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Abstract. The temperature dependence of the Mn-Mg
distribution between garnet and clinopyroxene, orig-
inally proposed by Carswell, was confirmed by Shi-
mizu and Allégre (1978) using ion microprobe and
electron microprobe data. High precision electron
microprobe analyses of a larger set of 52 lherzolites
from S. Africa and Malaita, Solomon Islands show
considerable scatter in the temperature dependence
of this distribution, and correlation with the CaQO
content of the garnet is indicated. A new distribution
coefficient is based on the reaction:

Mn,Si,04 +CaAl,;8i10, + MgAl,;Si0,
Mn-pyroxene  grossular pyrope
= CaMgSi, 04 + 2MnAl,;Si0,
diopside spessartine

It was calibrated against temperature determined
from two independent thermometers (Wells pyroxene
and O’Neill-Wood garnet-olivine) for lherzolitic as-
semblages, and shown to to be sensitive to within
+50°C for most specimens in the range 900°-
1,300° C. This distribution coefficient appears inde-
pendent of pressure within the uncertainty of the
available data, and has the potential to be a third
independent thermometer for use in garnet lherzolites
and possibly eclogites.

Introduction

As part of a general program to investigate the
distribution of trace elements among minerals from
the upper mantle, systematic analyses are being made
of nodules transported to the Earth’s surface by
kimberlite and other magmas.

Substitution of Mn for Mg in coexisting garnet
and clinopyroxene depends on temperature (Carswell
1974; Jawardena and Carswell 1976; Shimizu and
Allegre 1978), but the data sets were too small to

provide a definitive calibration. We now report elec-
tron microprobe data for the Mn/Mg/Fe/Ca distri-
butions between coexisting garnet and clinopyroxene
in many lherzolite nodules from S. African kimber-
lites (specimens described in Nixon and Boyd 1973a
and b and Bishop et al. 1978) and from the Malaita
alnoite, Solomon Islands (Nixon and Boyd 1979;
Delaney et al. 1979). Examination of the new data set
suggests that the Mn distribution between coexisting
garnet and clinopyroxene depends on the grossular
content of the garnet as well as on the temperature. A
new exchange reaction which involves Ca as well as
Mn and Mg is calibrated against two independent
geothermometers; the Wells (1977) modification of
the Wood-Banno two-pyroxene scheme, and the
O’'Neill and Wood (1979) garnet-olivine experimental
thermometer. These calibrations are compared with
the experimental observations on Mn distribution by
Wood (1976) and Finnerty (1977), and with ther-
mochemical calculations using tabulated calorimetric
data.

Review
Carswell (1974, Fig. 4) found that the ratio

(XMn/XMg)gt/(XMn/XMg)cpx

decreased fourfold for garnet lherzolites as the temperature
inferred from the Ca/(Ca+Mg) ratio of the clinopyroxene in-
creased from 800° to 1,300°C. The wide scatter of data probably
results from low analytical precision for Mn in the clinopyroxene
and the simplicity of the pyroxene thermometer. A further attempt
to use this distribution on charnockitic minerals (Jayawardena and
Carswell 1976) led to a discrepancy of 200°C with other tempera-
ture estimates.

Shimizu and Allégre (1978), as part of an ion-microprobe
study of garnet lherzolite nodules in kimberlites, obtained a good
correlation between (Mn/Mg),, /(Mn/Mg),, and Ca/(Ca+Mg
+Fe),,, for 11 specimens, which they compared with a tempera-
ture range of 1,000°-1,450°C from the pyroxene thermometer
calibrated by Davis and Boyd (1966).
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Table 3. Comparison of present electron microprobe analyses (DSDN) with ion microprobe analyses by Shimizu and Allégre (1978) and routine
electron microprobe analyses by F.R. Boyd

