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Abstract 

This paper treats the dynamics of phase transformations in elastic bars. 
The specific issue studied is the compatibility of the field equations and jump 
conditions of the one-dimensional theory of such bars with two additional con- 
stitutive requirements: a kinetic relation controlling the rate at which the phase 
transition takes place and a nucleation criterion for the initiation of the phase 
transition. A special elastic material with a piecewise-linear, non-monotonic 
stress-strain relation is considered, and the Riemann problem for this material 
is analyzed. For a large class of initial data, it is found that the kinetic relation 
and the nucleation criterion together single out a unique solution to this problem 
from among the infinitely many solutions that satisfy the entropy jump condition 
at all strain discontinuities. 

1. Introduction 

The continuum modeling of phase transformations in solids has recently 
attracted much analytical attention. Purely mechanical equilibrium problems 
involving coexistent phases in elastic materials have been studied, for example, 
by ABEYARATNE (1981, 1983), E~CKSV, N (1975), GURTIN (1983), JAMES (1979, 
1981, 1986), and SILLING (1988, 1989). In these analyses, the equilibrium states 
of principal interest were those that were stable in the sense that they minimized 
absolutely the appropriate energy functional. 

Quasi-static motions of elastic solids that involve both stable and metastable 
equilibrium states have been studied by ABEYARATNE 8r KNOWLES (1987a, b), 
(1988a, b), (1989), who observe that additional constitutive information is needed 
if the associated macroscopic response of the body is to be determinate. In the 
latter three papers in particular, the supplementary constitutive postulate was taken 
to be one that governs the initiation and evolution of the phase transformation. 
The importance of an initiation or nucleation criterion, together with a suitable 
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kinetic relation, in the description of phase transformations is emphasized in the 
literature in materials science; see, for example, Chapters 10 and 11 of CHRISTIAN 
(1975) or Chapters 13 and 17 of RALLS, COURTNEV & WUL~ (1976). 

The detailed implications of a kinetic relation and an initiation criterion were 
investigated by ABEYARATNE & KNOWLES (1988a), who considered quasi-static 
motions involving phase transformations in bars under tension on the basis of 
a one-dimensional model. Because the elastic potential in the model is non- 
convex, stress is a non-mon0tonic function of strain, so that a given tensile force 
applied to the bar may result in any one of infinitely many equilibrium states 
involving a mixture of phases. It is this lack of uniqueness of the underlying 
equilibrium problem that makes room for the kinetic relation in the mathema- 
tical theory. Moreover, a single relation controlling the kinetics of the phase 
transformation, accompanied by an initiation criterion, is found to be sufficient 
to overcome this breakdown in uniqueness and to lead to a determinate rela- 
tionship between the histories of the force applied to the bar and its overall elon- 
gation during any quasi-static process. In fact, under reasonable assumptions 
on the kinetic relation, the hysteretic macroscopic response predicted by the 
analysis is qualitatively similar to that observed in experiments on martensitic 
transformations such as those reported by KRISHNAN & BROWN (1973) or GRU- 
JICIC, OLSON & OW~N (19851O). 

If the kinetic relation and the initiation criterion are indeed a part of the 
constitutive description of the material, they must apply not only during quasi- 
static motions, but also when inertial effects are included. Motivated in part by 
this concern, we investigate here whether these additional constitutive postulates 
can be accommodated by the system of conservation laws appropriate to the 
simplest one-dimensional theory of the dynamics of bars. 

Further motivation for the inclusion of inertial effects in a continuum model 
of phase transformations arises from experiments. According to GRUJICIC, OL- 
SON & OWEN (1985a), reported measurements of phase boundary velocities vary 
widely, from values small enough to permit direct optical observation to values 
approaching the speed of shear waves in the parent phase of the material; see also 
BUNSI-tAK & MEHL (1952). 

The dynamical aspects of phase transformations have been studied by a num- 
ber of authors in recent years, beginning with the paper of JA~ES (1980), who 
pointed out several important issues concerning phase transitions in elastic bars. 
A sample of the more recent literature, often concerned with the van der Waals 
fluid, may be found in HArrORI (1986a, b), PENCE (1986), SHEARER (1986, 1988), 
~mHAVq (1988), SLEMROD (1983, 1989), and TgusK~Novs~u (1985, 1987). 

