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Variational Identities and
Applications to Differential Systems

R. C. A. M. VAN DER VORST

Communicated by J. SERRIN

1. Introduction

In the work of PoHOZAEV [P] and in recent work of Pucct & SERRIN [PS],
variational identities are discussed which are useful for solving various ques-
tions about elliptic differential equations and particular elliptic systems. Here
we obtain a number of further applications of these identities to systems.

It was noted in [PS] that these identities are closely related to Noether’s
Theorem for variational problems. By working out the divergence-term arising
in Noether’s Theorem and making some simplifications, one obtains a general
identity for variational problems. If a variational integral has a symmetry
group G with the following infinitesimal generator

‘ 3 d
v=Hh — —a{x) u—,
() gt e

then the conserved quantity (divergence-term) arising in Noether’s Theorem is
exactly the divergence form in the Pucci-Serrin identity [PS], which does not
require the variational integral to have a symmetry group.

Throughout this paper we employ the summation convention.

The first idea of applying a slightly modified version of the Pucci-Serrin
identity came up in the study of the following system of partial differentical
equations [PV]:

Au =
PO { g(v), (1.1
Av=f(u). (1.2)

When we study radially symmetric solutions of Problem (P1) we obtain after
some transformations [AP] that

{y” =1"%%(2), (1.3)
P2)

z7 =tk (y). (1.4)
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The equations (1.3) and (1.4) are closely related to the Emden-Fowler equa-
tion. Multiplying (1.3) by #z’, (1.4) by 1’ and integrating over [¢, o) gives after
a few manipulations two functionals H;(r) and H,(¢). They can be combined
into a family of functionals:

Hy(t) = 6H (1) + (1 — 8) Hy(r), O€R. (1.5)

The family H,(z) enables us to prove some existence and non-existence
theorems for Problem (P2) [PV]. The fact that we have a parameter 6 plays
an important role. In Section 2 we shall develop varjational identities in which
the parameter # enters in a natural way.

Consider the following Lagrangian density:

L = (Du, Dv) + G(v} + F(u), (1.6)
Du = grad u, Dv=grad v, a.7n
G'(v) =g(v), F'(u) =f(u), (1.8)

f(0) =¢(0) =0, (1.8a)

where u, v€ C(Q), and (-, -) is the inner product in RY. We want to derive
an identity which is closely related to (1.5). For this a simple generalization
of the Pucci-Serrin identity for systems is needed. This identity will be derived
in Section 2. In Section 3 we shall show with a number of examples of varia-
tional problems how the identity of Section 2 can be used. As the examples
will show, we employ identities using the infinitesimal generator of the group
of dilatations, which also plays a important rdle in the concentration-compact-
ness principle [L].

In some cases it is not easy, if not impossible, to formulate a system in
terms of a variational problem. It would be nice to have some kind of
machinery to handle such problems, such as

—Au=g(u, v), (1.9)
—Av = f(u, v). (1.10)

In Section 3 we shall indicate how to deal with this situation. Basically we
consider modified Euler-Lagrange equations, which enable us to handle the
above equations and related ones (corresponding to generalized forces in
mechanics). The modified equations still give a nice integral identity. This idea
was also explored in [PS].

In Section 4 an example of a perturbed system is given which is similar
to the problem studied by BRrEzis & NIRENBERG [BrN].

In this paper we do not consider higher-order variational problems,
although the main ideas discussed here immediately carry over to such prob-
lems.

2. The generalized identity

In this section a simple but very useful modification of the Pucci-Serrin
identity for first-order variational problems for systems is discussed in order
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to deal with functionals of indefinite nature. Consider the following variational
problem:

0 §L(x, u, p) dx =0, (2.1)
2
& 2 duy . ]
where u = (u), p = (pf), pi = PE k=1,...,s5 i=1,...,N, and 2 is a

bounded domain in RY, with smooth boundary dQ. The corresponding Euler-
Lagrange equations are

oL aL
div ) —— =0, k=1,..., s 2.2)
op; Ouy

Theorem 2.1. Ler L€ C' (2 X R XRV**) and let u = (uy, ..., u;): Q> R* be a
solution of (2.2) with u, € C*(Q). Let ay, h'e CY(Q). Then

. . oL a
div (hlL - n’ % T T ap i ‘Ii>

ax’ dpf dpf
an’t - aL du, A/ 3 oL du; oL aL
:iLﬂ'hlk.— ﬂ“ +ulik.l 2 i —u{—k-i-ul— in £,
ax’ ox’ ax! dx’ ax’ J ap; ox' ap; duy,
(2.3)
Furthermore,

X op; Di
aQ

C (R oL o, on L du, AL oL
= a—L“i‘hl’a—* __”ﬁt{_._{_ulajlc.“l 6—]—(~akl —u’g_k'i'ul—‘ dx,
ax’ ax! ox’ ox' ax' J dp; dx' dp; duy,
Q
(2.4)

where n is the outward normal on 3.

