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Abstract 

Using the method of moments, we prove that any polynomial moment of 
the solution of the homogeneous Boltzmann equation with hard potentials or 
hard spheres is bounded provided that a moment of order strictly higher than 
2 exists initially. We also give partial results of convergence towards the Max- 
wellian equilibrium in the case of soft potentials. Finally, exponential as well 
as Maxwellian estimates are introduced for the Kac equation. 

1. Introduction 

The homogeneous Boltzmann equation of gas dynamics has the form 

Of 
--~ (t, v) = Q(f)  (t, v), (1.i) 
at 

where f is a nonnegative function of the time t and the velocity v, and Q is 
a quadratic collision kernel accounting for any collisions preserving momen- 
tum and kinetic energy: 

Q(f ) ( t , v )  = S f [ f ( t , v ' ) f ( t , v ; ) - f ( t , v ) f ( t ,  Vl)l 
vlE~ 3 ~E~  

V -- V 1 t • I~-v~l,  co iv_~11 dc~dvl, (1.2) 
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with 
v '  = v - (co.  (v - v l ) )  co, (1.3) 

v( =v l  + (co'  (v - vl)) co, (1.4) 

and the nonnegative cross section B depends on the type of interaction between 
molecu le s  (cf. [Cel,  [Oh, Co l ,  [Tr, M u l ) .  

In a gas of  hard spheres, the cross section is 

B(x, y) = xy. (1.5) 

However, for inverse sth-power forces with angular cut-off (cf. [Ce], [Gr]), 

B(x, y) = x~fl(y), (1.6) 

s-5 and there exists fl~ > 0 such that for almost every y ~ [0, 1], where c~ = ~ ,  

0 < fl(y) __< ]~1. (1.7) 

When s > 5, the potentials are said to be hard and 0 < ~ < 1. But when 
3 < s < 5, the potentials are said to be soft and - 1  < c~ < 0. The intermediate 
case when s = 5 is that of  "Maxwellian molecules";  it makes exact computa- 
tions possible (cf. [Tr], [Tr, Mu] and [Bo]). 

Since hard and soft potentials are fairly involved (the function fl is defined 
implicitly), engineers often use in numerical computations the simpler variable 
hard spheres (VHS) model, in which 

B(x, y) = x~y, (1.8) 
and 0 < ~ _ <  1. 

Note that, at least formally, for every function ~,(v), 

f Q(f) (t, v) gt(v) dv 
vE[R 3 

f f f {~J(v')-q/(v)}f(t,v)f(t, vl) 
vE~ 3 viZIR3 cgES 2 

( , v V - V l )  dco dvl dv ' •  I - 11, 

and also 

I Q(f) (t,v)~(v)dv 
v~ ~3 

IfSf = - 4 [ w ( v ' )  + ~u(v~)  - ~ / ( v )  - W ( V l ) }  

~OE~ 3 VlE[R3 ~.gE~ 2 

• {f(t, v')f(t, v{) --f(t, vlf(g VlllB (Iv --/)11, I , _  Y-- Vl l 

(~ . 9 )  

dco dv 1 dr .  

(1.10) 
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When ~u(v) = 1, v, �89 ]vl 2 in (1.10), one obtains the conservation of mass, 
momentum and evergy for the Boltzmann kernel: 

1 j Q ( f )  (t, v) (1, v, g]vl2)dv = 0. (l.11) 
v ~  3 

Moreover, using (1.10) with ~, = log f ,  one obtains the entropy estimate: 

J Q ( f )  (t, v) logf ( t ,  v) dv <= O. (1.12) 
vE ~3 

According to [A 1], [A 2], for any of the cross sections previously 
presented, there exists a nonnegative solution f ( t ,  v) of (1.1) satisfying 
f ( 0 ,  v ) = f 0 ( v )  provided that f0 is nonnegative and 

fo(v) (1 + �89 Iv[ r + j logf0(v)l)  dv < + cr (1.13) 
vEfR 3 

for some r > 2. Moreover, estimates (1.11) and (1.12) hold for this solution, 
and therefore f satisfies 

I Iv]Z) dr, (1.14) f ( t , v ) ( 1 ,  v, �89 d v =  ~ fo (v ) (1 ,  v, 2 
vE ~3 ~E ~s 

f ( t ,  v) logf ( t ,  v) dv <__ ~ fo(v) logf0(v) dv (1.15) 
vE [R 3 vE R 3 

when t ___ 0. 
Note that condition (1.13) can be relaxed by taking r = 2 for the proof of 

existence, but in that case (1.14) may not hold (at least for hard potentials). 
Note also the results in [DP, L 1] of existence and weak stability for the in- 
homogeneous equation. 

In this work, the solutions of the Boltzmann equation (1.1), are always the 
nonnegative solutions of [A 11 or [A 21. 

