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Communicated by J. SERRIN 

1. Introduction 

In the work of POnOs [P] and in recent work of Pucci  & SERRIN [PS], 
variational identities are discussed which are useful for solving various ques- 
tions about elliptic differential equations and particular elliptic systems. Here 
we obtain a number of further applications of these identities to systems. 

It was noted in [PS] that these identities are closely related to Noether's 
Theorem for variational problems. By working out the divergence-term arising 
in Noether's Theorem and making some simplifications, one obtains a general 
identity for variational problems. If a variational integral has a symmetry 
group G with the following infinitesimal generator 

0 v = hi(x) O_ -a (x )  u - - ,  
OX i OU 

then the conserved quantity (divergence-term) arising in Noether's Theorem is 
exactly the divergence form in the Pucci-Serrin identity [PS], which does not 
require the variational integral to have a symmetry group. 

Throughout this paper we employ the summation convention. 
The first idea of applying a slightly modified version of the Pucci-Serrin 

identity came up in the study of the following system of partial differentical 
equations [PV] : 

~ Au = g(v),  (1.1) 
(pl)  

Av = f ( u ) .  (I .2) 

When we study radially symmetric solutions of Problem (P1) we obtain after 
some transformations [APJ that 

f Y" = t-kg(z), (1.3) 
(P2) I~z" t-kf(y). (1.4) 



376 R.C.A.M.  VAN DER VORST 

The equations (1.3) and (1.4) are closely related to the Emden-Fowler equa- 
tion. Multiplying (1.3) by tz', (1.4) by ty' and integrating over It, ~ )  gives after 
a few manipulations two functionals Hi(t )  and Hz(t) .  They can be combined 
into a family of functionals: 

Ho(t) = OHl(t) + (1 - 0) Hz(t) ,  O~R. (1.5) 

The family Ho(t) enables us to prove some existence and non-existence 
theorems for Problem (P2) [PV]. The fact that we have a parameter 0 plays 
an important role. In Section 2 we shall develop variational identities in which 
the parameter 0 enters in a natural way. 

Consider the following Lagrangian density: 

L = (Du, Dv) + G(v) + F (u ) ,  (1.6) 

Du = grad u, Dv = grad v, (1.7) 

G'(v) = g(v) ,  F ' (u)  = f ( u ) ,  (1.8) 

f ( 0 )  = g(0) = 0, (1.8a) 

where u, ve  C1((2), and (., .) is the inner product in R N. We want to derive 
an identity which is closely related to (1.5). For this a simple generalization 
of the Pucci-Serrin identity for systems is needed. This identity will be derived 
in Section 2. In Section 3 we shall show with a number of examples of varia- 
tional problems how the identity of Section 2 can be used. As the examples 
will show, we employ identities using the infinitesimal generator of the group 
of dilatations, which also plays a important r61e in the concentration-compact- 
ness principle [L]. 

In some cases it is not easy, if not impossible, to formulate a system in 
terms of a variational problem. It would be nice to have some kind of 
machinery to handle such problems, such as 

- A u  = g ( u ,  v ) ,  (1.9) 

- A v  = f ( u ,  v).  (1.10) 

In Section 3 we shall indicate how to deal with this situation. Basically we 
consider modified Euler-Lagrange equations, which enable us to handle the 
above equations and related ones (corresponding to generalized forces in 
mechanics). The modified equations still give a nice integral identity. This idea 
was also explored in [PS]. 

In Section 4 an example of a perturbed system is given which is similar 
to the problem studied by BgEzls & NIRENBERG [BrN]. 

In this paper we do not consider higher-order variational problems, 
although the main ideas discussed here immediately carry over to such prob- 

lems. 

2. The generalized identity 

In this section a simple but very useful modification of  the Pucci-Serrin 
identity for first-order variational problems for systems is discussed in order 
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to deal with functionals of indefinite nature. Consider the following variational 
problem: 

c5 ~ L(x,  u, p) dx = 0, (2.1) 
~2 

where u =  (uk), p =  (pi~), p~= Ou~k k = l ,  s, i = l  N, and f2 is a 
Ox i . . . . . .  . . . ,  

bounded domain in R u, with smooth boundary 0f2. The corresponding Euler- 
Lagrange equations are 

/ \  OL 
div | Z ~ ]  - 0 ,  k = l  . . . . .  s. (2.2) 

Ouk \op~ / 

Theorem 2.1. Let Le  C t ( ~ x R S x R  Nxs) and let u = (ul . . . . .  u,) : O ~  R s be a 
h i C 1 solution of (2.2) with ukE C2(g?). Let akl, ~ (0) .  Then 

div iL _ hj OUkox j 3p~OL akl ul ~p 

3h~L + hi 3i, (Ouk Oh ) Oak!~ OL (Ou( OL O ~  
~--- OX~ ON ~ ~kOX j OX ~ i  + Ul OX' /  OpT -- akl ~OX i 013 k -]- U, aud 

Furthermore, 

O #  Opi k aktut  , d s  

in s 

(2.3) 

~kOX i OX ~ i  \ 3 X  j 3X; + ul 3xi ] 3p~i - akz •3xi 3p~ + ul dx, 
g2 

(2.4) 
where n is the outward normal on 0(2. 

Proof. Expanding the divergence term in (2.3) and using (2.2) gives the re- 
quired result. The integral from is obtained by applying the Gauss Divergence 
Theorem. 

We observe that the divergence term in Theorem 2.1 is exactly the con- 
served quantity in Noether's Theorem for (2.1) if the symmetry group G has 
the following generator (see also OLVER [O]): 

v = hi(x) 3 0 
Ox i - ak t ( x )  ul . Ouk 

The modification of the Pucci-Serrin identity discussed in this section con- 
sists in allowing a(x) to be an sxs-matrix (akl). In Section 3 we shall dis- 
cuss a number of applications of Theorem 2.1, in which (akl) has diagonal 
form. 
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If we put Theorem 2.1 in a more general setting, it is natural to consider 
the case in which a and h j may also depend on u: 

0 0 
- - o  v = hi(x, u) Ox i + ak(x, U) OUk 

Here v is the infinitesimal generator of an 1-parameter group G of transforma- 
tions. From (2.3) we can then obtain a corresponding identity in a straightfor- 
ward manner. This more general situation will not be discussed in this paper. 