Proof. Expanding the divergence term in (2.3) and using (2.2) gives the re-
quired result. The integral from is obtained by applying the Gauss Divergence
Theorem.

We observe that the divergence term in Theorem 2.1 is exactly the con-
served quantity in Noether’s Theorem for (2.1) if the symmetry group G has
the following generator (sce also OLvER [O]):

. ] ]
v=h(x) — — ay(x) u—.
(x) Pl ) o1
The modification of the Pucci-Serrin identity discussed in this section con-
sists in allowing a(x) to be an s X s-matrix {ay). In Section 3 we shall dis-

cuss a number of applications of Theorem 2.1, in which (ay) has diagonal
form.
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If we put Theorem 2.1 in a more general setting, it is natural to consider
the case in which ¢ and A’ may also depend on u:

. 9 0
v=h(x, u) — + alx, u) —.
( )axl i ( )6uk

Here v is the infinitesimal generator of an 1-parameter group G of transforma-
tions. From (2.3) we can then obtain a corresponding identity in a straightfor-
ward manner. This more general situation will not be discussed in this paper.

3. Examples
In this section we shall discuss some examples to demonstrate the use of
Theorem 2.1. In all cases (ay) will be of diagonal form. In these examples

we shall establish a number of non-existence results.

1. The biharmonic operator. We consider the problem:

Au=fu), u>0 in @, 3.1)
48} u =0 on 3%, (3.2a)
Au =0 on 492, (3.2b)

in which it is assumed that f satisfies the following hypotheses:

{fecun,

(H1) £0) =0, f(u) >0 if u>0.

This problem was studied in [PV]. It is similar to a problem which was studied
by Pucct & SErrIN [PS], who considered different boundary conditions:

du

u=20,
on

=0 on 9Q. (3.2¢)

It is convenient to write equation (3.1) and the boundary conditions (3.2a)
and (3.2b) as

Au=wv, u>0 in £, (3.3)
(Ia) Av = f(u) in 2, 3.4
u=v=0 on d82. 3.5

For this problem we have the Lagrangian
L= (Du, Dv) + 3 v* + F(u), (3.6)

F'(u) =f(u), f(0)=0. 3.7
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Theorem 3.1. Let (u, v) € (C*(Q) n C! (.Q))2 be a solution ofProblem (Ta) in
which s =2, ay(x) = a, = const., hi(x) =x', k=1, ...,5, i=1, ..., N. Then
u and v satisfy the identity

S ((NF(u) — ayuf(u)) + (% —@) v? + (N -2 —a; — ay) (Du, Dv)) dx
0

- §) (Du, Dv) (n, x) ds. (3.9

Proof. When we apply Theorem 2.1 to (3.6) we immediately obtain
ou dv ov Ju
Du, D , n) ds — S — 4 x/ — — ds
Cﬁ (Ds, Do) (z, u) ds <§> ((x o o e ax) )
EYel a0

= ‘g ((NF(u) — ayuf(u)) + (g - a2> v+ (N-2 —a; — ay) (Du, Dv)> dx
@ (3.9

Because u = v =0 on 0Q2 we can write

ou ou dav dv
—=—n, — = —Hn.
ax*  on axt onm

. e . du v .
Substituting these identities into x’ ﬁ ; we obtain
X X

.du v du  ov i ou dv
x n]- ; n=_—n;
on * Ox on

= — x/

— X'N; X'R;:.
ox’ = oxt axt”
The substitution of this expression into the left-hand side of (3.9) yields
— & (Du, Dv) (x, n) ds,
EYel
from which (3.8) follows.

it should be noticed that this identity is similar to one derived by Puc-
c1 & SErRRIN for the biharmonic operator. If the version of the Pucci-Serrin
identity for systems is applied to the equations (3.3) and (3.4), then an addi-
tional integration by parts is required in order to obtain (3.8). Here the expres-
sion of Theorem 2.1 immediately gives the required identity. In later examples
we give identities for certain systems which cannot be immediately derived
from the Pucci-Serrin identity for systems.

By employing the identity (3.8) we obtain the following non-existence
theorem:
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Theorem 3.2. Suppose 2 and f satisfy
(1) @ is star-shaped and 082 is smooth,
() NF(u) —auf(u) =0, u=0,

® @-z0 N-2-a-az0,
for some constants a; and a,. Then Problem (1a) has no solution (u, v) €
(C*(2) nCH(D))
Proof. Observe that because u# > 0 in Q, f{u) > 0in € and so
Av>0 in Q.
Because v =0 on 39 it follows from the Maximum Principle that

v<0 in Q.

Hence
Au<0 in Q.