It is now well known that in the case of VHS models (including hard 
spheres) and hard potentials (including Maxwellian molecules), the moments 
of the solution of the Boltzmann equation 

l r ( t  ) = ~ f ( t ,  V ) I v i r d v  (1 .16)  
v E [R s 

for r > 2 are bounded on [0, + c~[ provided that they exist at time t =  0 (cf. 
[El 1]). The same estimate holds for soft potentials, except that lr(t) is 
bounded only on [0, T] for T > 0 and may blow up when t goes to infinity 
(cf. [A 2]). Note finally that the case of Maxwellian molecules is treated exten- 
sively in [Tr, Mu] and [Bo]. 

We prove in Section 2 that in fact, for VHS models (including hard 
spheres) as welt as in the case of hard potentials (but not including Maxwellian 
molecules) and under assumption (I.13), the moments lq(t) (for q > 2) are 
bounded when t __> i (for any i > 0). In other words, all polynomial moments 
of f exist for t > 0 provided that one of them (of order strictly higher than 
2) exists initially. 
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In Section 3, we give some estimates for the solution f of equation (1.t) 
with soft potentials. We write the cross section B in the form 

B(x, y) = x - ~ ( y )  (1.17) 

with ? > 0 (y = - ~  in equation (1.6)). 
We prove that if lr(0) exists (with r > 2), then we can find K 0 > 0 such 

that 
lr(t) < Kot + K o. (1.18) 

This estimate is a little more explicit than that of [A 2]. Moreover, we also get 

t 

Ir_y(S ) ds <= Kot + Ko, ( 1 . 1 9 )  
o 

which means that Ir-y is bounded in the Cesaro sense. Note that the same 
kind of estimates can be found in [Pe 1] and [Pe 2], in a linear context. Note 
also that the estimates can be derived from the works of ELgP.OTH (cf. [El 1], 
[El 2]). However, for the sake of completness we give here a self-contained 
proof. These estimates are then used to prove partial results of convergence 
towards the equilibrium when t goes to infinity (the reader can find a survey 
on this subject in [De 2]). 

Finally, in Section 4, we introduce Kac's  model (cf. [K], [MK]) and, using 
monotonicity results, we prove exponential and Maxwellian estimates for its 
solution. 

2. Hard potentials 

The bounds that we present in this work are based on (1.9). The exploita- 
tion of this estimate is called the "method of moments".  We begin by putting 
(1.9) into a new form. We write 

where 

vl - - v  
co = cos 0 Iva--v]  + sin O(cos Oiv,~i + sin OJv, vt), (2.1) 

( v l - v  . . ) 
Iv1 - - v ] '  tv, vl,Jv, vl 

is an orthonormal basis of ~3. T h e n  estimate (1.9) becomes 

2n ~/'2 

vE~3 v 3 vl 3 ~ = 0  O=O 

(2.2) 

•  Vl) 2 s i n O B ( I v - v l ] , c o s O ) d O d O d v l d V .  (2.3) 
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Introducing in (2.3) the change of variables 0 = ~,  and defining 

(] vl --V~) Vl -- V = cos O - -  + sin O(cos Oi~,~ 
R~,~ vl I v ~ - v l  

+ sin OJv,~l), (2.4) 

one obtains 

S vEq~ 3 
Q ( f )  (t, v) q.,(v) dv 

27~ 7z 

!jR !jR f f I (V -I- Vl IV-- VII R 5 , 4 ~ ( 1 ~  2 "q- 2 I] 
v 3 Vl 3 ~0  g=0 

- ~ , ( v  
V 1 - -  V 

x f ( t, v) f ( t, vl ) sin 2 ~ B ( I v  - vl [, cos ~ ) dO d~ dr1 dr, (2.5) 

which is in fact a classical form for the Boltzmann collision term (cf. [Bo] 
or [De 31, for example). 

We state now three useful lemmas. 

Lemma 1. Assume that e > 0 and thai A is a strictly positive function in 
L~([O, rr]). Then there exists K 1 > 0 and two functions T1 (v, v~), T2 (v, vl) such 
that 

W(v, v~) 

:S 
~=0 ~=0 

Iv--v1] Iv+ Vl[ [ vtvl --v ) v-t-Vl ] l+e A 
1 + v 2 + v  2 R5,, vl ']V+Vl[ (O) dOd~5 

= ri (v, vl 

with 

-1- T2(v , Vl) , (2.6) 

TI(V , Vl) -~ -Tl(Vl, v), (2.7) 
7~ 

0 <= T2(V , Vl) < K 1 < 21+err f A(0) dO. (2.8) 
O=0 

Proof.  We adopt  the following notations for i = l, 2: 

7;, (v, vl) 

~=0 g=0 
vlV+ l I (vl )v+vl )A   d d0 
v ; ; 3  Iv1 Iv-; lj ' 

(2.9) 
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with 

We can see that 
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Zi(X)  "- 
(1 + x )  l+e + ( - -1 )  i (1 - -X)  l+e 

W(v, Vl) = rl(v, vl) + r2(v, vl), 

TI(V, Vl) = - T I ( V l ,  v ) .  