3. Examples 

In this section we shall discuss some examples to demonstrate the use of 
Theorem 2.1. In all cases (akl) will be of diagonal form. In these examples 
we shall establish a number of non-existence results. 

1. The biharmonic operator. We consider the problem: 

(I) 

I A21g = f ( u ) ,  u > 0 in t2, (3.1) 

u = 0 on 0g2, (3.2a) 

Au = 0 on 0f2, (3.2b) 

in which it is assumed that f satisfies the following hypotheses: 

( f E C(R) ,  

(H1) /(_ f (0 )  = 0, f ( u )  > 0 if u > 0. 

This problem was studied in [PV]. It is similar to a problem which was studied 
by Pucc i  & SZRRIN [PS], who considered different boundary conditions: 

Ou 
u = 0, - -  = 0 on Of2. (3.2 c) 

On 

It is convenient to write equation (3.1) and the boundary conditions (3.2a) 
and (3.2b) as 

(Ia) 

I A u = v ,  u > 0  in 12, (3.3) 

Av = f ( u )  in ~ ,  (3.4) 

u = v =0  on M2. (3.5) 

For this problem we have the Lagrangian 
L = (Du, Dv) + �89 v 2 At- F(N), (3.6) 

F'(u) = f ( u ) ,  f (0 )  = 0. (3.7) 
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Theorem 3.1 .  Let (u, v) E (C2(..c2) c', C I ( ~ ) )  2 be a solution o f  Problem (Ia) in 
which s = 2, ag(x) = a g = c o n s t . ,  hi(x)  = x i, k = 1 . . . . .  s, i = l . . . . .  N. Then 
u and v satisfy the identity 

f ( (NF(u) -a luf (u) )  + ( N - a ~ )  v 2 
D 

+ ( N -  2 - a  1 - a2) (Du, Dr ) )  

= - @ (Du, Dv) (n, x) ds. 

Os 

Proof. When we apply Theorem 2.1 to (3.6) we immediately obtain 

chc 

(3.8) 

Ox-- ) Ox ~ + x J ~  ds Ox J 
~a oa 

= f  ( ( N F ( u ) - a l u f ( u ) ) + ( N - a 2 ) v 2 + ( N - 2 - a l - a 2 ) ( D u ,  D v ) ) d x .  

(3.9) 

Because u = v = 0 on 0~2 we can write 

Ou Ou Ov Ov 
- -  h i ,  - -  

Ox i On Ox i On 
hi. 

Substituting these identities into x j - -  - -  
Ou Ov 

�9 we obtain 
Ox j Ox ~ 

xj  3u Ov 3u Ov j Ou Ov 
On nj Ox~ i n i = - -  n i . - -  xJnj. - -  On Ox i x nj Ox i Ox i 

The substitution of  this expression into the left-hand side of  (3.9) yields 

- ~ (Du, Dv) (x, n) ds, 
O(2 

from which (3.8) follows. 

It should be noticed that this identity is similar to one derived by Puc -  
ci & S•Rgm for the biharmonic operator. If  the version of  the Pucci-Serrin 
identity for systems is applied to the equations (3.3) and (3.4), then an addi- 
tional integration by parts is required in order to obtain (3.8). Here the expres- 
sion of  Theorem 2.1 immediately gives the required identity. In later examples 
we give identities for certain systems which cannot be immediately derived 
from the Pucci-Serrin identity for systems. 

By employing the identity (3.8) we obtain the following non-existence 
theorem: 
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Theorem 3.2. Suppose I2 and f satisfy 
(1) g2 is star-shaped and 3t2 is smooth, 
(2) NF(u) - aluf(u) <- O, u * O, 

N 
(3) a 2 - - -  _> 0, N - 2 - a 1 - a 2 > 0, 

2 - 
for some constants a 1 and a 2. Then Problem (Ia) has no solution 
(C2(~-2) o c l ( ~ ) )  2, 

(u, v) e 

Proof.  Observe that  because u > 0 in g2, f(u) > 0 in  f2 and so 

A v > 0  in f2. 

Because v = 0 on 3 0  it follows f rom the M a x i m u m  Principle that  

v < 0  in f2. 

Hence 
A u < 0  in f2. 

From the Boundary-Poin t  Lemma we now conclude that  

Thus  

Ou 3v 
- -  < 0 ,  - -  > 0  

On On 
on 0 0 .  

3u Ov 
(Du, Dr) - (n, n) < 0 on 3(2. 

On On 

Choosing  the origin at a point  about  which f2 is star-shaped we conclude 

that  
(Du, Dr) (x, n) < 0 on 3co C 3(2, 

where &o has positive measure in 3f2. Now we deduce f rom (3.8) that  if u > 0, 

then 

f ((NF(u) _aluf(u)) + ( N  _ a 2 ) v 2  + ( N _ 2 _ a l _ a 2 )  (Du ' Dv)) dx > 0. 
(3.9 a) 

On  the other hand,  if we multiply (3.3) by v and integrate over f2, we obtain 

- S (Du, Dv) dx= Sv 2 dx > O, 
f2 Q 

and so, using condit ions (2) and (3) we obtain 

f ( ( N -  2 - a l  -a2) (Du, Dv) + (NF(u) -aluf(u))  + ( N  -a2)  v2) 

~2 

The inequalities (3.9a) and (3.10) are 
Dv = 0 in f2. This proves the theorem. 

d x < O .  