In the classical dynamics of an ideal gas in one dimension, the extent of the 
lack of uniqueness of weak solutions to the Cauchy problem for the corresponding 
system of conservation laws is such that the imposition of the entropy inequality 
at shock fronts is sufficient to rule out all but one solution. The mathematical 
theory of conservation laws and shock waves, with gas dynamics serving as a pro- 
totype, has developed a large literature, the early portion of which is summarized 
by LAX (1973); a discussion of more recent work is included in the article by 
DAFERMOS (1983). A uniqueness theorem appropriate to the Cauchy problem 
for quasi-linear systems of the kind arising in gas dynamics was apparently first 



Phase Boundaries in Solids 121 

proved by OLEINIK (1957). Her result is also applicable to the simplest model of 
longitudinal waves in a one-dimensional bar, provided the material is such that 
stress is a monotonically increasing function of strain that is either strictly convex 
or strictly concave. If the material of the bar is capable of undergoing phase 
transformations, the stress-strain relation in general has neither the monotonicity 
nor the convexity property required in OLEINIK'S theorem. For these latter ma- 
terials, one can show that the imposition of the entropy inequality at curves in 
space-time bearing jumps in strain or particle velocity is no longer sufficient to 
guarantee uniqueness for the Cauchy problem. A number of authors have pro- 
posed a variety of stronger "admissibility conditions" intended to generalize 
the entropy inequality and designed to select physically appropriate solutions in 
the case of conservation laws that are either non-strictly hyperbolic or of mixed 
type. Thus DAFF_.RMOS (1973), for example, has proposed a max imum entropy 
rate admissibility condition. The implications of this condition have been studied 
in the setting of elastic bars by JAMES (1980) and for the van der Waals fluid by 
HArTORI (1986a, b); for further discussion, see DAFERMOS (1989). SLEMROD (1983) 
derives admissibility conditions by embedding the theory of the van der Waals 
fluid in a higher order theory that includes the effects of both viscosity and ca- 
pillarity; such an embedding is also utilized by TRtJSKINOVSKY (1985). Implica- 
tions of SLEMROD'S notion of admissibility have been studied by SHEARER (1986, 
1988), who has also investigated other possible conditions of admissibility for 
conservation laws of mixed type; see SHEARER (1982). 

The approach to be taken in the present paper is entirely different from those 
cited above. We shall investigate whether the entropy inequality at strain dis- 
continuities and the kinetic relation at phase boundaries, together with the ini- 
tiation criterion when appropriate, suffice to determine a unique solution of the 
system of one-dimensional conservation laws governing the dynamics of bars 
made of a material capable of undergoing phase transformations. The particular 
type of kinetic relation to be considered here has been motivated both by internal- 
variable theories of inelastic behavior (ABEYARATNE t~ KNOWLES (1988a, b), 
RICE (1970, 1971, 1975)) and by thermodynamical considerations (ABEYARATNE 
& KNOWLES (1989)). The special elastic material to be studied is one for which 
stress is a piecewise linear function of strain. The mathematical problem to be 
treated is the Riemann problem for this "trilinear" material, with the kinetic rela- 
tion imposed directly at phase boundaries. As in the work of HATTORI (1986a), 
JAMES (1980) and SLEMROD (1989), we assume here that the dynamical processes 
occurring in the bar take place isothermally, despite the fact that this is unlikely 
to be a physically realistic setting. We hope to treat the adiabatic case, as well as 
the case in which heat conduction is present, in later communications. 

In the following section, we present the field equations and jump conditions 
of the classical one-dimensional theory of elastic bars, and we discuss the energe- 
tics of motions in which strain discontinuities occur. In the course of this discus- 
sion, we introduce the notion of the "driving traction" -- or "Eshelby force" -- 
associated with strain discontinuities, and we state the entropy inequality at such 
discontinuities in terms of the driving traction. Throughout the present paper, 
we shall refer to solutions as admissible if the entropy inequality is satisfied at 
each strain discontinuity. The theory as set out in Section 2 applies to elastic bars 
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with essentially arbitrary stress-strain relations. In Section 3, we consider the 
special material whose stress-strain relation is trilinear (see Figure 2), and we re- 
view the quasi-static response of  a bar of this material during slow processes in 
which inertia is unimportant. The notions of a kinetic relation and an initiation 
criterion for a phase transformation are introduced in this setting. We return to 
the genuine dynamics of the bar in Section 4, where we describe the local properties 
of dicontinuities; these may correspond either to shock waves or to phase bounda- 
ries. Section 5 is devoted to the formulation of the Riemann problem for the 
trifinear material. Before attempting to impose the kinetic relation, we show in 
Section 6 that the admissibility condition alone, although, as expected, not strong 
enough to deliver uniqueness, is nevertheless responsible for some major quali- 
tative conclusions about the structure of  solutions of the Riemann problem. 
By constructing explicit solutions, we show in Section 7 that, for a large class of  
initial data, the lack of uniqueness remaining a f t e r  the imposition of our admissi- 
bility requirement is precisely that needed to accommodate the kinetic relation 
and, where appropriate, the initiation criterion for the relevant phase transition. 
Section 8 contains further discussion and concluding remarks. 

