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Summary 

Many historians of science recognize that the outcome of the celebrated 
debate on BOLTZIVIANN'S H-Theorem, which took place in the weekly scientific 
journal Nature, beginning at the end of 1894 and continuing throughout most 
of 1895, was the recognition of the statistical hypothesis in the proof of the 
theorem. This hypothesis is the Stosszahlansatz or "hypothesis about the num- 
ber of collisions." During the debate, the Stosszahlansatz was identified with 
another statistical hypothesis, which appeared in Proposition II of MAXWELL'S 
1860 paper; BUR~URY called it Condition A. Later in the debate, BRYAN gave 
a clear formulation of the Stosszahlansatz. However, the two hypotheses are 
prima facie different. BURBURY interchanged them without justification or even 
warning his readers. This point deserves clarification, since it touches upon 
subtle questions related to the foundation of the theory of heat. A careful 
reading of the arguments presented by BURBURY and BRYAN in their various 
invocations of both hypotheses can clarify this technical point. The Stosszahlan- 
satz can be understood in terms of geometrical invariances of the problem of 
a collision between two spheres. A byproduct of my analysis is a clarification of 
the debate itself, which is apparently obscure. 

1. Introduction 

1.1 "Will someone say exactly what the H-Theorem proves?" is a famous 
question in the history of the theory of heat. When it was raised by EDWARD 
PARNALL CULVERWELL (1894a) in the weekly scientific magazine Nature on 
October 25, 1894, it generated a discussion on the meaning of BOLTZMANN'S H- 
Theorem, which carried significant consequences for the understanding of the 
theory. The discussion involved CUI.VERWELI. himself, SAMUEL HAWKSLEY BUR- 
BURY, HENRY WILLIAM WATSON, GEORGE HARTLEY BRYAN, JOSEPH LARMOR and, 
of course, LUDWIG BOLTZMANN. The history of the debate is well known. Briefly, 
it followed from the discussion that the proof of BOLTZMANN'S theorem depended 
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on a statistical hypothesis, the S t o s s z a h l a n s a t z ,  as it later came to be called 
(PAUL & TATYANA EHRENFEST). According to the hypothesis, the velocities of 
two molecules of, say, a perfect gas are statistically independent, even when the 
molecules are about  to collide. Actually, this hypothesis first arose in RUDOLF 
JULIUS EMMANUEL CLAUSIUS'S epoch-making 1858 paper on the mean free path, 
although he stated it for a particular and unrealistic situation3 In 1860, JAMES 
CLERK MAXWELL wrote a complete expression for the S t o s s z a h l a n s a t z ,  which, in 
1866, became a starting point for his second proof  of the distribution of 
velocities. 2 Furthermore, the debate took place long after BOLTZMA~'~'S answer 
to LOSCHMIDT (BoLTZMANN, 1877). Some historians of science (MARTIN J. KLEIN; 
STEPHEN G. BRUSH, 1976) have therefore proposed that what occurred in 
1894-1895 was the recognition of the S t o s s z a h l a n s a t z  as an independent hy- 
pothesis in the proof  of the H-Theorem, or, according to BRUSH (1976, VO1. 2, 
p. 620), the identification of "the stage in the p r o o f . . ,  where irreversibility 
sneaks in. "3 

1.2 However, initially BURBURY associated the proof of BOLTZMANN'S theorem 
with a well-known proposition, which entered the theory as Proposition II  in 
MAXWZLL'S paper  of 1860. This proposition involves a statistical postulate to 
which BURBURY gave the name Condition A. Briefly, according to Condition A, 
when two spherical molecules collide, for any given direction of the incoming 
relative velocity, the position of the impact parameter  is uniformly distributed 
over all of the possible values it can have. Still during the debate, BURBURY 
- and BRYAN after him - substituted the S t o s s z a h l a n s a t z  for Condition A; 

1 CLAUSIUS considered that all the molecules but one were at rest. He then cal- 
culated the probability that this single molecule would collide with any one of the 
molecules at rest. 

2 In 1860 MAXWELL proved the law of velocities, supposing that the three compo- 
nents were statistically independent. He realized, however, that there were not enough 
grounds for this supposition, and he tried a new proof in 1866 that did not involve this 
assumption. 

3 Historically speaking, BRUSH'S remark is correct. It need not be so from the 
physical point of view. It has been noticed (HAROLD GRAD, C. CERCIONANI, OSCAR E. 
LANFORD III) that irreversibility appears when, in the proof of the H-Theorem, appro- 
priate limits are taken, rather than in the factorization. Letting r be the diameter of the 
molecules, m be the mass of each molecule and N be the total number of molecules, the 
limit is the following: 

r r ~ 0  m--*0 N--* co 
and 

Nor 2 --* finite ( 4 = O) N m  ~ finite ( + O) Nor 3 "-+ 0 ; 

in this limit, the mean free path (oc (N~2) -1) is non-null, but the volume occupied by 
the molecules (oc Nor 3) vanishes. However, it is true that the Stosszahlansatz is time 
asymmetric. 
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actually, he meant an equivalence between the two hypotheses. The mere 
interchange of hypotheses is known to historians; it was noticed, for example, 
by THOMAS S. KUHN (1978). However, the issue deserves more attention than 
has been given to it. 

In his paper of 1858, CLAUSIUS treated molecular collisions as statistical 
events; furthermore, these random collisions were the mechanism that explained 
the phenomenon of the (irreversible) diffusion of gases. Proposition II, because 
of its Condition A, shows how collisions can function as a randomizing mechan- 
ism (MAxwELL, 1860). Condition A refers to the possible ways in which two 
molecules can collide. The Stosszahlansatz is prima facie a different hypothesis. 
It is an abstract general probabilistic assumption on the joint occurrence of two 
probabilistic events; it is the very definition of statistical independence applied 
to the velocity states of two molecules when they are about to collide. Condi- 
tion A, although statistical, has a simple geometrical interpretation. The Stos- 
szahlansatz is counter-intuitive: whether two molecules collide or not depends 
on their trajectories, hence on the equations of motion, not on probabilities. 

Now, if the equivalence of the hypotheses can be proved, then the Stosszah- 
Iansatz acquires a geometrical interpretation that bears upon the nature of the 
molecular motion. Consequently, the basis on which the interchange of 
hypotheses was made involves an issue of both historical and conceptual 
significance. 

1.3 BURBURY interchanged the hypotheses without providing a justification 
and without warning his readers that he did it. Furthermore, only once in his 
papers prior to the debate in Nature did BURRURY give an interpretation of the 
Stosszahlansatz, which was similar to the one it would have after the identifica- 
tion of the hypotheses during the debate; but this earlier interpretation lacks 
a context that calls attention to the identification of two apparently different 
hypotheses. In other papers, BURBURY used the two hypotheses independently; 
he also did so in his first two letters to Nature, of November 22, and December 
20, 1894. 

I therefore shall analyse BURBURY'S and BRYAN'S arguments as presented in 
the debate in Nature and their uses of Proposition II and of the Stosszahlansatz 
in other publications, to see how an equivalence between the propositions can 
be proved. A clarification of their arguments certainly gives a meaning to the 
Stosszahlansatz, even if limited and restricted to a specific system, that of 
a perfect gas made of identical spherical molecules. 

