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1. Introduct ion  

This paper is concerned with the existence of trajectories homoclinic to 
non-constant periodic orbits of  the equation 

g2TiV(x) "t- T"(x)  - T(x) + T(x)2 = 0, x E R, (1.1) 

in the phase space R 4. Motivated by results of J. T. BEALE [5] for a specific 
water-wave problem (see Section 1.1 below), here we consider (1.1) as pro- 
totypical of  a class of  Hamiltonian dynamical systems where our analysis will 
yield results similar to his. 

In a second part, to follow later, we shall re-examine in detail the solitary 
water-wave problem which motivated the present investigation, and make ex- 
plicit the implications of our approach for it. 

1.1. A water-wave problem 

Our results for equation (1.1) are strongly suggested by J. T. BEALE'S 
elegant and powerful contribution [5] to the existence question for solitary 
water-waves when the Bond number (a non-negative dimensionless parameter 
which indicates the strength of surface tension) lies strictly between 0 and 1/3 
when the Froude number is close to 1. The Froude number is a dimensionless 
parameter whose value reflects the phase speed of steady waves. When B = 0 
or B > 1/3, steady solitary waves whose exponential decay to zero is monotone 
are known to bifurcate at Froude number 1 (see [2, 3, 4, 6]). Dealing directly 
with the steady water-wave equations when the Bond number in the interval 
(0, 1/3), BEALE has now shown that solitary-like waves, which settle down to 
small-amplitude periodic disturbances at infinity, bifurcate at Froude number 
1. Though it seems likely, it has yet to be proved that the amplitudes of  these 



38 C.J .  AMICK & J. F. TOLAND 

periodic disturbances at infinity are non-zero. By definition, a true solitary 
water-wave is asymptotic to uniform horizontal flow far up and down stream. 

Although it is shown in [1] that equation (1.1) has no solution which con- 
verges to 0 as [x[ ~ co if e > 0 is sufficiently small, it is emphasised here that 
the method of  [1] does not extend to the water-wave problem (or, equivalently, 
to (1.2) below), and therefore an analogous non-existence result for the water- 
wave problem is unknown. The question of existence or non-existence of true 
solitary waves of  small amplitude when B6 (0, l]  and the Froude number 
is close to 1 remains open, and, as BEALE points out in [5], a related important 
open problem is to decide whether the periodic oscillations to which his waves 
are homoclinic have non-zero amplitude. 

While he does not settle the question of the existence or non-existence of 
true solitary waves, BEALV.'S work gives an important, entirely rigorous new in- 
sight into the solitary wave problem overall, when the Bond number B is in 
the interval (0, ~] and the Froude number is close to 1. He works directly 
with the water-wave equations using careful a priori estimates and Newton's 
method. If, however, one adopts an approach using a centre-manifold reduc- 
tion (cf AMICK 8r KIRCHG•SSNER [2]), one find that the flow on the centre 
manifold is governed by a fourth-order equation of the form 

e2Z iv + Z "  -- Z + Z 2 + h(~,z,  z ' , z " , z " )  = 0, (1.2) 

which has a first integral j. Here h is of  higher order and j (e, z, z', z",  z " )  is 
constant on solutions. Thus, BEALE'S existence results imply analogous ex- 
istence results for the equivalent problem (1.2), which, in turn, suggests that 
similar results for (1.1) might hold. Here we shall vindicate this remark about 
(1.1), and show slightly more. 

The present paper concerns the existence of  orbits of (1.1) which are 
homoclinic to non-constant periodic orbits. It complements the non-existence 
results of [1] and reveals the complex nature of the set of trajectories which 
are homoclinic to or- and og-limit sets in a neighbourhood of the zero 
equilibrium: the zero equilibrium is not connected to itself by a homoclinic 
orbit, but uncountably many small amplitude periodic orbits are, for each 
e > 0  sufficiently small. The structure of the set of high-frequency periodic 
solutions of  equation (1.1) is shown in Section 2 to be that of a cylinder. This 
analysis plays an important part in the development which follows. We shall 
return to the precise form of equation (1.2) equivalent to the water-wave prob- 
lem in Part II. Since our method is robust, the presence of higher-order terms 
in (1.2) should not impair its effectiveness. Therefore we can reasonably hope 
that this method for (1.1) extends to yield BEALE'S existence results for equa- 
tion (1.2). If  so, it covers the cases with both the zero and the non-zero phase 
shift. To explain the significance of  this remark it is necessary to give an 
outline of  the main result. 

L2. The main results 

Section 2 is a detailed treatment of  the theory of r-periodic solutions of 
(1.1) when 2zre/r is close to 1. We prove that for each e6(0 ,  e0), where 
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e0 > 0 is sufficiently small, there exists a circle of even periodic orbits which 
contains both constant solutions T ~  0 and T ~  1. This circle comprises two 
semi-circles (the orbits on one being related to those of the other by translation 
through half a period) whose common boundary consists of the two noted 
equilibria, 0 and 1 (see Figure 1). This detailed analysis of the periodic case 
is done following a Lyapunov-Schmidt reduction. 

The question addressed in Section 3 is whether any of this plethora of 
periodic solutions has stable and unstable manifolds which intersect non- 
trivially. Let p E [0, ~) (p stands for phase-shift). Then for every e > 0 suffi- 
ciently small we show that there exists an even solution T~ of (1.1) such that 
for any q E (0, 1), 

T p e ( X ) - ~ s e c h 2 ( 2  ) - ( p } ( x - p r } ) < _ c o n s t .  e2e -qx, x > O ,  

where the constant is independent of e, and q)} is some r}-periodic solution 
of (1.1). Notice that a(x) = (3/2)sech 2 (x/2) is an even solution of (1.1), 
which converges exponentially to 0 at infinity, when e = 0. Here fl, depending 
on p and e, is a measure of the amplitude of (0}, and 2ne/z} is close to 1 
if e is close to zero. Moreover, for each NE N there exists a constant C(N,p) 
such that l~0}] __< C(N,p)e  N. Thus T~ is an even solution of (1.1) which 
resembles o- in a neighbourhood of 0, and which converges exponentially to 
a translation of (o} through p times its period as x --, ~ .  Moreover, the persis- 
tent periodic tail has an amplitude which is O(e N) for all N as e--,0. A 
detailed account of these results is given in Section 3. With this picture in 
mind, we can now explain a small difference between this approach and that 
of BEALE [5] alluded to at the end of the preceding section. These results per- 
tain to all phase shifts in [0, �89 (see also the closing remark of Section 1.3), 
whereas his method seems to preclude from consideration the case p = 0. 
(Note that it is not necessary to consider all phase shifts in [0, 1) because we 
will note later that ~0}(x- �89 = ~0~l~(x ). This reflects the symmetry of the 
circles of periodic solutions established in Section 2.) 

1.3. The method 

Our method is straightforward and robust. Let [(0} :fl E ( - T  r, ~r]} denote a 
parametrisation of the circle of periodic solutions whose existence is proved 
for e E (0, e0) in Section 2. Let p E [0,1). If  ~o} has period r}, we seek an 
even solution T of (1.1) such that 

r ( x )  = a ( x )  + ~o~(x - p ~ )  + co(x),  x > O. (1.3) 

Then co is an even function which satisfies an equation of the form 

e2(,D iv "~ (_,0 tl - -  (,0 = f(p,  fl, e, co, x),  (1.4) 
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(the exact form is given in (3.9)). The key observation is that if v~(x)= 
cosk~x is a solution of 82V iv -1- V" - -  V = 0 o n  R ,  then a necessary condition 
for (1.4) to have a solution co which decays to zero exponentially at infinity 
is that 

c o  

f ( p ,  fl, e, co(x),x ) ve(x) dx = 0. (1.5) 
- - o o  

The main result of  Section 3.3 is that (1.5) uniquely determines fl close to 0 
as a function of  p, e and co when p ~ [0, 21 ) and e and co are small enough 
in a sense to be specified. When this dependence is taken into account, (1.4) 
can be re-written 

•2coiv  _1_ c o .  __ 60 = f (p,e, co, x). (1.6) 

We show in Section 3.4 that (1.6) is a problem for which Banach's Contraction 
Mapping Principle yields the existence of a unique small solution for each 

0 1 P ( [  , 5) provided e > 0 is sufficiently small (how small depending on p). 
Finally in Section 3.5 we prove a priori bounds on the solutions co of  (1.4) 

which, when substituted into equation (1.5), yield that the functional 
dependence of  fl on co and e means that [fl[ =< C(N,p) F, N as e --,0 for any 
N ~ N. Since fl is a measure of  the amplitude of  the periodic orbits at infinity, 
the homoclinic orbit whose existence is established has amplitude 
3/2 + O(e2), while the periodic orbit which is its o~- and co-limit set has 
amplitude vanishing to all orders in e as e - , 0 .  

The proof  here bears little superficial resemblance to that of  [5]. In par- 
ticular, the proof  that the amplitudes of  the periodic orbits are vanishing to 
all orders as e - - , 0  is proved here a posteriori using a priori estimates; in [5] 
it is built into the existence proof. 