From the Boundary-Point Lemma we now conclude that

61<0, @>0 on 4Q2.

on on
Thus

du 3
(Du, Dv) = 2L % (n,n) <0 on Q.
an on

Choosing the origin at a point about which € is star-shaped we conclude

that
(Du, Dv) (x, n) <0 on dw C 0Q,

where dw has positive measure in 3Q. Now we deduce from (3.8) that if u > 0,
then

S ((NF(u) — ayuf(u)) + <%]— - a2> v> + (N -2 —a; ~ ay) (Du, Dv)) dx > 0.
Q (3.93a)

On the other hand, if we multiply (3.3) by v and integrate over £, we obtain
— § (Du, Dv) dx = §v* dx >0,
2 0
and so, using conditions (2) and (3) we obtain
N 2
(N —2 — a; — ay) (Du, Dv) + (NF(u) — ayuf (u)) + 5 —a,) v* ) dx = 0.

(3.10)

The inequalities (3.9a) and (3.10) are contradictory unless u =v = Du =
Dv =0 in Q. This proves the theorem.
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If we take

, (3.11)

N
a1+a2=N—2, a2=5

we obtain

Corellary 3.3. Suppose Q and f satisfy

(1)  Q is star-shaped, 0Q is smooth,
N-4

(2) NF(u) — uf(u) =0, u=x0.

Then Problem (1) has no solution ue C*(Q) nC3(Q).

Remark. For the function
fu) =uf, p>1,
we cbtain non-existence by Corollary 3.3 if

_N+4
PENZ4
N-—4

N e s
Remark. Observe that because we have g; = and a, = X the infini-

tesimal generator of the group of dilatations becomes

This corresponds to
N-4

N
u(x) - A ZuG), vix) = A 2u<§), AERT.

Clearly this group of dilatations is not a symmetry group of the
Lagrangian given by (3.6), when the nonlinearity f(u) does not satisfy

NF(u) — N; 4 uf () =0,

2. An indefinite variational system. Now we consider the problem

Au=g(), u>0 in Q, 3.12)
Av = f(u) in Q, (3.13)
(1)
u=0 on 0Q, (3.14)
v =0 on 4@, (3.15)

in which the functions f and g are assumed to satisfy the following hypotheses:
f, 8€C(R);

(H2) fw)>0 if u>0; flu)<0 if u<0; f(0)=0;
gu)>0 it u>0; gu)<0 ifu<0; g(0)=0.
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This problem has the Lagrangian
L = (Du, Dv) + G(v) + F(u), (3.16)
G'(v) =g), Fu)=f(u). (3.17)

Using the above Lagrangian we can apply Theorem 2.1 and derive a varia-
tional identity for Problem (II). The group of transformations we use are again
dilatations, although slightly different from the one we described in Section 2.

Theorem 3.4. Let (u, v) € (CH(Q) 2 CI(S_Q).)2 be a solution of Problem (I1) in
which s =2, ai(x) =a,=const., i'(x) =x', k=1, ...,s,i=1, ..., N. Then

gg ((NF(u) ~ auf(w)) + (NG(v) — apg(v)) + (N —2 —ay — a) (Du, Dv)) dx

= — agg (Du, Dv) (n, x) ds. (3.18)

The proof of this theorem is completely similar to the proof of Theorem 3.1.
By employing this identity we obtain the following non-existence theorem:

Theorem 3.5. Suppose that 2, f and g satisfy

(1) @ is star-shaped and 0Q is smooth,

(2) NF(u) —auf(u) =0, u=0,

(3) NGWw) —awgv) =0, v=*0,

4 N-2-a-a=z0,

for some constants a, and a,. Then Problem (I1) has no solution (u, v) €
(C*(Q) n CH(Q))~

Proof. As in the proof of Theorem 3.2 we conclude from the Maximum Princi-
ple that
v<0 in Q.

Again by employing the Boundary-Point Lemma we obtain
(Du, Dv) (x, n) <0 on dw C 382.

This then gives

S ((NF(u) — ajuf (1)) + (NG (v) —ayvg (v)) + (N—2 —a, —a,) (Du, Dv))dx>0.
Q

If we multiply (3.12) by » and then integrate over 2, we obtain

— { (Du, Dv) dx = {vg(v) dx>0, v=0.
Q Q

From here on the proof is similar to that of Theorem 3.2.

If we take
a + ay = N — 2,
we obtain
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Corollary 3.6. Suppose Q, [ and g satisfy

(1) R is star-shaped and 0%2 is smooth,

(2) NF(u) —awuf(u) =0, u=+0,

B) NG(v) —(N=2—a) vg(u) =0, w=*0,

for some constant a,. Then Problem (I11) has no solution (u, v) € (C*(Q) n
D))

Remark. For the functions

flu) =uf, g() =vjv|77}, (3.19)
we obtain non-existence if
N-—a
@

vV

P , (3.20)

2‘*‘611

— 3.21
N—2—a1 ( )

q=

N—4
This result agrees with Example 2 where ¢ =1 and q; = — Note that

this particular choice of a; corresponds to the dilatation group used for the
biharmonic operator.

Remark. Some existence and non-existence theorems were obtained by GALAK-
TIONOV, KURDYUMOV & SamaRrskll [GKS] in their study of steady states of
parabolic systems closely related to Problem (II).

