maps Hi=IB c (~.) into B~o'2([E), where ni>_O are integers, and no = 
min {ni : 1 < i <_ k}; moreover, ~ is continuously differentiable in a neighborhood 

vtk Dni,2t[~). JU of the origin in 1~i=1,_, c 

Remark 4.L The elementary proof  of  this result is omitted. When applying Lem- 
ma 4.4 in the proof  of  Theorem 4.1, we consider expressions of  the form 

OP 
P(g . . . . ,  Dxg,k ~ . . . . .  Dk~) OxqOY p-q  ," the differentiability of  such expressions 

follows from Lemma 4.3, Remark 2.1, the product rule and the linearity of  the 
mapping (g, 7) (g . . . .  k , Dxg, 7 . . . . .  D~xy). 

Remark 4.2. In what follows, use will be made of the actual expression of  the 
derivative of  S with respect to 7 in a neighbourhood of the origin. However, the 
formula for this derivative is not needed for arbitrary g, 7- 

Remark 4.3. Lemma 4.4 is easily extended to the case of  a real analytic function. 

Remark 4.4. The real number r 0 introduced in (4.10) is bounded away from zero 
provided c runs over a compact subinterval of [0, ~), a fact determined by 
reference to Proposition 4.2. 

5. The Dependence of the Pressure on (g, 7) 

For a given bottom profile g and a free surface 7, the pressure field p in (2.1) 
is obtained as a standard by-product of the results in Section 4. Classical regulari- 

2 2  7 ty results (cf. SOIONNmOV 1980, BEMELMANS 1981) show that p lies in Cl~c(f f2g)  
and that Vp is in C1'2(Og ~) xC1'2(O~). For the problem under consideration 
here, the values of  p along the curve y = Y0 + Y (x) are particulary interesting. 
Recalling that u(x, y) = V x (q~ + q/) (x, y) and denoting p(x ,  Yo + 7(x)) 
by q(x),  one obtains that 

(o, 
q'(x) = Ox + ?'(x) (x, Yo + 7(x)) (5.1) 

in the original variables (x, y). Using the first equation in (2.1), we can express 
q'(x) in a more complicated way as 

q' (x) = Cl + C2y' (x) + A (~yy ( ~ + ql)) - ~)' (x) A ( :  x ( crp + I//)) 

where the functions of  two variables in this last formula are all evaluated at 
(x, Yo + 7(x)) .  

I t i s  straightforward to check that A (0~,  ' )  (x, y o + 7 ( x ) ) +  C1 belongs to 

BI'2([E), and therefore it follows that q' belongs to Blc'2(R). The function q is 
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determined from q' by setting it equal to zero at -c% so that 

q(x) = C2Y(x) 

§ 

- - o o  

) (0 ,) ] 
+ qs) - y ' ( s )  /~ 3x (q/+ q5 (s, y o + Y ( s ) )  +C1 ds. 

(5.2) 

This step is legitimate thanks to the exponential decay of the integrand at -co. 
It is not necessarily true that q itself decays exponentially at +c~, and this 
is the principal reason why equation (2.2) has been so severely modified in 
the definition of T given in (3.4). 

The main result of this section is the following proposition. 

Proposition 5.1. Let (g, y) be in the open ball ~ whose existence was established 
in Theorem 4.1 and let R be the mapping (g, y) ~ q, where q is defined in (5.2). 
Then it follows that 
(i) R is continuously differentiable from ~ into C2'x(R). 
(ii) The mapping (g, y) ~ Dxq is continuously differentiable from ~ into B~';~(~). 

Proof. This is a straightforward consequence of Theorem 4.1. One transforms 
(5.2) into the corresponding expression with ~/ and ~ replacing ~ and q~, 
respectively, and uses the differentiability of S. The only new ingredient is the 
obvious fact that the mapping f ( x )  ~ I c=f ( s )  dx is linear and continuous, 
and therefore continuously differentiable, from Bc~';~(rR) into C"+I';~(R), for 
every m => 0. [] 

Remark 5.1. The function q converges exponentially fast to zero at -co  and 
exponentially fast to a constant at + ~ .  This observation stems from the 
following simple lemma. 