To complete our discussion of method,  we mention a somewhat bewildering 
aspect of  the analysis. While we deal with all phase-shifts p ~ [0, �89 the treat- 
ments of  p = 0 and p ~ (0, �89 from an analytic viewpoint are different. The 
analysis when p = 0 is regular and straightforward. However, when p E (0, �89 ), 
certain singular coefficients appear in the estimates of  Section 3.2, caused 
essentially by the analytical difficulty of  extending a function such as 
cos (x - e), x _>_ e, as a smooth,  even function C, say, on R. It is easy to see 
that sup{[ C"(x)]  :xE ( - e , e ) }  __> 1/e no matter  how this is done. Thus non- 
zero phase shifts introduce inverse powers of  e which need careful analysis. 

L4. Related results 

This paper was motivated by BEALE'S treatment of  solitary-like water-waves 
with periodic oscillations at infinity [5] which exist when the Froude number 
is close to 1. Independently, Svz~ [11] gave a different, less complete account 
of  these phenomena.  Later, Iooss & KIRCI-mXSSNEg [8] gave yet another ap- 
proach to the same water-wave problem using normal forms for an equation 
similar to (1.2) which arises after centre-manifold reduction. BEALE alone has 
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given a detailed, explicit account of  the role of  the phase, and an analysis of 
the amplitude, for the periodic oscillations which exist at infinity, but no one 
has so far given a proof  that the periodic oscillations at infinity are non-con- 
stant. 

HUNTEP. & SCHEURLE [7] have given an account of  equation (1.1) less 
detailed than here. Though they predict solutions convergent to periodic solu- 
tions at infinity, their method does not seem to yield the infinity of  homoclinic 
orbits which exist, nor other details which are features of  BEALE'S work, and 
of  this paper  also. In contrast to the results obtained so far for the water-wave 
problem, it is known that the oscillations at infinity for equation (1.1) are non- 
trivial because AMICK & McL~oD [1] have shown that when e > 0 is sufficient- 
ly small, there are no orbits homoclinic to the constant zero solution. 

Finally, Iooss & KIRCHG~SSNER [9] have made a fundamental  new contribu- 
tion to the solitary water-wave problem when the Bond number is less than 
1/3. They have shown the existence of  steady waves whose oscillations at in- 
finity decay to zero exponentially, which bifurcate, not from Froude number 
1, but from a critical Froude number  which depends on the Bond number. 
These are true solitary water-waves whose decaying oscillations at infinity 
distingush them from the (until now) more familiar solitary water-waves which 
decay monotonically to zero at infinity when the Bond number is zero or ex- 
ceeds 1/3 ([2, 3, 4, 6]). 

2. Periodic Solutions 

In this section a set of  even, small-amplitude, high-frequency, periodic solu- 
tions of  the equation 

eZTiV(x)  + T"(x) - T ( x )  + T(x) 2 = 0, x 6 R,  (2.1) 

is described in some detail when e > 0 is small. To be more precise, we are 
interested in small amplitude solutions of  (2.1) whose period r has r/2rre close 
to 1. To this end let 

492~ 2 
e 2 = 3 > 0 ,  2 - -  > 0 ,  

2 -2 

The t is a solution of 

T(x) = ~-1 t( ,?~/~x).  

(2.2) 

(2.3) 

)~2tiv + 2#'  -- fit + t 2 = 0, 
(2.4) 

t ( x )  = t ( x  + 270, t ( x )  = t ( - - x )  

if T is a r-periodic even solution of (2 .0 ,  and if 2 is close to 1 when r/2rre 
is close to 1. It will be sufficient for our purposes to find all small solutions 
of  (2.4). 

We begin by observing certain symmetries in the problem. I f  t satisfies 
(2.4), then { (x )  = t ( x  + zr) defines a solution { of  (2.4), and [ ( x )  = t ( x )  - 6 
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defines a solution of  (2.4) if ~ is replaced with - ~. Moreover, t ~ 0 and t --= 6 
are constant solutions of (2.4). We investigate the existence of  other solutions 
of  (2.4) by using the Lyapunov-Schmidt procedure, and in doing so we shall 
seek to reflect the symmetries just noted. 

Let Y and X denote respectively the Banach spaces of  continuous, and four- 
times continuously differentiable, even, 2n-periodic functions on R and let 
G : R 2 • X ~ Y be defined by 

G(2,  c~, t) = 2 2 t i v + , ~ t  " - & +  t 2, ( 2 , & t )  ~R2 x X .  (2.5) 

Clearly G is infinitely differentiable. Let K( C X C Y) denote span [1, cosx}, and 
let X1 and I11 denote respectively the closed subspaces of  X and Y which are 
orthogonal to K in the usual L: inner product. If  t ~ X, then t can be written 
in a unique way as t ( x )  = a + bcosx  + q/(x), q/fiX1, and if such a function 
t satisfies the equation 

G(2, 6, t) = 0fi Y, 

then 

2Zip, iV(x) + ~ q / " ( x )  4- (2a - 6) q/(x) + I bZcos2x 4- Q(lyZ(x) 4- 2bq/cosx) = 0, 

(2.6) 

1 7[ 2 b  
22b - 2b  - Ob + 2ab + f c~ dr + - -  j cos2xq/(x) dr = 0 ,  

7~ -7[ 7~ -7[ 

(2.7) 

1 7[ 
- O a  + a 2 + 1 b 2 + 2 ~ - ~  q/2(x) dr = 0. (2.8) 

(Here Q denotes the projection operator on Y defined by the decomposition 
Y = K G I 1 1  and Q(Y) =Y1.)  

By the Implicit Function Theorem, equation (2.6) can be solved for ~u in 
a neighbourhood of 0~X1 as a smooth function of  ( 2 a - & b ,  2) in a 
neighbourhood of  (0, 0, 1) ~ R 3. This is because the linearisation of  (2.6) with 
respect to q/ at that point is q/iv + ~u" = 0, and the left-hand side defines a 
linear homeomorphism from X1 onto I11. 

Therefore, for some neighbourhood U of (0, 0, 1) in R 3, a neighbour- 
hood V of the origin in X1 and a smooth function ~ :  U ~ V exists such that 
if ( a , b , J . , 6 )  ER 4 and (2a - &b, 2) ~ U, then ~ (2 a  - fi, b,)~) is the unique 
solution in V of (2.6) for this choice of (a, b, 2, 6). It is immediate, from the 
assertion about uniqueness and the fact that q /=  0 is a solution of (2.6) when 
b = 0, that ~ ( 2a  - fi, 0,~.) = 0 for all (2a - fi, 0,~.) ~ U. Consequently, 

~ (2a  - 6, b, )t) = b ~ ' ( 2 a  - ~, b, 2) 

for some smooth function ~. Substituting this expression into (2.6) and a 
further application of  the Implicit Function Theorem yields that 
~ (2a  - 6, 0, )~) = 0, whence 

~ (2a  - fi, b, 2) = b2~(2a  - fi, b, 2 ) ,  (2.9) 
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~_l: U--.-~X1 is smooth, and from (2.6) it follows that 

T(0, 0, 1) = - ~4 cos2x. (2.10) 

Now note that if (a,b,  2, c~,gt)fiR4xX1 is a solution of  (2.6) and if we 
put ~ , ( x ) =  ~u(x+ re), then ( a , - b ,  2, c~,~t) also satisfies (2.6) and ~,EX1. 
Hence, by uniqueness, 

~ (2a  - ~,b, 2) (x + 7r) = T(2a  - ~, - b ,  2) (x). (2.11) 

Now we substitute b2~t ~t for ~, in (2.7) and (2.8) to obtain the so-called 
bifurcation equations. They are 

b 4 ~z 
b(~. 2 - )~ + 2a - ~) + - -  ~ c o s x ( T ( 2 a  - O,b,).) (x))2d3c 

7[ --Tr 

2b 3 
+ - -  ~ c o s 2 x ~ ( 2 a - ~ , b ,  2) (x) dx = 0 ,  (2.12) 

b4 ~ ( T ( 2 a  - ~,b, 2) (x))2dx = 0. a 2 - aO + I b 2 + 2~ -~ (2.13) 

If b = 0, then (2.12) is satisfied and (2.13) is also satisfied if and only if 
a = 0 or a = ~. Since ~ ( 2 a -  ~,0, 2) = 0, this accounts for all the constant 
solutions of  (2.4) previously noted. For non-constant solutions b * 0. To in- 
vestigate these further we may divide (2.12) by b to obtain 

b 3 
(22--2  + 2 a - ~ )  + - -  ~ c o s x ( T ( 2 a - O , b ,  2) (Y))2d~ 

2b 2 
+ - -  ] c o s Z x T ( 2 a - O , b ,  2) (x) d x = 0 .  (2.14) 

7r --n 

Note here that if (a, b, 2, ~) satisfies (2.13) and (2.14), so also does (a - ~, 
b, 2 , - ~ ) ,  reflecting the earlier remark that if t satisfies (2.4), then so does 
t -  ~ when -c~ replaces ~ in the equation. 

Thus all small solutions for 6 in a neighbourhood of 0 are found by find- 
ing all small solutions with ~ __> 0 small. (See (2.18) below.) 

