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Periodic Solutions to Some Problems 
of n-Body Type 

PIETRO MAJER & SUSANNA TERRACINI 

C o m m u n i c a t e d  by P. RABINOWITZ 

Abstract 

We prove the existence of at least one T-periodic solution to a dynamical 
system of the type 

- - m i i i  i = ~.~ V V i j ( u  i --1Aj,  t )  (1) 
j = 1 , j ~ i  

where the potentials Vii are T-periodic in t and singular at the origin, ui ~ R k, 
i = 1 . . . . .  n, and k __> 3. We also provide estimates on the H ~ norm of this 
solution. The proofs are based on a variant of the Ljusternik-Schnirelman 
method. The results here generalize to the n-body problem some results ob- 
tained by BAHRI ~r RABINOWITZ on the 3-body problem in [6]. 

1. Introduction and statement of the results 

In this paper we look for periodic solutions to dynamical systems of 
n-body type like (1), where V/]~ ~ I ( ( R k \ { 0 } ) •  R) are T-periodic in t 
and k __> 3. We consider the following assumptions on the potentials 
Vi j ( i , j  = 1 . . . . .  n, i ~:j): 

V(i(x, t) = V j i ( - x  , t) Vx~Rk\{0}, (V1) 

V i j ( x  , t )  ~_~ 0 V X  E Rk\{0}, (V2) 

3po > 0, 3 U6 ~ ( R k \ { 0 } ;  R) such that 

lim U(x)  = lira a Vii (x, t) = + oo - Vi j  (x, t) > [ V U ( x )  l 2 (V3) 
x---~O x 0 ' ' ~- 

Vx with 0 < I x ]  <po,  

3 p > 0 ,  3 0 6 [ 0 , ~ )  such that ang (VVi j (x ,  t ) ,  x )  <_NO V x ,  lxl > p  (V4) 
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where VV~7(x, t ) d e n o t e s  ( 0 t V i j ( x ' t ) '  " ' "  0 ~  V/j(x' t)) ~ R k ' 0 x n  and in any 

Euclidean space 0 __< ang(x, y) ___< n denotes the angle between x and y. 

Remark. In what follows we shall assume for the sake of  simplicity that 
m i = 1. Simple variants on the estimates are needed to cover the general 
case. 

Our main theorem is the following: 

Theorem 1. Assume that (Vt), (V2), (V3) and (V4) hold. Then (1) has at least 
one T-periodic solution u = (us,  . . . ,  u~) such that ui(t  ) t uj( t ) ,  for  all i . j 
and for all t E R. Moreover, 

I I/~i ----- 2c* -< 2 inf - -  nR 2 + T sup 
i=2 0 - -  R>0 l = i < j  ]x]>_2Rsin(zc(j-i)/n) 

s ~ ui(t  ) -- uj(t ~ nR(n ,  0)  2 

i,j=l;i:#i 0 6 

where R(n ,  O) is a constant whose value is given in (4.4). 

( - v~j(x,  t))J, 
(1 .1)  

1 ~)2 
cos 0 + (1.2) 

In particular, (1.1) and (1.2) imply that there exists a constant K(n,  T)  > 0 
such that 

I l u i  - uj IIoo __6 < g ( n ,  T)  (p  + x~c* ) ( cos  O) -(n- l ) ,  (1.3/ 
where 

0 =  sup ang(VVi j (x ,  t ) , x )  
i,j,]x[>>-p 

and the constant c*, as in (1.1), depends only on the interaction potentials 
V/j and on the period. 

Unfortunately, the most physically interesting potentials behave like ]xt -2 
at the origin. Hence they do not satisfy the strong-force condition (V3). If 
we drop condition (V3) from the hypotheses of Theorem I and we only assume 

Vij(X,t)-+--oa as x ---, 0 ( V i * j ) ,  (V3)* 

then a weaker result can be stated, namely, the existence of a generalized solu- 
tion. Following [5], a generalized solution of (l) is an H a T-periodic function 
u = (ul . . . . .  un) that satisfies (1) in [0, T] \ (Ui , j (ui  - uj) -2 (0)) and such 
that [0, T] n ( tJi , j (ui  - uj) -2 (0)) has measure zero. Hence the notion o f  
generalized solution admits the possibility of collisions (which occur at those 
times t when ui(t)  = uj(t)  for some i , j ) .  

Theorem 2. Assume (V1), (V2), (V3)* and (V4) hold. Then (1) has at least one 
T-periodic generalized solution u = (u2 . . . . .  un). Moreover the same estimates 
(1.1), (1.2) and (1.3) hold. 
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One can also prove an existence result under assumptions slightly different 
from (V4). Let us consider the following assumptions (for all i t - j ) :  

V M > 0  3 R > 0  such that if I xl > R ,  then (vs)  
n--3  

VV~j(x, t ) .x  __> M[ VVij(x, t)I Ixl 
]Vii(x, t)[ + [VV~j(x, t)[ ~ 0 as x --, + oo uniformly in t. (V6) 

Then we have the following result: 

Theorem 3. Assume that (V1), (V2), (V3), (V5) and (V6) hold. Then (1) has at 
least one T-periodic solution u = (ul . . . . .  u~) such that ui(t) �9 uj(t), for all 
i ~ j and for all t E R. 

From our point of view, the T-periodic solutions of (1) are critical points 
of the action functional 

T T 

f ( u )  = �89 ~ l ul 2 - 5 V(u, t) (1.4) 
0 0 

on the domain 

A ={u = (Ul . . . . .  un) ~ H I ( R ;  R kn) :ui(t) * ui(t), Vt ,  V i . j } .  (1.5) 

Here H}(R,  R k~) is the space of H{oc functions from R to R k" with period 
T. V is the interaction potential 

V(x  I . . . . .  x ~ , t ) = � 8 9  ~ V i j ( x i - - x j ,  t ) ,  ( x  I . . . . .  Xn) ERkn,  xi:l=xj, V i * j .  

i,j=l;i.j (1.6) 

Let us briefly discuss the hypotheses (V1)-(V5) and describe the main 
difficulties which arise when dealing with the functional f .  Assumption (V1) 
corresponds to Newton's third law of mechanics, since it implies that 
-VVij(ui  - uj, t) = VVji(u j - u i ,  t ) ,  that is, the force exerted on the j-th body 
by the i-th body is the opposite of the force exerted on the i-th body by the 
j-th body. It is a necessary condition for the variational formulation of the 
problem. This assumption can be dropped if we write system (1) as 

--mini i = �89 ~ VTi j (u  i - uj, t) --}- VVj i (u  j - ui, t) . 
i,j= l; i ecj 

There are three main difficulties with the variational approach to our prob- 
lem. The first is a lack of completeness due to the fact that the domain of 
f is open. The strong-force condition (V3), which implies f ( u ) - ,  + oo as 
u--* OA, is a standard way to avoid this difficulty. The second is that f does 
not necessarily satisfy the Palais-Smale (PS) condition at any level, although 
it satisfies it on bounded sets of H. Therefore we shall use a deformation lem- 
ma that only requires a local form of the (PS) condition. A corresponding 
version of this deformation 1emma has been introduced by MAJER [14] for the 
case of functionals defined on a manifold M with boundary OM. Roughly 
speaking, if f has no critical points in M at the level c, then the sublevel 
{f<- c + a} u OM is contractible into [f__< c - e} w OM provided f ,  flOM satisfy 
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the (PS) condition and the functional gradient Vf is not exactly opposite to 
the inward normal at 03,1. In our situation, let 

g(u) = 2n \ T o  
i,j=l 

Then a (PS) sequence (u~,)~ is precompact (up to translations of  the whole 
systems) if and only if g(Uv) is bounded. A natural setting in which to use 
this deformation lemma is to restrict f to some Mb = {g _-< b}. We shall show 
how assumption (V4) ensures the above-mentioned "non-opposi t ion"  property 
at OMb. Finally the third difficulty consists in finding a candidate for a 
critical level for f .  To do this we shall make use of arguments of a topological 
nature that exploit the special structure of the loop space A. In particular, we 
shall prove the existence of  at least one level c such that {f__< c - e} u OM is 
not deformable into {f__< c + e} u OM. 

