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Boltzmann and Kac Equations
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Abstract

Using the method of moments, we prove that any polynomial moment of
the solution of the homogeneous Boltzmann equation with hard potentials or
hard spheres is bounded provided that a moment of order strictly higher than
2 exists initially. We also give partial results of convergence towards the Max-
wellian equilibrium in the case of soft potentials. Finally, exponential as well
as Maxwellian estimates are introduced for the Kac equation.

1. Introduction

The homogeneous Boltzmann equation of gas dynamics has the form

a
a{(t, v) = Q(f) (1, v), (1.1}

where f is a nonnegative function of the time r and the velocity », and Q is
a quadratic collision kernel accounting for any collisions preserving momen-
tum and kinetic energy:

Q(f) (Za U) = S S {f(t’ U/)f(t? vll) "‘f(l, U)f(t» vl)}

v, €R3 wes?

XB(U—v]l,iw-,U_Ul
v — v

) de dv,, (1.2)
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with
v=v-(w (v—1))ow, 1.3)
v=v+ (v (v-1)) o, (1.4)

and the nonnegative cross section B depends on the type of interaction between
molecules (cf. [Ce], [Ch, Co], [Tr, Mu]).
In a gas of hard spheres, the cross section is

B(x,y) =xy. 1.5)

However, for inverse s™-power forces with angular cut-off (cf. [Ce], [Gr]),
B(x,y) =x*B(y), (1.6)

where o = %, and there exists f; > 0 such that for almost every y € [0, 1],
0<B(y) =5h. (1.7

When s > 35, the potentials are said to be hard and 0 < o < 1. But when
3 < 5 < 5, the potentials are said to be soft and —1 < o < 0. The intermediate
case when s = 5 is that of ‘“‘Maxwellian molecules’’; it makes exact computa-
tions possible (cf. [Tr], [Tr, Mu] and [Bo]).

Since hard and soft potentials are fairly involved (the function g is defined
implicitly), engineers often use in numerical computations the simpler variable
hard spheres (VHS) model, in which

B(x,y) =x%, (1.8)
and 0 < a = 1.
Note that, at least formally, for every function w(v),

S of) (L vy w(v)dv

vER?

= S S S {W(U/) - W(U)} f(ly U) f([s 1/'1)

veR? v,€R} weS?

XB(]’U—’U”,

g g(f) @ v)w(w)dv

v— U

[P

) dw dvy dv, (1.9)

|v — v |

and also

vER3
1
=, | ‘ S fw () +w(v)) —wv) —w(v)l
vER® 1,€R3 wes?
X (f(t, v) (L, 1) — F(1, v) f(1, v;)} B <|v — o, . ‘ ik ) de dvy dv.
v — 'Ul[

(1.10)
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When w(v) =1, v, |v|? in (1.10), one obtains the conservation of mass,
momentum and evergy for the Boltzmann kernel:

Iﬂ% O(f) (4, v) (1, v, L |w|Hdv=0. (.11)
veR3

Moreover, using (1.10) with y = log f, one obtains the entropy estimate:

| () (4, 0) log (1, v) dv = 0. (1.12)

vER?

According to [A 1], [A 2], for any of the cross sections previously
presented, there exists a nonnegative solution f(z, v) of (1.1) satisfying
f(0, v) = fo(v) provided that f; is nonnegative and

5”2]00(1)) (14310 +|log fo(v}]) dv < + @ (1.13)
vER3

for some r > 2. Moreover, estimates (1.11) and (1.12) hold for this solution,
and therefore f satisfies

§ fo) (Lo do)) dv= | fo(v) (1,0 Lv]?) dv, (1.14)
veR3 pER3
fhef(t,‘v) log f(t, v) dv < erfo(U) log fo(v) dv (1.15)
vER3 veER3

when ¢t = 0.

Note that condition (1.13) can be relaxed by taking r = 2 for the proof of
existence, but in that case (1.14) may not hold (at least for hard potentials).
Note also the results in [DP, L 1] of existence and weak stability for the in-
homogeneous equation.

In this work, the solutions of the Boltzmann equation (1.1), are always the
nonnegative solutions of [A 1} or [A 2].