(3.10) 

contradictory unless u = v = Du = 
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I f  we take 

we obtain 

N 
a 1 + a 2 = N - 2, a 2 -=  , 

2 
(3.19 

Corollary 3 .3 .  Suppose (2 and f satisfy 
(1) (2 is star-shaped, 0(2 is smooth, 

N - 4  
(2) NF(u) uf(u) <= O, u ~: O. 

2 
Then Problem (I)  has no solution u E C 4 ( f 2 ) c ~ C 3 ( ~ ) .  

Remark. For the function 

f (u)  = u p , p >  1, 

we obtain non-existence by Corollary 3.3 if  

N + 4  p > - - .  
= N - 4  

N - 4  
Remark. Observe that because we have a 1 - 

2 
tesimal generator o f  the group of  dilatations becomes 

This corresponds to 

N 
and az = ~ ,  the infini- 

2 

u ( x )  ~ 2 

v = x i  3 N - 4  3 N 3 
- -  - - U - -  - -  - - V - - .  

3x ~ 2 Ou 2 3v 

N - 4  N 

2 u , v ( x ) ~  2u 

Clearly this group of dilatations is not a symmetry 

)LER +. 

group of the 
does not satisfy Lagrangian given by (3.6), when the nonlinearity f (u)  

N - 4  
NF(u) uf(u) = O. 

2 

2. An indefinite variational system. Now we consider the problem 

I • = g ( v ) ,  u > 0 in s (3.12) 

Av = f ( u )  in s (3.13) 
( l I )  

u = 0 on 3(2, (3.14) 

v = 0 on 3s (3.15) 

in which the functions f and g are assumed to satisfy the following hypotheses: 

I 
f, gfi C(R) ;  

(H2) f ( u ) > O  if u > 0 ;  f ( u ) < 0  if u < 0 ;  f ( 0 )  = 0 ;  

g ( u ) > 0  if u > 0 ;  g ( u ) < 0  if u < 0 ;  g ( 0 ) = 0 .  
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This problem has the Lagrangian 

L = (Du, Dr)  + G(v )  + F ( u ) ,  (3.16) 

G' (v )  = g (v ) ,  F ' ( u )  = f ( u ) .  (3.17) 

Using the above Lagrangian we can apply Theorem 2.1 and derive a varia- 
tional identity for Problem (II). The group of transformations we use are again 
dilatations, although slightly different from the one we described in Section 2. 

Theorem 3.4.  Let (u, v) ~ (C2(f2) ~ C1(~) )  2 be a solution o f  Problem (II)  in 
which s = 2 ,  ak(x) = ak = const., h i ( x )  = x i, k =  1 . . . . .  S, i = 1 . . . . .  N. Then 

f ( ( N F ( u )  - a lu f (u ) )  + (NG(v )  - a2vg(v)) + (N - 2 - al - a2) (Du, D r ) )  dx 
f2 

= - ~ (Du,  D r )  (n, x)cIs .  (3.18) 
Oo 

The proof of this theorem is completely similar to the proof of  Theorem 3.1. 

By employing this identity we obtain the following non-existence theorem: 

Theorem 3.5.  Suppose that g2, f and g satisfy 
(1) f2 is star-shaped and Of 2 is smooth, 
(2) N F ( u )  - a lu f (u )  <= O, u :I: O, 
(3) N G ( v )  - a2vg(v) <- O, v :~ O, 
(4) N - 2 - al - a2 >- 0, 
for  some constants al and az. Then Problem (II)  has no solution (u, v )E  
( c2(~)  • c1(~))  2 

Proof. As in the proof of  Theorem 3.2 we conclude from the Maximum Princi- 
ple that 

v < 0  in f2. 

Again by employing the Boundary-Point Lemma we obtain 

(Du, Dr)  (x, n) < 0 on 0e) C 0f2. 

This then gives 

I ( ( N F ( u )  - a lu f (u ) )  + (NG(v )  - a2vg (v)) + ( N -  2 - a I - a2) (Du, D r ) )  dx > O. 
s 

If  we multiply (3.12) by v and then integrate over f2, we obtain 

- f (Du, Dv)  dx = I v g ( v )  dx > 0, v =~ 0. 
g? ~2 

From here on the proof is similar to that of Theorem 3.2. 

If  we take 

we obtain 
aa + a2 = N -  2, 
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Corollary 3 .6 .  Suppose s f and g satisfy 
(1) s is star-shaped and 0s is smooth, 
(2) NF(u) - aluf(u) <= O, u .  O, 
(3) NG(v)  - ( N -  2 - al)  vg(u) <= O, v .  O, 
for some constant al. Then Problem ( I I )  has no solution (u, v) E (C2(s n 
c1(~))  2 

Remark. For the functions 

f ( u )  = u p, 

we obtain non-existence if 

g(v) = v I v[ q-l ,  (3.19) 

N - a 1 
p => - -  , (3.20) 

a l  

2 + a l  
q > . (3.21) 

= N - 2 - a l  

N - 4  
This result agrees with Example 2 where q = 1 and al - Note that 

2 
this particular choice of  a 1 corresponds to the dilatation group used for the 
biharmonic operator. 

Remark. Some existence and non-existence theorems were obtained by GALAK- 
TIONOV, KURDYUMOV ~r SAMARSKn [GKS] in their study of  steady states of 
parabolic systems closely related to Problem (II). 

3. The pluri-harmonic operator. In this example we shall consider the pluri-har- 
monic operator as a second-order system in order to study other 'Dirichlet-like' 
boundary  conditions different from those considered by [PS]. 