But Z: is even, strictly increasing from x = 0 to x = i, and 

X2(0) ---- 1, x2(t) = 2 c. 

Therefore, using the inequality 

I v - v ~ j  Iv+vii_-< v 2 + v  2, 

we obtain the estimate 

0 <= T2(v, vl) =< 21+ezr 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

A ( 5 )  da.  (2.15) 
8=0 

Then, a simple argument of compactness ensures that Lemma I holds. 

Lemma 2. Assume that e > 0 and that the cross section B in (1.2) satisfies 

B(x, y) = Bo(x) B l ( y ) ,  (2.16) 

where B1 6L ~([0, hi) is strictly positive. Then, there exists K 2 > 0 and 
K3 6 ]0, 1[ such that 

Q(f)  (t, v)Ivj 2§ dv 
v~ ~3 

~ g 2  I ~ { � 8 9  V l ) B o ( ! v - v l ] ) d v l  dr. 
v6[R 3 v1~[PJ 

(2.17) 

Proof. According to equation (2.5), for e > 0, 

V6~ 3 v6R 3 vt6R3 

i+8 

X 

~=0 d=O 

- [ (vl-v) ~+Vl] !1+~ iv v~[Iv+vl l  R~,~ 
1 +  ,,~+V~l I v~ vl I v+v~l  
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i xsin 25 Bl(cos ~) da dO -IVl  2+2g f 

4,=0 c~=0 
sin2 a B1 (COS 25) d6 d~b I 

x f ( t ,  v) f ( t ,  Vl) Bo(IV - Vll) dVl dr. (2.18) 

Moreover, using Lemma 1 with 

A (,5) = sin 25 B 1 (cos 25 ), (2.19) 

we have 

f Q ( f )  ( t ,  v )  jVl 2+2e d v  

v6 ~s 

f f [(V2"{- V21) l+g < {K 1 + T l ( V ,  Vl)} 
= 2 

YE[~ 3 ylER 3 

_1vl2+2  i S 4,=o a=o 
sin 25 B1 (cos 25 ) dO dO 1 

•  v)f( t ,  Vl) Bo(lV - v l [ )  dvl dr, (2.20) 

with K~ and T1(v, V 1) as in Lemma 1. Therefore, taking 

K2 = 2re ; sin 25Bl(COS 25) dS, (2.21) 
d=0 

K1 
= < 1, (2.22) 

K3 21+e7~ l ~=0 sin 25 Bl(COS 25 )dO 

and using the change of variables (v, vl) -~ (Vl, V), we obtain Lemma 2. 

Eemma 3. Let B and ~ be as in Lemma 2. Then there exist K4, K5 > 0 such that 

Q( f )  (t, v) lvl2+2* dv 
v~ ~s 

-K4 ~ t Ivl2+2ef(t,v)f(t, Vl) Bo( lv -v l [ )dv l  dv 
vE[R 3 vfi[R 3 

-k-K5 ~ ~ Ivl2Ivl]a~f( t ,v) f ( t ,  Vl )Bo(Iv- -v l] )dvldV.  (2.23) 
v~ 3 VlERs 
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Proof.  Note that there exists K 6 > 0 such that 

(V2 --}- V2) 1+~ __<lvl2§ + 1v112§ K6(Ivl 2 [Vl[2~q - jvl2~jva]2). (2.24) 

Using Lemma 2 and the change of variables (v, vl) ~ (Vl, v), one easily ob- 
tains Lemma 3 with K4 = K2 (1 - K3) and Ks =/(2/(3 K6. 

We now come to the main theorem of this section. 

Theorem 1. Let fo satisfying (1.13) be a nonnegative initial datum for the 
Boltzmann equation (1.1) with hard potentials (but not with Maxwellian molecules) 
or with the VHS model (including hard spheres). Denote by f ( t ,  v) a solution of 
the equation with this initial datum. Then, for all r ' >  0, t > 0, there exists 
C ( r', { ) > 0 such that 

I f ( t ,  v ) [v l r 'dv  <- C(r',  {) (2.25) 
v~ ~73 

when t >_ {. 

Proof.  According to (1.6) and (1.8), the cross section for hard potentials (but 
not Maxwellian molecules) or for the VHS model (including hard spheres) is 
of the form (2.23) with Bo(x) = Ix] s, and ee(]0, 1]. Therefore, we can apply 
Lemma 3. 

For e > 0, we write 

l Q ( f )  ( t ,v)]v l2+2edv 
v ~  3 

<=-x4 j I Vl)dVl d" 
vE~ 3 v f i ~  3 

+ K s  ~ I ]v[2[Vl[2e[v-v l[C~f( t ,v )  f ( t ,  Vl)dVl dv (2.26) 
vER 3 Vl~ JR3 

<__ -K42-~lz+ze+~(t)  Io(t) + K422-~lz(t) /ae+~(t) 

+ Ks12+~(t ) lee(t) + Ks12e+~(t ) le(t),  (2.27) 

with the notation (1.16). 
S ince f i s  the solution of (1.1), the conservations of mass and energy (1.14) 

ensure that for 0 (  [0, 2], lo(t) is bounded (for t _  0). Therefore, there exist 
K7,/s K9 > 0 such that 

Q ( f )  (t, v) IV[ 2+2~ d v  <= -K712+2e+~(t) + Ksl2+,(t) 12e(t) + K912e+,(t). 
v~l~ 3 

(2.28) 

Remember that { > 0 and r > 2 are given in the hypothesis of Theorem 1 
(r is defined in (1.13)). We can always suppose that r N 4. We prove in a first 
step that there exists t0~]0, {[ such that lr+~(t) is bounded on [to, +c~[. 