In recent years, quite a large number of  papers have appeared on the ex- 
istence of  periodic solutions to dynamical systems with singular potentials. We 
quote [1, 2, 5, 8, 9, 11, 12, 13, 22] and the references therein for the case of 
one body moving in a gravitation-like field. Concerning the n-body problem, 
symmetrical cases have been studied in [7, 8, 20, 23]. A symmetry constraint 
on the function space allows us to overcome the lack of  compactness, since 
the restricted potential is coercive; therefore the existence of  one solution can 
be derived from a minimization argument. The common problem of  these 
papers is how to avoid collision solutions, when the strong-force condition 
(V3) is weakened. 

In contrast, we shall deal with non-symmetrical potentials and we shall 
focus our attention on the variational method, retaining the strong force con- 
dition in order to ensure the closure of  the sublevels of  f .  In this framework, 
the three-body problem (n = 3) has been treated by BAgRI & RAmNOWITZ in 
[6], where the existence of  infinitely many solutions is proved. The proof  is 
based on the theory of critical points at infinity and makes considerable use 
of  algebraic topology; it also gives a very detailed description of  the behavior 
of  all the diverging (PS) sequences and of the topology of the sublevel sets. 
The nontrivial way of  generalizing this approach to any n __> 3 has been shown 
very recently in [20]. An advantage of our arguments is that they are based 
only on the above-mentioned deformation lemma and on elementary topology. 
The same construction together with a further topological argument yields to 
a proof  of  infinitely many solutions to (1) [16]. We do not consider here the 
problem for fixed energy; see [3, 15] and the references therein. For other 
related problems and for classical results see [4, 10, 17-19 ,  21]. 

Notat ion 

n denotes the number of  bodies with positions (u 1 . . . . .  u~). 
k denotes the dimension of space of  the position of  each body: ui~ R k. 
T denotes the period. 
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H denotes the Sobolev space of periodic functions: 

H = {u(t) = ( U l ( t ) ,  . . . ,  Un(t))  E H ~ o c ( R  ; R kn) : u ( t  -[" T )  = u ( t ) ,  V t }  

endowed with the inner product 

T 
u ' v =  ~ ( t~( t ) . iJ ( t )  + u ( t ) . v ( t ) )  dt.  

0 

A is the subset of all the collisionless orbits: 

A = { u E H : u i ( t  ) ~ u j ( t ) ,  V t ,  V i  :r  

We identify the subspace of h of all the constant functions with Rkn: 

R k n - ~ [ u E H : f i ( t )  = 0 ,  Vt}. 

For every function u, [u] denotes its mean value: 

1 T 
[ul = ~ 0  ~ u(s )  ds.  

If x, y E R k, the angle between x and y is 

I x . y  a r c c o s - -  if ] x l l y l *  0 
ang(x, y) = Ixl [y[ 

0 otherwise. 

Recall the subadditivity of angles: 

ang(x ,y)  <_ang(x,z)  + a n g ( z , y )  ' r  z E R  k, z * O .  

For any functional f : X  ~ R we denote: {f__< c} = { x E X : f ( x )  <__ c} and use the 
analogous notations { f =  c} and {f_> c}. 

2. The deformation lemma 

Definition 2.1. Let X be a topological space and let A, B c_ X. A is deformable 
into B in X if there is a continuous homotopy #/:A • [0, 1] ~ X such that 
~/(., 0) = idJA and #/(A, 1) c_ B. 

If  X is an absolute neighbourhood retract and A is closed, in the Defini- 
t ion2.1 we can equivalently take homotopies r / : X x [ 0 , 1 I - , X  such that 
r/(., 0) = idlx (Homotopy Extension Property, cf. [24]). 

Lemma 2.1. Let A be an open subset o f  any Hilbert space H and let 
fE ~ ( A ; R ) ,  gE ~ 2 ( A ;  R). Assume that there are c and ~ with ~ >  c and 
b E R such that 

lira f (Xv )  = + oo i f  x v -~ x o E OA and g(x~) is bounded. (2.1) V--* -t- ~o 

Vg(x )  ~: 0 V x, g ( x )  = b, f (x) <= e.  (2.2) 
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Every sequence (Xv) in A such that f ( x  v) -* e, lim sup g(xv) N b 

and Vf(x v) ~ 0 possesses a convergent subsequence. (2.3) 

Eve~ sequence (x v) in A such that f ( xv )  -~ c, g(xv) ~ b and (2.4) 

Vf(x~) - 2vVg(xv) ~ 0 with 2~ >- O, possesses a convergent subsequence. 

Vf(x) * ,~Vg(x) Vx, V2 > 0; g(x)  = b, f ( x )  = c. (2.5) 

V e E  (O, e -  c] the set {f<_ e + gl w ( { f = < ~ l m { g ~ b } )  

& not deformable inW {fN c - g} u ( [ f N  e}n  {g => b}) in A .  
(2.6) 

Then f has at least one critical point x 6 A such that f ( x )  = c and g (x) N b. 

The proof of this lemma easily follows from [14, Chap. III, Proposi- 
tions 7, 81. A sketch of it is given in Section 7. 

In order to prove Theorem 1 we shall apply Lemma 2.1 in the following 
situation: H and A are defined in (2) and (4) and 

f ( u )  =- 

T n T 

i='! 0 !=i -~] 
(2.7) 

g(u) 0 i,j=l 

(2.8) 

Conditions (2.1), (2..2), (2.3) and (2.4) will be proved to hold true for every 
c and b > 0 in Section 3; their proofs are quffe standard. The proofs of the 
remaining conditions require a deeper discussion, In Section 4 we shall show 
that (2.5) holds whenever b is sufficiently large, depending on c, e. In Sec- 
tion 5 we shall finally characterize c and o in a variational way. The estimates 
(1.1) and (t.2) in the statement of Theorem t will then follow from the 
characterization of the critical level c and the associated value b. 

Remark. Since f is invariant under translations of the whole system, its natural 
domain is the subset A I R  k of the quotient space H/R k (which is isomorphic 
to H0 = : { u ~ H :  Zi[ui] = 01). In the quotient space f real!y satisfies the (PS) 
condition in every sublevel of g, while it does not in A, of course, owing to 
the non-compact action of the group of the translations. Hence we shall apply 
the deformation lemma in A / R k ;  nevertheless, with a slight abuse of nota- 
tion, we shall denote with the same symbols both the functions of H and the 
equivalence classes of H/R  ~. This identification is admissible since alt the 
operations appearing in this paper are compatible with the equivalence rela- 
tion. In particular, it is straightforward to check that eon~tion (2 .6)f  and g 
on A if and only if (2.6) holds for the inducM maps f and ~ on A/R  k. 
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3. Compactness properties of f Proofs of (2.1), (2.2), (2.3) and (2.4) 

In this section f and g are as in (2.7) and (2.8) and the V~j's satisfy 
assumptions (Vl), (V2) and (V3). 