It is now well known that in the case of VHS models (including hard
spheres) and hard potentials (including Maxwellian molecules), the moments
of the solution of the Boltzmann equation

Lty = [ f(t, v)|v| dv (1.16)
vER?

for r > 2 are bounded on [0, + o[ provided that they exist at time ¢ = 0 (cf.
[El 11). The same estimate holds for soft potentials, except that [.(z} is
bounded only on [0, T] for T> 0 and may blow up when ¢ goes to infinity
(cf. [A 21). Note finally that the case of Maxwellian molecules is treated exten-
sively in [Tr, Mu] and [Bo].

We prove in Section 2 that in fact, for VHS models (including hard
spheres) as well as in the case of hard potentials (but not including Maxwellian
molecules) and under assumption (1.13), the moments [ (#) (for ¢ > 2) are
bounded when ¢ = 7 (for any f > 0}. In other words, all polynomial moments
of f exist for r > 0 provided that one of them (of order strictly higher than
2} exists initially.
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In Section 3, we give some estimates for the solution f of equation (1.1)
with soft potentials. We write the cross section B in the form

B(x,y) =x""B(y) (1.17)

with y >0 (y = —a in equation (1.6)).
We prove that if [.(0) exists (with » > 2), then we can find K, > 0 such
that
(1) = Kyt + Ky (1.18)

This estimate is a little more explicit than that of [A 2}. Moreover, we also get

4
§1._,(s) ds = Kot + Ky, (1.19)
0

which means that [._, is bounded in the Cesaro sense. Note that the same
kind of estimates can be found in [Pe 1] and [Pe 2], in a linear context. Note
also that the estimates can be derived from the works of EimrorH (cf. [El 1],
[El 2]). However, for the sake of completness we give here a self-contained
proof. These estimates are then used to prove partial results of convergence
towards the equilibrium when 7 goes to infinity (the reader can find a survey
on this subject in [De 2]).

Finally, in Section 4, we introduce Kac’s model (cf. [K], [MK]) and, using
monotonicity results, we prove exponential and Maxwellian estimates for its
solution.

2. Hard potentials

The bounds that we present in this work are based on (1.9). The exploita-
tion of this estimate is called the ‘““method of moments’’. We begin by putting
(1.9) into a new form. We write

V4 —v

+ sin 0(cos @iy, + Sin ¢y 4 ), 2.1)

n—vo, .
<t'l)1 _ ’UI ’ lv,vl!.]v, ”1) (22)

is an orthonormal basis of R. Then estimate (1.9) becomes

where

2 w2

SQ(f) (¢, v) l//(v)dv=§ S S S {l//(v—i—cosﬁiv—vlﬂ

vels o€R v R $=0 =0

X [cos@ hzv +sin9(cosq§iv,vl+sinqﬁjv,vl)jl) —w(v)}

v — o]

X f(t, v) f(t, v;) 2 sin GB(\z; — vy |, cos 8) dO d¢ dvy dv. 2.3)
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Introducing in (2.3) the change of variables § = %, and defining

3

(Lv—> =cos d ooy + sin d(cos biy,y, + sin ¢y, 5,) 5 2.4)

|vy — v \Ul—v|

one obtains

of) (1, v) w(v) dv

veR3

2n it

1L O e ) o)

veR? 1 €R? ¢=0 5=0

X f(t, v) f(t, v)) sin § B(|v — v/, cos §) dd de dv, dv, (2.5)

which is in fact a classical form for the Boltzmann collision term (cf. [Bo]
or [De 3], for example).
We state now three useful lemmas.

Lemima 1. Assume that € >0 and that A is a strictly positive function in
L= ([0, n]). Then there exists K| > 0 and two functions Ti(v, v1), To(v, v() such
that '

W(v, v1)
Zn w B o ‘ s
_ 1+"U 'U;|]’U:"Ull R§¢ %! v _U+1/1 l A(é)d5d¢
v° + of ’ v—v|/ v+ '
$=0 6=0
=T (v, v1) + T (v, v1), (2.6)
with
Ty (v, v1) = =T (v, v), 2.7
i
0= Th(nvn) =K <2 | A@) dd. (2.8)
§=0

Proof. We adopt the following notations for i =1, 2:

Ti(v, v1)
2n Fid
v |Vt - + v
= P %ll_i Rjs n-v\ vto] A(S) dS do,
7+ vy vy — v ]1;+1;1|J
=0 6=0

2.9)
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with
1 1+¢ -1 i 1— 1+¢
Xi(x)=( +x) 7T+ (-1 (1 ~x) _ 2.10)
2
We can see that
W(’Ui 1)1) = T](’l), ’UI) + TZ(% 7-}1) 5 (211)
Ti(v, v;) = =Ty (vg, v). (2.12)

But yx, is even, strictly increasing from x =0 to x =1, and

20200) =1,  xa(1) =2°. (2.13)
Therefore, using the inequality

v =i v+ | =0+, (2.14)

we obtain the estimate

11
0= Th(vv) =2 | A(5) dd. (2.15)
§=0
Then, a simple argument of compactness ensures that Lemma 1 holds.