I start with a general section (Section 2), in which I state the problem in 
detail, placing it in its historical context. Although BURBURY interchanged hy- 
potheses, it was BRYAN who gave the best statement of the Stosszahlansatz, 
during the debate; but he learned about it from BURBURY, as he conceded. In 
Section 3, I analyse BRYAN'S explanation of what BURBURY taught him: In 
Section 4, I analyse BURBURY'S various uses of Condition A and of the Stosszah- 
Iansatz. It might be said that the Stosszahlansatz, as it stood in 1894-1895, was 
a statistical hypothesis that had a meaning in terms of certain geometrical 
invariances of the problem of a collision between two spheres. I add an 
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Appendix that is not historical, but will help in following the argument. A by- 
product of this paper is a clarification of the debate in Nature, which is 
otherwise difficult to understand. 

2. Burbury's Condition A 

2.1 In his letter of October 25, 1894, to Nature, CULVERWELL (1894a) revived 
the paradox of J. J. LOSCHMIDT in order to criticize the proof of the H-Theorem 
that was given by H. W. WATSON (1893) in the recently published second edition 
of his book on the kinetic theory of gases. Briefly, LOSCHMIDT found an 
inconsistency between the laws of mechanics and the existence of a functional, 
H, that decreases monotonically in time: According to the laws of mechanics, for 
each trajectory in phase space for which H decreases, there is another trajectory 
for which H increases, which is obtained from the former by reversing, at 
a particular instant, the signs of the velocities of all the molecules in the gas. 
How BOLTZMAVrN escaped the paradox is well known, and can be found in the 
literature (KLEIN, 1973). I only note KLEIN'S remark that by 1894 physicists 
should have known that the H-Theorem is statistical and hence that 
LOSCHMIDT'S criticism was not applicable. It should be added, following BRUSH'S 
remark already quoted in the introduction, that CULVERWELL apparently did not 
criticize the content of the theorem, as LOSCHMIDT did. Rather, he criticized the 
particular proof given by WATSON, which according to him did not appear to be 
statistical (CuLVERWELL, 1895b): 

I found it hard to conceive how any proof on the line of Dr. Watson could 
be valid because that proof appeared to me to be a purely dynamical proof, 
and I applied the reversibility argument to show that a purely dynamical 
proof was impossible, so that the H-theorem could not be a purely dynamical 
theorem; and after indicating the lines on which it appeared that there might 
be an average dynamical theorem, I asked if some one would say what the 
H-theorem really was. 

2.2 The first person to address CULVERWELL'S challenge was BURBURY 
(1894a), in a letter published in Nature on November 22, 1894. The central 
point of BURBURY'S argument was that the proof of the H-Theorem depended 
on a certain Condition A. If we imagine that the molecules are spherical bodies, 
a collision between two of them occurs when the center of one of the spheres is 
on the so-called '"collision sphere." This is a spherical surface concentric with 
one of the molecules, and of radius a, which is equal to the sum of the radii of 
the two spheres (Fig. 1). The "collision coordinates" are the spherical coordin- 
ates ~o and 0, defining the position of the center of the approaching molecule on 
the collision sphere (Fig. 2). The coordinate ~0 defines the plane containing the 
line joining the centers of the two molecules at collision and the incoming 
relative velocity; the coordinate 0 is in this plane and is the angle between 
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Figure 1. Two identical, spherical molecules are colliding. The "collision sphere" is the 
sphere of radius OP -= a, equal to the molecular diameter, and center at O, the center of 
one of the molecules. The center of the other molecule must be at a point P, on the 

"collision sphere." 

, f  

Figure 2. The "collision coordinates" are the coordinates 0 and q~, which are the 
coordinates - on tile collision sphere - of the center, P, of the approaching molecule. 
The incoming relative velocity, ~iNc, is a vector through P. The impact parameter, b, is 
the distance from the center of the molecule at rest at O to ~iNc; for any arbitrary 
motion of the molecules, it is defined as the distance between the directions of motion of 

the two spheres. 

the incoming velocity and the line joining their centers. Or, as BURBURY put it 
(1894a): 

The point  in which a line parallel to the relative velocity th rough  the center 
of one sphere ,cuts a circular area of  radius [o-], drawn through the centre of 
the other  sphere at right angles to that  line . . . .  

The coordinates b = a sin 0 and (p define, respectively, the impact  parameter  
and its direction on the plane (x, y). When  two spheres collide e las t ica l ly ,  the 
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V'INC ? 

to/ 

--*/ , \ 

~o~r 

Figure 3. The result of an elastic collision is to change the relative velocity from ~INC to 
rOUT, [Vinci = [ VOtjT [; 20 is the angle of scattering. According to Maxwell's Proposition II 
(Section 2.3), if it is assumed that "every position [of b on the great circle perpendicular 
to ~NC] is equally probable," then all directions of scattering are equally probable. 

collision only changes the direction of the relative velocity, in such a way that 
the angle between the outgoing direction and the line joining their centers is 
still 0, the same as the angle between the line and the incoming velocity (Fig. 3). 
With these remarks, it is possible to formulate Condition A and a proposition 
that results from it. According to BUR~URY (1894a): 

If the collision coordinates be taken at random, then the following condi- 
tion holds, v i z . :  - For any given direction of [the relative velocity3 R 
before collision, all directions after collision are equally probable. Call that 
condition A. 

BURBURY'S answer to CULVERWELL consisted in claiming that Condition A need 
not be true for the reversed motion, so that one of the premises of the theorem 
having failed, the conclusion did not necessarily follow. 

2.3 The assertion that the equal probability of all possible positions of the 
impact parameter on the plane perpendicular to the incoming relative velocity 
implied the equal probability of all possible directions of scattering appeared as 
Proposition II in MAXWELL'S first paper on kinetic theory (MAXWELL, 1860, 
p. 379): 

TO find the probability of the directions of the velocity after impact lying 
between given limits. 

To prove this proposition, MAXWELL made a statistical assumption: On the 
great circle of the collision sphere perpendicular to the incoming velocity "every 
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position [of the impact parameter] is equally probable" (1860, p. 379). This is 
Condition A, of course. With it, the probability of finding the impact parameter 
with length between b and b + db and direction between ~0 and q~ + d~0 is 

O-2 
b db do (see Fig. 3), which is equal to 4zca--- Z sin(20) d(20). Since 20 is the angle 

7CO- 2 

between the incoming and outgoing velocities, this result can be paraphrased by 
saying that all directions of scattering are equally probable. 

2.4 MAXWZLL (1860) invoked Proposition II to show how collisions random- 
ized the directions of motion of the molecules, bringing about isotropy of 
pressure, as demanded by the equation of state for perfect gases. In this use, 
Proposition II becomes a kind of "proof" of how equilibrium of pressure 
(transmission of linear momentum) sets in, and thus is, metaphorically speaking, 
a sort of H-Theorem. As for CLAUSlUS (1862), he used Proposition II to 
illustrate that the theory of heat was concerned only with "irregular" motions, 
and therefore that all "non-irregular" motions have to be excluded from the 
beginning. The "non-irregular" motions in question were those of a row of 
equal spheres constrained to collide only through head-on collisions. Of course, 
the effect of each "non-irregular" collision is to move the target sphere forward, 
along a row to the position of the next sphere, so that the net effect is 
a forward shift of the row as a whole; the transmission of matter, energy, and 
momentum, being along a row, is not isotropic, and this system never reaches 
thermodynamic equilibrium. CLAUSIUS (1862) also gave an insightful reading of 
Proposition II for, according to him, it showed that the motions before and 
after collision had an "independent component" - the relative velocity - and 
a "dependent component" - the velocity of the center-of-mass, which is invari- 
ant, owing to the conservation of momentum. 