Proposition 3.1. For every c > 0 there is d( c) > 0 such that 

if  f ( u )  < c, then min[ui(t)  - u j ( t )  I > O(c).  (3.0 

Proof. See, for example, [51 or [11]. [] 

Proposition 3.2. 

If  g(u)  > 0, then Vg(u) :l: 0. (3.2) 

Proof. Since g is quadratic, we have Vg(u) - u = 2g(u) > 0. []  

Remark. Actually, [IVg(u)H is bounded away from zero in any set {g>=b, 
f _  c}, b > 0. Indeed, let us denote by P the orthogonal projection onto H0; 
we have 

][nu[l <_ C(g(u)  + llufl2z) t/2 _<__ C(g(u)  + 2 f (u ) )  I/2 

Thus 

2g(u) = Vg (u)-u = Vg(u). Pu <_ fl Vg(u)tt IIPu I[ <- C(g (u) + 2f(u))1/2tlVg(u)lil. 

It follows that I[Vg(u)[I ~ 2b[C(b + 2e) 1/z for uE[g >_ b,f<_ c}. 

Proposition 3.3. For every c, b ER, every sequence {Uv}v C A such that f (uv )~c ,  
Vf(u~) ~ 0 and g(uv) < b possesses a converging subsequence. 

Proof. First, f (uv)  -~ c and g(uv) <= b imply the HLboundness  of  the se- 
quence (up to translations of the whole system) and therefore the existence of  
a subsequence converging in the weak topology of H t and in the uniform 
topology to some u6H.  From (3.1) it follows that uEA.  Hence VV(u v, t ) .  
( u - u v )  converges uniformly to zero. Since: V f ( u v ) ~ 0  and u - u v  is 
H 1-bounded, we have 

T 

[[ti[12 2 -  lim ][tiv[I 2 = lim ~ ftv. (fi --fry) dt 
V--> oo V - + c o  0 

= lim V f ( u v ) . ( u - u v )  + ~VV(uv,  t ) .  ( u - u ~ ) d t  = 0 .  
v - *  oo 0 

Therefore u~ converges to u strongly in H I. [] 

Proposition 3.4. Given c E R and b > O, every sequence {Uv} C A such that 
f (uv)  ~ c, g(uv) ~ b and Vf(uv) - )~vVg(uv) ~ O, with )~v >-- O, possesses a 
converging subsequence. 
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Proof. The proof  follows the proof  of Proposition 3.3, since Vg is compact 

and that lim SUpv 12v I = lim SUpv ]Vf(Uv) I < = co. [] 
IVg(uv) j 

4. An a priori estimate for a nonlinear eigenvalue problem. Proof of (2.5) 

Proposition 4.1. Assume that (VI), (V2), (V3) and (V4) hold. For every c > 0 
there exists b = b(c)  > 0 such that the nonlinear eigenvalue problem 

Vf(u)  = 2Vg(u),  2 > 0 (4.1) 

has no solution u with 
f ( u )  <= c, g(u)  > b. (4.2) 

More precisely, b(c)  can be taken to be 

b(c)  nR(n, O)2 ( ~ J c T  l 9 2  = + (4.3) 
6 cos 0 

where 

I 
n - 1  i f O = O ,  

R(n,  O) = c(O) n-1 - 1 if 0 > 0, (4.4) 

c( O) - 1 

1(10) c(O)=2 1 + - -  . ( 4 . 5 )  
COS 

In order to prove the proposition we need some preliminaries. To begin 
with, let p => 0 and 06 [0, ~ [ be fixed real numbers. We shall be concerned 
with finite families of  closed balls 3 = {B(xi, ri)}i<=n satisfying the following 
metric property: 

[ x - y  I > p, a n g ( x - y ,  x i - x j )  < ~ - 0  V ie~ j ,  V x ~ B ( x i ,  ri), V y ~ B ( x j , 1 ) ) .  

(4.6) 

With a little elementary geometry (4.6) can easily be shown to be equivalent to 

ri + ~) (4.6)' V i . j  ] x i - x j l  > ( r i + r j + p )  v - - .  
cos 0 

Now, given n balls of  radius r in R k, we wish to cover them with another 
family of  balls, which satisfy property (4.6) and whose radii are as small as 
possible. We have the following result: 

I_emma 4.1 (Covering Lemma). Let a family ~ = {B(xi, r)}i<=n of n balls of R k 

be given. Then (i) there is another family of balls 2 ' =  {B(/', r[)}i<=n, and a sur- 
jective map o- : {1 . . . . .  n} ~ {1 . . . . .  n'} such that, for every i <__ n, B(xi,  r) c_ 
B(x~(i), r~(i)); ~.~' satisfies (4.6) and, for every i <- n', 

0 + + r. (4.7) 
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(ii) / f  in addition 

1 ~  [2 ( r p )  
2n I x i - x j  > nR(n, 0) 2 c~OsO + 

i,]=l 

then n '  >= 2. 

2 

Proof.  (i) We construct such a cover ~ '  as the last term of a recursively de- 
fined finite sequence of  covers: 

~ v  = [Bi, v}l<=i<-n-v, Bi, v =:  B(xi ,  v,  ri, v) , 0 <- v <- v* .  

Moreover, for technical reasons it is also convenient to define numbers/~(i ,  v) 
for all the indices (i, v). Set ~ 0  = ~ and/~(i ,  0) = 1 for all i < n. Suppose 
that the ~ and the p ( i , j )  have been defined for all ( i , j )  with 1 =<j =< v, 
1 < i _ n - j .  Then if ~ v  satisfies property (4.6), stop at v* =:  v and take 
~ '  = : ~ v .  If  it does not, then by (4.6)' there exist two indices iv < Jv such 
that 

ri v, v + rj v , v 
Ixi~,v - Xj~,v[ <___ (riv, v + rjv, v + p)  v 

cos O 

ri v, v + rj v, v 
<= + p .  

cos 0 

Therefore Biv, v u BL, v is contained in a suitable ball Bv+l =:/~(xv+l,  rv+l), 
where 

rv+l = : 2  1 + - - c o s  0 (riv'v + t)v'v) + p~'2 (4.8) 

We then define ~ v + l  and the numbers p (i, v + 1) by 

f Bi, v for 1 <= i < J v ,  i t- i v,  

Bi, v ~- } B y +  1 for i = iv, 

[.,.Bi+l, v for Jv <- i <_ n - v - 1, 
(4.9) 

( ~ ( i , v )  for 1 <= i < j v ,  i ~= iv, 

g ( i , v + l ) =  ] p ( i v ,  p v ) + F t ( j v ,  v) for i = i v ,  
/ 

k./~(i+ 1, v) f o r j v _ < i _ < n - v -  1. 