Denote by Bm'~(I) the set of restrictions of functions in m ; B c " ( ~ )  to the 
interval I, equipped with the obvious norm. Of course, B'~'x(I)= C'~';~(I) 
unless I is unbounded. 

I~mma 5.2. The correspondences 

X c o  

f ( x )  ~ ~ f ( s )  ds, f ( x )  ~ I f ( s )  ds 
- - r  X 

are linear and continuous from B~ ~' ~ (( - c~, 0] ) into B m + 1,~ (( _ co, 0] ) and from 
Bm"~([0, ~ ) )  into Bm+l'~([0, co)), respectively. 



82 E ABERGEL • J. L. BONA 

Proof. The proof  is similar in both  cases. For the second case, say, define 
F(x)  = I f f f (s )  ds. Then one has immediately that  

o o  

sup e ~ IF(x)l sup e cx ~ If(s)l ds 
x~[0,oo) x~[0,oo) x 

m r  

< sup e cx e ]lfll~,c,~ as 
x~[0,~) x 

1 
= Ltfllm, 

C 

and the conclusion now follows. [] 

6. Proof of  Theorem 3.1 

The following elementary fact will be needed to conclude the proof  of 
Theorem 3.1. 

Lemma  6.1. Let a function f E Blc ' ~ (JR) be fixed. Then there is a unique T E B 4' ~ (R)  
which is a solution of the non-homogeneous ordinary differential equation 

2 T  = D3T - rClYoDZT + rC2DxT + 3T C1 T = f . (6.1) 
Yo 

The correspondence f ~ T is linear and continuous from BI'~([R) into B4"~([R) 
provided that the angle of inclination o~ > 0 of the plane P is small enough and 
provided that, once ot is fixed, the decay rate c > 0 is small enough. 

Remark 6.1. The proof  of  this l emma follows from that of  the slightly more 
elaborate result in Lemma 9.1. It is worth noting that the result in Lemma 
6.1 remains valid if it is only assumed that the polynomial  z 3 -  TClyoZ2+ 
rC2z + 3rC1/yo has real roots. As will appear  later, small values of  ~ ensure 
this property. As other restrictions on o~ intervene in the subsequent analysis, 
we have eschewed stating a more general result. The issue of exactly how small 

and c need to be is dealt with in Lemma 9.1. 
Lemma 6.1 is the last major  component  to be used in the proof  of  

Theorem 3.1. 

Proof  of  Theorem 3.1. The operator T = T(g, 7) is defined to be the solution 
of equation (3.4), which is written with new notation as 

2 T = D x [ (  I + (y')2)3/2(-q q- z)] zC~yoD2xy + vC2DxT + 3 z C1 
Yo 

(6.2) 

where 2 is defined in (6.1), g ( x ) : =  ( V s u . n . n ) ( x ,  yo+ y(x) )  and q is 
defined in (5.2). First, it is readily deduced f rom Theorem 4.1 that the map-  
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ping (g, 7 ) ~  Z is continuously differentiable from the ball ~ defined in 
(4.10) having radius r0 and centered at the origin in B4'~(~)xB4'X(~) into 
Bz'x(rR). In consequence of Remark 4.3 and Remark 3.1, the correspondence 
(g, 7 ) ~ D x [ ( 1  + (y')z)s/2Z] is therefore continuously differentiable when 
considered as a mapping of 2 0  into Bac'X(R), where 2 0  is the ball of radius 

Bc'~(R) xB4';~([R) and P0 > 0 is such that, P0 centered at the origin in 4 
simultaneously, 

Po _-< ro (6.3) 

and 

the mappings z ~ (1 + z2) 1/2 and z ~ (1 + z2) s/2 are analytic in {z: Izl < Po}. 