3. The pluri-harmonic operator. In this example we shall consider the pluri-har-
monic operator as a second-order system in order to study other ‘Dirichlet-like’
boundary conditions different from those considered by [PS].

Awy= —wipy, w; >0 i=1,...,5-1 in @, (3.22)
am Aug, = —f(uy) in , (3.23)
Bz, Dy =0, m,i=1,...,s on d9Q. (3.24)

It should be noted that we placed minus signs on the left-hand sides of the
equations (3.22) and (3.23). In this way we can look for positive solutions

;> 0, i=1,...,s This is a direct consequence of the Maximum Principle.
We assume that f satisfies the following hypotheses:

- {f € C(R),

(H3) f0) =0, f(u)>0 ifu>0.

The functionals %, describe the boundary conditions. Our objective is to
consider different choices of %, which may occur when the pluri-harmonic
operator is considered as a system. For example, the triharmonic equation

(A) Nu = ~f(u)
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allows four such possibilities, arising as Dirichlet boundary conditions for dif-
ferent forms of (A). Thus for (A) these boundary conditions are u =0,

du
a =0 and Au=0 on 92. The question of non-existence of solutions of

this problem is studied in [PS].
When (A) is written as

Ay =,
(B)
Av = —f(u),
the corresponding Dirichlet boundary conditions become u = 0, ou =0 and
v =0 on 9Q. Writing (A) as on
Au = —uv,
©)
Ao =f(w),

d
we have u =0, v=0 and % ~0 on 89. Finally, if (A) is written as the
system on

Au = —v,
D) Ly = —w,
Aw = —f(u),

the Dirichlet boundary conditions become u =0, =0 and w=0 on 94Q.
These latter conditions are the central boundary conditions in this paper. Of
course, in all these problems u is taken to be positive.

In considering these four situations we shall restrict our attention to radial-
ly symmetric solutions on £ = B;. For this case we examine System (D), and
the boundary conditions which agree with the four situations. Transforming
to new variables:

t = (N_Z)N—Z,A—(N—Z]’ k=2N~2,
N-2

yi(t):ui(r)s Uy = i, U =1, Uy =W, fori=1,...,3,

N+2,

as in [AP, PV] we obtain

(yi= —t %y, n>0 i=1, .., s—1, (3.25)

yi'=—t"% ), (3.26)

(IlTa) V(o) =0, i=1,...,s, 3.27)
By ¥ (T) =0, iym=1,...,s, (3.28)

\T= WV - 2)W=2), (3.29)
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For this system it is possible to give a Lagrangian
s—1

L=3 Yy =3 Y, 1 ViatYsmisr — £ F(31) (3.30)
i=1

i=1 i

in which
F'(y1) =f(n). (3.31)
In [AP] the case s = 1 is discussed in great detail. The case s = 2 is discussed

in [PV]. Here we shall discuss the case s = 3 as an illustration. The Lagrangian
is then

L=yiys+355% =t Fyys — e (), (3.32)

and the Euler-Lagrange equations are
y = —t"Fy,, (3.33)
av) i = —t"Fy;, (3.34)
yi= -t (). (3.35)

The boundary conditions corresponding to (A)—(D) become

Al y(T) =0, yi(T) =0, »(T)=0, (3.36)
B: yi(T) =0, yi(T)=0, y(T)=0, (3.37)
C: yi(M) =0, »n(T)=0 (=0, (3.38)
D: y(T) =0, »(T) =0, y(7)=0. (3.39)

Remark. We can immediately make some observations about the solution
(1, ¥2, ¥3). In all cases we have by assumption that y; >0 on (7, o) and
y1(T) = 0. In addition we have that y; >0 and is concave on (7, o) in
Case B, and that ;> 0, i=1, 2,3 on (7, ) in Case D.

From Theorem 2.1 we have the following identity:
~L(y;, Y)(T) = —Tf (1 +ay +a3) yiys + G + @) ¥1?) ds

+25 (k= 1+a+a) s yy+ (k—1) s *F(y)) + aps 9.f()) ds, (3.40)

where j =1, ..., 4, and the boundary terms I; are given by
A: L= -1T7y7 (3.41)
B: L=~} Ty;" — s, (3.42)
C: L= —Tyiys — azys)1, (3.43)
D: I = —Tyjy; — 1 Tys2. (3.44)
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The expressions (3.41)—(3.44) are evaluated by using the boundary conditions
at infinity at ¢ = 7. Because u;, u, and u; are assumed to be smooth, we re-
quire that y;(e), y,(), ys() exist and be finite. For a more detailed
discussion we refer to [PV].
In this example we take
4 2k—5 1 3 -2
=, @=—-——, a3=—".
! 2 2 2 : 2
Thus if k€ (2, 2}), which corresponds to N> 6, then a; <0, a,<0, a;<0.
With this choice of the constants a;, a, and a3 it is possible to determine the
sign of [(T) for all values of j. The identity now becomes

<

5
~Li(y;, y) (T) = S ((k —1) s7*F(y) —
T

—2% _
> S~k}’1f()’1)> ds.