Specimen Mineral TiO, ppmw Cr,O5 wt. % MnO ppmw Reference
DSDN Boyd SA DSDN Boyd SA DSDN Boyd SA
PHN 1569* gt 190 400 230 7.99 7.43 5.09 4430 4,600 3,740 (a)
cpx 200 100 150 1.30 1.70 1.30 660 700 650
PHN 16112 gt 8370 8000 7,670 1.28 1.46 1.53 2,320 2,600 2,070 (a)
cpx 3,100 3,000 2,800 0.49 0.49 0.46 1,130 1,300 1,050
PHN 1925 at 7,800 8,000 7,610 243 2.57 1.93 2740 2400 2,170 (a)
cpx 3,000 3,100 2,700 0.94 0.86 0.67 1,180 1,400 960
PHN 2302A st 800 800 1,360 7.17 6.39 6.07 3,800 3,800 3,490 ()
cpx 450 500 510 2.87 2.81 240 800 600 670
FRB 348 gt 200 <300 310 3.76 3.79 333 3,740 3,800 3,100 (c)
cpx 100 <300 100 1.38 1.32 1.51 650 600 660
2 Inhomogeneous (Boyd and Finger, 1975)
(a) Nixon and Boyd (1973a); (b) Nixon and Boyd (1973b); (c) Boyd and Nixon (1976)
Table 4. New MnO analyses and estimated temperatures for specimens analyzed by Bishop et al. (1978)
Number 740 749 794 1,140 1,143B 1,149 1,156 1,352 1,359
Weight % MnO garnet  0.355 0.030 0.317 0.390 0.512 0.359 0473 0.604 0.375
Weight % MnO cpx 0.093 0.067 0.124 0.069 0.109 0.097 0.126 0.077 0.093
°C (Wells) 1,002 — 1,007 839 828 933 1,033 735 951
°C (O'Neill-Wood) 1,040 1,016 1,125 863 826 983 1,034 — 986
Number 1,361 1,362 1,363 1,755 1,870/2 2,014/1 2,125 BT7
Weight % MnO garnet  0.427 0.431 0.437 0.484 0.400 0.487 0.380 0.354
Weight % MnO cpx 0.126 0.117 0.116 0.076 0.063 0.060 0.109 0.094
°C (Wells) 958 986 976 776 - - 994 929
°C (O"Neill-Wood) 1,019 1,007 ~ - 833 926 1,114 978

Fianerty (1977) synthesized coexisting clinopyroxene and gar-
net, and found that Mn tends to move from clinopyroxene to
garnet with falling temperature. However direct comparison with
the present data is not possible because of absence of complete
chemical analyses for the synthetic minerals. The synthesis data of
Akella and Boyd (1974) and of Wood (1976) are qualitatively
consistent with the distributions observed in natural lherzolites,
but exact comparison is not possible because of compositional
differences between synthetic and natural minerals.

Samples and Analytical Techniques

Electron microprobe analyses of silicates from 17 lherzolite and
pyroxenite nodules from southern African kimberlites (Bishop et
al. 1978) were augmented by new analyses for 14 Therzolite nodules
measured with the same standards (Table 1). F.R. Boyd, Jr., kindly
provided grain mounts of minerals from 27 nodules from S.
African kimberlites. New analyses are given in Table2, five of
which allow a cross-check of the analyses made by Shimizu and
Allégre (Table3). New silicate analyses for three garnet Iherzolite
nodules from the Malaita alndite were cross-checked with routine
analyses made by F.R. Boyd, Jr. (Nixon and Boyd 1979).
Analytical technigues at Chicago were described by Bishop et
al. (1978). Routine analyses in Tablel are given to one decimal
place for numbers greater than 10wt. % and two decimal places for

numbers less than 10. Special analyses of high precision are given
to three decimal places, and are precise to 20-50ppmw (20). Some
analyses of MnO in Bishop et al. (1978) were made with routine
procedures accurate only to +0.02wt.%, MnO(lc) and were re-
placed by new analyses of higher precision (Table4). All electron
microprobe analyses of MnO listed in this paper are precise to
+40 ppm(20), except for the routine analyses by F.R. Boyd, Jr,, for
which the accuracy is probably 200 ppmw(le). The Chicago anal-
yses were standardized against synthetic Corning glass W with
0.50wt. % Mn (atomic absorption analysis by Jun Ito decreased).
Special care was taken to obtain reliable analyses of CaO and
MgO in the clinopyroxene, and data from spectrometer and solid-
state-detector methods were cross-checked. The standard was syn-
thetic diopside.

All the lherzolite nodules contain coarse mineral grains, and
the chemical compositions are uniform within experimental error
except for small variations in some elements (especially Al and Cr)
of some minerals. These variations were always less than 109, of
the amount present, and for brevity a mean value is reported for
analyses made on several spots. All analyses for Mn were con-
sistent for each grain within experimental error.

In general, there is good agreement between the Chicago and
Boyd analyses when account is taken of the lower precision for
minor elements in the latter.