(6.4) 

Conditions (6.3) and (6.4) may be achieved simply by choosing P0 < min{r0, 1}. 
An argument similar to that given for the velocity term which uses 

Theorem 5.1 and Remarks 4.3 and 3.1 shows that the correspondence 
associated with the pressure term -Dx[(1  + (7')2) s/2 q] is a continuously dif- 
ferentiable mapping of ~ 0  into B~'r Composing these two results with 
the fact that 

7 -rC1D27 + "cCzDx7 + 3r C~ 
Yo 

is obviously a continuously differentiable mapping of B2'x(~) into B2'X(~), 
and applying Lemma 6.1 leads to the desired conclusion. [] 

7. Solution of the Free-Surface Problem 

The main result, namely, the existence and uniqueness of the solution to 
equations (2.1)-(2.3), is presented and established here when the angle of in- 
clination o~ is small enough. First, it is shown that fixed points of T are solu- 
tions of these equations. 

Proposition 7.1. Let T be the mapping defined in (3.4) and suppose that 
T(g, 7) = 7 far some pair (g, 7) ~B4c'X([R) xB4" t (R)  that satisfies (4.2). Then 
for the bottom configuration g and the free-surface 7 there exists a vector-valued 
function u and a scalar function p such that (u, p)  defines a classical solution 
of (2.1)-(2.3) in f2~. 

Proof. Clearly all that needs to be shown is that the normal-stress condition 
in equation (2.2) holds. From the definition of T, it follows from the relation 
7 =  T(g, 7) that 

7" = r[[1 + (y , )213/2(_q  + 3(,)] -I- constant 
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for some unknown constant. However, the behavior at -oo  of  all the functions 
appearing in the last formula necessitates that this constant be zero, and 
therefore (2.2) holds. [] 

The way is paved to state the principal result that emerges from our study. 

Theorem 7.2. There exists an to > 0 such that whenever 0 < sin (a)  < ~0, then 
there exists a positive real number c = c ( s i n ( a ) ) ,  an open neighborhood ,/U~ of 
the origin in B4c'~(R) and a continuously differentiable mapping g ~ 7(g) from 

into 4 Be' (•) such that T(g, 7(g))  = 7(g) for all g~ ~A/~. 

The proof  of Theorem 7.2 presented here rests upon the following technical 
result. 

Proposition 7.3. Let T~(0, 0) be the Frdchet derivative of T with respect to Y 
evaluated at (g, Y) = (0, 0). Then the mapping I -  Ty(O, O) is a continuous 
linear isomorphism from 4 Bc' (~)  into itself provided that a is near enough to 
zero and c = c (sin (c~)) is small enough. 

Remark 7.1. The proof  of this result is given in Section 9, where the smallness 
requirements on a and c are made precise. 

Proof  of Theorem 7.2. Let T 1 (g, 7) = 7 - T(g, 7)- Then T1 is continuously 
differentiable in 2 0  by Theorem 3.1. Moreover, as noted earlier, we have 
TI(0, 0) = 0. The conclusions of Theorem 7.2 are exactly those of the Im- 
plicit-Function Theorem applied to T1 at the point (0, 0), a result that is 
known to apply on account of Proposition 7.3. [] 

8. Determination of Ty(O, 0) 

This somewhat technical section is concerned with evaluating the vitally im- 
portant linear operator TT(0, 0) in the function-space setting being used 
throughout.  The principal result is Proposition 8.2, which paves the way to 
the analysis of I -  Ty(0, 0) in Section 9. The computations that lead to the 
formulas (8.4) and (8.5) are straightforward but tedious to derive. We content 
ourselves with a few remarks about their derivation designed to help the in- 
terested reader arrive efficiently at our conclusions. 

One thing that simplifies the calculations is the following elementary obser- 
vation. Consider an expression of the form P(y  . . . . .  7 " )  i j 0~0~ where P is 
some analytic function. Its derivative with respect to 7 at (g, 7) = (0, 0) 
vanishes whenever P contains only terms of second degree or higher in 7 and 
its derivatives. For instance, an expression like 77'0y has a derivative with 
respect to 7 in the direction h given by ( T h ' +  hT')0y, which equals zero 
when ~ ~ 0. This elementary point, Lemma 4.4 and Remarks 4.1 and 4.3 are 
the main tools that come to the fore in the detailed verification of (8.4) and 
(8.5). 
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With this observation in mind, we begin the calculations. First consider the 
mapping introduced in Section 4, and the associated mappings S and S g  y 
(see (4.8) et seq.). For g = 0, write 

s ~ O  = - s s ~  + (o, o, ~ C~y 3, o, o). 