Of course, this procedure stops at most at the n-th stage, because in that case 
~ n  is a singleton and certainly satisfies property (4.6). Notice also that 

n - - V  

E r v) = n for every v with 0 <_ v _< v*. 
i = 1  

Now let us consider the generic ball Bi, v and estimate its radius ri, v. We 
assert that if /~(i, v) = m, then 

ri, v < - R ( m , O ) ( c  r P )  os 0 + + r; (4.10) 
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this implies in part icular  (4.7), as m _< n. Let  us show (4.10) by induct ion on 
m. I f  m = 1, then ri, v = r and the assertion is obviously t rue.  Suppose it 
holds for  all m'  < m __< n, and let us prove it f o r  m. By definit ions (4.9), (4,5), 
(4.8) there exist h < v and 1 <= i h <jh__< n -  h such that  

Bi, v = B i h ,  h+l D Bih, h U Bjh,h , 

P = = - - ,  (4.11) ri, v rih, h+l c ( O )  (rih,h + rjh, h) + 2 

~( i ,  v) = B ( i h ,  h + 1) =lt(ih, h) +t~(jh, h). 

Letting a ( ih ,  h) = m'  and / t ( jh ,  h) = m", we have f rom (4.11) and f rom the 
inductive hypothesis  that  

ri, v = c(O)(rih, h + rj~,h ) + p~ 2 

<- c(O) [ (R(m" O) + R(m"' O)) (c-~ss 0 + 2 )  + 2 r ]  +P--2 

= [ c ( O ' ( R ( m " O ' + R ( m " ' O ) ) + I ] ( c ( s o + P )  +r.  

Now it is easily seen that  R(m, O) satisfies 

c(O) (R(m', O) + R(m", 0)) + 1 <= R(m, O) whenever m'  + m" = m. 

Hence  

ri,~<--R(m,O'(c-~s P )  0 + +r,  

and we are done .  
(ii) We have 

1 ix ~ [  l ~ x j 2  2n ~a I xi :9 xi min ix i y]2. 
n yER k 

i,j i=1 j = l  i=1 

I f  3 '  were a singleton {B'(x', r ')}, then 

1 ~_~ ' xjl 2<_ ~ Ixi x ' 1 2 < n ( r '  r)2<nR(n,= 0)2(  r 
2n lxi = cos 0 

i,j i=1 

D 

P r o o f  o f  Propos i t ion  4.1. Let u E A, with f (u)  <_ c, g(u) > b. We shall exhibit 
a v f i H  such that  

Vf(u). v <_ 0 Vg(u)  �9 v > 0,  (4.12) 

which proves that  u does not  satisfy (4. t )  for  any )~ > 0. Since 

II Ui -- [bti] 11 c~ ~ II/~i H2 ~ (2c) 1/2 = 
1/2 

, (4 .13)  
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we have u i ( t ) E B ( x i ,  r) for every iN  n and every t ~ R ,  with r =  (T.  c/6) 1/2 
and xi = [ui]. Applying the covering lemma to the family ~ = {B(xi,  r)}i<=~, 
we get the cover ~ '  ={/~(x/, r[)li<=n, and the map o-. Moreover, n'_> 2, 
since we have supposed that 

1 _ 12 2n E txi xj = g(u)  > b. (4.14) 
i , j  

For i =  1 , . . . ,  n, we define 
V i = X~(i)  E R k, (4.15) 

Then 
T 

X t v f ( u ) ,  v = - ~ S v V v ( u i  . j ,  t) , (~ ( , )  - x ; ( j ) )  dr. 
i , j  0 

Notice that the only indices (i, j )  which contribute to the sum are those for 
which a ( i )  . a ( j ) ;  in that case, since from (4.13) we have 

ui(t ) ~B(x i ,  r), uj(t) EB(xj ,  r) V t E R ,  

we get by (4.6) that 

t u i - u j l  > p, a n g ( u ~ - u j ,  x~(i) - x ~ ( j ) )  < ~ - 0  V t E R  

where for simplicity, u~ = u~(t), uj = uj(t). From the first of  these inequalities 
and from the hypothesis (V4) on Vii we also have 

ang(VVij (u / -  uj, t) ,  u, - uj) <_ 0 

so that, by the subadditivity property of angles, 

a n g ( V V i j ( u i -  uj, t) ,  x~{ 0 - x ; ( j ) )  <_ ~, 

and we infer that 

VVq(ui - uj, t ) .  (x~(0 - x~o )) >= 0.  
Thus Vf(u) �9 v <- 0. 

In a similar way, we have 

1 
gg(u ) ,  v = 2.2-n E [ui - uj]. (x~(1) - x~(j)) > 0 

i , j  

for [u~ - ujl. (x;(0 -x~{j)) > 0 whenever a( i )  e t a ( j ) .  (Notice that here we 
have used the fact that n'>_ 2). [] 

5. Homotopies in A. Proofs of (2.6) and the main theorem 

Proposition 5.1. There is c* E R such that with every pair 6, b with e > c* and 
b > n(n - 1)2eT/6 there is associated c b < ~ such that 

{f<- c b + e} to ((f<_ e} n {g _> b}) (5.1) 

is not deformable into {f=_N cb - el vo ({f_N_< el n {g __> b}) in A 

for every e < e - Cb. 
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We start with some definitions: Consider the set of  all the deformations 
of  A in H into the subspace of  constant functions Rk~: 

~ = [ h ~  ~ ( A x [ O ,  1]; H )  :h ( . ,  O) = i d ,  h(A,  1) C Rk~}. (5.2) 

For fixed h = (h 1 . . . . .  h~) ~ Y a n d  u = (ul . . . . .  un) ~ A, we define a relation 
rh, u in the set of  the indices I = [1 . . . . .  n} by 

irh, uj ** 32i j~  [0, 1], 3 t i i E S  1 (5.3) 
such that hi(u1, . . . ,  u~, 2ij) (tij) = hi(u1, . . . ,  u~, 2ij) ( t i f  f . 

It is immediate to check that rh, u is reflexive and symmetric. We denote by 
Rh, u the smallest equivalence relation containing rh, u: 

iRh, uj r 3 i  1 . . . . .  ik: irh, , i l ,  rh, ui2 . . . . .  ikrh, uJ. 

Definition 5.1. Let A be a closed subset of  A. We say that A is admissible if 

V h =  (hi . . . . .  h n ) ~  3 u =  (u I . . . . .  un) EA such that (5.4) 
iRh, uj, V i, j ~ I .  

Remark 5.L If  A has the following property, then it is admissible: 

V h =  ( h l , . . . , h n )  E •  f l u =  (Ul . . . . .  un) EA, 3ioE[I  . . . . .  n } : V i e ~ i o  
(5.5) 

3~i, io E [0, l ] ,  ::]ti, ioESl: hi(Ul . . . . .  Un, ~i, io)(ti, io)=hio(Ul . . . . .  Un,l~i, io)(ti, io). 

In view of  Definition 2.1, the following property follows from Definition 5.1 
(the proof  will be given later in this section). 

Proposition 5.2. I f  A and B are closed subsets of  A and A is deformable into 
B in A ,  then, if  A is admissible, so is B. 

We define 
5 J =  {A ___ A closed :A is admissible} (5.6) 

and c* as 
c* = inf sup f .  (5.7) 

Arid A 

In the usual Ljusternik-Schnirelman theory (with the full (PS) condition) we 
are allowed to say that c* is a critical point for f .  Here the variational 
characterization of the critical level will be a little more complicated. In order 
to complete it we need some preliminary results. 