Lemma 2. Assume that € > 0 and that the cross section B in (1.2) satisfies
B(x,y) = By(x) Bi(y), (2.16)
where B, eL” ([0, n}) is strictly positive. Then, there exists K, >0 and
K5 €10, 1[ such that
§on) o) |v]** dv
vER3

=K || B +oHE =022 f(1, v) £ v1) Bo(|v — v1]) dv; dv.
vER3 v €R3

QA7)

Proof. According to equation (2.5), for ¢ > 0,

2 2 e
S Q(f) (f,v)\v|2+2£dy — S S {(v -2§—1;1>1+

vER? velR® v, €R3

2n n

XS g 1+|v—v21[|v:-111| Rss u—vy) vty |l+e
v° + vi ’ vy — v v+ o] I

¢=0 6=0
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2n n
Xsin § By (cos ) dd dp — |v|?F% S S sing B (cos %) dé dd)}
=0 5=0
x f(t, v) f(t, v;) By(|v — v|) dvy dv. 2.18)
Moreover, using Lemma { with
A(6) =sin g By(cos 9), (2.19)
we have
Q(f) (1, v) [v]*T* dv
vER3
2 2\ 1+e
< {(” ; ”1> (Ki + T1 (v, v))}
veR? v eR3
27 T
—|v|?t2% S S sin § B (cos §) do dqﬁ}
$=0 6=0
xf(ta ’U)f([’ Ul) BO('U - Ul|) d,UI dl), (2'20)

with K and T;(v, v;) as in Lemma 1. Therefore, taking
j sin £ By (cos 9) dJ, (2.21)

K,
2% en {3 ¢y sing By (cos §) do

K, = <1, (2.22)

and using the change of variables (v, v;) — (v, v), we obtain Lemma 2.

Lemma 3. Let B and ¢ be as in Lemma 2. Then there exist K;, Ks > 0 such that

ooy |w**2aw
veR3

=Ky [ 1ol ER0) f (6 v0) Bollv —wi]) dvydo

vER3 v €R

+Ks | 3;@ w2 o |2 £ 0) £ v1) Bo(|v— v1]) dvydv.  (2.23)

vER? v,€
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Proof. Note that there exists Kg > 0 such that
(vz +U%)1+3 §|U|2+25 + ‘Ul|2+28 + Kﬁ(i’u‘z ivﬂZa_}_ !U‘Zﬁlvl‘z)' (2.24)

Using Lemma 2 and the change of variables (v, v;) = (v1, v), one easily ob-
tains Lemma 3 with K, = K,(1 — K3) and K5 = K, K;3Kq.

We now come to the main theorem of this section.

Theorem 1. Let f, satisfying (1.13) be a nonnegative initial datum for the
Boltzmann equation (1.1) with hard potentials (but not with Maxwellian molecules)
or with the VHS model (including hard spheres). Denote by f(t, v) a solution of
the equation with this initial datum. Then, for all ' >0, >0, there exists
C(r’, t) >0 such that

§ o) |v]"dvs C(r,0) (2.25)

vER3

when t = 1.

Proof. According to (1.6) and (1.8), the cross section for hard potentials (but
not Maxwellian molecules) or for the VHS model (including hard spheres) is
of the form (2.23) with By(x) =|x|%, and «€]0, 1]. Therefore, we can apply
Lemma 3.

For ¢ > 0, we write

§ o) o) |v]*  dv

vER?
= —Ko | § Pl —u|*f (5 v) £t v) dvy do
veR? peR3
+Ks § 0§ 1ol o]® v — v |*f @t 0) £, v) doydv (2.26)
veR? v €R3
< —Ki2 % gpral) Ip(2) + K427 %L (1) byiolt)
+ K5l o(2) b () + Ksheyo(2) (1), (2.27)

with the notation (1.16).