2.5 CULVERWELL was not convinced by BURBURY'S answer. In a letter of 
November 29, 1894, to Nature (1894b), he claimed that BURBURY'S answer only 
showed that: 

[E]ven for the simple case of perfectly hard and elastic spheres, some amount 
of assumption as to an average state having been already attained must be 
made . . . .  

Furthermore, he added, Proposition II was not general enough (1894b): 

[I]f [Mr. BURBURY] can say what assumption in a generalized system 
will replace the assumption of equal distribution of velocities in different 
direction[s] in a system of hard spheres, he will clear up the whole 
difficulty. 

Thus, BURBURY, when responding in a letter to Nature on December 20, 1894 
(1894b, p. 175), tried: 

to extend the proof of the H-theorem which I gave for elastic spheres to 
a more general, but not the most general case. 
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However, except for the use of generalized momenta and coordinates, there 
seems to be no substantial difference between his statement of Condition A in 
this letter and in his earlier one (BuRBURY, 1894b, p. 175): 

I will now assume (condition A) that the coordinates O' [~p'] are taken at 
haphazard without regard to the variables P'q' [of phase space, after dis- 
counting the collision coordinates]. 

However, when BURBURY wrote another letter to Nature on January 31, 
1895, Condition A was not the former hypothesis, but definitely the Stosszahlan- 
satz (1895a): 

The initial distribution of R, the relative velocity, i.e. the number of pairs of 
spheres for which it has given direction is arbitrary condition A is fulfilled. 

That is to say, BURBURV seems to be introducing a new Condition A: The 
number of pairs of spheres for which the relative velocity, before collision, has 
a given direction is "arbitrary." This number was defined in previous uses as 
follows (BURBURY, 1894a, p. 78): 

Ff dS is the number of pairs whose relative velocity R falls within the cone 
described with solid angle dS about JR] as axis. 

Thus "arbitrary" stands for the factorized distribution Ff dS, and the new 
Condition A is the Stosszahlansatz. From this new Condition A, BURBURY 
inferred Proposition II (1895a): 

Then, as proved, whatever the initial distribution, after collision, the distri- 
bution of R is uniform, i.e. all directions [are] equally probable. 

Consequently, the assumption that the collision coordinates are "taken a[s] 
haphazard" (the original Condition A) has been replaced in Proposition II, by 
the Stosszahlansatz; this supports the view that BURBURY meant to use the two 
hypotheses equivalently. 

3. What Bryan Learned from Burbury 

3.1 Although BURBURY introduced the Stosszahlansatz as an independent 
hypothesis, its clearest statement during the debate was given by BRYAN (1895), 
in a letter published in Nature on May 9, 1895. It seems that BOLTZMANN'S 
intervention in the debate with his emphasis on the statistical nature of the 
theorem, and CULVERWELL'S agreement, which followed, brought some order to 
the debate and clarified CULVERWELL'S quest. BRYAN thus was ready to summar- 
ize matters (1895, p. 29): 

What we want to know is what assumptions are involved in the mathemat- 
ical proofs of the theorem, why they have to be made, and for what systems 
they are likely to hold. This question has been ably treated by Mr. Burbury, 
but in view of Prof. Boltzmann's assertion that the theorem is one of 
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probability, it is desirable to examine more fully where probability consider- 
ations enter into proofs such as Dr. Watson's, which contain no explicit 
reference to them. 

He could now answer CULVERWELL and state a hypothesis that is true even for 
generalized systems (BRYAN, 1895, p. 29): 

It is then necessary to assume that the probabilities for  the two kinds o f  

-molecules are independent o f  each other. 

3.2 Having stated the Stosszahlansatz, BRYAN made, however, a curious 
remark (1895b, p. 29): 

This assumption was pointed out to me by Mr. Burbury and is what 
I intend[ed] to imply in my previous letter when I said that Dr. Watson's 
assumption was more natural than any other. Under these circum- 
stances alone can we assert that the probability of a given combination 
of coordinates and momenta of two molecules is proportional to 
F dPx . . . dQ, x f  dpx . . . dq,. 

Actually, he learned this assumption from BURBURY, long before the debate in 
Nature; to wit, he had already learned it by August 9, 1894. 

The British Association for the Advancement of Science asked BRYAN and 
LARMOR to write a report on the "state of knowledge" of Thermodynamics and 
its Second Law (BRUSH, 1976, VO1. 2). The first Report (BRYAN, 1891) was read 
on August 20, 1891, at the Association's meeting held at Cardiff. The second 
Report (BRYAN, 1894a) was read on August 9, 1894, at the Association's meeting 
held at Oxford; in this Report, BRYAN presented two unambiguous formulations 
of the Stosszahlansatz. 

In the first Report, BRYAN discussed earlier attempts to derive the macro- 
scopic Second Law from dynamical principles; he also discussed MAXWELL'S 
1860 method of deriving macroscopic properties from collisions that are statist- 
ical events. The H-Theorem was not discussed. 

BRYAN'S second Report (1894a, p. 64) "deals primarily with Boltzmann- 
Maxwell Law and Maxwell's Law of Partition of Kinetic Energy, which form 
the basis of the Kinetic Theory of Gases." Here, he stated the Stosszahlansatz 
twice. The first statement is unambiguous, but not the most illuminating one 
(BRYAN, 1894a, pp. 77 78): 

[-If the distribution] is a function of the energy alone it must be of the 
well-known form 

e-kE. 

For before two molecules encounter each other the frequency of distribu- 
tion of the coordinates and momenta of one cannot depend on the coordin- 
ates and momenta of the other. Hence if f x , f 2  denote the frequencies of 
distribution of the two molecules just before the encounter 

A x f2 = f ( E )  . 
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BRYAN'S second statement of the Stosszahlansatz is illuminating on at least two 
counts: 
(i) it is a written testimony of what BURBURY told him. 

(ii) it gives an interpretation of the Stosszahlansatz in terms of the undetermina- 
tion of the mechanical problem of molecular collisions, which is the main 
point of BRYAN'S intervention in the debate in Nature (BRYAN, 1894a, 
pp. 83-84): 

The assumptions involved in proving the Boltzmann-Maxwell Law for col- 
liding bodies seem to me to resolve themselves into the fo l lowing: . . .  That 
any molecule has a chance of colliding with any other molecule. Hence the 
frequency of distribution of the molecules must depend on their actual state, 
and not on their past history or future prospects of colliding with any 
particular set of other molecules. As Burbury has just written in a letter to 
me: "To take conventional elastic spheres as the simplest case we always 
assume as fundamental that if f (a)  denotes the chance of sphere A having 
velocity a, and f (b)  the chance of sphere B having velocity b, then the 
chances are always independent, whether A and B collide or not." 