Proposition 5.3. d :~ 0. Moreover, 

1 _ nR 2 + T ~ sup ( -V/j(x,  t)) . (5.8) 
- -  R>0 l = i < j  Ixl >=2Rsin~(j-i)/n 

Proposition 5.4. For every ~ ~ R there is b* = b * ( ? )  such that 

( { f _ < e } n { g _ _ > b } ) r  for every b > b *  (5.9) 
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Moreover, b* ( ~) can be taken to be 

b * ( e )  = n (n  - 1) 20T 
6 

393 

(5.10) 

Postponing the proof of these two facts, let us turn to the proofs of  Pro- 
position 5.1 and Theorem 1. 

Proof of Proposition 5.1. Let us fix any e > c* and b > b* (e) = n(n  - 1) 2 eT /6  
and define 

Cb = i n f { y : [ f N  ~1 u ([ f<_ e} ~ [g ___ b}) ~ 5S}. (5.11) 

Notice that c b is well defined provided S : #  0, c* < + co (cf. Proposition 5.3) 
and ({f___ el c~ [g >_ b}) ~ S ,  which occurs, by Proposition 5.4, whenever 
b > b * ( e ) .  

Since the class S is monotone we have 

Cb < c* < e for every b > b*(e )  ; (5.12) 

moreover, for every e > O, 

i f_ -  < Cb + el U ({f_< e} n {g_>_ b}) E S ,  (5.13) 
while 

{f<_ c b - e} u ({f_< el n {g >__ b}) ~ S .  (5.14) 

Proposition 5.2 then ensures that {f__< Cb + e} W ({f<_-- e / n  {g >= b/) cannot be 
deformable into [f___ Cb -- el u ({f<__ el n [g ~ b}) in A. [] 

Proof of Theorem 1. Let us fix any e > c* and b > b(e) ,  b(e)  being defined 
in (4.3). Let c b be as in (5.11). Since cl;___< e by (5.12) and since b ( . )  is an 
increasing function, we have that b ____b(e)>=b(c~). Hence, by Proposi- 
tion 4.1, condition (2.5) of  Lemma 2.1 is fulfilled for c = cg and b = 6. 

Moreover, by their definitions (4.3) and (5.10), b ( . )  => b * ( . ) ,  so that 
/3 > b(e)  __> b * ( e ) ;  thus it follows from Proposition 5.1 that assumption (2.6) 
is also satisfied for these values of e, c and b. 

This discussion, together with the results of Section 3, allows the appli- 
cation of  Lemma 2.1. Therefore a critical point ua is found such that 
f (u f , )  = c~; <= c* < e and g(u~) <= [~. 

Of course we wish to minimize the estimates on the levels of f and g of 
this solution. Letting g converge to c* and/3 converge to b ( c * )  and using the 
compactness property of (2.3), we obtain the existence of one critical point 
u at level c = Cb(c*) <-- c* such that g(u)<= b ( c * ) .  The estimates (1.1) and 
(1.3) just follow from the estimate on c* of  Proposition 5.3 and from the 
definition of b ( c * )  (4.3). [] 

We end this section with the proofs of Propositions 5.2, 5.3 and 5.4. 

Proof of Proposition 5.2. Let h ~ ~U; according to Definition 5.1 we have to 
find a w e B such that rh, w generates the total equivalence relation on I, i.e., 
iRh, wJ for all i, j E I. By Definition 2.1 and the remark below there exists a 



394 R MAJER & S. TERRACINI 

continuous homotopy t/: A • [0, 1] ~ A such that t/(.,  0) = idlA and 
r/(A, t) _c B. Consider the juxtaposition of ~/ and h: 

fr / (u,  22) if 0 __<_ )~ <_ �89 
h . r / (u ,  2 ) : =  I .h(~(u,  1 ) , 2 ; t - 1 )  i f � 8 9  

Then, clearly, h. r/~ ~ so, since A~ S ,  there exists u EA such that rh~,u 
generates the total equivalence relation on L But it is readily seen that 
rh.~,, = rh,~(,,l~, so that we finish the proof by taking w =  t/(u, 1) EB, [] 

Proof of Proposition 5.3. We are going to exhibit a particular closed set having 
the property (5.5) and therefore the property (5.4). Let us fix an orthonormal 
system (el, ez . . . .  , eD of Rk: Define 

S ~-2 = [xE Rk:lxl  = 1, x '  e1 = 0}. 

For simplicity of notation we are going to assume that the period T is equal 
to t. indeed  the subset A in the space of T-periodic functions is clearly 
homeomorphic, by scaling of the period, to the corresponding subset A in the 
space of 1-periodic functions. 

Define the continuous map 

by 

U: ( s k - 2 )  n-1 --+ H, U(x  2 . . . . .  gn) = (Ul(X2, . . . .  xn) . . . . .  Un(X2 . . . . .  Xn)) 

HI(X 2 . . . . .  Xn) (t) = e2(1 - cos 2re) t + el sin 2rot, 

ui(x2 . . . . .  xn) = xi 1 - c o s 2 ~ z  t +  - 1  
n 

, i = 2 ,  . . . , n .  

We set A* = U((S~-2) "-1) and we assert that (5.5) is fulfilled for i0 = l. 
It is easily seen that A* CA.  Now let us fix any h E Z a n d  define ~ ,=  
(~2 . . . . .  ~n) : ( S k - 2 x B 2 )  n-1 ~ Rk('-l) by 

I]/i(X2 . . . . .  Xn, p2 e2"it2 . . . . .  pn e2nit" 

= h i ( U ( x  1 . . . . .  x n ) , l - p i ) ( t i )  - h l ( U ( X l  . . . . .  xn), 1 - & ) ( t i ) ,  i = 2  . . . . .  n. 

Keeping in mind the dependence of  ~u on the homotopy h, proving (5.5) 
becomes equivalent to proving that 

0~ q/(Sk-2 X Ba) n-1 

We first observe that q/ is continuous, since by definition, h ~ ~ implies that 
h(u ,  1) = const. We are going to prove that q/has topological degree • 1 with 
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respect to the value 0. To do this we define the continuous map 

q7 : (S k-2 XB2) n-1 -~ R k(n-x) 

by 

~/~i (X2 . . . . .  Xn, P2 e2git2 . . . . .  Pn e2~zitn) 

f ui(x . . . . .  Xn)(ti) - 2 ( p i - � 8 9  ) + 2 ( 1 - p i )  e2 if �89 1, 

1 = } U i ( X 2 ,  . . . ,  Xn) ( t i )  -- 8 ( � 8 9  - -  Pi) e2  - -  e2  if 41 < Pi ~ ~,  
! 
~ 4piui(x 2 . . . . .  xn) (ti) - 3e2 if 0 < Pi < 1 

In the same way that g, corresponds to the homotopy h, the map g7 cor- 

responds to some/~ E ~ .  Therefore /~ is defined as the juxtaposition of three 
homotopies. Notice that the first, defined for �89 =< p _< 1, makes the first 
body collapse to its mean value, ez, without any collision. The second, de- 
fined for �88 = p <_ �89 is a translation along the direction - e  2 of  all the bodies 
except ua; it unlinks the orbit of the first body from the orbits of all 
the other bodies. The third, defined for 0 N p =< 41, contracts the system 
(u2 . . . . .  u,) to a constant without any collision with the first body. We 
remark that collisions with the first body can occur only if �88 __< p _< �89 