Differentiating with respect to ~ in the direction h and evaluating at y--= 0 
yields 

( D ~ ( O ,  O) h) ~/o + 5JD~,(O, O) h = - (DyAg(O, O) h) ~,  (8.1) 

where ~/0 is the solution of (4.2) with y = g =-- 0; thus by our choice of ~,  it 
follows that ~/0----0. If  one defines w(h) :=  D~/ (0 ,  0)h,  then w is the solu- 
tion of the equation 

~w(h)  = - (DyA~(0, 0) h) &. (8.2) 

Making use of the observation mentioned above and the explicit form 
Cl(ly03) 2 -  1393 ) of & then leads to the relation 

D~A~#(O, O) h 

( , .... = C1 (Yo39-~3 ~2)h + 2  1 
Yo Yo 

_) ~ 1p ,~lYo,, 2 t" Hx~ . /  2 C l ( Y o - y )  h", 0 , 0 , 0 ,  / .  
Yo 

(8.3) 

Combining (8.2) and (8.3) and the relation exposed in Section 4 between S ~  
and the mapping S that associates to (g, y) a velocity field in g?gY leads 
directly to the following lemma. 

I~mma 8.1. For hfBc4';~([R), let w = w(h) denote the derivative DyS(O, O)h. 
Then w(h) is the solution of the boundary-value problem 

AZw = CI ~ (y039 - lY2) h" ' (2)  - 2C1 (3y-2yo)h"(2) ,  (2,39) fiX, 
Y0 Y0 

w(2, O) = w(2, Yo) = O, 2 f  R, 

OW 
- - ( 2 , 0 ) = 0 ,  2 f ~ ,  
039 

02W 
OY 2 (2, y o ) = - l C l y ~ h ' ( 2 ) ,  2 f R .  

(8.4) 

To complete the analysis of a determining problem for Ty(0, 0), one 
needs to find the partial derivative of the mapping (g, y) ~ D x ((1 + y'2)3/Zx 
( - q  + )C)) where q and )~ are as in (5.2) and (6.2), respectively. This proceeds 
much as the just-indicated calculation of DyS(O, 0). Putting the resulting ex- 
pression together with Lemma 8.1 and formula (6.2) leads to the following 
proposition. 



86 E ABERGEL & J. L. BONA 

Proposition 8.2. Let h lie in B4'a(R). The mapping Ty(O, O) is the continuous 
linear operator that associates to h the solution v = v (h )  o f  the equation 

SFv v,,, rClYoV,, +.cC2v, + 3.r Cl (_ 03w 03W )) = - v = 7: 2 ( ' ,  Yo) - ( ' ,  Yo 
Yo Ox 20y ay 3 

(8.5) 

where w is the solution of  (8.6) associated with h. (Here, and henceforth, the cir- 
cumflexes have been dropped. ) 

9. Invertibility of I -  Ty(0, 0) 

In this section a proof  of Proposition 7.3 is provided. This lemma was 
crucial for justifying the application of  the Implicit-Function Theorem. Let f 
be given in B4'x(~) and consider solving for h the equation 

( I -  Ty(0, 0)) h = f ,  

where I denotes the identity mapping. If we consider the difference h - f ,  then 
this quantity is a solution of (8.5), which is to say that 

2 03W 03W'~ (', Yo) 
2 ( h - f )  = - z  O~T~y + a y 3 j  

where w is the solution of  (8.4) and ~ is the linear ordinary differential 
operator defined in (6.1), or what is the same, 

(2 03W 03W~ 
2 ~ h = - r  ~ + Oy3/I ( ' ,Yo)  + 2 f .  (9.1) 

The proof  of  existence of  a unique solution h of  (9.1) rests upon the 
following technical lemmas. 