Lemma 3.7. Suppose k€ (2, 2%). If (31, Y2, Y3) is a solution of the equations
(3.33)—(3.35), then

Lu yd (1) <0 forj=1,2,3, 4.

Proof. We treat the cases j =1, 2, 3, 4 in succession.

j=1: In this case the result is obvious.

j=2: As we already observed in the last remark, y; is concave, and so
y; >0 on (T, o) because y;(7T) = 0. Thus, by (3.34), y, is concave and
¥5(T) > 0 because y5(o0) = 0. As before we conclude from (3.33) and the
conditions at # = T and at infinity that y, must have a sign change and that
y,(T) < 0. Because a, < 0 and y5(7) > 0, the assertion follows from (3.42).
j=3: By (3.35), y; is a concave function, whence, because y3(o0) = 0, there
exists two possiblities: Either y; has one sign on (7, o), or it has one zero
and y;(e) > 0. If y; has one sign, then yj(e) # 0, by (3.34) and (3.38), so
y; must have a zero and y;(T) < 0. This means that y, >0 on (7, ») and
that y, is concave on (7, «). Because y;(T) = 0 it follows that yi(T) > 0.
By the choice of k, a3 < 0, so that substitution into (3.43) yields the desired
incquality.

j=4: As was already noted, y; >0 on (7, «) for i = 1, 2, 3. Integration of
the equations (3.33)—(3.35) over (7, ») vields that yj{(T) >0 for i=1, 2, 3,
which, when substituted in (3.44), proves the assertion.

We now can formulate the following non-existence results for Problem
avy:

Theorem 3.8. Let T> 0 and let f satisfy

5-—2k
2

Then Problem (IV) has no solution yy, y2, y3 € C*((T, %)) n CY(IT, )) which
satisfies one of the boundary conditions A 1o D.

(k—1) F(y;) — »nfO) =0 y»>0. (3.45)
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Proof. If (3.45) is fulfilled, the right-hand side of identity (3.40) becomes non-
negative while the left-hand side is negative by Lemma 3.7.

Remark. If we consider the function f(y;) = y#, we obtain non-existence if

4k —
k 7=M, N>6.
5-2k N-6

p=

Next we shall discuss a particular variant of Problem (III). We can write
down the following Lagrangian:

K s—1
L=} E (Dwy, Dug_i41) — 3 Z U1 ls—+1 — Fuy) (3.46)
k=1 k=1

F'(u)) =f(u).

We are interested here in specific boundary conditions analogous to those of
[PS] and [EFT], i.., the Dirichlet boundary conditions for the system. We ac-
cordingly consider the following system of equations:

Aty = —upyq, >0 k=1,...,5s—1 in Q,
(I11b) Aug = —f(uy) in @,
w =0, k=1,...,s on 4.

If we employ the identity (2.4) with g (x) = a; and 4'(x) = x, we obtain the
identity

s—1 N
S((NF(M) — auf(uy)) + E (‘2— - ak+l> Up 1 Uy
&

k=1

'L (N
- 2 (‘ -1- G (D“ka Dus~k+1)> dx
k=1 2

=3 C§> (Z (Duy, Dus_m)) (n, x) ds. (3.47)
k=1

ae

We can simplify (3.47) by imposing some restrictions on the coefficients. As
before we require that the coefficients of u, u,_y,q fork=1,..., 5 — 1, and
the coefficients of (Dw, Du,_z.q) for k=1, ..., s all vanish. It is easily
observed that to achieve this we obtain exactly s linear equations in the
variables g, for k=1, ..., s.

Remark. We have to point out that by the above procedure the number of in-
dependent parameters g, reduces to zero. However, if we replace the
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Lagrangian density given in (3.36) by
s
L ::% E (Duk’ Dus—k-H) —“H(ul’ Uy, ..y Uy),
k=1

in which
oH

— =h(uy, Uy, oo, Uy, I=1,2,...,5,
aui

we obtain a number of degrees of freedom on the parameters ay, ..., a,. This
can best be illustrated by Example 2, where we had
H(uy, up) = F(uy) + G(uy) .

In this example one degree of freedom exists by the relation a; + a, =N — 2
between the parameters a; and a,. This can also be done for systems of s
equations.