Since fis the solution of (1.1), the conservations of mass and energy (1.14)
ensure that for @€ [0, 2], I,(¢) is bounded (for ¢ = 0). Therefore, there exist
K5, Kg, Ky > 0 such that

jwe Q(f) (1, v) 10|* " dv = —Kgbypopsa(t) + Kshyo (1) by(t) + Kobsio(2)
vER3
(2.28)

Remember that 7 > 0 and r > 2 are given in the hypothesis of Theorem 1
(r is defined in (1.13)). We can always suppose that r < 4. We prove in a first
step that there exists #,€ 10, f[ such that [, .(#) is bounded on {ty, +col.
According to Holder’s inequality, when 0 < u < v,

L) =@ B @) (2.29)



The Boltzmann and Kac Equations 395

Therefore, using estimate (2.28) with ¢ =1 — 1, one obtains

§ o) o) |v] dv
veR3

&

2+ 1— +o r+oa—2 1’_}’+oz~—2
S —Kiloyo(t) + Kglfi3(0) Iy 778 (0) Lp (1) + Kol J5% (1) 1y 77 (1)

(2.30)

Remember that since r — 2 €10, 2], the moments [;(¢) and [,_,(¢) are bound-
ed on [0, + co[. Moreover, we can find Ky, K;; > 0 such that when x = 0,
t=0,

24+a 2+ r+a—=2 r+oa—2
ol e r+a T rta
—K—/.X + KSX l() (1) erz(l) + Kgx l() (1) = —Kmx + K“ .
(2.31)
Therefore,
J,oH) oy [v]"dv = =Kok o) + K. (2:32)
vE

Integrating the Boltzmann equation (1.1) on [0, 7] X R? against |v|" and using
estimate (2.32), one gets

t
L(E) + Ko § Lrao(s) ds < Ky + 1,(0). (2.33)
4]

According to (1.13) and (2.33), we can see that there exists 7,€]0, f[ such
that [,, (%) < +o. But it is well known that if a moment exists at a given
time ¢, then it is bounded for 7 = ¢, (cf. [El 1] or the remark at the end of
Section 2); therefore I, ,(¢) is bounded for ¢ = 1.

We come back now to estimate (2.28). Using equation (2.29), an estimate
similar to (2.31), and the result of boundedness for [..,(f), one obtains
KIZ’ K13 > 0 such that

SP O(f) (6 v) [v]* ¥ dv = —Kiphyoesal(t) + Ki3 (2.34)
velR?

for t = fy. Now we integrate (when #; < t_ < ) the Boltzmann equation (1.1)
on [tr_, f1xR? against |v|>*% and we use estimate (2.34) to obtain
7

Layoe(F) + Kipy § byserals) ds = Kis(f — 1) + Lo, (1) (2.35)
1
Therefore, if rp=<¢_ and if [, ,,.(f_) < +oo, then there exists 7€ [f_, f[ such
that 12+2£+04(T) < +oo,
Finally, we note that any moment is bounded on [r, +oof provided that
it is defined at time t (cf. [El 1]), and we use a proof by induction to get
Theorem 1.

Remark. Note that, using equation (2.35), we can produce explicitly the max-
imum principle for ,,,,. Namely, when & > 0, estimate (2.29) ensures that
there exists K4, > 0 such that

2+2e+a

d
() = ~Kubh 5 () + Ky, (2.36)
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which gives

Kis\ +54
byp2s(t) S sup { Lo (1), X, st} (2.37)

14,

for t+ = ¢t_ (this is another proof of the result of [El 1]).

3. Soft potentials

In this section we consider the Boltzmann equation (1.1) with a cross sec-
tion B of the form

B(x,y) =x77B(y), 3.1

with y >0 (y = —a in formula (1.6)), and £ satisfying (1.7). This is exactly
the hypothesis of soft potentials.
We begin by proving the

Theorem 2. Consider the operator Q defined in (1.2) with B satisfying (3.1). Then
for € >0, there exist Ky, K5y > 0 such that

L) o) v P dvsKy—Ky | flt o) 0|27 dy  (3.2)
3 peER3

vER

when f(t, v) satisfies the conservations of mass and energy (1.14). (The constants
Ky and K,y depend in fact on this mass and this energy.)