No clear trends emerge in the comparison of electron and ion
microprobe analyses in Table3, especially as two specimens
are known to be inhomogeneous particularly for Cr. The cali-
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bration of ion microprobe analyses is still a matter of great diffi-
culty because of poor understanding of the physics of the
sputtering process. Particularly serious is the effect of the
matrix on the sputtering yield, as for example the strong effect
of the Fe/Mg ratio of olivine on the yields of ions of transition
metals (Shimizu et al. 1978; Steele and Hutcheon 1979). Whereas
Shimizu and Allégre (1978) suggest an error of 5% for their
ion microprobe analyses of Cr and Mn, and 10% for Ti, the
data in Table3 may indicate a rather larger value. In particular,
their analyses of Mn in both garnet and clinopyroxene average
about 11 % lower than the present electron-microprobe analyses. A
detailed comparison of electron and ion microprobe analyses on
exactly the same spots is needed to provide definitive data. Such
comparisons at Chicago with an ARL-EMX electron microprobe
and an AEI ion microprobe have indicated that it is difficult to
obtain ion microprobe analyses accurate (not precise) to better
than 10-20%, and indeed the simplest interpretation of Table3 is
that the analyses from the CAMECA ion microprobe have a
similar level of accuracy.

Model Reactions for Mn Distribution,
and Empirical Calibration

The distribution of Mn and Mg between garnet and
clinopyroxene may be represented by an exchange
reaction between components as follows:

MnSiO, + MgAl, ;;Si0,
‘Mn-pyroxene’  pyrope
= MgSiO; + MnAl,,;SiO,
enstatite spessartine (1)

for which an equilibrium constant K, may be defined
as

Since data are available for rhodonite and not ‘Mn-
pyroxene’, we use that mineral since Navrotsky and
Coons (1976) suggest that AH and AS between pyrox-
enoid and pyroxene are small. If all the Mg in
clinopyroxene is assigned to an enstatite component,
Eq. (2) 15 equivalent to the distribution coefficients
used by Carswell and (inverted) by Shimizi and Al-
légre. The exchange reaction assumes that Mn sub-
stitutes for Mg in the clinopyroxene structure with
Ca (and other substituents) being unaffected.
Shimizu and Allégre (1978) found a linear trend
for K}®=(Mn/Mg)cpx/(Mn/Mg)gt vs. Ca/(Ca+ Mg
+Fe).p,. Our Fig. 1 for this plot shows a scatter of up
to 0.1 in K, or up to 0.04 in Ca/(Ca+Mg+Fe),,,,
about the line drawn by Shimizu and Allégre, but our
data for specimens studied by Shimizu and Allégre
do fall close to the line. The increased scatter results
from the use of a larger set of specimens and cannot
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Table 1 (filled circle) and Table 2 (open circle) for S. African
specimens and in Delaney et al. (1979) for Malaita specimens
(hexagon). The straight line is from Shimizu and Allégre (1978,
Fig1). Labeled specimens were analyzed by Shimizu and Allégre,
and cross-checked at Chicago (Table 3)

be ascribed to experimental error. There is no ther-
mochemical reasons for the relationship to be linear,
and indeed for an Arrhenius dependence of K, with
1/T the plot should be asymptotic to Ca/(Ca+Mg
+Fe)=0.5.

Arrhenius plots are shown in Fig.2 for two inde-
pendent estimates of temperature. The Wells (1977)
thermometer is a modification of the two-pyroxene
thermometer developed by Wood and Banno (1974)
and depends largely on the variation of the Ca/(Ca
+ Mg+ Fe) ratio of the clinopyroxene, and partly on
the assignment of minor elements to the M1 and M2
sites. It is based partly on experimental data for the
pyroxene quadrilateral and partly on crystal-chemi-
cal theory. Because the solvus approaches the diop-
side composition rather closely below 1,100°C, it is
extremely important to obtain an accurate value for
the ratio Ca/(Ca+Mg) of the clinopyroxene. Electron
microprobe analyses made by F.R. Boyd and at
Chicago gave Ca/(Ca+Mg+ Fe) ratios which agreed
to a mean value of 0.006. It is extremely difficult to
obtain electron microprobe analyses of elemental ra-
tios accurate to better than 0.5%, when account is
taken of statistical counting errors in both the stan-
dard and unknown. Certainly the electron micro-
probe error is trivial for temperatures above 1,200°C,
but it is quite significant for temperatures below
1,000° C where the analytical uncertainty can become
equivalent to ~50°C.

The O'Neill and Wood (1979) thermometer de-
pends on the Fe/Mg distribution between olivine and
garnet. The calibration is based on experimental
measurements for Mg-rich compositions up to
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Fig. 2a and b. In K, vs. Wells two-pyroxene temperature (a) and
O'Neill-Wood garnet-olivine temperature (b). CaO content of gar-
net indicated by symbols: open symbol, 4-5wt. %,; half-open symbol,
S5-6wt. %; filled symbol, over 6wt.%. The CaO contents are listed
for some extreme specimens. Brackets are placed around symbols
for O'Neill-Wood temperatures above the range of good calibra-
tion. Circles and hexagons, respectively, denote S. Africa and
Malaita

1,400°C, and is particularly useful below 1,200°C
where the two-pyroxene thermometer becomes less
precise. Listed temperatures above 1,200°C for the
O’Neill-Wood thermometer are definitely subject to
an unknown extrapolation, and we consider the Wells
thermometer to be more useful for temperatures
above 1,200° C.