For Problem (IIIb) we now obtain the lemma:
Lemma 3.9. Let u, € C*(2) n C'(Q) for k=1, ..., s be a solution of Problem

(IIIb), and let a,(x) = ay, Wx)=x' fork=1,...,s, i=1,...,N. Then the
following identity holds:

N-2 u
S(NF(ul) -5 : ulf(u1)> = %(S) (2 (D, Dus_kﬂ)) (n, x) ds.
2 sp =l

(3.48)

Proof. We consider the cases in which s is even (s = 4) and s is odd (s = 3)
successively. The cases s =1 and s =2 have been dealt with before.

s is even: If we set the coefficients occuring in (3.47) equal to zero, we obtain
two sets of equations:

(N—2-—a1~as =0,
N—2—02—Ss_1 :O,
(E1) :
\N—Z—ag—-aH;:O,
(N——az—as =0,
N— a3 — 5,1 =0,
(E2)
N—a%——a2+% =0,
N

kz—aH_% =0.
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Together (E1) and (E2) yield s equations with s variables. If we subtract the
first equation of (E1) from the first equation of (E2) and the second one of
(E1) from the second one of (E2), etc., we obtain

N -4 s
a§=——2~, ak_1=ak—-2, k=2,...,5.
Solving these gives
N N
aI:a2—2=..‘=a%——2<§—1> =~2——2—s+2=5—s.

s is odd: Just as for even values of s we obtain two sets of equations from
(3.47):

(N~—a2— ag =0,
N—ay— 5,1 =0,
(E3) .
\N—aswzt_x——auszj:O,
(2*N+al+ ag :O,
2— N+ a+ 5,4 =0,
(E4)
2~ N+ a%+a1+&=0,
N 1
“5— - ag-zf_l = (
We immediately have
N-2
s+l = ———
2 2

If we add the first equation of (E3) to the first equation of (E4) and the sec-
ond equation of (E3) to the second equation of (E4), etc., we obtain

1
ak_1=(lk—2, k=2,...,s-; .

Direct verification yields
1 N N
a) =as1 —2 S+v—1 =— —1l—s5s—-142=" —5.
2 2 2 2

This outcome is similar to the one in the even case. The lemma is proved by
substituting the value obtained for a; in identity (3.47).

By employing Lemma 3.9 we are able to derive the following nonexistence
theorem for Problem (IIlb).
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Theorem 3.10. Suppose Q and f satisfy
(1) 8 is star-shaped,

N-2
() NF(uy) — uf(u) =0, u 0.
Then Problem (11Ib) has no solution u,€ C*(2) n CYH(RQ) for k=1,...,s.

Proof. From the equations of Problem (IIIb) we immediately deduce that
Ay <0 inQ fork=1,...,s

From the Boundary-Point Lemma we conclude that

3
M <0 onaQ, k=1,...,s.
on

duy, dug_
Hence (Duy, Du;_p41) = i Olts kst {(n,n) >0 on 32 for all k. Because Q

is star-shaped this gives o on
% § (E (Duy, Dus_kH)) (n, x) ds > 0.
e\ /7

Therefore

S (NF(ul) _N ; 25 ulf(u1)> dx > 0. (3.49)

On the other hand, by employing condition (2) we obtain

S (NF(ul) _N _2 25 ulf(u1)> dx < 0. (3.50)
Q

Since (3.49) and (3.50) are contradictory, the theorem is proved.

Remark. Consider the function
fluy) =uf.
N+ 2s

—~ 25
as that derived in [PS] for the case of Problem (IIlc) with Dirichlet boundary
conditions.

. This is the same result

We obtain a non-existence theorem if p =

Theorem 3.10 yields a non-existence theorem for the function

N+2s

fuw) = Auf + ui™
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if
N+ 2s

N—2s

A=0 and g¢g< (3.51)

To see this observe that condition (2) becomes

~2
A(N S—L> WH'<0, u20.
2 g+1

N + 2s

N —2s
A =0 is discussed in the Remark above.

Thus, if 1 <0 and ¢g< , we arrive at a contradiction. The case

Remark. Following [PS] and [EFJ] we can write Problem (IIIb) as

N+2s

(=AY u— Aud —y">=0 in 2,
(ITIc) (=M u>0 k=0,...,5s—1 in Q,
u=Au=...=0L)yY"'u=0 on 4Q.

4. Linearizations around solutions. In this example we shall derive an identity
for a system consisting of the elliptic equation Au + Au + »? = 0 and its lin-
earization

Au+iu+u =0, u>0 in Q, (3.52)
(L1) Aw + Aw + pu? lw =0 in Q, (3.53)
u=0,w=0 on 4Q. (3.54)

This system arises in the study of uniqueness and stability of solutions of
(3.52).
For System (L1) it is possible to give the Lagrangian

L = (Du, Dw) — luw — uPw. (3.55)

With this information we can apply Theorem 2.1, which leads to the following
lemma:

Lemma 3.11. Let (u, w) € (C*(R) n C(2))? be a solution of Problem (L1),
and let a;(x) = ap = const., h'(x) =x' for k=1,2, i=1, ..., N. Then

{ ((a1p+ay = N) uPw + A(ay + @y = N) uw + (N —2 — a; — a,) (Du, Dw)) dx
Q

= — § (Du, Dw) (n, x) ds. (3.56)
PYel

Proof. Apply Theorem 2.1, using expression (3.55).
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With the choice of parameters

2 N-2)p—N
a=—, @= W-2)p-N (3.57)
p—1 p—1
in (3.56) we obtain the identity
§ (Du, Dw) (n, x) ds = 2. fuw dx. (3.58)
a0 Q

Identity (3.58) was recently also obtained by S. C. Lin [Li] using a different
method, in connection with the study of uniqueness of solutions of equation
(3.52) when A =0 and Q is a convex domain in R2.