I A u i = - U i + l ,  u x > 0  i = l  . . . . .  s -  1 in s (3.22) 

(III) Aus = - f ( u l )  in s (3.23) 

,~m(Ui, Du i) = O, m, i = 1 . . . . .  s on OQ. (3.24) 

It should be noted that we placed minus signs on the left-hand sides of  the 
equations (3.22) and (3.23). In this way we can look for positive solutions 
ui > 0, i = 1 . . . .  , s. This is a direct consequence of  the Maximum Principle. 
We assume that f satisfies the following hypotheses: 

f f  E C(R) ,  
(H3) (_f(0)  = 0, f ( u )  > 0 if u > 0. 

The funcfionals ~ m  describe the boundary conditions. Our objective is to 
consider different choices of  ~ m  which may occur when the pluri-harmonic 
operator is considered as a system. For example, the triharmonic equation 

(A) A3u = - f ( u )  
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allows four  such possibi l i t ies ,  ar is ing as Dir ichle t  b o u n d a r y  condi t ions  for  dif-  
ferent forms o f  (A). Thus  for (A) these b o u n d a r y  condi t ions  are u = 0, 
0u 

- 0  and  /~u = 0 on  0f2. The  quest ion o f  non-exis tence of  so lu t ions  of  
On 
this  p rob lem is s tudied  in [PS]. 

W h e n  (A) is wri t ten  as 

(B) 
I ~2U = V, 

Av  = - f ( u ) ,  

_Ou = 0 and 
On 

the  co r re spond ing  Dir ichlet  b o u n d a r y  cond i t ions  become  u = 0, 
v = 0 on 0s Wri t ing  (A) as 

f Au = - v ,  
(c)  

A2v = f ( u ) ,  

we have u = 0, v = 0 and  --0v = 0 on  0~ .  Final ly,  if  (A) is wri t ten  as the 
On system 

I 
A U  = - - v ,  

(D) Av = - w ,  

A w  = - f ( u ) ,  

the  Dir ichle t  b o u n d a r y  cond i t ions  become  u = 0, v = 0 a n d  w = 0 on  0 0 .  
These  la t ter  condi t ions  are the  central  b o u n d a r y  condi t ions  in this paper .  Of  
course,  in all these p rob lems  u is taken  to  be positive. 

In  cons ider ing  these four  s i tua t ions  we shall  restr ict  our  a t t en t ion  to radia l -  
ly symmet r ic  so lu t ions  on  O = B1. For  this  case we examine System (D), and  
the b o u n d a r y  condi t ions  which agree with the  four  s i tuat ions.  Transforming  

to new var iables :  

2N - 2 
t = (N - 2 )  N - 2 r -  (N-21, k - , N ae 2 ,  

N - 2  

y i ( t )  = u i ( r ) ,  ul = u, u2 = v, u3 = w, for  i = 1, . . . ,  3, 

as in [AP, PV] we ob ta in  

( I I I  a) 

eyi"= - t - k Y i + l ,  Yl > 0 i = 1 . . . . .  s - 1, 

- -  _ t - k f ( y l )  Y S - -  

y~(o~) = O, i = 1 . . . . .  s ,  

3 m ( Y i ,  Y~) (T)  = 0, i, m = 1 . . . . .  s ,  

T =  (N - 2) ~N-2) �9 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 
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For this system it is possible to give a Lagrangian 

s - 1  
i t 1 

L = 1 YiYs-i+l - ~  ~ t -~Yi+lYs- i+t  - t - k F ( Y l )  
i = 1  i = 1  

in which 

(3.30) 

A: y t (T)  = 0, y ' I (T)  = 0, y2(T) = 0, (3.36) 

B: y t ( T )  = O, y ~ ( T )  = 0, y3(T) = 0, (3.37) 

C: y ~ ( T )  = O, y 2 ( T )  = O, y ~ ( T )  = 0, (3.38) 

D: y l ( T )  = O, y 2 ( T )  =0,  y3(T) = 0. (3.39) 

Remark. We can immediately make some observations about the solution 
(Yl, Y2, Y3). In all cases we have by assumption that Yl > 0 on (T, co) and 
Yl(T) = 0 .  In addition we have that Y 3 > 0  and is concave on (T, ~ )  in 
Case B, and that Yi > 0, i = 1, 2, 3 on (T, co) in Case D. 

From Theorem 2.1 we have the following identity: 

- I j ( Y i ,  y;) (T) = - ~((1  + as + a3) Y'lY~ + (1 + a2) y~2) ds 
2 

T 

+ .[ ((k - 1 + a2 + a3) s - ky2y3  + (k  - 1) s - k F ( y l )  + a l s - k y l f ( y l ) )  ds,  
T 

(3.40) 

where j = 1 . . . . .  4, and the boundary terms /i are given by 

A: 11 = 1 Ty~2, 

B: 12 = 1 Ty~2 _ a2Y2Y~, 

C: 13 = - Ty~y; - a3y3y~, 

D :  I4 = - r y ~ y ;  - ~ rye2. 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

F ' ( Y l )  =f (Yl ) -  (3.31) 

In [AP] the case s = 1 is discussed in great detail. The case s = 2 is discussed 
in [PV]. Here we shall discuss the case s = 3 as an illustration. The Lagrangian 
is then 

1 . t 2  
L = y~y~ + ~ y2 -- t-kY2Y3 - t - k F ( Y ~ ) ,  (3.32) 

and the Euler-Lagrange equations are 

I Y1" = - t - ~ y 2 ,  (3.33) 

(IV) y~" = - t - k y  3 , (3.34) 

y~' = - - t - k f ( y l ) .  (3.35) 

The boundary conditions corresponding to (A ) - (D )  become 
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The expressions (3.41)-(3.44) are evaluated by using the boundary conditions 
at infinity at t = T. Because Ul, u2 and u 3 are assumed to be smooth,  we re- 
quire that Yl(co), Y2(~176 Y3(co) exist and be finite. For a more detailed 
discussion we refer to [PV]. 