According to H61der's inequality, when 0 < p < v, 

/~(t) =< l~-~/v(t) l~/V(t). (2.29) 
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= r  _ 1  one obtains Therefore ,  using est imate (2.28) with e ~ , 

Q(U) (t, v) [vl r d v  
v~ R 3 

2+c~ 1 2+c~ r+c~-2 1 r+c~-2 
: ~ i r+e~ lo r+c~ ~ 1 r+c~ < -KTlr+~(t) + l~S,r+~(t  ) (t) lr_z(t ) +,~9,~+, (t) I 0 r+~ ( t ) .  

(2.30) 

Remember  tha t  since r - 2 ~ ]0, 2], the m o m e n t s  lo(t) and lr_2(t ) are bound-  
ed on [0, + ~ [ .  Moreover,  we can find Kin, Kla > 0 such that  when x > 0, 
t=>0,  

2'c~ 1 2+er r+c~-2 1_r+c~-2 

- K 7 x  + Ksxr+~lo-~+~(t) lr_2(t) + KgX ~+~ lo ~+~ (t) <= -KIox  + Kll .  

(2.31) 
Therefore ,  

Q ( f )  (t, v) ]vlr dv <= -Klolr+~(t  ) + K l l .  (2.32) 
v~ ~3 

Integrat ing the Bo l t zmann  equat ion  (1.1) on [0, i] x ~3 against  iv l r  and using 
est imate (2.32), one gets 

i 

l,.(i) + 1(1o ~ l~+~(s) ds <= K11i + lr(O). (2.33) 
0 

According to (1.13) and (2.33), we can see tha t  there exists t0~ ]0, {[ such 
tha t  lr+~(to) < +oo. But  it is well known that  if  a m o m e n t  exists at a given 
t ime to, then it is bounded  for t => to (cf. [El 1] or the r emark  at the end of  
Section 2); therefore lr+~(t) is bounded  for  t __> to. 

We come back  now to est imate (2.28). Using equat ion  (2.29), an  est imate 
similar to (2.31), and the result o f  boundedness  for I,.+~(t), one obtains 
K12, K13 > 0 such  t h a t  

Q ( f )  (t, v) IV[ 2+2e dv <_ -K1212+2e+~(t ) + K13 (2.34) 
vE R 3 

for  t >__ t 0. Now we integrate (when to _-- t_ < {) the Bo l t zmann  equat ion  (1.1) 
on [t_, [ ] x [ ~  3 against  Ivl :+ :s  and we use est imate (2.34) to obta in  

[ 

12+2e(l) Jr KI2 I 12+2e+~(S) ds <= /(13({ - t_) + 12+2e(t_ ) . (2.35) 
l 

Therefore ,  if  t o __< t_ and  if 12+2e(t_ ) < q-~,  then there exists r 6  [ i_,  [[ such 
tha t  12+2e+~(r) < + w .  

Finally, we note  that  any m o m e n t  is bounded  on [z, +c~ [ provided that  
it is def ined at t ime r (cf. [El 1]), and we use a p r o o f  by induct ion to get 
T he o rem 1. 

Remark. Note  that ,  using equa t ion  (2.35), we can produce  explicitly the max-  
i m u m  principle for  /2+2e. Namely,  when e > 0, est imate (2.29) ensures that  
there exists K14 > 0 such  t h a t  

d 2+2e+e~ 
1 2+c dt 12+2e(t) <- -K14tz+2e (t) + K13, (2.36) 
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Q / g  x 2+28 N 
12+2e(t) ~< sup i2+2e(t_), ( * ~ 1 3 ~ ~  

\ K i d  / ' 

for t _> t_ (this is another proof of  the result of [El 1]). 

(2.37) 

3. Soft potentials 

In this section we consider the Boltzmann equation (1.1) with a cross sec- 
tion B of the form 

B(x, y) = x-Yf l (y)  , (3.1) 

with ? > 0 (? = -o~ in formula (1.6)), and fl satisfying (1.7). This is exactly 
the hypothesis of soft potentials. 