We have 

~i(X2 . . . . .  Xn, p2 ez~it~ . . . . .  pne2~it,) : I~i(X 2 . . . . .  Xn, p2 ez~itz . . . . .  pne  2~itn) 

whenever Pi "=-1. Thus the homotopy , ~  + ( 1 -  ,~)~u has no zeros on the 
boundary of  the domain (Sk-ZxB2)~- l ;  indeed, on the boundary, for at 
least one index i, we have Pi = 1, so that by definition, 2~7 i + (1 - 2) i//i : -  

q/i * 0. By well-known properties of  the topological degree we then obtain 
that ~u and g7 have the same topological degree with respect to the value 
0. Now, by a few elementary computations, we can see that each regular 
value z = (z2 . . . . .  z~) E R k(n-1) in a sufficiently small neighborhood of 
the origin has only one counterimage for O. We then conclude that 
d e g ( ( S k - 2 x B 2 )  n - l ,  (/ ,  O) = 4-1. 

In order to prove (5.8), we are going to evalute the supremum of  the func- 
tional f over all the homotheties of A*, since, by Proposition 5.2, if A* ~ S ,  
then RA* ~ S ,  for every positive R. It is easily seen that, by the definition of  
A*,  

[Ui(t) --Uj(t)l ~_2Rsin 7 r ( j - i )  V u =  (b/1 . . . . .  u,)~RA*, V i < j ,  
n 

so that 

n ) 
e*_-< inf R>o sup f_-_ inf n R 2 + T ~  sup ( - V i / ( x , t ) )  [] 

R > 0  l=i<j Ix[ =>2Rsin(~( j  - i)/n) 

Proof of Proposition 5.4. Let u ~ A  with f ( u )  __< e and g(u) > b* (e ) .  As we 
have already pointed out in the proof  of Position 4.1, ui(t) belongs to the 

ball B([ui], X/~ /6 )  for every t. According to the notations of  the covering 
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Lemma 4.1, we set xi = [ui], r = x / ~ / 6 ,  0 = 0 and p = 0. Then the assump- 
tion g(u )  > b*(6)  corresponds to 

2n ]xi j + = n (n  - . 
i , j = I  COS 0 6 

Now we apply the covering Lemma 4.1, obtaining the existence of  a family 
of balls ~ ' =  {B(xi', r/)}i_<n, and a surjective map a :{1  . . . . .  n } ~ [ 1  . . . .  , n'} 
such that 

B(x i ,  r) c B(x~(o ,  r~,)) 

and (4.6) holds, that is, since p, 0 = 0, 

B(x~(i),  r~(i) n B(x~(j) ,  r~j))  = 0, if a ( i )  ~ a ( j )  . 

Moreover, n'_> 2, so that there really exist i and j such that a ( i )  e~ a ( j ) .  
Now we consider the continuous homotopy 

h(u,  2) = (1 - 2 ) u  + 2[u]. 

Of course, since hi(u, 2 ) ( t )  6B(x i ,  r),  for every 2 E [0, 1] and for every t, we 
have 

hi(u, 2) (t) - hi(u, 2) (t) = 0 = a ( i )  = a ( j )  . 

Thus, for every u 6 {f___ 6} u [g __> b}, the equivalence relation Ru, h considered 
in Definition 5.1 is contained in the equivalence relation i = j  r a ( i )  = a ( j )  
which has n'__> 2 equivalence classes. Hence (5.4) is violated and (f__< 6} u 
{g __> b} is not admissible. [] 

6. Further results and comments 

Proof of Theorem 2. One simply considers approximating problems satisfying 
the strong-force condition (V3), taking, for example Vi~ = V/j - e]xl -2. From 
Theorem 1 one obtains solutions u~ of the approximating problems, which are 
uniformly bounded in H 1 due to estimates (1.1) and (1.3). These have a weak 
H 1 limit point u ~ A ,  which is in C 2 and satisfies (1) outside a closed set of 
measure zero, i.e., [0, T] \ ( U i , j ( u  i - Uj) -1 ( 0 ) ) .  [] 

Now we are going to prove some corollaries and variants of Theorem 1. 
Our first result shows that assumption (V4) can be relaxed, simply by using 
estimate (1.3) and a truncation argument; as a counterpart,  we lose the extra 
information given by estimate (1.2). Let us consider the following assumption: 

V M > 0  3 R > 0  such that if Ix] > R ,  
n-2  (V7) 

then V V i j ( x , t ) . x  >=MlVVij(x , t )[  Ixl n-1 V i = C j .  

Theorem 6.1. Assume (Vl), (V2), (V3) and (V7) hold. Then (1) has at least one 
T-periodic solution u = (ul . . . . .  Un) such that ui(t ) =t= uj( t ) ,  for all i * j and for 
all t ~R .  
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Proof. Let c* = c*(Vij) as in (1.1) and let K(n, T) be the constant defined 
in (1.3). Choose p >__ 1 so that the inequality in (V7) holds for M = 1 ; choose 
Pl >= P so that the same holds for 

Ms =:  [2K(n, T) (p + ~ c * ) ]  1/(n-l) (6.1) 

Finally define 
R =: M~-lpl . (6.2) 

From our choices we obtain 

VVij(x , t) x ~l>=lVV~j(x,t)[pV a/(n-1) i f p ~ l x l  ~ P l ,  (6.3) 

and using (6.2) we also obtain 

X . - -  > M1]VVij(x, t) l R-l~("-1) vvij(x, t) Ix l  = 

= I VVij(x, t) lp~ 1/('-1), if Pl --< Ix[ -5_ R. (6.4) 

Therefore, 
cosang(VV~j(x,t),x) >_pZ 1/('-1) if p<=[x I <=R (6.5) 

(when VVij(x, t) = 0, this is true by definition of angle and by the fact that 
p~ => 1). Now let ~b be a cut-off function satisfying 0__< ~b__< 1; +'__< 0; 
(b(t) = 1 if t __< �89 q~(t) = 0 if t _> 1, and define the truncated potentials 

Vij(x, t) = Vii(x, t) q~ ( ~ - )  . (6.6) 

Hence 

( ~ - )  l v i j ( x , t )~ ' ( lR[ )  x~ v~j(x ,  t) = ~ vv~j(x, t) + R I x l '  

and, since V/j~b'__> 0, we obtain 

cos ang (VV/j(x, t), x) __> cos ang(VVij(x, t ) ,x) .  

This, together with (6.5) and VVij(x, t) = 0 for Ixl __> R, yields condition (V4) 
for the V/j's: 

cos ang(Vff/j(x, t), x) > p1-1/("-1) if Ix[ => p.  