Proof. According to equation (2.5), for & > 0,

Q(f) (1, v) [0+

€R3
v 2r Jid

LA

+ v — v — v
v 111+1 Ul\ R; 1
2 2 a [vl—v{
vER? v €R? =0 d=0

X f(t, v) f(t, v)) [v— vy | 77 sin g B (cos ) dd dé dv, dv. (3.3)

242¢
_ 1 v \ 2+2£}

We make the change of variables u = v; — v, and consider the integral in (3.3)
when |u| =4 and when |u| <4. Then, we use Lemma 3 for the first term
and get

o) @ v dv

veR3

=-K | § w5001, v) By(lv — v ) du, dv

vER3 v €R3

+Ks | 5“@ 012 [0y |2 £(5 0) £(1, 1) Bo(|v — vy | dvy do

vER? €
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2w

+ 7 e+2) [ § T (w+DFrG )
vER? \u|§% $=0 §=0

X f(t, v +u) sing B (cos ) dd do du dv, (3.4)

where
By(x) = 1,5, x7 7. (3.5)
2

With the notation (1.16), one obtains after computations that
§ o) (o) |o]Pdv
vER3

K. Lh(t))?
—J2+26—y(t) (o ()

K
4 + =2 (I (D)% + 2Ky bs_, (1) (L(1) + L 1p(1))

L) + () 2

A

+ K5271 (1) L (2) + 277252 + 28) 1B Ly 4 96 (1) Lo (2)
+ 27712 + 2¢) 726, (I (1)) 2. (3.6)

Since we supposed that [y(¢) = [;(0) and L(¢) = [,(0), there exist K5, K,
K17, K1g, K19 > 0 such that

SR O(f) (6, v) [v]*"# dv = —Kishygey (1) + Kighpo, (1)
veER3

+ Ki7bp (1) + Kighye— (1) + Kig. (3.7)

Using estimate (2.29) and working as in (2.31), we obtain Theorem 2.
We give now the main corollaries of this theorem.

Corollary 2.1. Suppose that f(t, v) is a solution of the Bolizmann equation (1.1)
with a cross section B satisfying (3.1) (i.e., in the case of soft potentials), such
that £(0, v} = fo(v) = 0 and [, satisfies (1.13). Then there exists Ky > 0 such
that

§ f(,0)|v]"dv = Kot + K, (3.8)
pER?

(with r defined in (1.13)).

Proof. Integrating the Boltzmann equation (1.1) on [0, ff X R® against |v|”

and using Theorem 2 with ¢ =5 — 1, one obtains
t

§ fa, o) vl dv— § fow)lo| dvs Kyt — Koy § [ (s, 0) vV dvds,
vER3 vER3 0 weR?
(3.9
which gives estimate (3.8) for K = sup (K, 1.(0)).

Corollary 2.2. Suppose that f(t, v) is solution of the Boltzmann equation (1.1)
with a cross section B satisfying (3.1) (i.e., in the case of soft potentials), such
that £(0, v) =fy(v) =0 and

Sﬂe fo(w) (1 +[v]" + |log fo(v)|) dv < +oo (3.10)
veR?
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for some r > 2 + y. Then there exist K,, Ky, > 0 such that

1

05 SR fls,v) |v|"7Vdvds = Kyt + Ky, (3.11)
vER3

d r_y

0 E§R3f(t, v) [v]" 7Y dv < Ky (3.12)

Proof. Estimate (3.11) comes out of equation (3.9). Moreover, making
€¢=% — 4% —1 in Theorem 2 immediately gives (3.12).

We now give a corollary of formulas (3.11) and (3.12), describing the con-
vergence towards equilibrium for equation (1.1) with soft potentials.

Corollary 2.3. Suppose that f(t, v) is a solution of the Boltzmann equation (1.1)
with a cross section B satisfying (3.1) (i.e., in the case of soft potentials), such
that £(0, v) = fo(v) and

1 fo@) (T+lo]"+[log fo(0)]) dv <+ (3.13)

for some r> 2 + y. Then there exists a sequence (1,),cn going to infinity such
that for all T>0, f,(t,v) =f(t+1t,,v) converges in L% ([0, T];Ll(fR3))
weak® to the time-independent Maxwellian

2

(v) -’ e‘w%TZL’ (3.14)
T anty '
with

p= | folv)av, (3.15)

vER3
pi= | vfy(v)dv, (3.16)

vER3
1plal* +3pT = leSRS%lylzfo(v) dv. (3.17)

Proof. We first note that the solution f of the Boltzmann equation (1.1) with
soft potentials satisfies the following entropy estimate:

t€[0, +oo]

sup S f@, v) llog f(t, v)| dv

+ oo
+S g S g{f(s,v’)f(s,v{)—f(s,v)f(s,vl)}
=0

s veR? 1,€R3 weS?