We begin by proving the 

Theorem 2. Consider the operator Q defined in (1.2) with B satisfying (3.1). Then 
for e > O, there exist K20, K21 > 0 such that 

I Q(f)  (t, v) [vl 2+2e dv ~ K20-  K2~ 5 f(t, v) Ivl 2+2c-v dv (3.2) 
v E I~ 3 v~ ~3 

when f (t, v) satisfies the conservations of mass and energy (1.14). (The constants 
K20 and K21 depend in fact on this mass and this energy. ) 

Proof. According to equation (2.5), for e > 0, 

S 
vE R 3 

Q ( f )  (t, v) Iv[ 2+28dv 

XXX , v  --;r -Ivt  2+2  
2 2 Iv1 - 

v~R3 Vl~N3 cb=0 6=0 

x f ( t ,  v) f ( t ,  Vl) IV --  Vl[ - y  sin ~- fl (cos ~) dd dO dr1 dr. (3.3) 

We make the change of variables u = vl - v, and consider the integral in (3.3) 
when l u[__. �89 and when l ul__< �89 Then, we use Lemma 3 for the first term 
and get 

I Q ( f )  (t ,  v)  Iv] 2+2e dv 

~ - g 4  I t ]v l2+2e f ( t , v ) f ( t ,  vl) B o ( I v - v l l ) d V l  dv 
yElP, 3 vl~3 

+Ks ~ I ] v 1 2 1 v l 1 2 8 f ( t , v ) f ( t , v ~ ) B o ( l V - v l l d v a d v  
vER 3 vlE~?3 
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where 

27( 7[ 

+ ( •  2 ) 1 - ' ( 2 + 2 e )  I l I I ! ) l+2ef ( t ,  v) 

X f ( t ,  v + u) sin ~fl (cos 2 5 ) d5 d4~ du dv, (3.4) 

B 0 (x) = lx>!x-Y. (3.5) 
2 

With the notation (1.16), one obtains after computations that 

Q ( f )  (t, v)IvlZ+2edv 
v6~? 3 

< _ K4 le+2~_r(t) (lo(t)) 2 + K4 (/o(t))2 + 2K4G_e(t  ) (le(t) + �88 lo(t)) 
= 4 lo(t) + 12(t) 2 

+ K52e12(t) /2e(t) + 2~+2e(2 + 2e) rc2fllll+2e(t)lo(t) 

+ 27-1 (2 + 2e) ~2~1 (l 0 (t)) 2. (3.6) 

Since we supposed that lo(t) = 10(0) and 12(t) = 12(0), there exist K15, K16, 
KI7, K18, KI9 > 0 such that 

Q ( f )  (t, v) Iv[ 2+2e dv <= -K~s12+2e_r(t) + K161l+2e(t) 
v~ ~3 

+ K1712~(t) + Klsl2e_y(t) + KI9. (3.7) 

Using estimate (2.29) and working as in (2.31), we obtain Theorem 2. 

We give now the main corollaries of this theorem. 

Corollary 2.1. Suppose that f ( t ,  v) is a solution of the Bohzmann equation (1.1) 
with a cross section B satisfying (3.1) (i.e., in the case of soft potentials), such 
that f ( 0 ,  v) = f o ( v )  > 0 and fo satisfies (1.13). Then there exists K o > 0 such 
that 

f ( t ,  v) Iv I r dv <= Ko t + Ko (3.8) 
vE,~ s 

(with r defined in (1.13)). 

Proof. Integrating the Boltzmann equation (1.1) on [0, t ]x  ~3 against Iv[ r 
r and using Theorem 2 with e = ~ - 1, one obtains 

t 

I f ( t , v )  lvl r d v -  I fo(v)[v lrdv<=K2ot- -g2a~ ~ f ( s , v )  lv[ r -ydvds ,  
v6rR 3 v6rR 3 0 v6[R 3 

(3.9) 
which gives estimate (3.8) for K0 = sup(K20, lr(0)).  

Corollary 2.2. Suppose that f ( t ,  v) is solution of the Boltzmann equation (1.1) 
with a cross section B satisfying (3.1) (i.e., in the case of soft potentials), such 
that f (O,  v) =fo (v )  -> 0 and 

fo(v)  (1 + l v l r +  Ilogf0(v)l) dr<  + ~  (3.10) 
yE N  3 
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for some r > 2 + y. Then there exist K 0 , K22 > 0 such that 
t 

J J f(s,v) lvlr-rdvds<=got+go, 
0 v6R3 

d 
J f ( t ,  v) I vl r-y dv N K22. 

dt V~. 3 

(3 .11)  

(3.12) 

Proof. Estimate (3.11) comes out of equation (3.9). 
-~ - e - 1 in Theorem 2 immediately gives (3.12). / 3 ~ 2  2 

Moreover, making 

We now give a corollary of formulas (3.11) and (3.12), describing the con- 
vergence towards equilibrium for equation (1.1) with soft potentials. 