An interesting question arises how to handle the problem if we want to
consider two different eigenvalues instead of one in Problem (L1). For this we
have to state an additional property for variational identities which was also
mentioned in [PS] (page 685). For the problem with two distinct eigenvalues
we consider the modified Euler-Lagrange equations:

oL 18
div (—k) —a—=Gk, k=1, ...,s. (2.2a)
ap;

Here G, is some function of u, w, Du, Dw. We choose G; = (4 — u) w and
G, = 0. The equations (2.2a) then become

Au+Au+u? =0, u>0 in Q, (3.59)
(L2) Aw + uw + pu?~lw =0 in Q, (3.60)
u=w=0 on 0Q. (3.61)

If we want to obtain variational identities for the guasi-variational equations
(2.2a), we have to add the following expression to the right-hand sides of 2.3)
and (2.4):

;0
- (hj B—ZI; + aklul> Gk' (362)

If we apply this modification, we obtain the following identity for Problem
(L2):

2(pA — ) 5

— & (Du, Dw) (n, x) ds = —
ETo) p-1 2

uw dx — (A — u) § w(x, Du) dx.
e
(3.63)

The identities (3.58) and (3.63) were derived in collaboration with
HuLsHOF & WEIssLER [HW], who considered them in the study of Problems
(L1) and (L2). For systems with a variational structure the linearized system
can be described together with the original system in one Lagrangian similar
to the above example.
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Remark. If we recall the non-variational system (1.9) and (1.10) from Section
1, we can give a method using the modified Euler-Lagrange equations to derive
variational identities. One can proceed as follows. Set

fuf(s, v) ds = F(u, v), fg(u, 5) ds = G(u, v),
0 0

and consider the Lagrangian
L = (Du, Dv) — F(u, v) — G(u, v).

The modified Euler-Lagrange equations (2.2a) in which we set G; = G, (u, v)
and G, = F,(u, v) (2.2a) yields

—Au = g(u, v), 1.9)
—Av =f(u, v). (1.10)

Using the Lagrangian L and the expression (3.62) as an additional term in (2.3)
and (2.4) we can derive identities similar to the above example.

4. A multiple eigenvalue problem for systems

In this section we shall study an eigenvalue problem which is related to the
N+2

Dirichlet problem for the equation —Au = Au + u*? studied by Brezis &
NIrReNBERG [BrN]. Here we perturb the linear eigenvalue problem

—Au = A in Q, (4.1)
(L) —Av=Au  in 0, @.2)
u=0,v=0 on Q, @.3)

in which £ is a bounded domain in RY, N >4, with two terms of critical
growth. For Problem (L) we can prove the following lemma, in which Uy is
the principal eigenvalue of the Laplacian with Dirichlet boundary conditions
and ¢; is the corresponding (positive) eigenfunction.

Lemma 4.1. Problem (L) has a positive solution if and only if

/11 > 0, AZ > O, /11).2 = ,u%

The solution is given (modulo a constant) by u =

1 1
777%, v——\/—)—;%-

Proof. Multiply (4.1) by v and (4.2) by u, and integrate over . This gives
§ (Du, Dv) dx = 2, [ v* dx,
o] 2

f (Du, Dv) dx = 4 juz dx.
Q Q
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Multiplying these identities we obtain
2
<S (Du, Dv) dx) = Mdy [o? dx [u? dx, 4.4
Q Q Q

which yields for non-trivial solutions the condition

Aihy > 0.
Thus there are two possibilities:
Case 1: A; <0, 4, <0. Define
w*=~'-2, u, (4.5)
v¥ = =N -1 w. (4.6)

Employing the equations (4.1) and (4.2) we obtain the following system:

—Au* =\, v* in @, @.7)
—Av* =\, u* in Q, (4.8)
w* =0, v* =0 on 3Q. (4.9)

Adding (4.7) and (4.8) we obtain

{A(u* + o) =vA A, (w*+0v*) in Q,
(L) u* + 0¥ =0 on 0%,

and subtracting (4.7) from (4.8) we obtain
{A(u* —v*) =vAA (W —o*) in Q,
(L")

u* —v* =0 on 9492.

Multiplication of the differential equation of (L") by u* — v* followed by an
integration over Q2 yields

—g |D(u* — v*)|? dx = ~VAdy gg (w* — v*)? dx,

which proves that u* = v* in Q. Remembering the properties of the eigenvalue
problem for the Laplacian, we find that the only solution to Problem (L") with
one sign (+ or —) is the first eigenfunction ¢; with the eigenvalue ;. Thus
u* = Cp;, where C+0 is some constant, and VAdy = u;. Since u*v* =
#*2> 0 it follows from (4.5) and (4.6) that uv < 0 so that u and v cannot
both be positive. This excludes Case 1.