Because of  the identity (2 . l l )  it follows that the left-hand sides of  (2.13) 
and (2.14) are even functions of  b (reflecting a previously noted symmetry due 
to translation invariance). Thus they can be written 

a 2 -- a~ + i b2 + b4I(2a - ~, b2, 3~) = O, (2.15) 

2 2 - ) . + 2 a - ~ + b 2 J ( 2 a - ~ , b  2,2)  = 0 ,  (2.16) 

where 
I ( 2 a - ~ , b  2,2) __>0 (2.17) 

and 1 and J are smooth functions. 
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Before proceeding further we note that, by (2.15) and (2.17), b =r 0 if and 
only if either 0 < a < ~ or 5 < a < 0. Recalling (2.2), and our earlier remark 
about symmetry in ~, we shall henceforth restrict attention to the solubility 
of  (2.15) and (2.16) in the region 

0 < a < ~ < ~0, f o r  some ~0 > 0 sufficiently small. (2.18) 

Let B be used to denote b 2 in (2.15) and (2.16). We can apply the Implicit 
Function Theorem and solve for (B, 4) as a function of (a, ~). The result is 
that there exist neighbourhoods M and N of  (0, 1) and (0, 0) respectively and 
a smooth function q) :N --,M such that ~o(a, ~) = (B(a, ~), Z(a, d)) gives the 
only solution in M of equations (2.15) and (2.16). It follows from (2.15) that 
B(a, 5) > 0 i f  and only i f 0 < a < 5  or 5 < a < 0 .  S i n c e B = b  2, we need on- 
ly consider the solution set D = D + u D -  where, 

D + : { ( a , ~ ,  2 ( a , ~ ) ,  c~) :0 < a < ~ < c~0}, (2.19) 

D -  : {(a, -b,Z, 5):(a,b, 2, c~) ~D +} 

for some ~0 > 0 sufficiently small. Because of  (2.15) 

B(0, 5) = B(5, ~) = 0, (2.20) 

and because 3~ is close to 1 and (2.16) holds, we find that 

)~(0,~) =~  (1 +x/1  + 4 ~ )  and )~(O,c~) =-~ ( l + , f l  - 4 6 ) .  (2.21) 

Thus we have found the complete picture: locally all small solutions of 
(2.4) lie on "a  cone" which, 
transforms into a "cylinder" of 
lustrated in Figure 1. 

C /  . / /  

6 = a ~ . ~  

6 

via the scalings given in (2.2) and (2.3), 
high-frequency solutions of  (2.1). This is il- 

g 

T - I  

Fig. 1. In both diagrams the dotted lines denote lines of constant solutions. The one 
on the left pertains to equation (2.4) and that on the right to equation (2.1). 

With this image of the solution set of  (2.4) in mind, we consider equations 
(2.15) and (2.16) for a fixed c~  (0, ~0). An application of the Implicit Func- 
tion Theorem at (a, bZ,)L)= (0,0,)~(0, c~)) shows that (a, 2) is uniquely 
determined as a function of  b 2. Let us write 

(a, 2) = (Aa(b2),Aa(b2)), b~la, 
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where Ia is an open interval about 0 in R and (Aa(0) ,Aa(0))  = (0, 2(0, CY)). 
If  the left-hand side of (2.15), (2.16) is considered to define a function from 
a neighbourhood of (0,0, 1) in R 3 to R 2, the Jacobian matrix of partial 
derivatives with respect to (a, 2) has determinant of the form 

D(a, b, 2, CY) = ( 2 a -  CY) (22 - 1) + O(b 2) as b--*0. (2.22) 

Moreover, at a solution (2.15) and (2.17) imply the existence of bo > 0 and 
a constant (both independent of CY) such that 

b 2 __< 2(acy - a 2) =< const, b 2 if [b I < b0. (2.23) 

Therefore there is a constant (/-2 say) independent of CY such that if 
(a,b, 2, cy) satisfies (2.15) and (2.16), CYE (0, CY0) and b2_< F2CY 2, then 

a E (0, ~ CY) if a E (0, �89 CY). (2.24) 

In particular, F can be chosen such that every solution (a, b, 2, CY) of (2.15), 
(2.16) with a E (0,~CY) and b2<__ _F'2CY 2 has 

aE (O, I CY), D(a ,b ,  2, CY) * O. (2.25) 

From (2.25) and the Implicit Function Theorem it can be inferred that the do- 
main of definition of (Aa, Aa) can be extended to the interval (0,/'2CY 2) for 
some F > 0 independent of & We summarise this result and give estimates on 
the implicit functions as follows. 

Lemma 2.1. There exist CYo > 0 and F >  0 such that, for CYE (0, CY0), on each in- 
terval (-I'CY, IcY) are defined smooth, real-valued, even functions aa, 2 a with the 
following properties: 

(aa(b),b,  2a(b),cy ) satisfies (2.15) and (2.16) if  bE (O, FCY), (2.26) 

a~(0) = 0  and 0 < a~(b) <~CY / f b E  (0, FCY), (2.27) 

Klcyaa(b ) <_ b 2 <_ K2cyaa(b), bE ( -FCY, FCY), (2.28) 

( K j )  da a ( ~ )  
b < - -  (b) < b, b E (0, FCY), (2.29) 

= d b  = 

1 (1 +x/1 + 4 c y - 8 a a ( b ) )  + K l b Z < 2 ~ ( b )  < ~ (1 +x/1 + 4 c y - S a a ( b ) )  +/s b2, 

b E ( -FCY, FCY), (2.30) 

- K 2  <_ db (b) __< - K  1 , bE (0,f'CY). (2.31) 

Here K 1 and K2 are positive constants, independent of CY and b. 

Proof. The existence of F, CYo and the functions a a and 2 a follows from the 
discussion preceding the statement of the lemma and the Implicit Function 



46 C.J. AMICK & J. E TOLAND 

Theorem,  by putt ing as(b)  = A (0, b 2) and 2a(b)  = A (0, b2) .  The estimates 
then follow by choosing ~0 sufficiently small upon  differentiating (2.15) and 
(2.16) with respect to b. q.e.d. 

We finish this section with an interpretat ion o f  this as a result about  equa- 
t ion (2.1) using (2.2) and (2.3). We introduce some convenient  notat ion.  For 
f ie  ( - F , F )  let 

,g = %f~, ,Ue(fl) ---- g- lN/-~e2(g2f l )  ' O~e(fl) = E:-2ae2(82/~),  

(2.32) ~r_l}(X) = ~tt(2g2ote(fl)  _ g2, g2fl, g2f12(fl))  (x), 

~o}(x) = %( f l )  + f l c o s ( & ( f l ) x )  + e2 f l2T} ( l t e ( f l ) x ) .  (2.33) 

With this nota t ion  we have the following result. 

Theorem 2.2. I f  e E (0, to),  then 

c ~ = { ~ : - r < p  <r} 

is a smooth curve of  solutions of  (2.1) such that 

~o~ has period - -  - 

and the following estimates hold: 

(,6) 1 0<~e= _-<~, 

KlO~e(fl) = < f12 = < K20ee(fl) ' 

2n 
-- "(eft, say, 

fl ~ ( - F ,  F ) ,  (2.34) 

fl fi ( - / ' ,  F ) ,  (2.35) 

dos 8 
Klfl <= d B  (fl) <= K2fl' f ie  ( O , F ) ,  (2.36) 

1 {1 + x/1 + 4e 2 - 8ezas(fl)} + Kle2fl 2 </2E(fl)  2 
2e2 = 

1 
< [1 + ~/1 + 4e 2 - 8e2a~(fl)} + K2e2fl 2, fl ~ ( - F ,  F ) ,  (2.37) 
= 282 

due 
-K2e f l  <= df l  (fl) <- - X l e f l ,  fl ~ (0, r ) .  (2.38) 

Here K 1 and K 2 are positive constants independent of  fl and e. 