2. Preliminaries 

Consider an elastic bar with uniform cross-sectional area A; the bar is regarded 
as a one-dimensional continuum that occupies the interval [0, L] in an unstressed 
reference configuration. In a longitudinal motion of the bar, the particle at x is 
carried to the point x -? u(x, t) at time t, where the displacement u is to be con- 
tinuous with piecewise continuous first and second derivatives on [0, L] • [0, co). 
Where Ux and ut exist, we let 

7 = ux, v = ut (2.1) 

denote strain and particle velocity, respectively. We assume that 7(x, t) > --1,  
so that the mapping x---> x q- u(x, t) is inverfible at each t. The stress a(x, t) 
is related to the strain through 

~r = &(y), (2.2) 

where the stress response function 8 is determined by the material. We assume that 

a(o) = o, ~ ~_ a ' (o )  > o ;  (2.3) 

the first of  these conditions reflects the fact that the reference configuration is 
unstressed, while the second asserts that the tensile modulus at infinitesimal 
deformations is positive. The mass density ~ of the material in the reference state 
is taken to be constant. 

At points (x, t) in space-time where 7 and v are smooth, one has 

&'(7) 7~ --  Ovt = 0, (2.4) 

vx --  7, = 0, (2.5) 
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provided body forces are absent. If  either 7 or v is discontinuous across the curve 
x = s(t) in the x, t-plane, the following jump conditions must be satisfied: 

[[0]] = --e[[v]] ~, (2.6) 

[[~]] ~ = --[[v]], (2.7) 

where, for any function f(x,  t), [If]] stands for f(s(t) +,  t) - - f (s( t ) - -  ,t). Condi- 
tions (2.4) and (2.6) are local consequences of the global balance of linear momen- 
tum; (2.5) and (2.7) follow from the smoothness required of u(x, t). 

Let 

w(y) -- f a(y') dT', y > --1, (2.8) 
o 

be the strain energy per unit reference volume for the material of the bar. Consider 
the restriction of the motion to the time interval [t,, tz] and to the piece of the 
bar that occupies the interval [xl, x2] in the reference state. Suppose that 7 and 
v are smooth on- [x,, xz] • [tl, tz] except at the moving discontinuity x = s(t). 
Let E(t) be the total mechanical energy at time t for the piece of the bar under 
consideration: 

X2 

E(t) = f [W(7(x, t) 4- �89 ~vZ(x, t)l A dx. (2.9) 

A direct calculation that makes use Of (2.4)-(2.9) establishes the following work- 
energy identity: 

a(xz, t) Av(x=, t) -- a(xl, t) Av(x,, t) -- E(t) =- f(t)  AJ(t), (2.10) 

where f( t)  is defined by 
§ 

F 
(2.11) 

~(t) = 7(s(t)4-, t) are the strains on the two sides of the discontinuity. and 
The left side of (2..10) represents the excess of the rate of work of the external 
forces acting on the piece of the bar over the rate of storage of mechanical energy. 
If  there is no jump in strain at x = s(t), then (2.11) would give f =  0, and the 
rate of work of the external forces would be exactly balanced by the rate of 
increase of energy. When there is a strain jump, the right side of (2.10) need 
not vanish, and each side of (2.10) would then represent the rate of dissipation 
of mechanical energy associated with the moving discontinuity. We may think 
of --f(t) A~(t) as the rate of work done on the bar by the moving discontinuity; 
correspondingly, we speak o f f  as the driving traction acting on the discontinuity. 

If  the material of the bar is linear, so that b ( y ) = / W,  then (2.11) yields 

J;) = 0. Thus for a linear material, the driving traction vanishes at any dis- 
continuity, so motions of the bar are automatically dissipation-free. More general- 
ly, if (r(7) is linear only over an interval of strain, say [72, V2], it follows from (2.11) 
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that f ( t )  vanishes at any discontinuity for which the linaiting strains ~(t) and ~(t) 
both lie in [71, 72]- 

A geometric interpretation of f (~ ,  ~) i s  exemplified in Figure 1: f (7 ,  ~ ) =  
A -- B, where A and B are the areas of the two regions A and B generated by 

- + 

the stress-strain curve and the trapezoid determined by 7, V, b(7), and 

% 

-I 

V i 0 7 7u 

/ 

Fig. 1. Stress-strain curve 

| 

Ym ? 7 

The driving traction on a strain discontinuity is related to the notion of the 
"force on a defect" introduced in an equilibrium context by ESHELBY (1956). 
It is also the counterpart -- considered here only in one space dimension -- of 
the force on an interface between two elastic phases derived by ESHELBu (1970) 
and discussed by RICE (1975); see also KNOWLES (1979). The notion of driving 
traction can be given meaning in a much more general setting than that envisaged 
here. Indeed, it has been introduced in connection with surfaces of discontinuity 
in three-dimensional thermo-mechanical processes taking place in an arbitrary 
continuum by ABEYARATNE & KNOWLES (1989); see also TRUSKINOVSKY (1987). 