Now Theorem 1 applies to the potentials ~7 and we obtain a solution u of 
the analog of system (1) for the V/j's, with the estimate (1.3): 

I[ ui  - uj II ~ --< g(n, T) (p + ~cc*)pa 

(here c*((~j)) <= (c* (V~j)) because - ~ j  <= -V~j). Hence (6.1) and (6.2) yield 

1 aAn-1. Ilui-uj[]~<=~,lx /.,1 = �89 R ;  

and we conclude that u is actually a solution of (1), since it takes values in 
the set where V/j and V/j coincide. [] 
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Another variant of  Theorem 1 can be obtained by assuming that the Vij's 
and their gradients vanish at infinity. This kind of  requirement is quite natural 
in the physical setting of  the n-body problem. We assume that 

[v~j(x, t) l + [vv~j (x, t)I ~ 0 as Ix[ --* + oo uniformly in t, V i . j .  (V6) 

Theorem 6.2. Assume that (Vt), (V2), (V3), (V4) and (V6) hold. Then the same 
conclusion as in Theorem I holds. Moreover, u satisfies the further estimate 

T 2 + f i  
E ( l J u , ( t ) - u J  ( t ) )  < - - 4 ( n - - l ' Z R ( n - l ' O ' Z  '~ ~ 0  + 

i,j=l;i:~j 

(6.7) 

where the constant fi depends only on the rate of growth of  the Vij's at zero and 
on the rate of  decay of the [V~7[-4r I VVijI's at infinity and not on the angle O. 

In order to prove Theorem 6.2 we need some preliminary results and a 
slight variant of  Proposition 4.I. In what follows we shall assume that (V1), 
(V2), (V3), (V4) and (V6) hold. 

Proposition 6.1. For every ~ > O: there is e(g) > 0 such that if  f (u) <= g and 
l[till2 ____ a(a),  then 

l [uel - [uAI > 2 I ti [12, V i =~ j .  (6.8) 

Proof. Let us assume that, for some pair of indices i and j ,  

= 2 ~ j  T I [u,.] - [uAI < ~ II ~ H2. 

Then 

on the other hand, 

T 

~ r , 
fl u~ - ~, II~ ~ 4 ] ~  I[ u 112; 

O >___f(u) >_ ~ - V~j(ui - uj) >__ T inf ( - v~jCx, t ) ) .  
0 t~R,O<]xl =<4~ IlulL 

Since, from (V3), limx_~O - Vii(x, t) = + oo uniformly in t, we obtain the con- 
clusion. [] 

Remark 6.L The constant ~(6) only depends on the rate of  growth of -V i i  as 
x tends to 0. We can then conclude that, if V~j = ~j in some neighborhood 
of the origin, then the corresponding constant e(r could be the same for the 
~j 's and the ~j's. 
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Proposition 6.2. 

({g >- b* (~')} to {]lull2 =< e(g')}) n {f_< 0 } r  (6.9) 

when b*(e)  = n(n - 1) eT/6. 

Proof. Let us consider the homotopy h introduced in the proof of  Proposi- 
tion 5.4: 

h(u, ;~) = (1 - 2) u + 2 [u]. 

If  [lti[[2 < g(e) ,  we have from (6.8) that 

h~ ( u, ,Z ) ( t ) - h i (u ,  ; 0  = (1 - ~ )  u~ + ,~ [u;] - (1 - ;~) u s - ,Z [u s] . 0 

u  u  Y t ,  

since in any case t[ ui - [ud tt~ N -i2 t/~ It2- To conclude the proof, we just 

argue as in the proof of  Proposition 5.4. [] 

As a consequence of  this proposition we obtain an estimate from below 
of the critical level: 

Proposition 6.3. Let b > b*(O) and let 

cb = in f [y :  ({g_> b}t_) {f_< y}) n {f=< ~}E S .  

Then c b > �89 e2(e). 

Proof.  This result follows immediately from Proposition 6.2, by taking into 

account of  the fact that {f=< )q < {ltult2 =< ~ 1  since Vii < 0. [] 

Remark 6.2. It follows from Remark 6.i that if V/~ are defined as in (6.6), 
then the estimate from below on the critical level holds independently of  the 
truncation for R < 1. 

Proposition 6.4. Corresponding to each ~ > 0 there is ~ > 0 such that the 
nonlinear eigenvalue problem 

V f ( u )  = AVg(u), 2 > 0 

has no solution u with 

~ ( e )  ~ f ( u )  < e ,  ra in  I[ud - [uA I > a .  
2 = :  i<j 
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Proof .  Let v = (vi) with vi = u i -  [ui]. Then  we have V g ( u ) .  v = 0 and 

V f ( u ) ' v  

=flul2-~ ~ vv~j<u,  - u j ,  t)  . (~, - ~j) 
0 0 i , j= l, i:r 

=2f(u) + ~ I v,:(u~-u:,t)-�89 ~ . ,  lvv~j(u~-,:,t).  (v,-~j) 
0 0 i , j= 1, i~ j  i,j= 1, i* j  

/ 
>__ e2(g) - n(n  - 1) T sup sup [] Vi,j(x, t) 

i,j t , [ x l> f i_2~ t -~6  \ 
+ 2 . ~ k v v ,  j(x,t) . 

Indeed,  we have Ilvgll~ _< x / ~ / 6  and  I]ui-  ujll~ ~ / 5 -  2 x / ~ / 6 .  It  is clear 
tha t  whenever /5 is sufficiently large, the last expression is strictly positive. 
Hav ing  found  v 6 H  such tha t  V g ( u ) . v  = 0 and V f ( u ) . v >  0, we have ob- 
viously proved this proposi t ion .  []  

P ropos i t i on  6.5. I f  /5 is as in Proposition 6.4, then the nonlinear eigenvalue 
problem 

V f ( u )  = ) .Vg(u) ,  )~ > 0 

has no solution u with 

! e(e) <_f(u) < g, 2 

2 +  
( 1  : u i -  > 4 ( n -  1 ) 2 R ( n - l ,  0) 2 + 

i,:=1 \ T  o cos 0 

+ 2 (n  - 1)/5 2. (6.10) 

P roof .  Thanks  to Propos i t ion  6.4 we only have to examine the case when 

mi.n I [ui] - [ujll -</5. 
t ,<j 

For simplicity o f  no ta t ion  we can assume tha t  

I[unl - [Un-l]  I ~-~ /5 ;  ( 6 . 1 1 )  

thus we have 

Now we apply  the covering L e m m a  4.1 with xi = [ur i = 1 . . . . .  n - 1 and 

r = /5  + ~ ] 6 .  We then  find the cover 3 ' =  [/~(x~', r[)}i= 1 . . . . . .  ' -1 and  the 
surjective m a p  a:{1 . . . . .  n -  1} ~ {1 . . . . .  n ' - 1 }  are as in L e m m a  4.1. We 
put  a(n)  = a (n  - 1). 
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Since n - 1 n - 1 

+ 

i , j = i  i , j = l  i=1  

from (6.11), we then deduce that 
n - 1  

( [Ui] - -  [b/j] ) 2 ~ 2 ~ ( [b/i] - -  [uj] ) 2 q_ 2 (n - 1) fi2. 
i , j  = 1 i , j  = 1 

Thus (6.10) yields 

( 
([b/i]  - -  [Uj] )  2 > 2(n  - 1)2R(n - 1, 0)  2 COS 0 § 

i , j = l  

and therefore n'  - 1 >__ 2, by virtue of  (ii) of Lemma 4.1. The assertion then 
follows by arguing as in the proof  of  Proposition 4.1. [] 

Remark 6.3. Let ff~(x, t) be the family of truncated potentials defined as in 
(6.6). We remark that, for R => 1, there is C > 0 independent of R such that 
I ~ 1  + I vff~l _-< c<] v~j] § I VV/j])o Therefore the constant fi appearing in Pro- 
positions 6.4 and 6.5 can be chosen to be independent of  R > 1; indeed, as 
we have already pointed out in Remark 6.2, the estimate from below of  the 
critical level e(O) is also independent of  R > 1. 