3. Homoelinic  Orbits 

3.1. Introductory remarks 

Recall that  the equat ion a " - a  + 0 - 2 =  0 on R is satisfied by the func- 
t ion 

a ( x )  = ~ sech 2 x__. (3.1) 
2 
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Thus a is a solution of equation (1.1) with e = 0. Moreover, for each 
e ( (0, e0) and fl ~ ( - F ,  F )  it is proved in Section 2 that there exists a solu- 
tion (p} which is periodic of  period z} where z} = 2roe(1 + O(eZ)) as e ~ 0  
uniformly for f l ( ( - F , F ) ,  by (2.37). For any p ( [ 0 , � 8 9  let 

(Ofl,p(X) • (O~(x - -pre f l ) ,  x E R .  ( 3 . 2 )  

The purpose of this section is to prove that for each p ~ [0,1) there exists 
a solution T of (1.1) for all e sufficiently small (how small depending on p) 
such that T is even and 

iT(x ) _ e (0~,p(X)] ~ 0  exponentially as x ~ co, 

where fl is a function of e and p. Recall that, in the notation of (2.33), for 
any p 6 [0,1 ) 

(O~,p(X) = o~c(fl) + f l cos ( /~( f l )  x - 2zrp) -~'- e 2 f l 2 ~ r / / ~ ( / . / e ( j ~ )  x - -  2rep). (3.3) 

Note that bt~ and o~ are even functions of ft. It should be noted that there 
is no loss of generality in restricting p to the interval [0,1) since by (2.11), 
(2.32) and (2.33) (a~,~---~0~_~. For technical reasons the analysis in the case 

p = 0 and p ~ (0,-1) is different, though some notation is common to both. 2 

Since r~ = 2roe(1 + O(e2)) as e --,0 uniformly for fl~ ( - F , F )  it is possi- 
ble to choose e 0 > 0  such that r~6[zre, 3zce] for all e6 (0, e0) and 
~ ( - F , F ) .  Let ~ / :R- - .R  be a C~176 such that 

r/(x) = 0  if x <  '~ ~, r/(x) = l i f x > r c  

and such that [ I/(k) (x)l __< M, k ~ {0, 1, 2, 3, 4}, x ~ R. (Here, as elsewhere, f(~) 
is a convenient notation for the kth derivative o f f )  Now for all e~ (0, e0) 
a n d p E ( 0 , 1 )  let 

so that 

~ ( x )  = ~ 

(r/~)(k)(0) = (r/p)(k/(pr}) = 0, k i lN,  r/~(pz~) = 1, r/~(0) = 0, (3.4) 

(rip) (k) <=M(pe) -k, k~{0, 1,2, 3,4}. (3.5) 

Now let 

r = ~o}(x), x ~ R ,  

and for p ~ (0, ~) let q~,p be an even function on R given by 

~ , p ( X )  = rip(X) e (p~.p(X), x >_ O. 

Now we seek a solution T of  (1.1) in the form 

(3.6) 

(3.7) 

T(x) = a(x) + qS},p(X) + co(x) (3.8) 
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where e) is an even funct ion which tends to zero exponentially at infinity. Such 
a funct ion T satisfies (1.1) if and only if e) satisfies 

e 2 0 9  iv + (.0 H - -  (D -l- 2ae) = - e 2 o  "iv - 2(rcrp}p, -- 2qb},pr - -  CO 2 - -  V e~,p, (3.9) 

where 

V},o(X) = 0, x E R,  (3.10) 

Vefl,p 82 e iv e ,, e 2 (3.11) 
= (Cabf l ,p)  "Jr ( q b f l , p )  - -  qbefl,p -{- ( C f ) f l , p )  . 

The remainder  o f  this paper  focuses on the quest ion o f  existence for a solution 
o f  equat ion  (3.9) which decays to zero exponentially at infinity. 

3.2. Function spaces and invertible operators 

In this section we define some funct ion spaces and fashion some results 
on  invertibility o f  operators suitable for the analysis to follow. 

Let q E (0, 1) be fixed th roughout ,  and let Z denote the Banach space of  
cont inuous  even functions f on  R with 

II/]l = sup{eqlxllf(x)] : x ~ R }  < co. 

Note  tha t  integration on (x, c~) gives II/(k)ll __< qk-'*llf(n)l[, 0 <_k<_ n, Let 

Z n = [ f ~ Z : f ( k ) ~ z ,  O<_k<-n,  k E N u { O } }  

with 

Ilfll~ = ~ Hf(k)ll �9 
k=0 

The usual space o f  r-th power "Lebesgue  integrable func t ions"  on R will be 
denoted by L r (R)  and its n o r m  will be denoted I ' I r ,  1 _< r _< cr Our  purpose  
is to s tudy the operator  on the lef t -hand side o f  (3.9). For convenience let 

S e l l  = ~ 2 u i V  "Jr U t" - -  lg + 2 a u .  

We need some further  notat ion.  Suppose that  

ke e - l - J [ ( 1  + x / ( 1  + 4 e 2 ) ) / 2 }  so that  2 4 2 = e k e - k  c -  1 = 0 .  (3.12) 

Then re(x) = coskex is the bounde d  solution o f  the equat ion 

eev iv + v"  - v = 0; (3.13) 

it is unique (up to translations and scalar multiplications). Let K e = eke and 
note that  Ke-- '  1 as e ~ 0. Now define a differential operator  D e by 

Deu = u" -- Ks + 2KZ2au, e E [0, e0) 

where K 0 is defined to be 1. The following results are given with applications 
to equat ion (3.9) in mind.  
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Lemma 3.1. The number eo > 0 can be chosen such that 
(a) D e defines a linear homeomorphism from Z2 onto Z such that the norm of 
DZ 1 is bounded independent of e ~ [0, e0). 
(b) If  f is a continuous even function with compact support in ( - a , a ) ,  a < 1, 

a dx ~ f ( x )  =c,  D o u = f  and uEZ,  
- - a  

then there are constants independent of a, c and e such that 

Ilull _-< const. (c + a2] f]oo) 

lu'(x)l  <- const.(c + a21flo~) lcr ' (x)[ ,  Ixl >=a, 

lu'(x)[ <=const.(l +a) [ f lo~ lx [ ,  [x] <_a, 

and ifDeue = f  then ][u - u~/12 __< const, e2(c + aZlfloo). 

(c) If  Deu = yea, then u = -kZZave + ew e where []we]/2 is bounded indepen- 
dently of e E [0, e0). 

Proof. Since Ke --, 1 as e ~ 0, it is enough, by continuity, to establish (a) for 
Do. Part (a) in this case is already proved in [2], Lemma 13, and [10]. 
(b) Suppose Dou = f  Then there is a constant  such that  

]U]oo -t- lU'[o~ ~ lull  -~- [U'I1 -t-[ U"]I ~ const.[ f l i  _< const, al floo. (3.14) 

(See [10, p. 276].) Hence 

a (X) dx j + f ( x ) l d x  lu'(a)l = j u -  = {u(x) - 2 a ( x )  u(x) 

_< const. (a21 f l  oo + c).  (3.15) 

Now D 0 a ' = 0  on [a, oo) because o - ' - a + o  - 2 = 0  on R, and Dou=O on 
[a, co) because supp ( f )  C ( - a ,  a).  Hence u = c~a' on [a, co). (Otherwise u 
and o-' would be linearly independent  solutions of  Dow = 0 on [a, co), which 
would imply that  all solutions of  Dow = 0 on [a, co) tend to 0 at infinity. If 
x0 > a is such that  a(x0) = l ,  and w0 is the solution on Ix0, co) of  the ini- 
tial-value problem Dow = 0 with w ( 0 ) =  w ' ( 0 ) =  1, then clearly Wo(X)~  co 
as x + co. This would then be a contradiction.) From (3.15) and the fact that  
a E (0, 1) we deduce that  

Io~1 = lu'(a)/cr"(a)l  <= const. (a21 f[oo + c) ,  (3:16) 

whence 

lu'(x)l  <_-const.(a21/Ioo +c) l c r " ( x )  I, Ixl >=a. (3.17) 

Moreover, for x 6 [0, a], 

lu'(x) I = j u " ( x )  dx __< const. (1 + a ) } f l = x  (3.18) 
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by (3.14). Also 

]u(x) I _ _ < c o n s t . ( a z ] f l = + c )  l a ' (x ) l ,  x>__a, (3.19) 

and for x E [0, a] 

l u(x)l -< l u(a)l  + ~l u ' ( x ) [ d x  <_ l u(a)  I + const. (1 + a) l f  I~ (a 2 - x 2) 
x 

<_ const. (c + aZl f l  co), (3.20) 

by (3.18). Combining (3.19) and (3.20) completes the proof of the estimates 
of  D6-1f in (b). If  Deue = f ,  then De(u c - u) = (Ke -2 - 1) (u - 2au) .  Hence 

I lue-  uhl2 ~ const, e21kull, from the definition of K e and part (a), 

__< const, e2(c + a21 flo~),  by the preceding estimate. 

(c) Note that 

D e ( - k e 2 a v e )  = av  e - er e 
where 

re(x) = e - l { k~ -2a" (x )  v~(x) - 2k~-ltr'(x) sink~x - k~-2Ks -2 a ( x )  v~(x) 

+ 2kZ2KZ2rr 2 (x) v e (x)l. 

Now II rell is bounded independently of  e since ek e --* 1 as e ~ 0 .  Thus part (c) 
follows by part (a). q.e.d. 

The following result lies at the heart of  the analysis. The operator ~ is 
defined before (3.12). 

Theorem 3.2. Suppose that u E Z4 and ~ u = f .  Then there exists a constant in- 
dependent of  e such that 

~11 u'll + t[ ull <-- const. I[D~-IU I[1 <- const. [[/11. (3.21) 

Moreover, i f  f = g + h  where h has compact support in ( - a , a )  and 

[~a_ah(x) dx I = c, then 

e[lu'll + IluIt <_- const. (c + a21h[~ + [Igll )- (3.22) 

Proof. Let 

V(X) = e2Uu(X) q- KZu(x)  - 2eZKzZrr(x)  u ( x ) .  (3.23) 

Then because ~ u  = f  and or"= r r -  cr 2, it follows that 

Dev = e z { - 4 K Z 2 a ' u  ' - 2K~-4 (K~ - 1 + (2 - K 2) rr) o-u} + f  

= e2{Wl q- W2] "}-f~ say, (3.24) 
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where /Iw~ll ~ const, llu'll and Ilw21l ~ const.[I,II. A substitution from (3.23) 
now gives 

82U " q- K2u = 82De -1 (w I q- We) q- 2e2Ke'-2ffu + Dzlf. 