Sl 0D fls vy !
log{f(sy ’U)f(s,’Ul)} Iv /Ul‘ ﬂ (‘w |'U"1]1

) dw dvy dv ds < + 0.
(3.18)
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This inequality is obtained from (1.12), (1.14), (1.15) and (3.13) as in the
space-dependent case (cf. [DP, L 1] and [DP, L 2]).

Now according to Corollary 2.2, there exists a sequence (f,).¢y going to
infinity and an #=# — y > 2 such that

ijf(tn,v) jv|"dv= Ky + 1. (3.19)
Moreover, because of estimate (3.12), we have for r¢€ [0, T] that
E§P3f(tn+t, v) |v|]"dv= Ky + 1+ KyT. (3.20)
Denoting
I'(x,y) = (x—y) log G) , (3.21)

and using estimates (3.18), (3.20) and the conservation of mass (1.14), we can
find K53 > 0 such that f,(z, v) =f(r + ¢,, v) satisfies

sup | fult, v) {1+ |v|" + [log £, (¢, v) |} dv = Ky, (3.22)
1e[0, T] v€R3

and

T
g g S gF(fn(s,v’)fn(s,v{),fn(s,v)fn(s,vl))
=0

vER? v, €R? wes?

xfz;—m‘y,b’(.w-

$

v — 1

) dw dvy dv ds (3.23)

|v — o]

tends to 0 when n goes to infinity.

According to estimate (3.22), there exists a subsequence of f, (still denoted
by f,) which converges to a limit m(¢, v) in L= ([0, T]; L'(R%)) weak*.

To prove that m is a Maxwellian function of v which does not depend on
t, one can proceed essentially as in [De 1].

Now we must identify p, &, and 7. Using the conservations of mass, im-
pulse and energy (1.14), one gets for all r€[0, T], that

[ fuen) (Lo do|Ddv= | fo0) (1,0, 40| dv.  (3.24)
VER3 v€R3
But because of estimate (3.22),

T
P (Lo lo|)fut, o) dvdt—T § (1, v, |v]?) m(v) dv, (3.25)
t=0 veR3 oo peR3

and therefore the parameters g, 4, T are given by formulas (3.15)—(3.17).

Remark. This is only a partial result. One would expect in fact that the whole
function tends when ¢ — +oo to the Maxwellian given in (3.14)—(3.17). Note
that this is the case for hard potentials, the convergence even being strong and
exponential under suitable assumptions (cf. [A 3]). Note also that the existence
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of a converging subsequence for any sequence f, going to infinity can be
derived from the papers of ARkErYD (cf. [A 2]), but the limits in that case
may have less energy than the initial datum.

4. The Kac equation

We now introduce the one-dimensional homogeneous Kac model (cf.
K], [MK]), where all collisions have the same probability. The density
f(t, v) >0 of particles which at time ¢ move with velocity v satisfies

d
a—’:(t, D=0 (&), @.1)

where @’ is a quadratic collision kernel:
4

a0
Q(f) (tv) = S S U, 0™) f(,0T) = f(2,0) (2 1)) Zdvla 4.2)
v,€R? f=~7
with

v* =Vo? + 02 cos 0, 4.3)
vF =vVv? + v} sin 0. 4.4)

It is easy to prove (at least at the formal level) the conservation of mass and
energy
| fo) (L glolydo= | f(0,0) (1, 3]v]?) dv, 4.5)

vER vER

and the entropy estimate

§ ftv)logf(t,v)ydvs | f(0,)logf(0,v) dv. (4.6)
vER v€R
Adapting, for example, the proof of ARKERYD (cf. [A 1]) for the Boltzmann
equation, one can prove that if f; satisfies

§Rf0(u) (1+|v|" +|log fo(v)] dv < + o 4.7)

vE

for some r > 2, then there exists a solution of the Kac equation (4.1) such

that (0, v) = fy(v). Moreover, this solution satisfies estimates (4.5) and (4.6).
It is also easy to adapt the theorems of TRuesDELL (cf. [Tr] and [Tr, Mul)

for this equation. Namely, one can give an explicit induction formula to com-

pute the moments

L) = § f(tv)v"dv (4.8)
vER

when n € N, provided that these moments exist initially. Therefore, we do not
deal in this work with the polynomial moments of f, but rather with the Max-
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wellian moments