3.3 BRYAN began his first letter to Nature of December 5, 1894 (1894b), by 
noting that by applying the test of reversing velocities at each separate stage of 
the proof of the H-Theorem, it should be possible to discover any assumption 
on irreversibility that might be hidden in the proof. He thus proposed to apply 
this test to the following assumption made by WATSON (1898, p. 43): 

[T~he expression F f  dP1 �9 . �9 dq,_ ~(1, is the number of pairs of molecules, 
one from each of these sets, passing from the state P, P + d P . . .  q, q + dq 
to the state P ' , P ' +  d P ' . . ,  q ' , q ' +  dq' per unit of time, where 0, is put 
equal to 0 in f 4  

BRYAN reasoned that if the motion were irreversible, then upon reversal of 
the velocities the number of pairs of spheres passing from an "accented" state 
(the two-molecule state just before collision, in the reversed motion) to an 
"unaccented" state (the two-molecule state just after collision, in the reversed 
motion), through a (reversed) collision, could not be FfdP~ . . .  dq,_ 1 el, as in the 
direct motion. He justified this contention as follows (1894b): 

[T]his number will depend on F and f the frequencies of distribution which 
the molecules are about to have after the collisions have taken place. 

The point is that an irreversible motion was unpredictable (1894b): 

[ I ] f  Mr. Culverwell endows his molecules with the power of forethought 
and the prediction regarding their future state necessary to enable them 

4 The restriction c~, = 0 means that the molecules are colliding. For instance, it 
corresponds to making the distance between the centers equal to ~, the diameter of the 
molecules. 
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{P,Q} {P',Q'} I-P,Q} (-P;Q'} 

{p, ql Ip'.q'l Ip, ql {-p'.q'} 

direct collision inverse collision 

Figure 4. The trajectories of the molecules in the "direct" and "reversed" collisions are 
identical, but the momenta have different signs. 

to regulate their movements according to this suppositious law [the law 
Ff  dP~ . . .  dq,-lgt,],  then Dr. Watson's proof, and indeed any proof, will 
necessarily fall to the ground. 

3.4 In fact, if the motion is reversible, then, upon reversal, a collision 
reproduces the initial state of the direct collision, except for the signs of the 
velocities, which are reversed. Clearly, the number of pairs of molecules making 
a transition between two such states of reversed velocities is equal to the 
number of pairs making the corresponding direct collision, or passing from 
a state belonging to the phase space volume P, P + d P , . . . ,  q, q + dq to a state 
belonging to the phase space volume P', P ' +  dP', . . . .  q', q ' +  dq' (which is 
F f d P 1 . . .  dq,-lgl, ,  according to WATSON'S assumption). Furthermore, and 
more important, in a reversible motion the result of a collision is uniquely 
determined given the initial conditions, and conversely, so that the number of 
pairs in the initial state is not only equal to the number of pairs in the final 
state, but predictability also can be paraphrased by saying, as BRYAN did, that 
the number of pairs in the initial state depends upon the final state. 

However, if the reversed motion is also unpredictable, then it need not 
reproduce the same states of the direct collision with reversed velocities, so that 
the number of pairs in the "accented" state need not be FfdP~ . . .  dqn-1 q,; nor 
is it a function of the final, "unaccented" state, according to BRYAN'S reasoning. 

BRYAN then gave an illustration of a collision leading to unpredictable 
results. After BURBURY invoked Proposition II in his letter of November 22, 
1894 (1894a), it comes as no surprise that what followed was a conspicuous 
allusion to Proposition II (BRYAN, 1894b): 

What Mr. Culverwell's objection shows, then, is that it is possible to con- 
ceive the molecules of a gas so projected that they would not tend to 
assume the Boltzmann-Maxwell distribution. 

But practically it would be impossible to project the molecules in their 
reversed motions with sufficient accuracy to enable them to retrace their 
steps for more than a very few collisions, just as, if we try placing a number 
of pool balls in a straight line on a billiard table at distances of a foot or 
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two apart, we find it impossible to project the first ball with sufficient 
accuracy for each ball to strike the next in front all down the line if there 
are many balls. 

3.5 If BRYAN succeeded in identifying the hypothesis in the theorem that 
failed the test of reversing velocities, he did not seem to pay any attention to 
the factorization of the "number of pairs" for the direct unpredictable motion, 
FfdP1 . . .  dq,_10,. Even less clear was his choice for the "number of pairs" in 
the reversed motion if it had to be unpredictable, or his choice of a function of 
the initial, "accented" state (BRYAN, 1894b): 

If however the motions of the molecules are allowed to take their own 
natural course, and nothing special is known about them, the only reason- 
able assumption to make is that the number of pairs passing from the 
accented to the unaccented state per unit of time is F ' f '  dp'~.., dq',-lO',. 

That is to say, BRYAN left unexplained what the assumptions Ff dP~ . . .  dq,_ 1(tn, 
for the direct irreversible motion, and F'f'  dP'~. . ,  dq',-lgl'n, for the reversed 
irreversible motion, had to do with the unpredictability of the motion, given his 
characterization of an unpredictable motion as one in which the molecules 
collided according to Condition A and Proposition II. In addition, recalling his 
letter of May 9, 1895, cited at the beginning of Section 3.2, he did not explain 
why "Dr. WATSON'S assumption" - the factorized, "accented" distribution - was 
"more natural than any other." No wonder that CULWRWELL did not under- 
stand BRYAN'S argument, and that his answer of January 10, 1895, was ironical 
and directly to the point (CuLvERWELL, 1895a): 

Mr. Bryan thinks that a condition which excludes the reversed motion is 
implied in Dr. Watson's proof, for he says that in taking unaccented letters 
Ff as proportional to the number of molecules passing from one configura- 
tion to another in the reversed motion, I make a less "natural" supposition 
than Dr. Watson, who takes accented letters F'f'. I cannot see what virtue 
there is in putting accents on or leaving them off . . . .  What we want is 
a proof that the collisions will make H decrease, and we can hardly be 
satisfied with a proof which depends on the previous assumption that the 
particles do "naturally" tend to move in the desired way. 

3.6 However, in his letter of May 9, 1895, BRYAN (1895, pp. 29--30) inter- 
preted further his considerations of December 20, 1894: 

If we were to reverse the motion exactly, we should have one in which the 
probabilities for two molecules before an encounter were not independent, 
and our assumption (however improbable) would be therefore entirely based 
on our previous experience with the direct motion . . . .  This is what I int- 
ended to imply in my previous letter; but as I had used accented and 
unaccented letters in my statement, I failed to make my meaning clear to 
Mr. Culverwell, who evidently found it difficult to understand a proof 
involving their use. 
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The content of BRYAN'S considerations of December 20, 1894, is that the 
motion can only be exactly reversed if, after the collision has actually occurred, 
the collision coordinates ((p, 0) become determined. The solution of the problem 
of a collision between two spheres is outlined in the Appendix. It can be seen that 
knowledge of q0 and 0, together with knowledge of the azimuthal coordinate 
(7 ~ = ~, in Fig. 3; or 7 ~, in Fig. 5 below) for the incoming velocity in absolute 
space (the incoming velocity is, say, parallel to "the vertical") restores determinism 
to the problem. The point is that now the (relative) velocity of the scattered 
spheres becomes uniquely determined by the incoming velocity, and conversely 
(see the expressions for ~INC and VovT in the Appendix). And once the relative 
motion is completely known, it suffices to give the velocity of one of the 
molecules to fix uniquely the velocity of the other. Perhaps this is what BRYAN 
meant when he observed that (1895) "it will be seen that the probabilities for two 
molecules are not independent of each other after a collision between them." 