Now a multiplication by u' followed by integration over (x, co) for x __> 0 gives 

82Ut(X)2 -Jr K2u(x) 2 = 2 ?[~:2oe-l(w 1 if- W2) q-2,~2Ke-20"u q- D~-lflu'dy 
X 

oo 

=<_const. cZe-2qx{lluHIlu'll +llD~iWlllllu]ll+ ~1 -1 , (D~ wl) uldy 
X 

+ e-2qxllDs -4- ~ ](D~-lf) 'u] dy 
X 

_< const, e-RqxId II.II II .'11 + II u 11 ]lD~-~f 1111 �9 (3.25) 

A similar estimate holds for x N 0. Now multiply both sides by e 2qlxl and take 
the supremum of each term on the left-hand side and add to get 

~211 u'll 2 + K211 ull 2 ~ const. {~211 urr I1.'11 + Jl ulr IIDs 

_ const. [(83 It U' II 2 + 8 l] U I[ 2) q_ II U rl II D21f Ill}, 

by Young's Inequality. Hence for all e > 0 sufficiently small, there exists a con- 
stant such that 

g21]/'/'112 q- II b/ll 2 ~-~ const. II ull IlD~-lf II1, 

from which (3.21) follows. (Recall that liD,-l fill <= const. Ilftr by Lemma 3.1.) 
To obtain (3.22) we return to (3.25), with f = g  + h to get 

E2U'(X)2 -4- e 2 u ( x )  2 ~ const. (~2e-2qxllull Ilu'l[ + flullllgll + e-2qxIlDSahll I1.11 

+  l D: h 'ur + + a21hl   jr.lj ) 

__< const. (e-2qx{e211url Ilu'll + Ilull (/FglJ + c + aZlhloo)/) 
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since, by Lemma 3.1(b), IIDZ lh - D o  lh 1/2 --< const, e 2 (c + a21hl~) and 

~l(Dolh)'uidy<= const. (c + a21hl~) ~lu(r"ldy 
X X 

<- const, e-2q~(c + a2ihl~)Null ,  x __> a, 

and for x 6 (0, a) 

- 0a ;) I I (Dolh) 'u ldy= + I(D~lh)'uldy 
X 

Hence 

(3.26) 

/_a X 
const, t )"  ((1 + a) I hl~y)u(y  ) dy + e-2q~(c + ~ / h l ~ ) l l . l l )  _< 

__< const. (a2(1 + a) lh]~ + c + aalhl~)llulle -2qx 

< const. (c + a21hl~)llull e-2qx. 

and (3.22) now follows as in an earlier calculation. 

dl l~ ' l l  2 + I1~11 ~ ~ const. (e211ull II ~'11 + I1~11 (llgll + c + a2lhl~)), 

q.e.d. 

3.3. A necessary condition for existence 

If  equation (3.9) is to have a solution co E Z, then 

oo 

I {eZk~tTv~ + 2t7 v~q~eLp + 2tTveco + 2~.pcoVe + co2v c + veV~pldx = 0 (3.27) 
- -  o o  

because v~ satisfies (3.13). The purpose of this section is to show how (3.27) 
implies that /3  is a function of co. To see this we need some estimates based 
on (2.38), (3.3), (3.6), (3.7), (3.10) and (3.11). 

If  p~ (0 , ! ) ,  2 eE(0 ,  eo) and / 3 E ( - F , F ) ,  then 

e 37.g_ ~ 3 V~p is even, supp (V~,p) C ( - ~  p ,~rcpe), (3.28) 

v~,p(x) dx = V~,p(x) = I ~ , p ( x )  - (~},p(x))2/dx 
- o~ - p  - p  

< [<b (x) - ( 4  (x))2}dx < const, epfl, (3.29) 
- 37rep12  ' P  "P = 

p c r  ~ (3.30) 
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and 

p-c~ 

? v~V~pdx = 2 ~ veV},pdx 
- -  c ~  0 

e # t ut e e 2 =-2[e;{(,g,B, p) v.+ q~},pv. I+~},pv'~l~ + 2 ~ v . (~ ,p)  clx 
o 

2 sin (k~pr}) [e2ke ( e " o263, .~e  = c])fl,p) -- a r,.e'.~,3, p q- kecrp},p](prefl) 

+ 2 ve(~fl,p) dx 
o 

= 2kesin (kept ~) [e2(q)})" - (K 2 - 1) (0~] (0) + 2 ~ ve(qbB,p) ~ 2dx 
o 

= 2k~sin(k~pr}) {-e2fl (/2e (fl)) 2 - e2(%(fl) + fl) + O(e2fl2(&(fl)) 2) 

"l- O(64/~)} q- 2 ~ c 2 Ve(q~fl,p) dx (by (2.33)) 
0 

= 2ke sin (kept}) { -  (1 + 2ee)fl + O(fl 2) -Jr- O(e4fl)} q- O(~pfl  2) 

= 2kc (sin27rp + O ( p e 2 f l 2 ) )  {-- (1 q- 2ea)fl + O(fl 2) + O(e4fl)} 

-]- 0 (/~pfl 2 ) 

= 2ke sin (2Jrp) ( - (1 + 2ez)f l  + O(fl  2) + O(e4fl))  + O(epfl 2) 

as  e -~ O. ( 3 . 3 1 )  

Therefore if p ( ( 0 , � 8 9  F and e0 can be chosen to be independent  o f p  such 
that 

?veV~pdx<- - k c f l s i n  (2zcp), eft (0, e0), 
- - o o  

(3.32) 

uni formly for fl E ( - F , F ) .  Similar calculations yield that  for p ~ (0, l ) ,  e 
(0, e0) and f l6 ( - F , F ) ,  

_ V~p(X) clx <= const, el), ~ ~,p ~ <_ const, e-ep -4, (3.33) 

0 ~ v~(x) V~p(X) dx < -kes in  (2~rp). 
Ofl-~ 

(3.34) 
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It is useful to note at this stage that for any p 6 [0, �89 (taking r/~-------t) 

--313(-~creI'}gvedr) Off ~r(x) rl,~(x)cp}(x /fs-7..2rcp "~ ve(x ) 

=2~0 ( ~  tr(x) rl~'(x)[c~e(fl) + / 3 c ~  
o 

q_ /~2fl2 ~r/~ (/'/e ( f l )  X --  2 r~p) ]  v e (x) d r )  

= 2 5 rr(x) r/~(x) {o4(fl) + cos (~e(fl)x - 2rcp) 
o 

+ 2g2fl~} (,ue(fl) x -- 27cp)} ve(x ) dr 

+2 ~ xfl, G(fl) ty(x) ,/~(x) I-sin (,ue(,B) x -27rp) 
0 

+ d 5 ( % ) '  (&C/~)x - 2~rp) v~(x)}dr 

+2 
o 

0 

f ~r(x) q7,(x) eZ,eZ (~ 5 (~'~))(u~(/~)x- 2~zp) 

~ cr(x) rl~ (x) v~(x) dr 
o 

rr(x) r/~(x) cos (I, te(fll x - 2zcp) ve(x) dr 

+ O(e,6 '2) + O(e25) + O(e2p 2) 

= G(B) S ~(x) v~(x) dx 
~ o o  

+ 2 ~ rT(x) r/~(x) cos (I.te(fllx - 2~zp) re(x) dx 
o 

+ o(e,e). 

v~(x)clx 
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Now c~'(fl) = O(fl) as fl ~ 0  by (2.36). Hence by the Dominated Convergence 
Theorem, and by (3.38) and (3.40) below, it follows that if p = 0, then 

_ a ~b},pv~dx ~ 3 as e ~ 0 .  (3.35) 

Theorem 3.3. Let p ~ [0, �89 be given. Then there exist positive numbers ep and 
pp such that if e~ (O, ep) and co~Z with I1 oll _-<pp, then there exists a unique 
fl~ ( - F , F )  for which (3.27) holds. Moreover, the dependence of fl on ~o EZ is 
smooth and there is a constant (depending on p) such that 

,fl(0),__<const. ( e - 3 c o s e c h ~ ) ,  (3.36) 

II/ (o))11 _-< const.(fl(O) + IIo 11) if Ilcoll _-<pp, (3.37) 

Proof. We begin by observing that for any k > 0 a contour integration gives 

~coskx~7(x) d x = 3  ? c o s k x s e c h E ( 2 )  dx=67rkcosech(krc). 
- -  o o  - -  o o  

(3.38) 

Hence if kl, k2 > 0, then 

~COS (klX) cos (k2x) o-(x) dx 
- - c o  

= 3rr[(kl + k2) cosech ((kl + k2) zr) + (kl - k2) cosech ((kl - k2) re)}. 