In this example we take 

2k - 5 1 3 - 2k 
a l  - -  , a 2  - -  , a 3  - -  

2 2 2 

Thus if kE (2, 2�89 which corresponds to N > 6, then a 1 < 0, a 2 < 0, a 3 < 0. 
With this choice of  the constants a~, as and a 3 it is possible to determine the 
sign of / j (T)  for all values of  j. The identity now becomes 

i - I j (Y i 'Y f ) (T )=  ( ( k - 1 ) s - k F ( y l )  5 - 2 k s - k y l f ( Y l ) )  

T 

Lemma 3.7. Suppose k ~ (2, 21 ). If (Yl, Y2, Y3) is a solution of the equations 
( 3 . 3 3 ) -  (3.35), then 

Ij(Yi, y~) ( T) <0  for j =  1, 2, 3, 4. 

Proof. We treat the cases j = 1, 2, 3, 4 in succession. 
j = 1: In this case the result is obvious. 
j = 2: As we already observed in the last remark, Y3 is concave, and so 
Y3 > 0 on (T, co) because y 3 ( T ) =  0. Thus, by (3.34), Y2 is concave and 
y~(T) > 0 because y~(co) = 0. As before we conclude from (3.33) and the 
conditions at t = T and at infinity that Y2 must have a sign change and that  
Y2 (T) < 0. Because a2 < 0 and y~ (T) > 0, the assertion follows from (3.42). 
j = 3: By (3.35), Y3 is a concave function, whence, because y~ (co) = 0, there 
exists two possiblities: Either Y3 has one sign on (T, co), or it has one zero 
and Y3(co) > 0. I f  Y3 has one sign, then y~(co) , 0, by (3.34) and (3.38), so 
Y3 must have a zero and Y3 (T) < 0. This means that Y2 > 0 on (T, co) and 
that Yl is concave on (T, co). Because y l (T)  = 0 it follows that y[(T) > O. 
By the choice of  k, a3 < 0, so that substitution into (3.43) yields the desired 
inequality. 
j = 4: As was already noted, Yi > 0 o n  ( T ,  c o )  for i = 1, 2, 3. Integration of 
the equations (3.33)-(3.35) over (T, co) yields that y~(T) > 0 for i = 1, 2, 3, 
which, when substituted in (3.44), proves the assertion. 

We now can formulate the following non-existence results for Problem 

(iv): 

Theorem 3.8.  Let T > 0 and let f satisfy 

5 - 2k 
(k - 1) F(yl )  Ylf(Yl) <= 0 Yx > 0. (3.45) 

2 

Then Problem (IV) has no solution Yl, Y;, Y3E C2((  T, co)) r C I ( [  T, co)) which 
satisfies one of the boundary conditions A to D. 
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Proof. I f  (3.45) is fulfilled, the right-hand side of  identity (3.40) becomes non- 
negative while the left-hand side is negative by Lemma 3.7. 

Remark. I f  we consider the function f(Yl)  = Y~, we obtain non-existence if 

4 k - 7  N +  6 
p >  - N > 6 .  

= 5 - 2 k  N - 6 '  

Next we shall discuss a particular variant of  Problem 0ID.  We can write 
down the following Lagrangian: 

L = �89 (Duk, Dus-k+l) -- 1 ~ Uk+lU~-k+l -- F(u~) (3.46) 
k=l k=l 

F'(Ul)  = f ( u l ) .  

We are interested here in specific boundary conditions analogous to those of  
[PSI and [EFT], i.e., the Dirichlet boundary conditions for the system. We ac- 
cordingly consider the following system of  equations: 

I ZXuk =--uk+l, u k>O k = l  . . . . .  s - 1  in f2, 

( I I Ib)  Aus = - f ( u l )  in f2, 

u~ = 0 ,  k = 1 . . . . .  s o n  0 g ? .  

I f  we employ the identity (2.4) with a~(x) = a k and hi(x) = x i, we obtain the 
identity 

! ( ( N F ( u l )  - 

g2 
alulf(ul)) + ]~a - ak+l Uk+lUs-~+l 

k=l 

k=l 

dx 

--2--1 ~ ( ~  (Obgk, Obls_k+l)) (f/, X) d s .  

k=l OQ 

(3.47) 

We can simplify (3.47) by imposing some restrictions on the coefficients. As 
before we require that the coefficients of  Uk+~Us-k+l for k = 1 . . . . .  s - 1, and 
the coefficients of  (Duk, Du~_k+x) for k = 1 . . . . .  s all vanish. It is easily 
observed that to achieve this w e  obtain exactly s linear equations in the 
variables a k for k = i . . . . .  s. 

Remark. We have to point out that by the above procedure the number of  in- 
dependent parameters a k reduces to zero. However, if we replace the 
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Lagrangian density given in (3.36) by 

L = �89 ~ (Duk ,  Dus_~+l) - H ( u  1, U 2 . . . . .  Us), 
k=l 

in which 

OH 
- -  =hi (u1 ,  u2, . . . ,  Us), 
Oui 

i = 1, 2, . . . ,  s, 

we obtain a number  o f  degrees o f  f reedom on the parameters al . . . . .  as. This 
can best be illustrated by Example 2, where we had 

H(u l ,  u2) = F(u l )  + G(u2). 

In  this example one degree o f  f reedom exists by the relation a I + a 2 = N - 2 
between the parameters al and a2. This can also be done for systems of  s 
equations. 