Lemma 9.1. Let f E BI 'Z (~ )  and consider the differential equation 

v "  - alev"  - a2 ~/1 - e2v ' + a38v =f  (9.2) 

for  x ~ ~, where the a i are positive constants, 1 < i <_ 3. There exist an el > 0 
and a constant K 1 depending only on al, a2, a 3 such that whenever 0 < e < el, 
then 
(i) The polynomial P~(z) = z 3 - a lez  2 - a2 ~ 1 -  e2 z + a3e has three distinct 
real roots r l ( e ) ,  r2(e), r3(e) with r l (e )  < - r2 (e )  < 0 < r2(e) < r3(e). 
(ii) For every c with 0 < c < r2(e), and every f in B~'~(R),  (9.2) has a unique 
solution v in B4"~ ( ~ )  and, moreover, v satisfies the estimate 

I[V[Ic, g,z_-<gl 1 + Ilfllc, l,J~. 
r2(e) -- c 
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(iii) If in addition f = f '  for some f in B~'x([R), then v satisfies the further 
estimate 

,IV,lc,4,~ <=K1 (1 + r2(~) ) 
r2(g ~ L c [[ f ]lc,2,;~. 

Proof. As e$0 ,  rl(e) and r3(e) tend to --,/a- 2 and ~aa2, respectively, while 
r2(e) tends to zero. It follows more or less immediately that for small e, Pe 
has three real roots as asserted in part (i). Furthermore, one easily verifies that 
r2(e)/e and e/r2(e) are bounded in any bounded neighborhood of 0. 

To establish OiL proceed as follows. First form the Green's function for 
the constant-coefficient equation (9.2) with zero boundary conditions at 4-oo 
in the standard way. Since the Green's function is a linear combination of ex- 
ponentials, it happens that the solution v of (9.2) corresponding to an f given 
in BI'X(~) satisfies the estimates 

sup Iv(k)(x)l eClXl <_-][fllc, l,X 212i] ]ri[ k ]e ri] + - -  (9.3) 
x~? _ -- l e + ril 

for 0 ---- k _< 3. As for the norm of v"',  we simply differentiate once the equa- 
tion satisfied by v and use the estimates in (9.3) to obtain that 

e d< [v"(x)l  <-N fllflic,~,x +a3e sup e clxt ] v ' (x)  I s u p  

+ a 2 x/1 - e ~ sup eclxllv"(x)] + ale sup eclxllv"(x)[ "} 
x ~ N  xE[P, ) 

and that 

s u p  I v " ' ( x )  - v " ' ( x ' ) ]  - v " ' ( x ' ) l  __< 2 s u p l < ' ( x ) l  + sup [ v " ( x )  
( x , x ' ) E N  2 I X  - -  X"I  )0 xElr,? I x - x ' l < l  ]X  - -  X t ]  )~ 

X ~ X  ~ x ~ x  ~ 

I f ' ( x )  - f ' ( x ' )  I 
__< 2 sup [ v " ( x )  I + sup 

x~ x.x, Ix - x ' l  ~ 

+ a3e sup I v"(x)[ + a2"/1 - ~2 sup I v"(x)l 
x~R xEN 

-t- ale sup I v " ' ( x ) l ,  
xe[R 

where we used the equation a second time in the last step. Whenever 
r~ 

0 < e < e l  and 0 < c < r 2 ( e ) ,  the quantities for i =  1,3,  are uni- 
I r i •  

formly bounded. Appropriately grouping the terms appearing above, we obtain 
(ii) with some constant K 1 that may be chosen independently of e in the 
range 0 < e <e~. 

The proof  of (iii) also follows by representing v in terms of the Green's 
function integrated against f = f ' ,  integrating this expression by parts and 
then estimating as in the proof  of (ii). [] 
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Corollary 9.2. Under the assumptions of Lemma 9.1, 

]Pvllkr~(~),4,2 = K2]I fHI,2(~),2,2 
whenever v is the solution of (9.2) in which the right-hand side is f ' ,  and K2 
depends only on al, a2 and a3. 