Therefore by (2.37), 

(3.39) 

~ve(x) cos(~e(l?)x)a(x)dx--'3 as e ~ O  (3.40) 

uniformly for fl~ ( - F , F ) .  Now by using (3.38) we can rewrite (3.27) as 

6rrkS~e2c~ + I ve~176 +2~r +2~},p}dx + (2aq~},p + V~p)Vjx=O.  
- - c o  - - o o  

(3.41) 

Now ~2ave q~},pdx =flWl(fl, p,e), where W 1 is bounded for f l ~ ( - F , F ) ,  
- - c o  

p ~ [0, ~), e ~ (0, e0), by (3.3) and (3.7). Also 

c o  

6rrke 5e2c~ (kerr) + I ve~ ~ + 20- + 2crpeLp}dx 
- - r  

=cons t .  [ e - 3 c o s e c h ( ~ )  +llcol[] (3.42) 
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for all p 6 [ 0 ,  l ) .  If pC (0 ,~) ,  then (3.32) and the preceding two observa- 
tions yield that ep and pp can be chosen such that the existence of  a unique 
f l ( ( - F , F )  for each e6 (0, ep) and m ( Z  with [[co[[ <_pp follows by the 
Mean-Value Theorem for functions of one real variable. 

Now suppose that p = 0, so that V~p =-- 0 and q~},p = ~0}. Therefore in this 
case 

2ave~O},pdx = 2  ave{%(fl) + f l c o s  (/ue(fl)x) + e2fl2~(pe(fl) x)}dr 
- -  o z  - - o n  

=2c~c(fl) ? avedr + 2fl ? a(x) ve(x)cos(pe(fl)x)dx 
- - o o  - -  cao  

-+- 282132 ~O'(X) re(X) tI't}(f..le(13) X ) doc 

= 2fl f6rc % (fl) 
( 13 

kecosech (kdr) + 
OO 

I a(x) v,(x) cos(/~,(13)x) dr 
- - o o  

_1_ g213 -co? O'(X) Ve(X) ~r/~(/./e(13) X) dr l  , 

so that the last term in (3.41) converges to 6fl as e --, 0 by (3.40). The existence 
of  e0 and P0 such that (3.41) has a unique solution fl 6 ( - F ,  F )  when p = 0, 
e E (0, e0) and Iio911 __< P0 is again immediate from the Mean-Value Theorem. 
Now for all p 6 [0, ! )  the estimate for I fl(0)] follows from (3.41), (3.42), and 2 
the smooth dependence of fl on co ~ Z follows by the Implicit Function 
Theorem. This completes the proof of the theorem, q.e.d. 

Let us denote the functional dependence of fl on co in this theorem by 
writing 

13 = 13~(~o), e ~ (0, ep/ ,  II ~o II --< pp  (3.43) 

We have already noted that 

Iflp(CO)l__<const. [ e - 3 c o s e c h ( ~ - )  +l lcol l ] ,  (3.44) 

and from (3.27) we can immediately calculate the Fr6chet derivative of fl~ by 
the formula 

2o9 (q~/~(oJ),p + cO + a )  vEdr 8 8 ^ 

- - o o  

dfl[~[&] oJ = - (3.45) 

0 I 2av, cb},p + 2&v, O},p + veVSp dr 
013 -= 
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), there exists a constant such that So if p (  (0, z 

II dfl~[&] ]] < const, e, [I & [I --< Pp, (3.46) 

because of (3.34), since all the other terms in (3.45) are bounded. 
If  p = 0, then V~p = 0 and the denominator in (3.45) is 

; O S O q~ fl,p ) 
2 aveofl(q~},p) dx+2  dove~(  e dx>=l 

- - o o  - - o r  

by (3.35) for all e ~ (0, e0) and ]l &ll --< p0, provided e0 and P0 are chosen suffi- 
ciently small. Therefore we conclude that when p = 0 there exists a constant 
such that 

II r iND]  [I ~ const. 

We record the formula 

if e~ (0, %), II~ll ~po,  (3.47) 

? 2CO (~}~(0), p + r vedx 
- - o o  

d f l ~ [ 0 l  co  = - ( 3 . 4 8 )  

~ loft -oo~(2a(b}P + vedxl /?=,8~(o) 

If p ~ [0, 21), fl E ( - F ,  F ) ,  e ~ (0, %) and if co E Z is a solution of (3.9) 
with [[co[[ <=pp, then fl =fl~(co). Thus (3.9) is equivalent to the problem 

~ c o  = G~(co) (3.49) 
where 

G~(co) = - e 2 a  iv - 2a qs}~(o~),p - 2co q~[~(o~),p - ~2 _ VB[~(~o),p" (3.50) 

Note that 

G ~ ( O )  = - - E 2 ~  iv - -  2a qse~f,(o) - V~[~(O),p 

and hence that for some constant depending on p 

II G~(0)II --< const. II ~=ll (3.5a) 

by (3.30) and (3.36). Note also that the Fr6chet derivative of G~ at (5 is given 
by the formula 

dC;[~]  co = - d / ~ ; D ]  co 2 ( a  + o~) Ol~ 

^ - 2  (~4~(~,~, p + ~ )  co. 

If p ~ (0,~), then (3.52) gives that 

+ 

(3.52) 

dC~[cS] w = L,~[cS] co - (d /~D] co) ~ ~ = g ( ~  
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where IIL~[&]II is bounded for [[&[l <Pp, uniformly as e--*O. If p = 0 ,  then 

II dG~[~]/I is bounded for II ~ II --< p0 

uniformly as e ~ 0 .  Note the formula 

dGf~[O]co= -2co qh~f,(O),p- (dflfflO]co) [~fl (2aqb~,p + V~,p),~=e~(o) 1 . (3.53) 

In order that some estimates later are easy to obtain we write the formula 
(3.45) using abbreviated notation as 

l[&l co [(co ) 
d,e~[&l co = - = - b ( & )  

3 (D(fl, &))IB=/~(cS) 

where the dependence of  the formula on e and p has been temporarily sup- 
pressed. With this notation a calculation based on (3.45) yields a formula for 
the second Fr4chet derivative of fl~, namely, 

defl~[&l (v, w) 

+ 2 ( f i ( & ) )  -2 

;0 1 
-- (O((~))  -3 [(V)[(w) 3 ~ 2[(2vecoW zave)~efl'pq-veV~p]fl)(&)dx " 

When p~  (0 ,1) ,  it follows that I D ( & ) I  ~ co ns t .e -1  as e --,0, and so 

dZfl~I&l (v, w) = m(v, w) - L) (69)-3 [(V) [(W) Vefl, p 
- - o o  

where IM(v,w) l =< cons t ,  e l lv l l i lwl l  for  p ~  (0,1~). 

dr 

(3.54) 
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When p = 0, it is clear that for 11,511 _-< p0, 

d2fl~[,5] is bounded as e ~ 0 .  

59 

(3.55) 

3.4. The existence theorem 

Suppose that p ~ [0, �89 e ~ (0, ep), and let ~ : Z4 ~ Z  be defined by 

2[~u = ~ u  - d@[O]u, u6Z4. (3.56) 

The following result is the key to the existence of homoclinic orbits discussed 
in the Introduction. Let 

Ze= I u ~ Z : _ ~ v ~ u d x = O  1 .  (3.57) 

Theorem 3.4. Let p ~ [0, ~ ). Then ep > 0 can be chosen sufficiently small that 
~ is a linear homeomorphism from Z 4 onto Z e. There exists a constant 
(depending on p but independent of e) such that 

~llu'[I + Ilull ~ const. II ~'~ull �9 

Moreover, if h ~ Z e is such that 

o ~ 
supp (h) C ( - a , a )  C ( - 1 , 1 )  and j h ( x )  dx 

- - 0 o  

and ~ u  = h, then 
ell u'll + II ull - const. (c + a21 hl~) .  

(3.58) 

(3.59) 

= C ,  

0 #=#;(o/ = ~ - ~b#,p) -2u  ~g(O),p (dill[O] u) 0/3 (2a e 

o B=g(ol - u) + f 

= f l + A  + A  + f ,  
say. By (3.44), 

Ilfln<=const.flp(O)llull<=const. [e-3cosech2 (@) l l lu l [ ,  pE[O,~).  (3.60) 

~ u  = d@[0lu + f  

Proof. Suppose that u~Z4 and ~.~u = f .  It is immediate from (3.13), (3.48), 
(3.53) and (3.56) that f =  Z ~. So ~ :Z4 ~ Z  ~. Next we show it is injective 
and establish (3.59). 

Suppose that u e Z4 and ~ u  = f  Then 
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When p = 0, it follows that f3 ~ 0 and 

0fl0 (2a q5}0 ) ,  ,n=ST~(o) - (dN[O] u) _~ 
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uav~ av~ -<M(c)llull 

where M(e) ~0 as e ~ 0  by (3.40), (3.48), (3.3) with p = 0, and (3.6). Hence 

[[De-I (f2)H1 -< ~ _~ uave dx H DZl(ave)][1 + M(e)[1DZ 1U [I u H 

__< const. (e + M(e))[lull (3.61) 

by Lemma 3.1(c). Thus when p = 0, Theorem 3.2, (3.60) and (3.61) together 
give 

eUu'H + Null =< const. NDZl(fl  +f2  +f3 +f)H1 

_<const. [ [ e - 3 c o s e c h  ( ~ ) + e + M ( e ) ] N u l l  + l l f i ] l .  