For Problem ( I I Ib )  we now obtain the lemma:  

L e m m a  3 .9 .  Let uk6 C2(~'~) O c l ( ~ )  for k = 1 . . . . .  s be a solution of  Problem 
( I I Ib) ,  and let ak(x)  = ak, h i ( x )  = x i  f o r  k = 1, . . . ,  s ,  i = 1 . . . . .  N. Then the 
following identity holds: 

I (NF(Ul) N22s Ulf(Ul' ) 
t'2 

= ~ (DUk, Dus-k+l  (n, x)  ds. 

oa (3.48) 

Proof.  We consider the cases in which s is even (s = 4) and s is odd (s >__ 3) 
successively�9 The cases s = 1 and s = 2 have been dealt with before. 
s is even: I f  we set the coefficients occuring in (3.47) equal to zero, we obtain 
two sets o f  equat ions:  

(El) 

I N - 2 - a l - a s  = 0 ,  

N - 2  - a  2 - S s _  l = O, 

N -  2 - a {  - al+ ~ = 0, 

(E2) 

N - a 2 - a s = 0, 

N - a 3 - Ss_ 1 = O, 

N -  a ~ -  a2+ ~ = 0 ,  

N 
~'- - -  a l +  ~ = 0 .  
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Together (El) and (E2) yield s equations with s variables. If we subtract the 
first equation of  (El) from the first equation of  (E2) and the second one of 
(El)  from the second one of  (E2), etc., we obtain 

N - 4  s 
as - , ak_ 1 = a k - -  2,  k = 2, . . . ,  - .  

2 2 

Solving these gives 

a l = a 2 _ 2 = . . . = a ~ _ 2 ( 2 _ i  ) =--N2 - 2 - s + 2 -  
N 

- -  - -  - -  S .  

2 

s is odd: Just as for even values of s we obtain two sets of equations from 
(3.47): 

I 
N - a 2 - a s = 0, 

N -  a 3 - Ss_ I O, 

N - a,~x - a l + , I i  0, 

(E3) 

(E4) 

( 2 -  N +  a t +  as = 0 ,  

2 -  N +  a 2 +  ss-1 = 0 ,  

2 -  N +  a s - , + a  ,+1=0,  
2 I + ~ -  

N 
- - - 1 -  a,+~l = 0 .  
2 

We immediately have 

N - 2  
as+~ ~--- - -  

2 

If  we add the first equation of  (E3) to the first equation of  (E4) and the sec- 
ond equation of  (E3) to the second equation of  (E4), etc., we obtain 

s + l  
a k - l = a k - - 2 ,  k = 2  . . . . .  - -  

2 

Direct verification yields 

= a ~ + ~ - 2 (  - s + l  1~ ----N _ l - s -  1 + 2 -  N 
a l  \ 2 ] 2 2 s. 

This outcome is similar to the one in the even case. The lemma is proved by 
substituting the value obtained for a 1 in identity (3.47). 

By employing Lemma 3.9 we are able to derive the following nonexistence 
theorem for Problem (III b). 
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Theorem 3.10. Suppose s and f satisfy 
(1) f2 is star-shaped, 

N - 2s 
(2) NF(Ul) ulf(ul) <--- O, IA 1 :~: O. 

2 
Then Problem (IIIb) has no solution uk~ C2(f2) c~ C1(~)  for k = 1 . . . . .  s. 

Proof. From the equations of  Problem (III b) we immediately deduce that 

& u k < 0  in s for k = l ,  . . . , s .  

From the Boundary-Point Lemma we conclude that 

, -3  _u~ < 0 on M2, k = 1 . . . . .  s. 
On 

Hence (Duk, Du~-k+l) -- 
is star-shaped this gives 

Ouk OU,-k+l (n, n ) >  0 on a~2 for all k. Because f2 
On On 

! ~ (Duk, Dus-k+l (n, x) ds > O. 2 
c3f2 

Therefore 

f ( N F ( u l )  N - 2 S u l f ( u l )  ) ~  d x > 0 .  (3.49) 

f2 

On the other hand, by employing condition (2) we obtain 

2 ulf(ul dx <= O. (3.50) 

t? 

Since (3.49) and (3.50) are contradictory, the theorem is proved. 

Remark. Consider the function 

f ( u l )  = u{. 

N + 2 s  
We obtain a non-existence theorem if p > - - .  This is the same result 

= N - 2 s  
as that derived in [PS] for the case of Problem (III c) with Dirichlet boundary 
conditions. 

Theorem 3.10 yields a non-existence theorem for the function 

N+2s 

f (ul)  = Au q + ul{ -~ 
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if 
N +  2s 

i t < 0  and q < - - .  
= N - 2s 

(3.51) 

To see this observe that condition (2) becomes 

N -  2s  N ) u q + l  < O, U 1 > O. 
"l 2 q + l  = = 

N + 2 s  
Thus, if it < 0 and q < -  we arrive at a contradiction. 

N - 2 s '  
)~ = 0 is discussed in the Remark above. 

The case 

Remark. Following [PS] and [EFJ] we can write Problem (III b) as 

(mc) 

I N+2s 
(__~)s  U --  itU q - -  U N-2s = 0 in f2, 

( - A )  k u > 0 ,  k = 0  . . . . .  s - 1  in f2, 

u = Au . . . . .  (A) ~-1 u = 0 on 0f2. 

4. Linearizations around solutions. In this example we shall derive an identity 
for a system consisting of  the elliptic equation LXu + 2u + u p = 0 and its lin- 
earization 

I ~ u + i t u + u  p = O ,  u > 0  in f2, (3.52) 

(L1) •  + itw + puP-lw = 0 in s (3.53) 

u = 0, w = 0 on 0f2. (3.54) 

This system arises in the study of  uniqueness and stability of  solutions of  
(3.52). 

For System (L1) it is possible to give the Lagrangian 

L = (Du, Dw) - 2uw - uPw. (3.55) 

With this information we can apply Theorem 2.1, which leads to the following 
lemma: 

Lemma 3.11. Let (u, w)E (C2(~'2) (- '1C1(~'~)) 2 be a solution of Problem (LI),  
and let ak(x ) = a k = c o n s t . ,  hi(x) =x i for k =  1, 2, i =  1 . . . . .  N. Then 

( ( a l p  + a 2 - N )  uPw + 2(al  + a  2 - N )  uw + ( N - 2 - a l  - a 2 )  (Du, Dw))  dx 
~2 

= - ~ (Ou, Dw) (n, x) ds. (3.56) 
Or2 

Proof. Apply Theorem 2.1, using expression (3.55). 
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With the choice of parameters 

2 ( N - 2 )  p - N  
a 1 - -  , a 2  = 

p - 1  p - 1  
(3.57) 

in (3.56) we obtain the identity 

(Du, Dw) (n, x) ds = 22 1 uw dx. 
Or2 t2 

(3.58) 

Identity (3.58) was recently also obtained by S. C. LIN [Li] using a different 
method, in connection with the study of uniqueness of solutions of equation 
(3.52) when 2 = 0 and t2 is a convex domain in R 2. 