Case 2: A; >0, A, > 0. Define

u* =~A; u, 4.10)
v* =4, v 4.11)
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As in Case 1 we obtain

{ —AQu* +v*) =V, (F+v*) in Q,
@)

u* + ¥ =0 on 992,
{ Au* — v*) =VAd, (¥ —v*) in Q,
(L7 u* —p* =0 on 98Q.

Again we obtain u* = ¢* in Q. This immediately yields the solution for Prob-
lem (L):

1 1
u=C—_¢’ U=C—‘——d’; #:V/l/l ’
\/II 1 \/72 1 1 142
where C is some nonzero constant.

Remark. The proof of Lemma 4.1 gives insight into the complete spectrum of
Problem (L). Clearly it depends strongly on the spectrum of the Laplacian.
In the (4, 4,)-plane we obtain curves of eigenvalues:

/1112:/112, lEN,

where u; are the eigenvalues of the Laplacian. The positive branch of
A1dy = u? corresponds to the positive solutions of Problem @).

Remark. From Theorem 2.1 we have the following identity for Problem (L):

A’I (a1 - N) 5“2 dx + 12 (]V—_j - al) j'yz de = — § (DL{, D’I)) (xy n) ds.
2/ a 2 Q 3Q
(4.12)

Choosing a; so that either the first or the second term on the left-hand side
of (4.12) vanishes we derive

$ (Du, Dv) (x, n) ds $ (Du, Dv) (x, n) ds
1 -1 11
P2 §u? dx ’ 2z §v? dx
Q Q
After normalising » and v so that [[«| =1 and ||v|| = 1 in L2(2) we obtain
Viidy =1 § (Du, Dv) (n, x) ds. (4.13)
a2

A similar relation was found by F. RerLrice [R] for the Laplacian.
Now we formulate the problem which we are interested in:

—Au=uv+v?, u>0 in @, 4.19)
(P1) —Av=Ju+u’, ©v>0 in Q, (4.15)
u=v=20 on 9Q. (4.16)
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Here (p, q) is a pair of critical exponents as derived in Example 2 of Sec-
tion 3:

N—-y 2+
p=—", g=———, 4.17)
14 N-2-y
where we choose
N—4 N
el——, —}, 418
Y ( 5 2) (4.18)

N+4 N+4
so that 1 <p< N_a and 1 <g< N_1 For Problem (P1) we now state

the following theorem:

Theorem 4.2. Let (A, u) be in one of the areas
() 4s0, us0,

Q) Auzul

Then Problem (P1) has no solution.

Proof. To prove part (1) we shall derive an identity which can be formed by
using the Lagrangian for the variational problem:
1

A 1
L=(Du,Dv)——u2———u1’+1—F—v2—
2 p+1 2 g+1

pItt,

If we apply Theorem 2.1 with a;(x) = const and K (x) =x we obtain the
identity

N
A(al—iv—> Suzdx+u(a2——> §v? ax
2/ @ 2)a

N
+ al——N‘_ sup+1dx+(az———~)§vq+ldx
p+1/ e g+1/ o

+ (N=2—a; —a) § (Du, Dv) dx = — § (Du, Dv) (x, n) ds. (4.19)
Q 92

(1) For a; and a, we make the following choices:
a =1y, a2=N_2—y, SON—2—01—612=0.

The third, fourth, and fifth terms in the identity (4.19) vanish and we obtain

N -4
i(}’— _1\1) SRZdX‘*‘ﬂ(—— .—‘)}) St;}zdx:: — & (D%, D’l)) (x, }'Z) ds.
2] 9 2 Po) FYe)
{4.20)
Note that
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The right-hand side of (4.20) is non-positive. However, if A < 0 and x < 0, the
left-hand side is strictly positive. Hence for these values of A and u we have
a contradiction. Actually if either A or u is zero, (4.20) still gives a contradic-
tion. When A and u are both equal to zero, we obtain non-existence from Ex-
ample 2 of Section 3.

(2) To prove this part we need Lemma 4.1. We shall denote by (¢, i) the
positive solution of Problem (L). Using the equations (4.14) and (4.15) we
deduce that

Mluw=—(urd=—[oru=pfovp+ [ vl >ufve, (4.20)
Q Q Q Q2 2 Q

A== Joow=—[yro=Aluy+ [wy>ifuy. @22
Q Q Q Q 2 Q

Thus
Ao Suw > u §ve, (4.23)
Q Q
A foo >4 fuy. (4.24)
2 Q

Combining (4.23) and (4.24) and using the fact that 4, g, Ay, A, are all
positive we obtain

My §uy > du §uy. (4.25)
Q Q

Because [o uy > 0 this gives
#i= Ak > u.

Here we used Lemma 4.1. This now completes the prove of the theorem.

Remark. After this paper was completed I learned from E. MITiDIERI about his
paper [Mi}, in which he obtained results similar to those derived in Sec-
tion 3, by a different method.
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