The basic field equations and jump conditions (2.4)-(2.7) do not guarantee 
that the instantaneous dissipation rate in (2.10) is non-negative. The condition 
that this be so is clearly 

f ( t )  s(t) ~ O. (2.12) 

We shall speak of the motion of the bar as admissible if (2.12) holds at each 
discontinuity and for all time. If the material under consideration here is regarded 
as thermoelastic, and if the dynamical processes being studied are assumed to 
take place at constant temperature, the condition (2.12), with f given by (2.11), 
can be shown to be a consequence of the Clausius-Duhem version of the second 
law of thermodynamics. The assumption of isothermality, however, is more 
appropriate for slow processeS, in which inertia forces and kinetic energy are 
unimportant, than for the processes considered here. Nonetheless, for simplicity, 
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we shall retain (2.12), (2.11), deferring to future work a consideration of the 
adiabatic case or the even more realistic case in which heat conduction is included. 
For  related discussion, see ABEYARATNE & KNOWL~S (1989). 

3. The trilinear material: Equilibrium states and quasi-static motions 

Before pursuing the dynamical issues of principal interest to us here, it is 
essential to review briefly the corresponding theory of equilibrium states and re- 
lated quasi-static motions. Accordingly, we seek equilibrium solutions of the field 
equations (2.4), (2.5) and the jump conditions (2.6), (2.7). When the displacement 
u(x, t) is independent of  time t, the strain 7, the stress a and the discontinuity 
location s have this property as well, and the particle velocity v vanishes. Condi- 
tions (2.5) and (2.7) are now trivially satisfied, and (2.4), (2.6) imply that a(x) = 
a = constant for 0 ~ x ~ L. I f  the stress response function a(7) were strictly 
increasing with y, (2.2) would show that y also is constant along the bar, so that 
no strain discontinuities could occur in the equilibrium field, and the bar would 
find itself in a homogeneously deformed state of extension or contraction. 

For  a stress-strain curve of the form shown in Figure 1, however, the situation 
is different. For  stress levels between the local minimum am and the local maxi- 
mum aM, equilibriumfields in the bar are possible in which the stress a is constant 
along the bar, but the strain y is only piecewise constant, in general taking any 
one of  three possible values corresponding to the given a. We regard such states 
as mixtures of phases; we say a particle of the bar located at x in the reference 
state is in phase 1, 2 or 3 at time t during a motion if y(x, t) lies in the interval 
(--  1, YM], (YM, 7m) or [Ym, (x:)), respectively. Since our interest here is in phase 
mixtures, we shall be concerned with a stress-strain curve of  the form shown in 
Figure 1. Insofar as our review of equilibrium fields and quasi-static motions is 
concerned, the discussion could be carried out without specifying the stress-strain 
relation in detail beyond the qualitative requirement that it be at first rising, then 

Fig. 2. Stress-strain curve for the trilinear material 
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declining and finally rising again, as in Figure 1 ; see ABEYARATNE • KNOWLES 
(1988 a). For  the dynamics of phase mixtures, however, the simplifications provided 
by the trilinear stress-strain relation illustrated in Figure 2 turn out to be enor- 
mously helpful. We thus confine our attention from here on to the case of the tri- 
linear material; we shall comment on the seriousness of this restriction in the final 
section. 

Let the stress a in the bar be given, with am <-- a <-- aM. We consider dis- 
placement fields for which the corresponding strain is piecewise constant with 
a single discontinuity at x ---- s, where s is given arbitrarily in [0, L]. Such a 
field is said to be of p, q-type if the strain is in phase p to the left of x -=-- s, and 
in phase q to the right, p ,  q =- 1, 2, 3. If  p = q, the strain is continuous at 
x = s ;  if p 4 = q ,  we refer to x---=s as a p h a s e  boundary. For  example, 

f o <_ x <_ s, 
u(x) (3.1) 

" ' [  ax/# + (1//z - -  1 /# ' )  as, s --< x --< L ,  

represents a continuous equilibrium displacement field of 1,3-type that gives rise 
to the given stress a. Here ,u and /z' ( < / z )  are the tensile moduli for phase 1 
and phase 3, respectively; see Figure 2. For  an equilibrium field of p, q-type and 
for a given s, the relation ~ = dpq(F, s) between the overall elongation of the bar 
t~ = u(L) -- u(O) and the applied force F = aA is called the macroscopic response 
of  the bar. For  the field of 1,3-type corresponding to (3.1), one has 

71 = s +  --~, a m A ~ F ~ a M A ,  O<--s<--L. 