Proof  of  Theorem 6.2. The proof  of Theorem 6.2 works exactly as the proof  
of Theorem 1. Indeed, when applying the deformation Lemma 2.1, thanks to 
the estimates of  Propositions 6.3 and 6.4, we can use Proposition 6.5 instead 
of  Proposition 4.1; by virtue of  Proposition 6.5, estimate (1.2) is then changed 
to estimate (6.7). [] 

Proof  of  Theorem 3. Let ff~(x, t) be the family of truncated potentials 
defined as in (6.6). We can apply Theorem 6.1 to the Vfj(x, t) 's  obtaining 
solutions u R of  the approximate problem. Moreover, from (6.7), the u e satisfy 
an estimate of  the type of  

Ilu, ~ -  uffll~ <=Kl(n, Z)(c*,p,~,e)(cos 0) -~n-2) 

Taking into account Remark 6.3 we conclude that Ka(n , T) (c*, p, fi, R) (cos 0) 
does not actually depend on R when R __> 1. In order to obtain an a priori 
estimate on the ue's we argue as in the proof  of Proposition 6.1, just replac- 
ing n with n - 1 in all the exponents of cos 0 and replacing K(n, T) with 
K 1 (n, T). [] 

7. Proof  of  Lemma 2.1 

Here we prove Lemma 2.1 in the particular case when Vf and Vg are 
bounded and locally Lipschitz continuous, and Vg is bounded away from zero 
near to the set { f =  c, g = b}. We refer to [14] for the general case functionals 
on manifolds with boundary. The boundedness of  the gradients is assumed 
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here in order to use a gradient-flow type of deformation. So, let us assume 
that (2.1), (2.3), (2.4) and (2.5) hold in addition to 

3 e > O  such that if I f (x )  - c [  <-e, lg(x) - b l  <-e, 
(7.1) 

then ]]Vf(x) 11N B -1,  e =_ ]]Vg(x) ]1 < e -1 . 

We point out that, in the setting of  Theorem i, our particular functionals f 
and g in fact satisfy (7.1) (see, e.g., the remark after Proposition 3.2). 

Proof of Lemma 2.1 (Sketch). Assume for contradiction that 

Kc, b = [x~A : f (x )  = c, g(x) ~ b, Vf(x)  = 0} = 0. 

Then we show that for some e e ]0, 6 - c [ ,  the set [f=< c + e} w ([f-< ~} n 
{g __> b}) is deformable into the set If=< c - el u ( [ f _  ~} n [g ~ b}) in A (cf. 
Definition 2,1). If Kc, b = 0, it follows from (2.3) that 

~ e > 0  such that if I f ( x ) - c l  <=e, g ( x ) < _ b + e ,  t h e n l t V f ( x ) l l ~ e .  (7.2) 

Now, from (2.4), (2.5) and the additional assumption (7.1), 
that 

~ e > O  such that if [ f ( x ) - c [  <_e, g(x) - b [  <_e, 
(7.3) 

then ang(Vf (x ) ,  Vg(x)) >_ e. 

Indeed, if not, there would exist a sequence {xv}u such that 

g(xu) -~ b, ang(Vf(Xv), Vg(x~)) --, O, f (x~) ~ C, 

and therefore 

we deduce 

( -Vf (x ~ )  Vg(xv) ) z  ~ 0. 

IIVf{x~)lI ~ [IVg(xv)ll 

From the compactness assumption (2.4) and from the boundedness of the gra- 
dients (7.1) we derive the existence of  a subsequence converging to some limit 
x. Of course, we have f ( x )  = c, g(x) = b and, from the last formula, also 
Vf(x)  = 2Vg(x),  for the positive 2 = I[f(x) ll ]lVg(x) l[ -1' in contradiction to 
assumption (2.5). 

Now we fix a e > 0 satisfying (7.0,  (7.2), (7.3) and c + e/2 =< O. From (7.2) 
and (7.3) we then obtain: 

if t f ( x ) - c  I <=e, ] g ( x ) - b [  =<e, 0 < 2 < 1 ,  then 

( - V f ( x )  + Vg(x) "~. Vf(x)  < ( - 1  + AVf(x) .  Vg(x))llVf(x)[t 
II V/(x) fL I l V g ( x ) l [ /  = 

__< ( - 1  + 2 c o s  e) IlVf(x) [[ = ( - i  + cos e) e =:  - 6  -___ - r  (7.4) 

w e  finally observe that 

Vg(x) '~ ( ~ V f ( x )  + I I ~ l f ) '  Vg(x) > 0  (7.5) 
,\ i[ V/(x)  ii = 
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whenever (7.5) makes sense. Because of  our assumption that Vf and Vg are 
locally Lipschitz continuous, it makes sense to consider the flow J/ defined by 
the Cauchy Problem: 

d i / =  ~o(I f ( , / )  - cl) ~o(g(rl) - b) ( 7 V f ( r l )  
1~,[ I Vf (r/)II 

q(x, O) = x ,  

+ r g(rD - b l )  
Vg(r/) 

1J lI)' 
(cp) 

where ~ : R - ~  [0, 1] is a Lipschitz continuous function such that ~0(t) = I, if 
t =< e/2 and fp(t) = 0 if t _ e. By virtue of assumptions (2.1) and (7.2), the 
flow I/ is  defined for all positive s and sends A into A, since, as we are going 
to see, f is decreasing along the lines of  I/. 

From (7.2), (7.4) and (7.5) it follows that I/ enjoys the properties: 

d f ( r l ( x ,  s)) < 0 Vs"  Vx ,  (7.6) 

d f O l ( s )  ) _< - f i ;  (7.7) if If( (x, s)) -cl--- <__b + then 

d 
if t g ( r t ( x , s ) )  - b  I <--2' then ~ g ( r l ( x , s ) )  >=0. (7.8) 

Hence, all sublevels of  f and the set {g _> b] are positively invariant under the 
flow r/, so that the sets { f =  ~} n {g >__ b] and { f <  c 4-e/2} w ({f_< e} n {g => b}) 
are also positively invariant. Let us respectively denote by A~+e/2 and At-e/2 
the sets { f = c + e / 2 } u  ({f_< e} c~ [g __> b}) and [ f _ _ _ c - e / 2 } w ( [ f = < e l c a  
{g ~ b/). Now we assert that for so = e/6, we have rl(Ac+e/2, so) CAc-e/2. Of 
course, we only have to prove that if g(rl(xo, s)) <= b for some xo~A~+e/2 
and for every s6 [0, So], then fOl (Xo ,  So)) <-_- c - e/2. Assuming the contrary 
thatf(rl(xo,so)) > c - e / 2 ,  we have from (7.6) that c+e/2  >f (xo )  >-f(rl(Xo ,s))  > 
c - e/2 for all s ~ [0, So] and therefore, from (7.7) that 

- e  < f (~ / (x0 ,  So)) - f ( x o )  = t1(Xo, s)) <__ - 5 s  o = - e ,  

0 

a contradiction. [] 
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