Proof. This follows immediately from Lemma 9.1, part (iii), with 
K 2 = 3K 1. [] 

Lemma 9.3. Let W be the solution of the boundary value problem 

A2W(x' Y) = ( y 2 - 1 Y ~ o )  h" ' (x)  - 2~ ( 3 y -  Yo for (x, y) ~Y,, 

OW 
W(x,O) = W(x, yo) = Oy (x,O) = 0  f o r x ~ N ,  (9.4) 

O2W 
OY 2 (X, Yo) = -- ly2hH(x) for x~ R, 

where h is a given function in B4'2 ( R). Define p to be 

I 03W 03W 1 p(x)  = C o t  2 ~  (x, yo) + --Oy 3 (x, yo) �9 

Then there exists a cl > 0 such that whenever 0 <_ c <-Cl, the following condi- 
tions hold : 

12 (i) p(x)  ~Bc' (~)  and p(x)  =/~'(x) for some function ~ in B2c'2(~). 
2,4 (ii) The mapping h ~ is linear and continuous from B4'2([R) into B c ([P.). 

(iii) There exists a constant K 3 depending only on Yo with the property that 
I~11c,2,2 <= rCoK3l[hlJc,4,2 �9 

Proof. Consider the solution Z of 

A2Z(x,y ) = ( 7 2  l y~)  2 2 h " ( x )  - -- (3y - 2yo) h'(x)  
Yo 

for (x, y) ~X, 

OZ 
Z(x, O) = Z(x, Y0) = ~-  (x, 0) = 0 for x~ N, 

oy 
(9.4)' 

02Z 
Oy 2 - -  (x, Yo) = -  ~y~h'(x) for xfi[R. 

By Corollary 4.3, we deduce that WEB~'2(Z) for 0 < c < ~, where 6 is as 
in Proposition 4.2. Plainly we have that 

OZ 
W(x, y) = ~-  (x, y) for (x,y) EZ. 

Ox 
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OZ 
As a matter of  fact, W and - -  are solutions of the same boundary-value 

Ox 
problem, and this solution is unique by Proposition 4.2. This conclusion im- 

[ OsZ- --03Z 1 
plies that fi(x) :=Co r 20x2y (x, Yo) + OY s (x, Yo) is such that 

p(x )  = y ( x ) ,  

and (i) is proved. Property (ii) is obvious, and (iii) is proved as follows. Using 
Proposition 4.2 (and see also Corollary 4.3), we fix a value c 1 with 0 < cl < 
and obtain a constant K 3 depending only on Y0 such that 

]lZ]lc,5,2 =~ K3l]hllc,4,), 

whenever 0 _< c _< Cl. Thus (iii) is established. [] 

Here is the main result of this section. 

Lemma 9.4. Consider the equation 

h "  - a l e h " -  a2 x /1  - e 2 h '+  a3eh + ep = ( f "  - a l e f " -  azX/1 - e ~ f '  + a3e f )  

(9.5) 

where f E B4'X ( ~? ) , and p is defined in Lemma 9.3. There exists an eo > 0 such 
that (9.5) has a unique solution h in 4 ;~ Bc'(e) (JR) whenever 0 < e < eo, where 
c (e)  = 21 r2(e) and r2(e) is as introduced in Lemma 9.1, and f is a given func- 

tion in 4 Bc'(,~ (~). 

Proof. Denoting by Pe(D)  the operator D 3 - aleD~ - a 2  ~/1 - e2 Dx + a3e, 
we may write (9.5) in the form 

h + e ( P c ( D ) - l p )  = f .  (9.5)' 

From Lemma 9.3 and Corollary 9.2, one deduces that if 0 < e < el and 
0 < 1 r2 (e)  __< Cl, then 

]jPe(D)-l  pl[c(e),4,x <- rCoK4[[hl]c(e),4,2, 

where K4 = K3K2 depends only on Yo- Therefore, the norm of  the linear map- 
ping h ~ e P e ( D ) - l p  is bounded from above by eCorK4. 