(3.2) 

When s ---- L, the displacement field in (3.1) is smooth, and all particles of the bar 
are in phase 1 ; this suggests that we set All(F)  = dla(F,  L) for area ~ F <-- 
aMA. Similarly, if s = O, u(x) is smooth and the entire bar is in phase 3; we set 
Ann(F) = A13(F, 0), areA ~ F ~ aMA. 

I f  the given stress a is less than a m or greater than a M, the corresponding 
displacement field is smooth and unique. We speak of these as fields o f / ,1 - type  
in the former case, 3,3-type in the latter. The corresponding macroscopic responses 
are 

a = A~x(F) = FL/#A, --izA < F <  areA; a = Ann(F) = FL/#'A, 

F > ~rMA. (3.3) 

The macroscopic response for a field of 1,3-type is illustrated in Figure 3. 
The dashed lines represent graphs of 0 = d in(F, s) vs. F for various constant 
values of s. Points on OPQ correspond to smooth phase-1 fields, with macro- 
scopic response ~ = Al l (F) ;  points on S R T  refer to smooth phase-3 fields, 
t3 = A3a(F). Points in the interior of the quadrilateral PQRS or on the horizontal 
portions of its boundary correspond to mixtures of phase 1 and phase 3. Observe 
that, for a given stress a in [am, aM], there are infinitely many equilibrium states 
of 1,3-type. To render the corresponding 1,3-response unique, one must also 
specify the value of the "internal variable" s. 
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For a 1,3-equilibrium mixture of phases in a trilinear material, the driving 
traction defined in (2.11) specializes to 

f = � 8 9  - - # '  ##, (a 2 --  a2), tr m __< tr __< ~rM, (3.4) 

where ao = (aMa,,) 1/2. Note that the driving traction vanishes when the stress 
~r in the bar coincides with %;  % is called the Maxwell stress, and it is such that 
the hatched areas in Figure 2 are equal. As the stress ~ increases f rom t7 m to o' M 
the static driving traction given by (3.4) decreases f rom a maximum value of 
fM = f o ( 1  - -  ~m/~M) > 0 to a minimum value of fm = f o ( 1  - -  aM/~m) < O, 
where the constant fo is given by )Co = ( 1 / 2 ) ( / z -  #')7,~7~t > 0. I f  E(F, s) is 
the total strain energy in the bar for a given force F and a given location s of the 
phase boundary, and if U(F, s) = E(F, s) -- FA13(F, s) is the corresponding 
potential energy, it can be shown that ~ U(F, s)/OF = --c~ and # U(F, s)/Os ~ - - A f  
In particular, the driving traction f and the internal variable s are conjugate. 
In the more general setting of AREYAgATNE & KNOWLES (1989), f a n d  s are shown 
to be conjugates with respect to the entropy production rate. 

F/f Phase I Phase 3 

J C) s L x 

O, MA Q , . ~  

,,;( ~ / /  ~- 

0 ~M L ~,m L 

~rmA 

-L 

-7 
Fig. 3. Macroscopic response for equilibrium fields of 1,3-type 

A 1,3-quasi-static motion is obtained by replacing the stress ~r and the phase 
boundary location s in (3.1) by functions of  time: ~r = a(t), s = s(t). The driving 
traction then becomes a function of time as well, and the admissibility condition 
(2.12), together with (3.4), yields 

[~(t) - ao] ~(t) ~ 0, (3.5) 

as long as 6 m _~ o' ~ o" M. A 1,3-quasi-static motion determines a path in the qua- 
drilateral PQRS of Figure 3; the inequality (3.5) restricts the direction of this 
path. When a(t) exceeds the Maxwell stress %, condition (3.5) requires that 
}(t) ~ 0, so that the phase boundary x = s(t) cannot move to the right, and the 
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direction of the path generated in PQRS must be in accord with the arrows in 
Figure 4. Thus when a(t) is larger than Oo, the length of the phase-3 portion of 
the bar cannot decrease, and particles at the phase boundary are transforming 
from phase 1 to phase 3. The opposite conclusions apply when a(t) < ~ .  When 
the stress coincides with the Maxwell stress, one has f = 0 and the admissibility 
condition (3.5) holds trivially; thus travel in either direction along the "Maxwell 
line" F = aoA is possible, as indicated in Figure 4. 

F 
Phase1 Phase 3 

I 

0 s L x 

a 0A ~ ~  

~ ~ ~. 

Fig. 4. Admissible directions for paths of 1,3-quasi-static motions 

Specifying the stress history a(z'), 0 ~< v ~ t, in a 1,3-quasi-static motion is 
not sufficient to determine the present value of the elongation, even with admis- 
sibility (2.12) enforced, since s(t) must be known as well. As viewed by ABEYARATNE 
& KNOWLES (1988 a), this reflects a constitutive deficiency which can be remedied 
by annexing to the field equations, the jump conditions and the admissibility 
requirement, a kinetic relation that controls the rate at which particles of the bar 
transform from one phase to the other, as well as an initiation (or nucleation) 
criterion for a phase transition. Specific types of kinetic relations and nucleation 
criteria, often based on thermal activation arguments, have long been discussed 
in the metallurgical literature concerned with phase transformations in solids, 
especially for those transformations in which diffusion is an important mechanism. 
The reader may refer, for example, to FINE (1964), PORTEI~ & EASTERLING (1981) 
and RALLS, COURTNEY 86 WULFF (1976). 