An interesting question arises how to handle the problem if we want to 
consider two different eigenvalues instead of one in Problem (L1). For this we 
have to state an additional property for variational identities which was also 
mentioned in [PS] (page 685). For the problem with two distinct eigenvalues 
we consider the modified Euler-Lagrange equations: 

d i v (  ,_~ OL _ Q ,  k = l ,  . . . , s .  (2.2a) 
\Op / Ouk 

Here Gk is some function of u, w, Du, Dw. We choose G1 = (4 - p )  w and 
Ge--0 .  The equations (2.2a) then become 

(L2) 

I Au + )~u + u p = 0, u > 0 in s (3.59) 

Aw Jr IdW -t- pup-lw = 0 in s (3.60) 

u = w = 0 on 0s (3.61) 

If  we wan t  to obtain variational identities for the quasi-variational equations 
(2.2a), we have to add the following expression to the right-hand sides of (2.3) 
and (2.4): 

- (h  j Ouk~.Ox J + aklul) Gk. (3.62) 

If we apply this modification, we obtain the following identity for Problem 
(L2): 

- ~ (Du,  D w )  (n, x )  ds - 
OQ 

2 ( p l l - k t )  f uw dx - ()~ - p) I w(x, Du) dx. 
p - 1  ~ 

(3.63) 

The identities (3.58) and (3.63) were derived in collaboration with 
HULSHOF & WEISSLER [HW], who considered them in the study of Problems 
(L1) and (L2). For systems with a variational structure the linearized system 
can be described together with the original system in one Lagrangian similar 
to the above example. 
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Remark. If we recall the non-variational system (1.9) and (1.10) from Section 
1, we can give a method using the modified Euler-Lagrange equations to derive 
variational identities. One can proceed as follows. Set 

U V 

~ f ( s ,  v) ds = F(u, v), ~ g(u, s) ds = G(u, v) ,  
o o 

and consider the Lagrangian 

L = (Du, Dr) - F ( u ,  v) - G(u, v).  

The modified Euler-Lagrange equations (2.2a) in which we set G1 = Gu(u, v) 
and G2 = Fv(u, v) (2.2a) yields 

- •  = g(u, v) ,  (1.9) 

- Av = f ( u ,  v ) .  (1.10) 

Using the Lagrangian L and the expression (3.62) as an additional term in (2.3) 
and (2.4) we can derive identities similar to the  above example. 

4. A mult iple  e igenvalue problem for systems 

In this section we shall study an eigenvalue problem which is related to the 
N+2 

Dirichlet problem for the equation - A u  = 2u + u s-2 studied by BREZIS & 
NIRF.NBERG [BrN]. Here we perturb the linear eigenvalue problem 

(L) 

I - A u = 22v in s (4.1) 

- 5 v  = 21u in f2, (4.2) 

u = 0, v = 0 on 0f2, (4.3) 

in which f2 is a bounded domain in R N, N > 4, with two terms of critical 
growth. For Problem (L) we can prove the following lemma, in which/z 1 is 
the principal eigenvalue of the Laplacian with Dirichlet boundary conditions 
and 4h is the corresponding (positive) eigenfunction. 

I_emma 4.1. Problem (L) has a positive solution if  and only if 

/~1 > O, /~2 > O, ~L12 2 = /2 2 . 

1 1 
the  solution is given (modulo a constant) b y .  = = 

Proof .  Multiply (4.1) by v and (4.2) by u, and integrate over f2. This gives 

(Du, Dr) dx = ~2 S v2 dx, 
~2 Q 

(Du, Dr) dx = 21 ~u 2 dx. 
~2 Q 
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Mult iplying these identities we obtain 

)2 
(Du, Dv)  dx = 2122 IV 2 dx l u 2 dx, (4.4) 

Q g2 

which yields for  non-tr ivial  solutions the condi t ion 

2122 > 0. 

Thus there are two possibilities: 
Case 1 : 2 1  < 0, 22 < 0. Define 

u* = x/--21 u,  (4.5) 

V* : - - ~ 2 2  V. (4.6) 

Employ ing  the equat ions (4.1) and (4.2) we obtain  the following system: 

- Au* = x/~-122 v* in ~2, (4.7) 

- Av* = ,]2122 u* in f2, (4.8) 

u* = 0, v* = 0 on 0f2. (4.9) 

Adding (4.7) and (4.8) we obtain 

[ A ( u * + v * ) =  ~4~l& 
(L') u * + v * = O  

(u* + v*) in f2, 

on Of 2, 

and subtracting (4.7) f rom (4.8) we obtain  

(L ") I A ( u * - v * )  = 2~12~ ( u * - v * )  in f2, 

u* - v* = 0 on Of 2. 