3.7 If this were all there is to say about statistical correlations, it could be 
said that their absence is associated with incomplete knowledge of the incoming 
relative velocity. These are, however, mechanical considerations, and in principle 
they need not be related to statistical considerations, although nothing forbids 
a mechanical property being used as a guide in assigning probabilities. For 
instance, to give a classical example, the assumption that the phase space traject- 
ory of a classical gas in thermodynamic equilibrium is dense on the energy 
surface has been used to justify the microcanonical distribution insofar as it giveg 
a rational support to the assignment of equal probabilities to equal areas on the 
energy surface. It is thus convenient at this point to examine what statistics itself 
has to say about lack of knowledge of the "collision coordinates" and about 
inferring statistical independence of the velocities from Condition A, and possibly 
the converse as well. In my view, BRYAN'S understanding of what BURBURY told 
him, and BURBURY'S various statements of Condition A reveal the associations he 
made between this hypothesis and the more general Stosszahlansatz. 

4. Condition A Becomes the Stosszahlansatz 

4.1 In his letters of November 22 and December 20, 1894, BURBURY (1894a 
and b) invoked Proposition II to write the number of pairs that reached given 
states after collision. In the proof of the H-Theorem, this is the so-called 
number of "restitutive" collisions. At any instant, there is a number of molecules 
leaving given states after they collide, and a number of molecules reaching these 
same states after a collision, the difference between these numbers giving the 
time variation of the distribution, which is used to prove that H decreases. In 
his letter of November 22, BURBURY thus stated (1894a): 

The number which after the collisions belong to the class Ff dS will be on 
dS 

the above assumption [Condition A] ~ ~SF'f'dS', 
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where dS is the area subtended by the solid angle described by the incoming 
relative velocity in velocity space. In his letter of December 20, BURBURY stated 
(1894b, p. 175): 

I will now assume (condition A) that the coordinates 0'~' [-my O'(p'] are 
taken at haphazard without regard to the variables P'q'; if that be so, the 
chance that, for given P'q' ,  before encounter, the pair of molecules shall be 

dOd~' 
in the PqOdp [my PqO~o] state after encounter is ~ [my dO d~o'], 

where p'q' is the set of canonical coordinates of one of the molecules, excluding 
the "collision coordinates" (GO), and P'Q' is the same set for the other 
molecule. 

Continuing his reasoning, BURBURY missed on both occasions, however, 
a good opportunity to call attention to the StosszahIansatz as an independent 
assumption in the proof, as well its relationship to Condition A. On the 
contrary, BURBURY introduced the factorized distribution as if he had nothing to 
say about it, and as if it had nothing to do with his Condition A. Returning 
now to BURBURY'S letter of November 22, he introduced the Stosszahlansatz as 
follows (1894a): 

But, before the collisions [the number of pairs with relative velocity in dS] 
is FfdS. Therefore, as the result of collisions it is increased by (I FT'as' ) 
dS \ 4~ Ff  . 

And in his letter of December 20, he introduced the Stosszahlansatz as follows 
(1894b, p. 175): 

But the number of pairs which now are in the state P'q' is F ' f ' d P ' . . .  dq'. 
And therefore the number which after encounter will be in the state Pq04) 
[my PqOqo], having passed thereto from the state P'q', will be F'f '  dP' dQ' 

dO' dO' 
dp' dq' - -  [-my dO' dcp"] . . . .  

4re 

4.2 Prior to the debate in Nature, BURBURY published three papers (1886, 
1890 and 1892) and an abstract of the 1892 paper (1891), where he presented 
proofs of the H-Theorem. 

The paper of 1892 contains a general treatment of collisions, using general- 
ized coordinates. The proof of the H-Theorem is similar to BOLTZMANN'S proof; 
no reference is made to Proposition II and its Condition A. The papers of 1886 
and 1890 are close to BURBURY'S first two letters to Nature. In those papers, 
equilibrium is better described by the following consequence of the MAXWELL- 
BOLTZMANN distribution (1890, p. 299): 

In Maxwell's distribution, if we consider all pairs of molecules, M and m, 
having common velocity V, and relative velocity R + r, for given V all 
directions of R or r are equally probable. 
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Then, BURBURY proves that a distribution for which all directions of the relative 
velocity are equally probable (for any given direction of the center-of-mass) is 
undisturbed by collisions, and conversely (1890, p. 299): 

(a) Every distribution of velocities among the molecules which satisfies the 
condition that for given [velocity of the center-of-mass] V all directions of 
[the relative velocity] R are equally probable, is undisturbed by encoun- 
t e r s . . ,  and is there fore . . ,  stationary. 
(b) No distribution whatever of velocities among the molecules is undistur- 
bed by encoun te r s . . ,  unless it satisfies the condition that for given V all 
directions of R are equally probable. 

Part (a) corresponds to the stationary character of the MAXWELL-BOLTZMANN 
distribution; part (b) is BURBURY'S version of the H-Theorem. This conception of 
the approach to equilibrium emphasizes the role of Proposition II as the 
mechanism of randomization of the direction of motion of the molecules. No 
wonder that Condition A was immediately invoked by BURBURY when he first 
answered CULVERWELL. Analogously to the letters of November 22 and Decem- 
ber 20, Proposition II gives the fraction of the total number of pairs of 
molecules whose relative velocity falls within the solid angle dS' after scattering. 
However, BURBURY used Condition A and the Stosszahlansatz as if they were 
independent hypotheses. As for the Stosszahlansatz, in 1886 it was applied to 
the MAXWELL-BOLTZMANN distribution; this application begs the question, since 
the Gaussian distribution is good only for statistically independent events. In 
1892, the Stosszahlansatz was defined independently of Condition A (1892, 
p. 415): 

The number of pairs of systems, each consisting of one system from each set, 
whose coordinates and velocities at any instant lie within the above limits, is 
@1 . . .  d[~l dpr+l . . .  d[~,Ff 

The same is true of the 1891 abstract (p. 177): 

And FfR @ 1 . . .  dv,-i  denotes the number in unit of time of collisions 
between members of the two sets having their coordinates pl . . .  Pn-~ and 
velocities v~ . . .  vn. 

However, in 1890, BURBURY gave the following definition of the Stosszahlansatz 
(p. 301): 

Now F~fp represents the chance that, given [the velocity of the center- 
of-mass] V = OC, the relative velocity shall have direction PCp. 

That is to say, the factorized distribution is the distribution of the relative 
velocity. 

If this definition makes sense, then after collision the Stosszahlansatz is 
a consequence of Condition A, according to Proposition II. But BURBURY meant 
an equivalence between hypotheses, as can be seen by the use he made of the 
Stosszahlansatz, in his proof of part (a) of the theorem quoted above. Initially, 
he wrote the number of pairs, which leaves a state of relative velocity with 
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direction in dS, and the number of pairs, which reaches this state coming from 
F dS dS' dS dS' 

dS', as respectively proportional to p f p ~ -  and F e , f p , ~ - ;  then BURBURY 

argued that if Fpfp = Fp@,, then (1890, p. 301) "the distribution of velocities is 
not affected by encounters. So (a) is proved," since the Stosszahlansatz, accord- 
ing to the above definition, is the distribution of the relative velocity. 