Corollary 2.3. Suppose that f ( t ,  v) is a solution of the Boltzmann equation (1.1) 
with a cross section B satisfying (3.1) (i.e., in the case of  soft potentials), such 
that f(O, v) =f0(v)  and 

j fo(v) (1 + l v / ~ + l l o g f o ( v )  l) dv < +c~ (3.13) 
VE [R 3 

for some r > 2 + y. Then there exists a sequence (tn)n6 N going to infinity such 
that for all T >  O, fn(t, v) = f ( t  + tn, v) converges in L~([0 ,  T];LI([R3)) 
weak* to the time-independent MaxwelIian 

_l~--al ~- 
m(v) - -  (2;7~)3/2 e 2r , (3.14) 

with 
t~ = (3.15) J fo(v) dr, 

vE[R 3 

f ia= j Vfo(V)dr,  (3.16) 
vE~ 3 

1 2 2filal +3f l iP=  J �89 dv. (3.17) 
vE N3 

Proof. We first note that the solution f of the Boltzmann equation (1.1) with 
soft potentials satisfies the following entropy estimate: 

sup f f ( t ,  v ) I l o g f ( t ,  v) I dv 
t~[0,+~[ 

v~[~ 3 
+oo 

+SSS 
s=O v ~  3 vfiN 3 co~S a 

•  
f ( s ,  v) f ( s ,  v l ) )  I 

f {f(s,  v ' ) f ( s ,  v{) - f ( s ,  v ) f ( s ,  vl)} 

V - -  V I I - '  t~ (.0 I V - - ~ I  I dco dv l dv ds < + ~ .  

(3.18) 
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This inequality is obtained from (1.12), (1.14), (l.15) and (3.13) as in the 
space-dependent case (cf. [DP, L 1] and [DP, L 2]). 

Now according to Corollary 2.2, there exists a sequence (tn)~eN going to 
infinity and an r = r - y > 2 such that 

fun,  v)Ivledv< Ko + 1. (3.19) 
v~ ~3 

Moreover, because of estimate (3.i2), we have for tE [0, T] that 

t f ( t ,  + t, v)Iv[edv <= K o + 1 + K22T. (3.20) 
~E~ 3 

Denoting 

F(x ,y )= (x - y) log ( y )  , (3.21) 

and using estimates (3.18), (3.20) and the conservation of mass (1.14), we can 
find K23 > 0 such that f,(t, v) = f ( t  + tn, v) satisfies 

sup ~ f~(t ,v){l  +lvle +llogf,(t,v)l}dv<_Ng23, (3.22) 
t~[o,r]  v~fR 3 

and 
T 

s = 0  vE[R 3 VlER 3 ogES 2 

( v - v~ ) dcO dvl dv ds (3.23) xrv- VlI-'/  o'jv_ ll 

tends to 0 when n goes to infinity. 
According to estimate (3.22), there exists a subsequence of f ,  (still denoted 

by fn) which converges to a limit re(t, v) in L=([0,  T] ;LI(R3))  weak*. 
To prove that m is a Maxwellian function of v which does not depend on 

t, one can proceed essentially as in [De 1]. 
Now we must identify fi, a, and iP.. Using the conservations of mass, im- 

pulse and energy (1.14), one gets for all t~ [0, T], that 

f~(t,v) (1, v, �89 dv= ~ fo(v) (1, v,~lvp2)dv. 
v ~  3 v ~  3 

But because of estimate (3.22), 
T 

(3.24) 

~ ( l ,v ,  pvl2)f~( t ,v)dvdt  > T ~ (1, v,]v]2) m(v)dv ,  (3.25) 
t = 0  v ~  3 n~+oo vE~3 

and therefore the parameters fi, a, T are given by formulas (3.15)-(3.17). 

Remark. This is only a partial result. One would expect in fact that the whole 
function tends when t--, +oo to the Maxwellian given in (3.14)-(3.17). Note 
that this is the case for hard potentials, the convergence even being strong and 
exponential under suitable assumptions (cf. [A 3]). Note also that the existence 
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of a converging subsequence for any sequence t n going to infinity can be 
derived from the papers of ARI~ERYD (cf. [A 2]), but the limits in that case 
may have less energy than the initial datum. 

4. The Kac equation 

We now introduce the one-dimensional homogeneous Kac model (cf. 
[K], [MK]), where all collisions have the same probability. The density 

f ( t ,  v) > 0 of particles which at time t move with velocity v satisfies 

Of 
(t, v) = Q ' ( f )  (8 v), 

Ot 

where Q' is a quadratic collision kernel: 
7f 

Q' ( f )  (t, v) = {f(t, v* ) f ( t ,  v~) - f ( t ,  v ) f ( t ,  vl)] ~ d v l ,  

VlER3 0 = - ~ z  

with 

(4.1) 

(4.2) 

Adapting, for example, the proof of  ARKERYD (cf. [A 1]) for the Boltzmann 
equation, one can prove that if f0 satisfies 

I fo(v) (1 +]vl~+]logfo(v)l  dv< +oo (4.7) 
vE~ 

for some r > 2, then there exists a solution of the Kac equation (4.1) such 
that f (0, v) = f0 (v). Moreover, this solution satisfies estimates (4.5) and (4.6). 