For the overlapping temperature range of 1,200°-
1,000° C, temperatures from these two independent
thermometers agree mostly within 50°C. Lack of
knowledge of the Fe®**/Fe?* ratio produces system-
atic displacements in both thermometers.

J.S. Delaney et al.: Manganese Thermometer for Mantle Peridotites

Although there is a distinct tendency for InK, to
increase with falling temperature using both the Wells
and O’Neill-Wood calibrations, there is a large
scatter especially for temperatures below 1,100°C.
The scatter is larger than expected from just the
analytical error, and a matrix effect or effects was
suspected. No significant correlation was found for
Fe and Al The symbols in Fig.2 are ornamented
with three levels of CaO content in the garnet, and a
weak trend is indicated. One specimen (2014/A) with
12.5wt. % CaO in the garnet stands out in Fig. 2b.
Unfortunately the trend is not completely systematic
and some other effect or effects as yet unknown may
be responsible. Because of the strong correlation be-
tween CaO and Cr,0O; contents in garnet a similar
but weaker trend was found when the latter element
was plotted.

A new thermometer was developed as follows to
take account of the possible effect of CaO.

Use of the K, ratio implicitly assumes that all the
Mn enters the M1 site in the clinopyroxene, but
Lindstrom and Weill (1978) showed that about half
of the Mn in doped clinopyroxenes substitutes for Ca
in the M2 site and about half for Mg in the M1 site.
Accordingly a more realistic reaction may be

Mn,Si,04 + CaAl,,Si0, + MgAl,,SiO,

‘rhodonite’  grossular pyrope
= CaMgSi, 04 + 2MnAl,;Si0,
diopside spessartine 2

for which the equilibrium constant may be defined as

2
K.= Xspess .Xdiop
2

Xgr'XPy Xen .

Arrhenius plots of K, are shown in Fig. 3. Points
for specimens with high and low CaO contents in the
garnet are now randomly intermingled. For the Wells
thermometer, the scatter is quite small above 1,100°C
where the thermometer is particularly sensitive, but is
rather greater at lower temperatures, especially for
two specimens PHN 1570 and BD 1143B. For the
O’Neill-Wood thermometer, the scatter for tempera-
tures below 1,100°C is similar to that for the Wells
thermometer, and the largest deviations are again for
these two specimens, The Chicago and Boyd analyses
agree well for PHN 1570, and there is no obvious
explanation of the deviations. Of course, equilibrium
may not have been established, but both the
PHN 1570 and BD 1143B specimens are granular
lherzolites with no unusual textural features. Points
with O’Neill-Wood temperatures above 1,200° C are
bracketed in Fig 3b because the thermometer was
not so thoroughly calibrated there. Although these
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points do not cluster as closely as the ones for the
Wells thermometer, they still tend to lie at the exten-
sion of the trend for lower temperatures.

Taking the data at face value, least-square fits
regressed separately on both temperature and K,
gave the following equations:

Wells thermometer

10%/T=1.0779-1nK, +10.469 r=093 3)

InK,=0.8002.10%/T—8.687 Q]
O’Neill-Wood thermometer

104/T=1.3471-InK,+10.888 r=092 ®)]

(6)
Each pair of equations is non-equivalent, as is readily
seen by rewriting Eq. (4) and (6) to give Eq. (7) and
(8), respectively.

InK,=0.6287.10%/T—7.197.

Q]
{8)

Unfortunately there is no standard mathematical
procedure to handle least-square fits when there are
comparable errors in both variables. If the ratios of
the errors can be estimated, the procedure in Smith et
al. (1969), developed M.H. Hey, can be used. For the
present set of data it is not possible to make objective
estimates of the relative errors, and empirically we
suggest the use of Egs. (9) and (10) which have a
mean gradient and pass through the intersection of
the pairs of equations.

10%/T=1.2497-1n K, + 10.856
104/ T=1.5907-1nK , + 11.443.

Wells thermometer
O’Neill-Wood thermometer

10%/T=1.16381nK, + 10.663
10%/T=1.46891In K, +11.1679.

©®
(10)

An experimental determination of K, can then be

converted directly into estimates of temperatures by
Eqgs. (9) and (10).