Mult ipl icat ion of  the differential equat ion  of  (L")  by u* - v* followed by an 
integrat ion over f2 yields 

- I ] D ( u *  - v*)] 2 dx = ~ I (u* - v*)  2 dx, 
Q f~ 

which proves that  u* = v* in ~ .  Remember ing  the propert ies  of  the eigenvalue 
p rob lem for  the Laplacian,  we find that  the only solut ion to P rob lem (L') with 
one sign ( +  or - )  is the first e igenfunct ion ~b~ with the eigenvalue/21. Thus  
u * =  C~bl, where C #  0 is some constant ,  and ,f2122 = / h .  Since u 'v*  = 
u * 2 >  0 it follows f rom (4.5) and (4.6) that  uv < 0 so tha t  u and v cannot  
bo th  be posit ive.  This excludes Case I. 
Case 2 : 2 1  > 0, 22 > 0. Define 

u* = ~ u, (4.10) 

v* = x/~2 v. (4.11) 
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As in Case 1 we obtain 

f - zX (u* + v*) = 4~.-1& 

(L') t_ u* + v* = 0 

(u* + v*) in f2, 

on 3.c2, 

f A ( u * - v * )  =x/2122 ( u * - v * )  in fa, 

(L") (. u* - v* 0 on Of2. 

Again we obtain u* = v* in ~.  This immediately yields the solution for Prob- 
lem (L): 

1 i 
v=c 7<, a4 72, 

where C is some nonzero constant. 

Remark. The proof  of  Lemma 4.1 gives insight into the complete spectrum of 
Problem (L). Clearly it depends strongly on the spectrum of  the Laplacian. 
In the (2a, 22)-plane we obtain curves of  eigenvalues: 

2122 = f12, i ~ N, 

where ai are the eigenvalues of the Laplacian. The positive branch of 
2122 =/212 corresponds to the positive solutions of Problem (L). 

Remark. From Theorem 2.1 we have the following identity for Problem (L): 

2t (al--2 N) Su2dx+/~2 ( -N-4 ) o 2 a, Iv  2 d x =  -- ~ (Du, Dv)(x,  n) ds. 
(a o(2 

(4.12) 

Choosing a 1 so that either the first or the second term on the left-hand side 
of  (4.12) vanishes we derive 

(Du, Dv) (x, n) ds ~ (Du, Dr) (x, n) ds 
3Q 

21 = �89 , & = �89 
j u  2 & 2 dx 

D Y2 

After normalising u and v so that I[ul] = 1 and ]]vl[ = 1 in L2(Q) we obtain 

x/2122 = 1 ~ (Du, Dr) (n, x) ds. (4.13) o.o 
A similar relation was found by E RELLICtt [R] for the Laplacian. 

Now we formulate the problem which we are interested in: 

(P1) [ - A u = a v + v  q, u > 0  in g2, (4.14) 

- A v  2u + u p , v > 0  in (2, (4.15) 

u v = 0 on O~. (4.16) 
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Here (p, q) is a pair of  critical exponents as derived in Example 2 of  Sec- 
tion 3 : 

N - ~ '  2 + y  
- , q _ , ( 4 . 1 7 )  

P ~ N - 2 - y  

where we choose 

N -  4 AT) (4.18) 
yE 2 ' ' 

N + 4  
so that  l < P < N _ 4 ,  and l < q <  

the following theorem: 

N + 4  
�9 For Problem (PI)  we now state 

N - 4  

Theorem 4.2. Let (2 , / t )  be in one of  the areas 
(1) ;~-5_0, Ft_-<0, 
(2) ~t/.t >_ U 2. 
Then Problem (P1) has no solution. 

Proof. To prove part  (1) we shall derive an identity which can be formed by 
using the Lagrangian for the variational problem: 

2 1 /t 1 
L =  (Du, Dv) - - -  u 2 - - u p+a - - v e - - v q+l. 

2 p + l  2 q + l  

I f  we apply Theorem 2.1 with a k ( x ) =  const and h i ( x ) = x  we obtain the 

identity 

)~ ( a l - -  N )  ~u2d-xq-//  ( a 2 -  N )  o~ v2dx 

"~ 1 -- - -  I up+I dx -I- 2 - f vq+l d.,x 
p +  o q + l  o 

+ ( N - 2 - a ~ - a 2 )  I (Du, Dv) d x =  - ~ (Du, D v ) ( x ,  n) ds. (4.19) 
o 012 

(1) For al and a2 we make the following choices: 

al = ?, a2 = N - 2 - y, so N - 2 - a 1 -- a2 = 0. 

The third, fourth, and fifth terms in the identity (4.19) vanish and we obtain 

( I V )  ( N - 4  7 )  ~ v 2 d x = _  ~ (Du, D v ) ( x , n ) d s .  
~ -  l u Z d x + u  2 ~ 0o s 

(4.2o) 

Note that 
N N - 4  

y---<0, y<O. 
2 2 
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The right-hand side of  (4.20) is non-positive. However, if 2 < 0 and a < 0, the 
left-hand side is strictly positive. Hence for these values of  1̀ and p we have 
a contradiction. Actually if either 2 or/.t is zero, (4.20) still gives a contradic- 
tion. When ,1 and p are both equal to zero, we obtain non-existence from Ex- 
ample 2 of  Section 3. 

(2) To prove this part we need Lemma 4.1. We shall denote by (4~, r the 
positive solution of  Problem (L). Using the equations (4.14) and (4.15) we 
deduce that 

2 2 ~ u ~ u = -  ~ u&4~ = - ~ qS&u = p ~ v~ + ~ vq~ > lt ~ v4~,  (4.21) 
f2 O Q O D O 

Thus 

Q I2 I2 s D D 
(4.22) 

~-2 ~ u~u > p ~ vq~, (4.23) 
Q Q 

21 ~ vq~ > ,;t I u~u. (4.24) 
E2 Q 

Combining (4.23) and (4.24) and using the fact that 2, /z, 21, `12 a re  all 
positive we obtain 

2122 ~ u~r > ,;L/t I uql. (4.25) 
/2 I2 

Because ~a uq />  0 this gives 

p2 = ,t122 > 2p. 

Here we used Lemma 4.1. This now completes the prove of  the theorem. 

Remark. After this paper was completed I learned from E. MITIDIERI about his 
paper [Mi], in which he obtained results similar to those derived in Sec- 
tion 3, by a different method. 
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