Myt A) = § f(t,v) ™ dv, (4.9)

vER
for 1 > 0.
We begin by proving the following theorem:

Theorem 3. Let f satisfy (4.7), and consider a solution f (1, v) of the Kac equa-
tion (4.1) such that £(0, v) = fo(v). Suppose, moreover, that there exists 1y >0
such that M0, Ay) < +oo. Then, there exists 72>0 and Ky >0 such that
M(t, 1) = Ky when t = 0.

Proof. We look for an equation satisfied by .Z(t, 1):

%%f(z, I3 S 0'(f) (& v) e dv

vER

g g Sf(t,v)f(r,vl){e”“—em}ﬁdu]dy
2n

v€ER v €R f=-—=

4

2 2 2 d
S S S £t ) £, m){e’*”’”ﬂws@—e“}zi’dvl dv

4

veR v €R f=-n

7

S MEF(t, A cos® ) — M1, 1) A0, 0) ;z_e , - (4.10)
7T

f= —7

since the conservation of mass (4.5) holds.
For any p, T > 0, we denote by m; 7 the steady Maxwellian of density p

and temperature 7':
D _l]?
m; 7(t, v) =———— ¢ 2T, 4.1
It is easy to see that m; 7 is a steady solution of the Kac equation (4.1).
Therefore

D

N1 -2AT

is a steady solution of equation (4.10) on [0, +oo[x [0, [ (this can be
seen directly from equation (4.10)). o

We now prove that under the hypothesis of Theorem 3, there exist 1 > 0,
T > 0, such that

M s 7 (1, 4) = (4.12)

with
p= § f(0,v) dv. (4.14)

vER
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In order to prove (4.13), we use a development of .Z/0, 1) around 0:

N0, 1) = [ £(0,v) e dv

veER

1
I £, v) (1 + A2+ AR (1 —w) ™ du) dv
vER u=0

§ £, 0)dv+ 24 | £(0,v) |v]?dv+ O(L?), (4.15)
R

ve€R V€

il

since

1
§ f£(0,v) 04(5 (1 —u) eru) dv= | f(0,v) v*e" dv< +oo - (4.16)
u vER

veR

when A < 1p. But
Mp; (0, 1) =P + pT + 0(A%), 4.17)

and therefore (4.13) holds provided that we take 1 small enough and

1
T>— [ f0,v)|v|*dv. (4.18)
P veR
But equation (4.10) clearly satisfies the following monotonicity property:
If (0, A) and b(0, 1) are two initial data for (4.10) and A is a strictly positive
number such that

Vie[o, A[, a(0,1)=b(0,4), (4.19)
a(0, 0) =5h(0,0), (4.20)

then for all r = 0, the solutions a(z, 1) and b(¢, 1) of (4.10) satisfy
Yie[0, A, a(t,A)sb(1, ). @.21)

Using (4.12), (4.13), (4.21), and taking
- s 1
O<i<inf{4,—=}, 4.22)
2T
we obtain Theorem 3.

We give now estimates for the exponential moments
M, 1) = | ft,v) e dv, (4.23)

veER
for A€ R. We can prove the following theorem:
Theorem 4. Let f, satisfy (4.7), and let f (¢, v) be a solution of the Kac equation

(4.1) such thar £(0, v) = fy(v). Suppose, moreover, that there exists Ay > 0 such
that V0, Ag) < +oo, A0, —lg) < +o, and

§ fov)y vdv=0. (4.24)

vER

Then, there exists 1 >0 and K,s >0 such that A48, 1) + Aty —1) = Kys
for t = 0.
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Proof. It is easy to see that

b4

i) ) df
g Mty X)) = S Nty A cos 0) Ax(t, L sin §) — Aty 1) 40, 0) E .
o= 4.25)
Moreover, since m; 7 is a steady solution of the Kac equation (4.1),
5T
S 76, 2) = pe? (4.26)

is a steady solution of equation (4.25) on [0, +oo[ X R (this can be seen direct-
ly in equation (4.25)). Thus the proof is quite similar to the proof of
Theorem 3.
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