We shall postulate a simple form of kinetic relation in which the driving trac- 
tion f ( t )  is a function of the time rate of change ~(t) of its conjugate internal 
variable s(t); ~(t) clearly measures the rate at which one phase is transforming 
to the other. Thus we assume that there is a constitutive function 913 such that, 
during a 1,3-quasi-static motion, 

f ( t )  = ~013[~(t)1. (3.6) 
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Because of the admissibility condition (2.12), the kinetic response function ~v13 
is subject to the restriction 

~0~3(s) s ~ 0 (3.7) 

for all J. We shall assume that the graph of the function ~la has the form indicated 
schematically by the curve K* in Figure 5. The kinetic response function qha 
is to be monotonically increasing and smootb everywhere except possibly at 
} = 0 .  We let ~v13(0-4-)=f*>0, qhz(0- - )=J*~<0 ,  q013(q-oo)=f~t, 
qh3(-- oo) =fro, where f *  and f *  are new material parameters, andfM and fro, 
introduced earlier, are the maximum and minimum values of driving traction. 
For values of the driving traction between f *  and f * ,  no motion of the phase 
boundary is possible, reflecting a frictional type of relationship between driving 
traction and phase boundary velocity. It may happen that f *  = f *  = 0, in 
which case ~0a3(k ) is continuous at J = 0, and motion of the phase boundary 
takes place whenever the driving traction is different from zero. The hatched 
region in Figure 5 comprises the set of all points (k,f) with fm ~ f - < f M  for 
which the admissibility condition f} > 0 holds. 

f, 

t~ 

f = ~3 (~) 

Fig. 5. Kinetic relation f = q~13(J) 

Once a 1,3-phase boundary has been initiated, the kinetic relation (3.6) con- 
trols its evolution. A separate criterion is needed to signal the emergence of 
such a phase boundary from a single-phase configuration. In general, a particle 
may change its phase in one of two ways: a pre-existing phase boundary may 
pass through it, or it may undergo a spontaneous phase transition. In the latter 
case, the transition generates two new phase boundaries if the particle lies in the 
interior of a single-phase interval, one new phase boundary if the particle is at 
an end of the bar. Since the bar is uniform in cross-section and materially homo- 
geneous, there is no distinction between different particles of the bar in a single- 
phase equilibrium state. Presumably, a spontaneous phase transition could there- 
fore begin with equal likelihood at any point in the bar. Thus we shall suppose 
arbitrarily that, whenever the bar is in a uniform phase 1 state, a spontaneous 
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phase 1 -+ phase 3 transition accompanied by an emergent phase boundary can 
occur only at x = L. We further assume that the occurrence of such a spon- 
taneous 1 -+ 3 transition is controlled by a critical value f ~  of  driving traction: 
when the stress a at the particle labeled by x = L has increased to a value such 
that, according to (3.4), the corresponding driving traction f is not greater than 
f ~ ,  this particle spontaneously transforms to phase 3, thus initiating a 1,3-phase 
boundary at x = L. This phase boundary then moves leftward into the bar in 
accordance with the kinetic relation (3.6). By (3.4), the stress ~cr corresponding 
to f =  f ~  is 

1 - f o /  , (3.8) 

thus the phase 1 --> phase 3 transformation is initiated when a ~ act. Since 
by admissibility f ~  ~ 0, it follows that a ~ is at least as great as the Maxwell 
stress. Similarly; if the bar is in a pure phase 3 state, spontaneous transformation 
from phase 3 to phase 1 of the particle labeled by x = 0 is assumed to occur when 
the stress a has diminished to a value such that the associated driving traction 
in (3.4) is at least as great as a critical value f~ t ;  the corresponding critical stress 
in this case is less than ao. Under these circumstances, a 1,3-phase boundary is 
initiated at x = 0, and it moves with positive velocity s into the bar in accordance 
with (3.6). The initiation levels of  driving traction f ~  and f ~ / a r e  material para- 

=fro ~ 0 <=f~ ~ f M  meters that satisfy the following inequalities: fm < f ~  < * r 
< f u .  

As shown in detail in ABEYARATNE & KNOWLES (1988a), a kinetic relation 
(3.6) in which q13 has the form shown in Figure 5, together with the initiation 
criterion, gives rise to a fully determinate response. When the bar is first quasi- 
statically loaded from the reference state and then unloaded to the reference state, 
the associated force-elongation curve is as shown in Figure 6; generally, the 
response is hysteric and rate-dependent. 