Thus for e > 0 sufficiently small, 

eHu'[I + HuH _-_N const. H fH. 

This gives the required inequality from which the injectivity of ~ follows. 
Now suppose that p = (0, ! )  Then (3.46) gives that 2 �9 

N All --< const, ell ull. (3.62) 

Now (3.28), (3.29), (3.30), (3.33) and (3.46) show that s u p p ( f 3 ) C  
(-~e~z,3erc), 1/31  --< const.e-1 and I ~+_~f3dx] __< const, e 2. Thus (3.22) gives 
that 

ellu'll+llul[<=const. [e-3cosech(~) +e]l]ull+[lfi[, (3.63) 

for e > 0 sufficiently small. In this case, too, the inequality and the injectivity 
have been established. The proof of (3.59) is immediate from Theorem 3.2. 

Now we prove surjectivity from Z 4 onto Z e. Suppose that f E Z  ~. Then we 
need to prove that there exists co ~ Z4 with 

e2co iv + co" - co = - 2 a c o  + d@[0] co + f .  (3.64) 

This can be rewritten as a system of equations 

co" - K~-2co = r, (3.65) 

e2r " + g2r = - 2 a c o  + dG~[0] co + f .  (3.66) 
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If  co (Z,  then the right-hand side of (3.66) is in Z e because f~  Z e and d@[0] 
is defined via (3.48) and (3.53). Hence for any co ~ Z equation (3.66) can be 
solved for r (Z2 by the formula 

- 1  
r(x) = , 7 ~  s i n ( k e ( x - y ) ) { - 2 o ' c o  +d@[0]co  +f}dy=B~co + f ,  

where f~  Z2 is arbitrary, since f~  Z e is arbitrary, and B/~ : Z ~ Z  is compact. 
Hence (3.65) and (3.66) are equivalent to 

co" - Kzzco = Bpco + f .  (3.67) 

The left-hand side of (3.67) has a bounded inverse from Z to Z2 and so 
(3.67) is equivalent to 

co = C~co + f 

where C~:Z--,Z is compact. The injectivity of ~ ensures that Cp ~ does not 
have 1 as an eigenvalue. The surjectivity now follows from the Fredholm Alter- 
native for compact perturbations of the identity, q.e.d. 

Now we turn the proof of existence of solutions. For each p 6 [0, ! ) and 2 
e6 (O, ep) let 

O~(.)  = O~(0) +dG~t01 .  §  II.II <-pp. (3.68) 

Then equation (3.9), or equivalently (3.49), has the form 

~.~(u) = @(0)  +R~(u ) ,  Ilull --- pp. (3.69) 

It is clear from (3.68) and (3.48) that @(0)  +Rp(u)~Z e for all u~Z, and 
hence (3.69) can be reformulated as a fixed-point problem 

u = ( 2 ~ ) - 1  ( @ ( 0 )  + R~(u)), (3.70) 

to which Banach's Contraction Mapping Principle applies. 
The case when p = 0 is the more straightforward; we deal with it first. In 

this case, because of (3.55) there exists do > 0 such that if fie (0,po) and if 
Ilulll,lluzll __< c~, then 

IIi~(ul) -R~(u2)ll _-< d06llul - u21[. 

By Theorem 3.4 and (3.51), 

]l ( 2 ~ ) - 1  (G~(0) + Rp(u))l I _<_ const. (e 2 § d0llb/[[ 2) 

_< const. (82 § H b/]l 2) ---- C0(•2 § II b/H 2),  

say. Hence if Ilull _-_6 2Coeg and e (  (0, e0), then 

[I ( ~ ) - 1  (G~(o) + Rp(u))ll _-< coeg(1 + 4cgeg)__< 2coeg (3.7~) 
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for e0 > 0 sufficiently small. Similarly 

rl ( ~ )  -1 ( R ; ( u ~ )  - R~(u~)ll  ~ cons t .do~I lu~  - .~11 

where [[Ul[I, [[u211 _-< ~- Choose Po <- 2Coe~ such that (const. doPo) _-< 1. Then if 
e0 > 0 is sufficiently small for each e 6 (0, e0), equation (3.70) has a unique 
solution in the ball of  radius P0 about the origin in Z when p = 0, by 
Banach's Contraction Mapping Principle. Clearly there exists a constant such 
that [1 co [[ __< const, e 2. 

The argument for p~  (0, ~) is complicated by the formula (3.54)for  the z 
second derivative o f / ~  in a neighbourhood of  0 in Z. Let 

O(v, w) = b(co) -3 f(v) f(w) ~ v~,p c~. 

-oo 

A calculation based on (2.38), (3.3), (3.7) and (3.29) gives 

082 V~,p N const, e .  

-oo 

Since 

it follows that 

Also 

[ /~(~)-31 < const, e 3 when p~  (0, ! )  2 

IlO(v,w)ll ~ const. ~41lvllllwll, 

Ild2~[~] (v, w)ll - const. ~l]vllllwll (by (3.54)). 

0 2 const. 
OB 2 (V~,p) ~ •2 

When p ~ (0,~),  equations (3.52) and (3.54) yield that 

(0  V~p) P=~(~) d~O~Ea, l (v, w) = O(v, w) - (d~/~C~,l (v, w)) 

- (dfl~[&l v) (dfl~[6~l w) (~zfl z V~,p) ~=~(~) '  

= O(v, w) + l~(v, w) 

where  IlO(v,w)ll <= const ,  ltvllllwll as e -- ,0 and  

supp (/?(v, w)) C ( _3  zre, 3 7re), 

JR(v, w) t~ < const. ]1 v[[ ]1 w[[ e - l ,  

~R(v,w) (x)dx <= const, e 3. 

(3.72) 

(3.73) 

(3.74) 
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Now d2G~[~] ( v , w ) E  Z e since G p ( w ) E Z  ~ for all zEw, and so if [1~11 ~pp ,  
then 

II ( ~ )  -1 d2Gp[ ~] (v, w)lt _-< const. (e 3 + e)Ilu[lllvll. 

by (3.59). Along with (3.73) this estimate shows that the remainder term 
( 2 ~ ) - 1 R ~ ( u )  in (3.68) is uniformly small as e-->0 and has a Lipschitz con- 
stant which tends to 0 as e -+ 0. With this observation, the Contraction Map- 
ping Principle may be applied as in the case p = 0 to (3.70) to give the main 
result of  this section, which is the following theorem. 

T h e o r e m  3.5. Let p E [0, �89 Then there exist ap > 0, pp > 0 and constants de- 
pending on p but independent of a E (0, ep) with the following properties. 

(a) I f  e E (O, ep), then equation (3.9) has a unique solution o)eEZ with 

II ~o~11 -< Pp" 
(b) II ~o~11 -< c o n s t ,  e 2. 
(c) I f  tip (a)~) is defined by Theorem 3.3, then for each N there is a constant such 
that 

I/~(~o01 _-< const, aN as a ~ 0 .  

Proof. Parts (a) and (b) are established in the discussion preceding the state- 
ment of  this result. Part (c) is the substance of  the next section of  the paper. 

3.5. The asymptotics of fl as a--+0 

In this section we complete the proof  of  the result announced in the In- 
troduction by showing that in the solution of  (1.1), whose existence is proved 
in Section 3.4, Ifll -= C(N)gN as g ~ 0  for all N 6 N  where the constant C(N) 
is independent of  e. 

To do this we need an interpolation inequality and some a priori estimates. 
The first is based on a well-known inequality of  LANDAU. 

L e m m a  3.6. Suppose that u E Z 2 .  Then 

II u'll 2 _-< 411 ulIN u"ll 

Proof.  I f  s, t > O, then 
S 

u(t  + s) = u(t)  + su'(t) + I (s - w) u" ( t  + w) dw, 
o 

and so 

s d w  tsu'(t) I <=lu(t) I + ] u ( t + s )  I + ~ (s --w) u " ( t + w )  
o 

[ 0 ss 1 = _ - q w  dw < e - q t  211ull+llu"ll (s w) e 

{ (qeqSl) 
<--- e -q t  21lull + + q2  Ilu'll <= e-qt  211ull s2 1 + ~tlu"ll 
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Since u is even, we infer that  for all s > 0, 

2 s 
Ilu'll <-IluIF + Ilu"ll. = s  2 

In particular, if s = 2 (1[ ut[/[[ u"l[) 1/2, then 

I lu' l l= <_ 41tul l l tu" l l  . q.e.d, 

I n  proving the next result we shall need the estimate in Theorem 3.2, along 
with the following trivial observation. 

Lemma 3.7. Suppose that f ~  Z 2 and Deg = f ' ,  g ~ Z4. Then 

[[ gill = [[De -1 (/")1[1 < const. [[ f[]l  =< const. [[/'[[, 

where the constant is independent of  e. 

Proof. If  D~g = f " ,  then 

D~(g - f )  = KZ2f  - 2K~-2 a f  , 

whence 
g - - f  = D Z I ( K z 2 f  - 2K-20-f).  

Hence Ilglll _-_6 ]]fill + const. []Dzlfl]I __< const. ]]f]tl --< const-I]f ']] by Lem- 
ma 3.1. q.e.d. 