From Lemma 9.1 part (i), we know it is possible to choose eo meeting all 
of the following requirements: 

0 < eo < el, 0 < sup {~ r2(e)} < Co, eoCorK 4 < 1. 
0 < e < e  0 

Then for any positive e < e0, the operator I + ePe(D) - lp ,  when considered as 
a self-mapping of  B4kZe)(~), is boundedly invertible. Thus the lemma is 
established. 

Proof  of Proposition 7.3. To conclude the proof  of Proposition 7.3, apply Lem- 
ma 9.4 with al = rCoYo, a2 = "cC0, a3 = 3rCo/Yo and e = sin (o0. [] 
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10 .  Proo f  of  Propos i t i on  4 .2  a n d  Coro l lary  4.3 

The final piece of the argument is completed here, namely a proof of 
Proposition 4.2 and its Corollary concerning the solvability of a certain 
boundary-value problem in the spaces appropriate to our theory. 

First, consider the homogeneous problem 

~2V ---- f l  in 22, 
(lo.9 

OV 02V 
v ( . ,  0)  = v ( . ,  Y0) = ~yy ( ' ,  0)  = - -  ( . ,  Y0) = 0 in 

Oy2 

and introduce the Green's function ~ associated to (10.1). Because of the 
structure of the problem, ~(x ,  y; x', y ' )  can be written as G(x - x' ,  y, y ' )  
where G enjoys the following properties: there is a constant C > 0 such that 

] D 4 G ( x  - x ' ,  y, y')[ ~ C(Ix  - x '  I + ly -y'l)  -2, 

I D 3 G ( x - x ' , y , Y ' ) [  <= C ( I x - x ' l  +ly-Y'I)  -1, 

I D 2 G ( x - x ' , y , Y ' ) I  <= C l ~  + I Y - Y ' I ) ,  

IDG(x - x' ,  y, y ')l  <_ C, 

I O(x  - x' ,  y, y ')  I <_ C, 

(10.2) 

whenever I x -  x '  I _< 2 and D k is any differential operator in the variables x 
and y of order k, and there is a positive constant e such that 

IDkG(x - x' ,  y, Y')I <- Ce-elx-x'l (10.3) 

for Ix - x ' ]  ___ 2, and 0 _ k _< 4. These results are essentially in AMICK (1977; 
1978, Theorem 4.1), modulo minor modifications imposed by the boundary 
conditions. Under the assumption that f l  E B ~ (X) for some c with 0 < c < e, 
we now prove that v6Bc4'Z(Z). First of all, there exists a weak solution 

[ OV 02V Ol 
V E / ~ 4 ( ~ )  : =  vEH4(22)  : V(', 0) = V(', Y0) = ~yy ( ' ,  Y0) = --0y 2 (',  YO) = 

because A 2 is a coercive, self-adjoint operator from f I4 (Z)  into L2(X) and 
f~ obviously belongs to L a (X). Applying standard arguments, we obtain that 
v is a classical solution in C4'x(Z'). Concerning the weighted norm, use the 
Green's function to write 

so that 

v ( x , y )  = I G ( x - x ' , y , y ' )  f l ( x ' , y ' )  dx 'dy '  
X 

(10.4) 

Iv( x , Y)I edxl 

= < eclxl 
Y0 

f I e-elx-x'lf l( x', Y') dy'dx' + C 
Ix-x'l>=2 0 

yo ) 
f I f l ( x ' , Y ' )  dy 'dx . 

Ix-x'l-<_2 o 
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Let M = suP(x,y)~ 2 eClXllfl(x,  y)] and continue the estimate in the last display 
as follows : 

< Iv(x,  y)[ e ~lxl <= e clxl CM yo e-e(x-x') e -cix'l dx' 

+oo 
+ ~ yoe-e(x'-X)e-CtXq dx' + 

x+2 

Attention is first drawn to the case wherein x - -* - c~ .  Under the assumption 
that x + 2 <_ 0, the inequality (10.5) yields 

o 

Iv(x,  Y)I eclx] <= CMyo eclx[ e-e(x-x') eCX' dx' + 
x+2 

+ 

= < CMyoeClX[ (e  -ex 

(10.5) 
x+2 k 

~2 yoe-C 'l dx ) I x  
X 

(e 
CXe-2(c+e) eCXe2(C-e) _ eeX e~X ) 