- denoted in kb by the small two-
figure numbers

Empirically, the Mn distribution is apparently
almost independent of pressure, as indicated by com-
parison between data for specimens from South Af-
rica and Malaita, Solomon Islands. The three speci-
mens from Malaita have estimated pressures from the
pyroxene barometer considerably lower than those
for the S. African specimens. Whatever the details of
the calibration of the pyroxene barometer, the Ma-
laita specimens yield pressures some 20 kb lower than
those of the S. African specimens (Nixon and Boyd
1979), but have temperatures near the center of the
band for the S. African specimens (Fig. 3a). Only one
Malaita specimen could be plotted on Fig. 3b, and it
lies inside the band but considerably displaced from
the center. In the next section, thermochemical data
suggests that the Mn distribution i1s much less sen-
sitive to pressure than to temperature.

Comparison With Thermochemical Calculations

Using heats of formation of diopside and rhodonite
(Navrotsky and Coons, 1976), spessartine (Shearer,
1973), enstatite and pyrope (Charlu et al, 1975),
estimates were obtained for 4HS,, ., of reactions (1)
and (2). For reaction 1, the calculated value of
—14J/mol has the same sign as the value of ~
—37kJ/mol obtained from the gradient of the least-
squares fit to the Arrhenius plots (Fig.2), but is
numerically smaller. For reaction 2, the calculated val-
ue of —19kJ/mol also has the same sign as the value
taken from the average slope of the regression lines in
Fig.3 but is considerably less than the graphical
value of —85kJ/mol. These large discrepancies in the
numerical values reflect the non-ideal character of the
Mn-Mg and Mg-Ca substitutions in pyroxenes and
garnet (Holst 1978). Thus the observed trends are
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more sensitive to temperature than the values esti-
mated for the assumption of ideal solution. Lack of
experimental data for Mn solution in both phases
precludes more detailed modeling of the non-ideality.

For Eq. (1), molar volume data from Robie et al.
(1978) and density data for a high-pressure pyroxene
polymorph of MnSiO; (Akimoto and Syono 1972) in
preference to data for rhodonite yield a value of AV
of —0.114J/bar (—0.027 cal/bar). The smallness of
this value suggests that the effect of pressure should
be negligible on the Mn/Mg distribution between
garnet and clinopyroxene, as was found empirically
in the preceding section.

For reaction 2, the calculated AV of —0.301 kJ/bar
(—0.072 cal/bar) suggests a somewhat greater depen-
dence of pressure for the Mn—Mg—Ca distribution
but the effect should again be fairly small. The coef-
ficient K, should increase with pressure, but again
the empirical comparison between S. African and
Malaita specimens does not yield a definite effect,
perhaps because of swamping by various experimen-
tal errors.

Comparison With Experimental Observations

Figure 3a contains the sparse data obtained by Akel-
la and Boyd (1974) and Wood (1976) for pressures
between 20 and 45kb and temperatures of 1,100° and
1,300° C. The combination of the two data sets pro-
vides no consistent indication of a pressure effect, but
such an effect might be obscured either by scatter
resulting from incomplete attainment of equilibrium
or by the low precision in routine electron microprobe
analyses of Mn for the fine-grained synthetic miner-
als.

The data points for the synthetic assemblages
were plotted in Fig.3a at the actual experimental
temperature. Replacement by the Wells temperature
calculated from the pyroxene compositions would
cause small changes of position, but all points would
remain in the general band defined by the natural
specimens.

Conclusion

The present empirical data suggest that the Mn/Mg
distribution between garnet and clinopyroxene pro-
vides a thermometer for deep-seated peridotites, and
that the thermometer may be improved by taking
account of the CaO content of the garnet. Further
experimental data are needed to provide an inde-
pendent calibration. The data from natural per-
idotites suggest that the effect of pressure is small, but

J.S. Delaney et al.: Manganese Thermometer for Mantle Peridotites

no precise values could be extracted. Any uncertain-
ties in the Wells and O’Neill-Wood thermometers
must carry over to the Mn/Mg/Ca thermometer. An
obvious next step, which is now under investigation,
is extension to eclogites and alpine-type peridotites.
As the temperature falls below 900° C, as is probable
for many specimens of these two suites, the MnO
content of the pyroxene should tend to fall below
100 ppm, for which concentration range the higher
sensitivity of the ion microprobe (~ 1 ppm) would be
necessary. Particularly troublesome is the problem of
extrapolation of the present calibrations to tempera-
tures below 900°C, and an independent check of
temperatures will be needed in order to obtain high
accuracy. A further problem will be the different
composition range of the garnets and clinopyroxenes
from many of the eclogites since ideal-solution mo-
dels are not likely to be obeyed.
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