4.3 The point of BURBURY'S various uses of Condition A, quoted in Section 
4.1, is that Condition A gives "the chance that, for given P'q', before encounter, 
the pair of molecules shall be in the Pq[~0] state after encounter," so that when 
distributing rp, b (or 0) according to Condition A, or according to any other law 
for that matter, the initial states P'q' should be considered to be known. In 
Section 4.2, it was shown that BURBURY (1890) defined the factorized distribu- 
tion as the distribution of the relative velocity. And BRYAN (Section 3.6) 
associated the Stosszahlansatz with incomplete knowledge of the "collision co- 
ordinates," which implies incomplete knowledge of the incoming relative velo- 
city. Since what is involved in the Stosszahlansatz is the statistical independence 
between the velocities of two molecules when they are "about to collide," it is 
convenient at this point to delineate the information that needs to be given, in 
order to formulate the mechanical problem of molecular collision. The needed 
information is: 

Is: There is a molecule at rest at the origin of coordinates. 
I2: This molecule is colliding with another molecule. I2 need not say more than 

that the center of the moving sphere is on the collision sphere. This imposes 
constraints on the mechanical problem, because the incoming velocity and 
the line joining the centers of the molecules belong to the same great circle 
of the collision sphere, which is defined by (p. It is thus convenient to 
include in I2 all of the information giving meaning to the variables % 0, 
and b = a sin0. I2 might even say that b is defined on the great circle 
perpendicular to the incoming velocity, without specifying which great circle 
it is or the direction of the velocity. Clearly, I2 gives the range of (p, 0, and 
b; I2 might include a definition of the collision sphere. 

I3: The direction of the incoming (relative) velocity in absolute space, its 
azimuthal direction (7'). 

14: The magnitude of the relative velocity. 

Condition A seems to give the (joint) distribution of q0 and b (or of 
b = o- sin0) based upon knowledge of 11,12, Ia, and I~. It says that this distri- 

bution is a2bdb&p a2sin(20)d(20)d~~ or , a number that is independent of rca 2 4zca 2 

13 and I4 but depends on b (or 0), I2 (which characterises the variables (p, b at 
collision), and I1. The reason I1 seems to be pertinent to the distribution of q0, 
b, is that these variables are defined with respect to the center of a molecule at 
rest, not with respect to an arbitrary origin in space. Otherwise the problem 
loses its meaning as one involving the scattering of one molecule by another, 
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~INC 

Figure 5. The collision problem involves the following information: I1 and I2 state that 
there is a molecule of diameter a centered at O, and an identical molecule centered at the 
point P, of coordinates [~1 = a, q~, and O; 13 gives the direction of ~Nc, which is ~P; 
I4 gives the magnitude of ViNc. A rotation of angle tp = 0 - O around the axis perpen- 

dicular to the plane of the figure through O brings /~ into /~' and O into 0. 

and I2 also would be meaningless. In this sense, I1 is part of the meaning of ~o, 
b, and can not be separated from the part of I2 that says the two molecules are 
colliding. 

But if Condition A does not depend on I3, the following reading of Proposi- 
tion II is implied, as given in BURBURV'S letter of November 22, 1894 (1894a): 

For any given direction of [the relative velocity] R before collision, all 
directions after collision are equally probable. 5 

4.4 Another consequence of the above considerations is that the indepen- 
dence of the distribution of ~0, b (or 0) from I3 (and I4), as implied by 
Condition A, can be interpreted as a statistical independence between I3, I4, on 
the one hand, and q~, b, 11, and I2, on the other hand. Conversely, statistical 
independence between these two sets of information implies Condition A. For  
(p and b can be distributed on any great circle (the various great circles need 
not be equally probable, as shown below), but the remaining information, 
I1 and I2, although pertinent to fixing ~0 and b, is sufficiently meager to fix 
particular values for these variables; hence, there would be no information that 
would justify making one value for the impact parameter more likely than 
another. Thus, Condition A seems to express nothing more than the trivial fact 

5 My italics. 
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that when two molecules collide (I2), the impact parameter is on any great 
circle of the collision sphere around the molecule at rest at the center of 
coordinates (I1); Condition A expresses no more than a conjunction of 11 and 
I2. Perhaps this statistical independence is what BURBURY (1894b) meant when, 
on December 20, 1894, he added a cryptic remark to the assumption that the 
collision coordinates were "taken a[s] haphazard" (Condition A). His remark 
could be considered as a qualification of "haphazard"; according to it, the 
collision coordinates were to be taken "without regard to the variables 
P ' q ' . . .  ," which are the independent coordinates in phase space, not including 
the collision coordinates. 

4.5 This result also has a geometrical interpretation. The mechanical prob- 
lem shows that knowledge of ~0 and 0 still leaves the (azimuthal) direction of the 
incoming velocity in absolute space completely undetermined. In fact, one can 
always rotate the plane containing the line joining the centers of the molecules 
and the incoming velocity around an axis through the center of the collision 
sphere, and perpendicular to the plane (Fig. 5). It is easy to prove that this 

0 -2 

rotation keeps invariant ~0, 0, the area b db do = ~-  sin(20) d(20) do (and obvi- 

ously I2, since the center of the moving molecule is still on the collision sphere, 
and I1, since the center of the target molecule is still at rest at the origin of 
coordinates), but changes the direction of the velocity of approach in absolute 
space and the direction of the line joining the centers of the molecules. That is, 
for the same cp, 0 (and 11, I2), there are infinitely many directions of approach. 
The converse is also true: knowledge of the direction of approach gives no 
information about 4o, 0 (and, clearly, none about I1 and I2). From the mechan- 
ical point of view, there is thus an independence between two sets of variables: 
49, 0 (and the information 11 and I2, which give the meaning of 4o and 0) and 
the azimuthal direction of the incoming relative velocity. Knowledge of the 
former leaves the latter undetermined, and perhaps this is why there is incom- 
plete knowledge of the velocity, as our reading of BRYAN suggested. This might 
have been what BRYAN learned from BURBURY. 6 

6 CLIFFORD A. TRUESDELL & R. G. MUNCASTER treated the problem of locating 
two molecules before and after a collision as a mapping problem. The result of my paper 
can be understood in the light of their analysis. I shall use the notation of the Appendix, 
of Figure 5, and of Figure 6. In doing so, the generality and elegance of their analysis 
is lost; however, there is a gain in the understanding of my analysis. Following BRYAN, 
let "unaccented" and "accented" quantities denote variables before and after collision, 
respectively, Let indices 1 and 2 denote the two molecules, respectively. Let Y/" be 
the velocity space, and let 2(( be a parameter space. According to TRUESDELL & 
MUNCASTER, a collision is a transformation ~b: ~ x "U x ,X r -+ ~U x ~/-, which associates 
to the triple (vl, v2, ~) the pair (Ya, v'2): 
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4.6 Proposition II played a role in the theory. As was noted earlier, Proposition II 
was introduced by MAXWELL to show how collisions could randomize  the direc- 
tion of motion.  In  this regard, it is significant that  when BRYAN invoked 
Condi t ion  A on December  20, 1894, he used the same example as CLAUS~US 
had used some 30 years earlier to illustrate the "irregularity" of the molecular  
motion.  And, like CLAUSIUS (1862), BRYAN tOO used the example to eliminate 
those "non-irregular" configurations, which were nevertheless allowed by 
mechanics. Thus, BURBURY probably  knew, independently of the debate in 
Nature, that  those collisions involved in the H-Theorem had to obey Pro-  
posit ion II, if they were to be the physical process causing equilibrium, and 
if the H-Theorem was to have any meaning at all. This consequence of Pro-  
posit ion II  seems to be expressed in the following passage in BURBURY'S letter 
of November  22 (1894a): 

Thus we have proved that  if condit ion A be satisfied, then if all directions 
of  the relative velocity for given V [the velocity of the center-of-mass] 
are not now equally likely, the effect of collisions is to make H 
d imin ishf  

In the notation of this paper, the transformation ~b is: 

~_ = ~2 + I~lcos 0 ~. 