~r~ A ~ aMA 

Fig. 6. Force-elongation curve for loading followed by unloading 
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A treatment analogous to that summarized above for 1,3-quasi-static motions 
can be provided for motions involving equilibrium fields of p, q type for any p 
and q, as well as for transitions from one type of motion to another. For a more 
extensive discussion, see ABEYARATNE & KNOWLES (1988a). 

4. Dynamics:  local properties o f  discontinuities 

Returning to the dynamical processes described in Section 2, we note from 
(2.6), (2.7) that the velocity ~ of a moving discontinuity at x = s ( t )  satisfies 

- 

~k2 _ + _ , (4.1) 
7 - - 7  

-4- 

where ~; are the limiting strains on either side of the discontinuity. From this it 

follows that the slope of the chord joining the points (7, 6(7)) and (3, a(~')) on 
the stress-strain curve must necessarily be non-negative. Conversely, one can 

- -  + 

show readily that if a pair 7, 7' satisfies this condition, there exist numbers v, +v 
- -  + 

and J that, together with 7', 7, satisfy the jump conditions (2.6), (2.7). The pairs 

of distinct strains 7', ~, that can occur at a discontinuity are thus those that make 
the right side of (4.1) non-negative. For the trilinear material, the set _P of all 
such pairs corresponds to those points in (--1, oo)• (--1, oo) that lie on or 

+ 
outside the irregular hexagon A B C D E F A  and off the line 7 7 in the 7, + 

= 7 ' -  

plane shown in Figure 7. The figure explicitly indicates the subregions Ppq of P 
that correspond to discontinuities of p, q-type for various p, q. 

- + 
Fig. 7. The set/~ (shown shaded) of possible pairs of strains 7, 7 

at a strain discontinuity 
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§ 
If  ~ is in phase p and 7 in phase q, we call the associated p, q-discontinuity 

a shock wave if p = q, a phase boundary if p 4= q. (Because shock waves here 
relate to a linear part of the stress-strain curve, "acoustic waves" might be a more 
appropriate term; this would not be the case, however, for more general materials 
of the kind represented by Figure 1.) Condition (4.1) clearly rules out shock waves 
of  2,2-type. For the trilinear material, (4.1) yields 

g = ([~/Q) I12, C t = (tg ' /9) 1/2 < C, (4. 2) 

as the (constant) speeds of shock waves of 1,1- and 3,3-type, respectively. For 
phase boundaries, one shows easily that the ranges of the velocity J permitted 
by (4.1) are as given in Table 1 for the various combinations of phases. 

Table 1 

Type of phase boundary Range of velocity 

1,3 or 3,1 0 ~ &2 < ca. 
2,3 or 3,2 0 =< &2 < c,2 
2,1 or 1,2 0 ~s 2 < c  2 

In Table 1, 

c,  = 1 -~ Ym " (4.3) 

With the help of Figure 2, one shows easily that 9c 2 is the maximum slope of the 
chord connecting two points on the trilinear stress-strain curve, one of which 
lies in phase 1, the other in phase 3. Note that c' < e,  < e. A phase boundary 
for which [ ~ ] <  c' is said to be subsonic; it is supersonic if [~] > c'. It should 
be observed from the table that the cases for which ~ = 0, corresponding to 
stationary phase boundaries, are not excluded. They correspond to points on the 

hexagon ABCDEFA in Figure 7; at all such points, ~(~) = &(~), as in the case 
of the equilibrium phase boundaries discussed in the previous section. 

At any strain discontinuity, there is a driving traction. For a shock wave 
in a trilinear material, f =  0, because, as remarked in Section 2, the driving 
traction at a discontinuity vanishes whenever the strains on the two sides are such 
that the stress-strain curve is linear between them. On the other hand, for a phase 
boundary of 1,3-type, the definition (2.11) yields 

f = f~a(~, ~) ~ �89 (# -- #') ()'MYra -- Y ? ) ,  (4.4) 

while for a 3,1-discontinuity, 

f =  33a,(~, ~) _= �89 (,u -- #') ( ~  -- YMYm) = --f*a(~, /~)- (4.5) 
+ 

When a = a, (4.4) can be immediately reduced to the representation (3.4) for 
the static driving traction. 
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For discontinuities involving phase 2, it is easily seen that 

f~2(~, 7) > 0, J':2~(7, ~) < 0, J:32(~, ~') > 0, J~3(7, ~') < 0, (4.6) 

for all appropriate values of 7 and ~. Since discontinuities involving phase 2 
turn out to be unimportant, we do not need explicit formulas for the driving 
tractions occurring in (4.6). 