It is also easy to adapt the theorems of TRUESDEI.L (cf. [Tr] and [Tr, Mu]) 
for this equation. Namely, one can give an explicit induction formula to com- 
pute the moments 

Ln(t) = I f ( t ,  v) vn dv (4.8) 
ve W~ 

when n ~ N, provided that these moments exist initially. Therefore, we do not 
deal in this work with the polynomial moments of f ,  but rather with the Max- 

energy 

f ( t , v ) ( l , ~ [ v l 2 ) d v =  ~ f ( O , v ) ( 1 , ~ l v l 2 ) d v ,  (4.5) 
vE~ vE~ 

and the entropy estimate 

f ( t ,  v) l og f ( t ,  v) dv <<_ I f(O, v) logf(O,  v) dv. (4.6) 
vE[R vE~ 

v* = x~v  2 + v 2 cos 0, (4.3) 

v ~' = x/v2v 2 + v~ sin 0. (4.4) 

It is easy to prove (at least at the formal level) the conservation of mass and 



The Boltzmann and Kac Equations 401 

wellian moments 

//Zf(t, 2) = I f ( t , v )  e ~ dv, 
v~N 

for 2 > 0 .  
We begin by proving the following theorem: 

(4.9) 

Theorem 3. Let fo satisfy (4.7), and consider a solution f ( t ,  v) of the Kac equa- 
tion (4.1) such that f(O, v) =fo(v) .  Suppose, moreover, that there exists 2o > 0 
such that /Z/f(O, 20) < +oo. Then, there exists ~ > 0 and K24 > 0 such that 
/ ~ f ( t ,  ~ )  "< K24 when t >= O. 

Proof. We look for an equation satisfied by ~f ( t ,  it): 

~ t J ~ / f ( t ' 2 ) =  f Q ' ( f ) ( t ' v ) e ~ 2 d v  

yElP 

= f ( t ,  v ) f ( t ,  vl){e x~*~ - e ; ~ } ~  dvl dv 

vER vlE~. O=-n 
7~ 

= f f f f ( t ,v) f ( t ,  vl)[e)~(vZ+@c~ e)~v2}dO 2zr dvl dv 

f dO (4.10) = /Z/f(t,  it cos 2 0) - ~f ( t ,  2) J//f(O, O) 2~ '  

0= --~z 

since the conservation of mass (4.5) holds. 
For any p, T > 0, we denote by m~, ~ the steady Maxwellian of density 

and temperature T: 

ms v) - (27r~)1/2 e 2T. (4.11) 

It is easy to see that m~,~ is a steady solution of the Kac equation (4.1). 
Therefore 

f ( 2) - ( 4 . 1 2 )  
JAm~,~ t, x/1 - 22T 

is a steady solution of equation (4.10) on [0, + c ~ [ x [ 0 , ~ - f [  (this can be 
seen directly from equation (4.10)). 

We now prove that under the hypothesis of Theorem 3, there exist 2~ > 0, 
f > 0, such that 

with 

v2 ( [o, i], ~/~(o, 2) __/Am~,~(o, 2), (4.13) 

fi = I f(O, v) dr. (4.14) 
v~R 
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In order to prove (4.13), we use a development of ~ f ( 0 ,  2) around 0: 

/Zi(0,  2) = J f ( o ,  v) e ~ dv 
yEN 

= ~ f (0 ,  v) 1 -t- 2v 2 -1- 22v 4 i (1 -- U) e ~"r du dv 
v ~  u=0  

= ~ f (O,v)  d v + 2  ~ f (O,v)  lv12dv+O(22) ,  (4.15) 
vER v~R 

since 

~ f(O, V) V4 ( i 
v ~  u=0  

when 2 < 2 0  . But 
~fm~,~.(0, 2) --/~ + 2/0T -~- O(22),  

and therefore (4.13) holds provided that we take 2 small enough and 

T >  1-- I f ( ~  bvl zdv.  
v~R 

( l - u )  e "~"~2du) dv<_ ve~l f (O,v)  v4e )~2dv< + ~  (4.16) 

(4.17) 

(4.18) 

But equation (4.10) clearly satisfies the following monotonicity property: 
If a(0, 2) and b(0, 2) are two initial data for (4.10) and ~ is a strictly positive 
number such that 

'd2 ~ [0, 2[, a(0, 2) =< b(0, 2), (4.19) 

a(0, 0) = b(0, 0) ,  (4.20) 

then for all t ____ 0, the solutions a(t, 2) and b(t, 2) of (4.10) satisfy 

V2 E [0, ~.[, a(t, 2) =< b(t, 2) .  (4.21) 

Using (4.12), (4.13), (4.21), and taking 

0 < ~ < i n f ( ~ ,  ~ )  , (4.22) 

we obtain Theorem 3. 