The parameter space is the space of coordinates q~ and 0. 
Let Y be a set lying in the plane perpendicular to the incoming relative velocity, 

~INC. 50 is such that if the impact parameter lies within Y a collision occurs; in the 
notation of this paper, it is the great circle of the collision sphere perpendicular to ~INC- 
TRUESDELL & MUNCASTER defined the Encounter Operator. This is a piecewise smooth 
mapping of ~ x ~U x 5 ~ into itself: 

E(~t, v2, b, (p) = (vl - I v[ cos 0 P, i~2 + [vl cos 0 ?, b, cp) . 

TRUESDELL 8r MUNCASTER showed how E varies by orthogonal transformations. 
Let Q be an orthogonal transformation over ~ • ~ x 50; let the same simbol also 
denote transformatioins over ~ ,  and transformations over 50. Define Q as 
follows: 

Q(~I, ~2,~) - (Q~I, Q~2, Q~) ; 

= ,Tsin 0, I p l = b, is the projection of the point of collision on 50 (E is viewed now as 
a function of ~i, v2, and fi rather than vl, v2, b, and (p). The Encounter Operator is 
invariant by orthogonal transformations over ~U x V x 50: 

QE(~, -~2, P) = E(Q~, Q~2, Qp) . 

Condition A is associated with the transformation that takes the cartesian coordinates 
x,y, and z, on 50, into the coordinates acosqosin(O + 7J), a sinq)sin(O + ~u), and 
acos(O + g~), respectively. Equivalently, it takes (a, (p, O) into (a, % 0 = O + ~), where 
0 is the angle between ? and glNC. 

7 My italics. 
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BURBURY expressed it more neatly in his letter of January 31, 1895: 

Then, as proved [Proposition II], whatever the initial distribution [-of R], 
after collisions, the distribution of R is uniform, i.e., all directions [are] 
equally probable. ~ 

Actually, it is difficult to understand in this context what Proposition II 
proves. It is not the H-Theorem, but it does concern the approach to equilib- 
rium, as MAXWELL and CLAUSlUS showed. Or, as BURBURY deceptively expressed 
it (1894b, p. 176): "I have assumed condition A. I do not say that is the only 
assumption that will answer the purpose. But it is sufficient." In any case, as 
already commented in Section 4.2, when challenged by CULVERWELL, BURBURY 
already knew where the possibility of reversal could fail, since his answer was 
prompt. 9 But if Condition A can be expressed as a sufficient condition for 
Proposition II to perform its role, this is because it is not incompatible with the 
mechanics of collision expressing allowed symmetries, which concern the inde- 
pendent degrees of freedom. 

4.7 At this point it might be tempting to conclude that the distribution of 
the direction of the relative velocity is isotropic around the molecule at the 
center of the collision sphere, since there seems to be no information justifying 
one direction over another. This need not be the case. It suffices for BURBURY'S 
argument that Condition A be true both in equilibrium and in non-equilibrium, 
while the particular distribution of velocities existing at a certain instant may 
describe a state of a gas away from equilibrium. For, if Condition A holds, 
there is a piece of information which is correlated to one set of variables, but is 
statistically independent of the other. Indeed, this seems to be the correct 
assumption to make, since BURBURY did not preclude that Condition A be true 
in equilibrium. On the contrary, equilibrium means that Condition A is true for 
both the direct and the reversed motions (1895a): 

If condition A is fulfilled in the reversed motion, then after reversed colli- 
sions the distribution of R is uniform. It is equally certain that it must be 
the same as the initial distribution. 

If, therefore, condition A is fulfilled in the reverse motion as well as in 
the direct, that can only be because the distribution of R was uniform to 
begin with. But that means that H was minimum to begin with, and 

dH 
therefore ~ = 0 throughout. 

It should be emphasized that Condition A fails in the reversed motion, because 
the "collision coordinates" become known, as observed by BRYAN, not because 
Condition A ceases to be true in equilibrium, or when the velocity is randomized. 

s My italics. 
9 CULVERWELL'S first letter was published on October 25, 1894, and BURBURY'S 

answer was dated November 12; therefore there were only 18 days between them. 



Will Someone Say what the H-Theorem Proves? 361 

4.8 In my reading, then, Proposition II was fundamental to the interpreta- 
tion and recognition of the Stosszahlansatz in the 1894-1895 debate in Nature. 
Condition A expresses symmetries of the mechanical problem of a collision 
between two spheres; these symmetries arise from the indefinitness of the 
"collision coordinates". 

BURBURY'S priority in identifying the Stosszahtansatz as the statistical 
hypothesis in the proof of the H-Theorem was recognized by BOLTZMANN a few 
years later (1896, p. 40): 

In this formula [the Stosszahlansatz] there is contained a special assump- 
tion, as Burbury has clearly emphasized. 

Significantly, BOLTZMANN cited BURBURY'S first letter to Nature, dated November 
22, 1894. BOLTZMANN himself would introduce the Stosszahlansatz with argu- 
ments that were reminiscent of Condition A and Proposition II. 

BOLTZMANN'S intervention in the debate consisted of two letters to Nature, 
published, respectively, on February 28, 1895 (1895a) and July 4, 1895 (1895b). 
In the first letter, he explained the statistical nature of his theorem; here he used 
the famous analogy of the "inverted tree." It was after this letter that the 
debaters started to come into agreement, although BOLTZMANN did not state 
what his statistical hypothesis was. The second letter is more interesting for 
my purposes. In it BOLTZMANN justified the Stosszahlansatz with the follow- 
ing argument: If the mean free path is long compared to the mean distance 
between two neighboring molecules, then two successive collisions of the 
same molecule occur at places that are far away from each other; con- 
sequently (1895b): 

[T]he distribution of the molecules surrounding the place of the second 
impact will be independent of the conditions in the neighbourhood of the 
place where the first impact occurred, and therefore independent of the 
motion of the molecule itself. 

According to BOLTZMANN, a necessary condition for the Stosszahlansatz to 
hold is that the molecules be not (1895b) "arranged intentionally in a par- 
ticular manner," as they were in BRYAN'S example (Section 3.4). The same 
argument would be repeated in BOLTZMANN'S book (1896) years later; from 
it BOLTZMANN concluded, analogously to his intervention in the debate in 
Nature (1896, p. 41): 

[ I]f  we chose the initial configuration on the basis of the path of each 
molecule, so as to violate intentionally the laws of probability, then of 
course we can construct a persistent regularity . . . .  