=< CMy~ \ c + (: + g - c + --c + ~: + 4e-  2C eC ' 

and therefore 
( e  -2(c+~) e2(C-~) - e(e-c)x e(e-c)x c) 

I v(x 'y)[eclx l  =<CMy~ \ c + a  + g - c  + - -c+g + 4 e - 2  " 

e -e(x'-x) e-CX'dx, + 4e -d  x-2 
o 

I - - e -  (c+e)x'] +co x/ 
+e xL 3o +4e-ace  

[ e ( e + e ) x ' ] x - 2  + e ex [e (~-g)x ' ]  2 

Lc+oJ_= kC-CJx+2 

When x ~ + ~ ,  similar considerations apply, and we are led to the conclusion 
that there exists a constant Ks for which 

sup ]v(x ,y )]eClXl<=Ks(c  1 1 1) 
- -  + - -  + Ilfll]0,c,;~, 

(x,y)E2 + g g --  C 

where /(5 depends only on Y0. Furthermore,  it is clear that as a function of 
c, K 5 is bounded on any compact  subinterval of  [0, g). We proceed in exactly 
the same fashion to obtain an estimate for the weighted norm of the 
derivatives of  v of  order up to three. The technique is identical to that just 
outlined because differentiation under the integral sign is legitimate since the 
second- and third-order derivatives of  G have integrable singularities at 
x = x',  y = y'.  Once again, we obtain constants that are bounded when c is 
bounded away from O. Finally, to estimate the weighted norm of the fourth- 
order derivatives of  v, consider the function w ( x ) v ( x ,  y) where w~ C~([R), 
w = e Clxl for Ix] __1 and w __> w0 > 0, and work out the boundary-value prob- 
lem to which this function wv is the solution. The conclusion follows from 
the classical HOlder estimates for elliptic equations since all the lower-order 
derivatives of  wv are already known to be bounded. 

e -a(x'-x) e cx' dx' 
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For the case of non-homogenous boundary conditions, we use a succession 
of lifting operators. We want to solve (4.6), namely, 

/~2v = f l  for (x, y) ~Z', 

OV OZv 
Oy ( ' '  0) =f3,  - -  (', Yo) = f s ,  (10.6) Oy 2 

V(', 0) = f2 ,  V(', Y0) = f 4  for x6 R. 

Begin by subtracting from v the function f2(Yo- Y)/Yo +f4Y/Yo to obtain the 
function vj, which is a solution of 

yo in , 

vl( ' ,  0) = Vl( . ,  Yo) = 0 in ~, 

01110y O (Y~ - Y f2 + Y-- f4) := Yo i n R ,  (', Yo) = f3 - ffyy 

02Vl 
Oy 2 (', Yo) = f5 in R, 

and V = V l + (  ~~ f 2 +  YoY--f4). Next, write 

V 1 V2"~-(l ~0) x~ y = -- k2(s ) ds, 
X 

where v 2 is the solution of 

A 2 v 2 = k l - A 2  [ (  1 -  y )  X~Yk2(s)dS]x : = k 3  in Z', 

V2(" , 0) = V2(" , Yo) = O, in ~ ,  

01) 2 02V2 1 x~ yo 
Oy ( ' '  0) = 0, --Oy 2 (', Y0) = f5 + Y0-- x k2 (s) ds : = k 4 in ~. 

Finally, we set 

V2 ----Y3 -{- y3 + 3  x~ x~ k4(s) ds dt; 

v 3 is now the solution of the homogeneous problem in (10.1). It just remains 
to check that the modifications above take place in the proper function spaces, 
and this is straightforward. [] 

Proof  of Corollary 4.3. First reduce the problem to a homogeneous one using 
the method in the last proof, and then use the representation formula (10.4) 
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0?3 
for v to prove tha t  - -  is in B4'~(Y.).  In  due course,  use is m a d e  o f  the  

Ox 
0% 

equa t ion  to es tabl ish tha t  - -  is in BXc'X(X) The  conclus ion  follows. 
Oy4 
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