The key observation in this section is an a priori bound  for solutions of  
(3.9). Recall that  for k ~ N w {0}, 

] ~ (k) f l ,  8,0 = ( ~ , p )  [ = const. ~ (V ~ )(k) 0, 

(V~,p) < const, ek+~, supp ( '4 ,P)  C (--3z~e,3~ze) p ~  (0, ! )  o o  ~ ~ 2 ' 

Here and elsewhere in this section the constants depend on p and k, and are 
independent  of  e and ft. 

Theorem 3.8.  Suppose that p E [0,1 ). Then ep and pp can be chosen sufficiently 
small that if  co~Z4 is a solution of  (3.9) with l[co[[ <=Pp and eE (O, ep), then 
co ~ ZN for all N~  N and there exists a constant c (p ,N)  such that 

[[ co (2N--A) ][ +lico(2e)ll < c (p ,X)  e + - -  N ( N ,  (3.75) 

Ilcoll --< c ( p , O )  (e 2 + (3.76) 

Proof. The first step is to observe f rom Theorem 3.3 that  ep and pp > 0 can 
be chosen so that  Ifl[ =[fl~(co)[ is smaller than any preassigned positive 
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value if e (  (0, ep) and [[coil __ pp. Equat ion  (3.9) can be rewritten as 

.S~co = - t e a  (4) _ 2co ~ } , p  - co2 _ 2 ~  cI)},p - V~,p. (3.77) 

Therefore  by (3.28), (3.29), (3.30) and the fact that  V~,p = - 0  when p = 0 we 
find that  

~[Ico'[r + Ilcoll = const. (e 2 + I/~l Ilcoll + Ilcoll 2 + [/~1 +p l /~ [ ) ,  
whence 

ell co'll + Ilcoll ~ const. (e 2 -q-Ifll)" (3.78) 

This gives (3.76). Now differentiate (3.77) twice to obtain 

~ c o "  = - 4 a ' c o "  - 2 a " c o  - e2a (6/ - {209 ~b},p + co2 + 2~r qS~,ple " - (V~,p)e , ,  

whence,  by Theorem 3.2 and Lemma 3.7, 

Ilco"H--< const. IIcoll + Ilco'l/+ ~2 + 1112co ~ , p  + o) 2 + 2 ~ , p l  II + ~ - )  

_--- const. [llco]l + Ilco'rl + e2 + IfllT Ilco/I + I/~111co'll + Ilco[lllco'll +l/~l~ +PlI31)~5-j 
_<-const. [11 coil + II co'll +~2 + I/~l ilcolle + I/~l~ + pl/~l)7) 

-< const. ( e  + [fl~ + P l /~ I ' ~  

Along with (3.78) this gives 

IIco'll + Ilco"ll < const, e + [ /~ + = 

which means that  (3.75) holds with N = 1. 
Now the p roo f  is by induct ion on N. Suppose that  for  some M E N, M __> 2, 

inequali ty (3.75) holds for  all N ~ N with N __< M -  1. We shall infer that  it 
holds for  M ,  and the result will follow by mathemat ical  induction.  Differentia- 
t ion of  (3.77) 2M times gives 

2M-I 
"5~eCo(2M) = -- E ((2M)Cr) O'(2M-r)co(r) _ g20-(2M+4) 

r=0 
-- [(2co ~},p + (-02 + 2r _ (VeB,p)(2M), 

whence,  by Theorem 3.2 and Lemma 3.7, 

I(2Mr~_ol ) Ilco(2M)]] ~ const. ]]co(r)l[ + 82 + 11 (2co *},p + O02 + 20" *},p)(2M-m) ]l 

+ e 2 1  . 2M (v~,~) I= <= 
) 
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[( 0 =< cons t .  6~ + I1~oll + [[~(r> _t_82 
r=l 

2M-2 ( ~ )  2M-2 !~ll p~2flM] 1 + ~ II~~ ll + ]~ II~(F) IIII~(2M-x-rlI[ + - - + -  
r=l r=l 8 

I M--1 
__< const. II ('o<2M-1)II + ~ (1160<2j-1)II + tl ~(2j> t[) + ~2 

j=l 

82 - 
j=l 
M-1 

+ E ]1 s II ~162 II + II o)<:J> tl II o~ (2M-2j-1)II 
j= l  

+ ~ + - -  �9 

Now since (3.75) holds for all N ~ N with N <= M -  1, this gives 

II c~ l[ < const. II ~ (2M- ,  II + 8 + ~ + - -  

Hence, by Lemma 3.6, 

II ~(2M-, 112 _ 411 co(2M-2)l] II c~ 

=<const.]ICo(2M-2'II[HCo(2M-I) H + 8 + ~ + P F - f l M [ I ,  

(3.79) 

from which it follows (by the theory of roots of quadratic equations) that 

[] ('o(2M-1)H 2 -< c~ Ill ('t)(2M-2)112 "4-H (-D(2M-2)]1 (e-t- ~ 1  -~- pezfl~)l. 
Hence, since (3.75) holds for N = M -  1, we find that 

[[CO(2M-1/I[-----const '(r  ' e  

A substitution of this into (3.79) yields that (3.75) holds when N = M. The 
result now follows by mathematical induction, q.e.d. 

This result and Lemma 3.6 show that for any N~ N, 

I10)(2N+l) [[2 ~_< 4][ gO (2N) [I ]1 ('o(2N+2)I] 

( const. ~ + ~ 1  + ~ + + __< 
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=cons t .  e 2 + - -  + ~ + 1  + - -  + 
e e 4N 

pl/~l 2 p2]p12"~ 
+ ~l_~ + ~ + ~ 4 N ~ /  

-<const. e 2 + -  + ~ - +  ~ + e~y+2,] 

pll~l 2 + - -  
/~4N+ 1 

]/712 p2]fl12' ~ 
_-_Nconst. e 2 +  1 + ~4N + ~ 2 , ]  

by the Cauchy-Schwarz Inequality. Hence 

( II CO(2N+I) II--< const. 1 + e + - -  + ~ ) .  

Combining (3.75) and (3.80) we find that for any r~ N, r__> 2, 

(3.8o) 

[Ico(r)[[ __< const. 1 + e~_l + . (3.81) 

As usual the constant here depends on r and p, but is independent of e, co 
and ti- 

The main result of this section is now almost immediate from (3.40) and 
(3.81): 

Theorem 3.8. I f  T is a solution of (1.1) in the form (3.8) (whose existence for 
p~ [0,~), e~ (0, ep) with [Icol] <- Pp was proved in the preceding section ) , then 
for N E N there exists a constant depending on N and p such that 

I C/5~,p[~ ~ const, e N as e ~ 0 .  

Proof. We have seen in the proof of Theorem 3.3 that equation (3.41), which 
determines fl~ (co), is of the form 

6rrk:e 2 cosech (k~rc) + ~ v~co(co + 2a)dx  + 2 ? co q~},pdx 

+ fl[R(fl, e,p) + pS(fl ,  e , p ) } = O  (3.82) 

where R(fl, G0) --*6 and IS(fl, e,p)[ >= const .( l /e)  as e ~ 0 ,  if pE (0,21). Also, 
for each N there exists C(N) such that 

6rrk~e2cosech (kerr) _-< C(N) ~N a s  e ~ 0 .  (3.83) 
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Now ve(x)= cos (pe(fl) x) and so 2N integrations by parts gives 

~veco(o) + 2 a )  dx __< (/2e(fl)) -2N ~[co 2 +2aogl(2U)dx 
- - o o  - - o o  

const. ~2N ~ II ~o(~ II (IL (-D(2N-r)]] + 1) 
r=0 

21 
__< const, e 2N [11 o~ II II (-~ + [[ Ot [I I[ (D(2N-1)II + ~ II (D(r) I] 

r=2 

2N-2 1 + ]~ II co<r~ II II ~2N-r> kl 
r=2 

<const. e 2N (e 2+/3) 1 + - -  + 

+ ( e +  ~-) (1 + el_ill +e~S_l  ]p]B['~ 

"Ir ) + ~ 1 + - - +  8r-1 
r=2 

+ ~ 1+  r_~_~+-- l+~2N_r_~ 
r=2 

PlBI) __< c0nst, e 2N 1+  e!~[~ + ~ - j  

_-< const.{e 2N + elfl[ +plflq/. (3.84) 

A substitution of (3.83) and (3.84) in (3.82) gives the existence of an absolute 
constant A and a constant K independent of e and fl but depending on N and 
p such that 

Ifl(e(fl,  e,p) -.Ir pS(fl, e,p)) I <_ g(N,p)  (,S N + '?'lfll +Pl /~ I )  + 1 ( 8 2  "t- f l )  fl. 

Hence ep and pp > 0 can be chosen sufficiently small that 

[ fll = ] N (~~ =< const, e N 

if Ilco[] <-pp and e~(0,  e0), since R(fl, e, 0) ~ 6  as e ~ 0 ,  S(fl, e,p) >= 
0 1 const. (l /e) as e ~ 0  if p6 ( , ~ ) ,  and 

[fll = [fl~(o~)[ __< const, (e-3 cosech (n/e) + pp) 

by Theorem 3.3. This completes the proof of the theorem, q.e.d. 
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