BURBURY, in a paper of 1904, seems to have adopted BOLTZMANN'S picture of 
the Stosszahlansatz, perhaps as a short-cut for his more detailed picture based 
on Proposition II (1904, p. 46): 
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That statement [-the Stosszahlansatz] involves a physical assumption of the 
most important and far-reaching character, n a m e l y . . ,  that the chance of 
a molecule having velocities within the assigned limits is at every instant 
independent of the positions and velocities of all the other molecules for the 
time being. For if not, the number of collisions between m and m' is not 
necessarily proportional to the product o f f  dul . . .  dw, and f '  du'l . . .  dw', 
because there may exist a stream by virtue of which m and m' have on 
average velocities of the same sign, and that affects the frequency of such 
collisions. It may conceivably be true that there are no such streams, but it 
is not axiomatic. 

4.9 Finally, a side comment. We saw that, since his very first letter to 
Nature, BURBURY knew that the incoming velocity could have any distribution 
around the molecule at the center of the collision sphere. BRYAN said that he 
meant in his letter of December 20, 1894, that the two molecules had statist- 
ically independent velocities, and that he learned this from BURBURY; further- 
more, in his 1894 Report, BRYAN correctly recognized the Stosszahlansatz and, 
again, gave credit to BURBURY. But both BURBURY and BRYAN missed obvious 
opportunities between November 22 and December 20 to recognize the Stos- 
szahlansatz and to associate it with Condition A in their letters. I suspect that 
the debaters did not understand each other, initially, and did not agree as to 
what was being discussed. BURBURY seemed much more concerned to explain 
that there was a hypothesis that failed in the reversed motion, while BRYAN 
seemed more concerned to explain why it failed, and neither seemed concerned 
to interpret and analyze the hypothesis. And most probably, BRYAN was moti- 
vated by BURBURY'S first letter (and, for that matter, his second as well), which 
left unexplained why Condition A was not true in the reversed motion. As 
BURBUI~Y himself conceded (1895a): 

I said in my first letter on this subject that the condition A, on which, or its 
equivalent, the proof is based, could not apply to the reversed motion. As 
that assertion has been questioned, may I confirm it thus? 

The story did not end here, however. What followed has been widely 
discussed in the literature. It suffices to say that BURBVRY recognized another 
difficulty in the H-Theorem. If collisions bring about statistical correlations, 
then, he asked (1895b, p. 104-105) "does it necessarily follow that condition A, 
being now satisfied, will continue to be satisfied for all time?" 

The EI-IRENFESTS recognized two different hypotheses, the "Stosszahlansatz" 
and the hypothesis of "molecular chaos," which says that the Stosszahlansatz 
holds "almost always." When, therefore, CULWRWELL asked his question, he 
addressed enduring issues pertaining to the conceptual foundation of the theory 
of heat. Rigorous and satisfactory solutions to these issues are far from having 
been achieved and are still open to research. 
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Figure 6. There is a group of rotations that leaves invariant (p (the plane of collision) 
and 0 (the angle between r and vlNc), but not the direction of vlNc: These are the 
rotations of an angle ~ = 0 - O (O variable) of the collision plane, around the axis ~, 
perpendicular to the plane. In particular, the "vertical", ~, can be brought into a new 

"vertical", ~', parallel to vlNc. 

5. Appendix: The Geometry of Proposition II 

The collision p rob lem is well known (C. CERCIGNANI, OSCAR E. LANFORD III ,  
STEWART HARRIS). In  part icular ,  CLIFVORD A. TRUESDELL & R. G, MUNCASTER 
have analysed in great  detail the symmetries  of collisions. 1~ 

The  geomet ry  of the collision p rob lem is illustrated in Figures 5 and 6. The  
circles are great circles of the collision sphere, of radius a. The vector O P ' -  
joins the centers of the molecules at collision; VINC and rOUT are, respectively, the 

m 

10 TRUESDELL & MUNCASTER gave a rigorous development to MAXWELL's kinetic 
theory. They tried to get as far as possible without the BOLTZMANN equation, in order 
to understand where it enters. They introduced the Collision Operator (p. 91) "as 
an axiom on which to base the mathematical theory." Using the notation of this paper, 
the Collision Operator, C, is given by CF = So~: Ssev(F'aF' 2 --F1F2) dS d~ 2. They show 
that this operator is invariant by orthogonal transformations. They also define the 
operator Ceg = ~gCF, for any function g(t, 7, ~) that renders the integrals convergent. 
Then they prove (their equation (VII.21)) that r e cannot be negative. With this as 
background, they discuss BOLTZMANN'S theorem. Only in a later chapter do they 
introduce BOLTZMANN's equation. In this way, TRUESDELL & MUNCASTER show that 
the collision operator does something specific and precise and undergirds the 
BOLTZMANN's equation. 
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incoming and outgoing relative velocities. The solution of the collision problem 
is as follows: 

(1) Conservation of linear momentum implies that the velocity of the center- 
of-mass is left invariant by the collision. Hence the only forces acting during 
collision are internal forces obeying NEWTON'S third law, and the center- 
of-mass and the internal motion behave independently. 

(2) Conservation of energy implies conservation of the magnitude of the relative 
velocity: [~INC[ = [~OUT } = I~1. 

(3) The constraint that VlNC and 3 intersect at P means that there exists a great 
circle, defined by cp, containing both F and Vtyc (great circle ACB in 
Figure 6). Now, conservation of angular momentum implies that ~OUT also 
belongs to this great circle and that its angle with 3 is the same as the angle 
between ; and VINC. Consequently, the "collision coordinate" q0 fixes the 
plane containing V~NC, Your, and 3; and 0 gives, on this plane, the directions 
of both ~NC and ~ouT with respect to 3: 

~INC = - -  I~1 cos 0 f _+ I~1 sin 0 I'; rOUT = + I vl COS 0 f + 1~1 sin 0 l'. 

It is always possible to rotate the axes by an angle ~ around an axis 
through the origin, perpendicular to the circle ACB, hence parallel to the 

direction rh. This is the rotation that takes x into o-cos (p sin(O + ku), y into 
asin (p sin (O + 70, and z into o-cos(O + 7J); it leaves <p invariant, as well as 0, 
since its result is only to add a constant quantity, 7 j, to the azimuth, O. By 
conveniently choosing 7 j, it is possible to bring k into s parallel to ~Nc, as in 
Figures 5 and 6. Let, then, the shadowed great circle, MNQ, be the new 
"horizontal" plane. The impact parameter is, by definition, b - - O P ' .  Trivially, 
any area dx'dy' on MNP is left invariant: d x ' d y ' = b d b d o = a  2 
cos 0 sin 0 dO do, which is independent of ~ or of the direction s of MNP in 
absolute space. This rotation also keeps the components of ~Nc and rout along 

and [ (and in this limited sense this rotation represents a symmetry), but of 
course it changes the absolute components of ~ and l or, if one prefers, the point 
of impact P. 

If now Condition A is a reasonable probability assignment, then it has 
a geometrical counterpart, because there is a group of rotations which leaves 
0 and ~o invariant, but not 7 ~. However, for fixed ~, it is always po@ble to 
change cp and 0. A change of (p corresponds to a rotation of axes f',j' (or of ^ 
ACB) around k'; the change of 0 corresponds to a rotation of f alone (not of 
ACB as a whole) around ft. Thus Condition A seems to be reasonable. 
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