We give now estimates for the exponential moments 

~ff(t, 2) = ~ f ( t , v )  e )~dv, 

for it ~ ~. We can prove the following theorem: 

(4.23) 

Theorem 4. Let fo satisfy (4.7), and let f (t, v) be a solution of the Kac equation 
(4.1) such that f(O, v) =fo(v) .  Suppose, moreover, that there exists 2 0 > 0 such 
that ~ ( 0 ,  2o) < + ~ ,  JUf(O, -2o) < +c~, and 

I fo(v) v dv = O. (4.24) 
v~R 

Then, there exists ~ >0 and K25>0 such that ~ff(t,~ ) + ~ff(t, - 2  ) <-/s 
for t >= O. 
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Proof .  It is easy to see that  

Ot 
0= - -~  

dO 
JKff(t, 2 cos 0) J,~(t, 2 sin 0) - ~ff(t, )L) Kff(0, 0) 2~" 

(4.25) 

Moreover, since m~,~ is a steady solution o f  the Kac equat ion (4.1), 

JU~,~(t, )L) = r 2 ~ (4.26) 

is a steady solution of equation (4.25) on [0, + w [ x  R (this can be seen direct- 
ly in equat ion (4.25)). Thus the p roo f  is quite similar to the p roof  o f  
Theorem 3. 

Acknowledgment. I thank Professor ARKERYD and Dr. WENNBERG for their valuable 
remarks during the preparation of this work. 

[A 1] 

[A 2] 

[A 3] 

[Bo] 

[Ce] 
[Ch, Co] 

[De 1] 

[De 2] 

[De 3] 

[DP, L 1] 

[DP, L 2] 

[El 11 

[El 2] 

[Gr] 

[K] 

References 

L. ARKERYD, On the Boltzmann equation. I and H, Arch. Rational Mech. 
Anal. 45 (1972), 1-34.  
L. ARKERYD, Intermolecular forces of infinite range and the Boltzmann equation, 
Arch. Rational Mech. Anal. 77 (1981), 1 / -21 .  
L. ARKERYO, Stability in L 1 for the spatially homogeneous Boltzmann equation, 
Arch. Rational Mech. Anal. 103 (1988), 151-167. 
A. V. BOBYLEV, Exact solutions of the nonlinear Boltzmann equation and the 
theory of relaxation of a Maxwellian gas, Teor. Math. Phys. 60 (1984), 280. 
C. CERCmZgANI, The Boltzmann equation and its applications, Berlin (1988). 
S. CHAPMAN & T. G. COWLING, The mathematical theory of non-uniform gases, 
London (1952). 
L. DESVlLLETTES, Convergence to equilibrium in large time for Bo#zmann and 
B.G.K. equations, Arch. Rational Mech. Anal. 110 (1990), 73-91.  
L. DESVILLETTES, Convergence to equilibrium in various situations for the solu- 
tion of the Boltzmann equation. To appear in the Proceedings of the Interna- 
tional Workshop on Nonlinear Kinetic Theory and Fluid Mechanics held at 
Rapallo in April 1992. 
L. DESVlLLETTES, On asymptotics of the Boltzmann equation when the collisions 
become grazing, Tr. Th. and Stat. Phys. 21 (1992), 259-276. 
R. DIPERNA & P.-L. LIONS, On the Cauchy problem for Boltzmann equation, 
Global existence and weak stability, Ann. Math 130 (1989), 321-366. 
R. DIPERNA & P.-L. LIONS, Global solutions of Boltzmann equation and the en- 
tropy inequality, Arch. Rational Mech. Anal. 114 (1991), 47-55.  
T. ELMROTH, Global boundedness of moments of solutions of the Boltzmann equa- 
tion for forces of infinite range, Arch. Rational Mech. Anal. 82 (1983), 1 - 12. 
T. ELMROTH, On the H-fi, nction and convergence towards equilibrium for a space 
homogeneous molecular density, SIAM J. Appl. Math. 44 (1984), 150-159. 
H. GRAD, Principles of the kinetic theory of gases, F~/3G~E'S Handbuch der 
Physik 12 (1958), 205-294. 
M. Kac, Probality and related topics in the physical sciences, New York (1959). 



404 L. DESVILLETTES 

[MK] 

[Pe 11 

[Pe 21 

[Trl 

[Tr, Mu] 

H. P. MCKEA~, Speed of approach to equilibrium for Kac's caricature of a Max- 
wellian gas, Arch. Rational Mech. Anal. 21 (1966), 347-367. 
R. PETTERSSON, Existence theorems for the linear, space inhomogeneous 
transport equation, IMA J. Appl. Math. 30 (1983), 81-105.  
R. PETTERSSON, On solutions and higher moments for the linear Boltzmann equa- 
tion with infinite range forces, IMA J. Appl. Math. 38 (1987), 151-166. 
C. TRUESDELL, On the pressures and the flux of energy in a gas according to 
Maxwell's kinetic theory //, J. Rational Mech. Anal. 5 (1956), 55-128.  
C. TRUESDELL & R. MUNCASTER, Fundamentals of Maxwell kinetic theory of a 
simple monoatomic gas, New York (1980). 

Ecole Normale Sup6rieure 
D6partement de Math6matiques et Informatique 

45, Rue d 'Ulm 
75230 Paris Cedex 05 

(Accepted February 1, 1993) 