The admissibility inequality (2.12) is trivially satisfied for shock waves, which 
are dissipation-free for the trilinear material. For phase boundaries, however, 
the admissibility requirement has strong implications. To begin with, it further 
restricts the ranges of the phase boundary velocities, nominally given by the in- 
equalities in Table 1. For a 1,3-phase boundary, for example, (4.4) shows that 

the driving traction f =  f~3(7, 7) vanishes on the portion of the hyperbola 
+ - -  

7 7  = 7MYm that lies in the 1,3-region /'~3 of Figure 7; the driving traction at 
- -  + 

a 1,3-phase boundary is thus positive for strain pairs 7, 7 that correspond to points 
on one side of this hyperbola, negative at points on the other side. By (2.12), 
the sign of the phase boundary velocity } is restricted accordingly, as illustrated 
in Figure 8. It is easily shown that, in the part of/~ls where ~ > 0, the supremum 
of the values of }z is c 2, but where ;~ < 0, the supremum is c '2. Combining this 
restriction with the appropriate entry in Table 1 yields the more restricted range 
--c'  < } < e* for the phase boundary velocity. Similar considerations apply 
to the other cases; the results are summarized in Table 2. If the material into 

- §  

~'~' = Ym YM 

(f:o) 

-1 ~'Ym 

t Supersonic 

~} Subsonic 

I . 

Fig. 8. Variation of phase boundary velocity ~ in /~x3 
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which a phase boundary is advancing is said to be in the parent phase, the first 
two lines of Table 2 assert that if a phase boundary between phases i and 3 is 
supersonic, then the parent phase is necessarily in phase 3. 

Table 2 

Type of phase boundary Range of admissible velocity 

1,3 - c ' < s  < c, 
3,1 --c. < J < c' 
2,3 --c" < h  <-_0 
3,2 0 =< J < c' 
2,1 - - c < ~  _~0 
1,2 0 < ~ < c  

Figure 8 also shows the subregions of -Pla that correspond to subsonic and super- 
sonic phase boundary velocities. Further implications of admissibility arise in 
Section 6. 

Next, it is convenient to record here some formulas that will be useful later. 
Suppose that x ----- s(t) is a 1,3-phase boundary at time t; from (4.1), (4.2) and the 

explicit form of the trilinear stress response function b(y), one can relate ~(t) to 

~(t) and s(t) by 
§ 
Y = fl(s) 7 (1,3-case), (4.7) 

where fl(9) is defined in terms of the wave speeds c and c' by 

C2 __ /~2 

fl(s) - -  e,2 _ ~ e ,  ~ + •  (4.8) 

Similarly, at a 3,1-phase boundary, one has 

+ 1 - 
y = ~ - ~  y (3,1-case). (4.9) 

Finally, we use (4.1) and (2.11) to map the s e t / '  of possible strains at a dis- 
- + 

continuity from the y,  ~-plane of Figure 7 to the ~, f-plane of Figure 5. For our 
purposes, it is sufficient to describe the restriction of this mapping to the subregion 
/~13 o f / "  that corresponds to phase boundaries of 1,3-type; see Figure 8. To do 

this, we make use of the explicit formulas (4.4), (4.7). Each point (7, ~) in/~13 
that does not lie on the segment BC in Figure 8 is carried to two points ( + } , f )  
and (--~,f)  in the ~, f-plane, only one of which satisfies the admissibility condition 
(2.12). In contrast, each point on BC maps to a single point (0,f), trivially admissi- 
ble, on the f-axis, with fm ~= f <~ fM, where fm and fM are the minimum and maxi- 

+ 
mum values of the static driving traction. All points on the y-axis in -Paa corre- 
spond to phase boundaries travelling at the sonic speed c'; they map to the same 

- -  + 

pair of points (:~c',fo) in the (~,f)-plane. Each point (;~, y) on the hyperbola 
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--H- 
7 7 = 7,,Y~t in -P~3 maps to a pair of points (~s ,  0) on the }-axis, with 0 

< c'. Figure 9 shows the admissible image in the (},f)-plane of the region ['t3 

in the (~, + 7)-plane, which is shown in the inset; hatched regions in the two planes 
correspond, as do dotted regions. 

-C' 

f 
f:O 

fQ(l*~) 

7-, 

,& 

R'-W' 

C' C. 

Supersonic 
~\~-~7/'/~ } Subsonic 

Fig. 9. Admissible image of/'13 (inset) in Sr f-plane 

A significant conclusion can be drawn from Figures 5 and 9: the quasi-statically 
admissible region of Figure 5 (shown hatched), when truncated so as to allow only 
subsonic phase boundary speeds I ~ [ < c', is a subset of the dynamically admissible 
region of Figure 9. The curve K* in Figure 9 is now the graph of the restriction 
to subsonic speeds of the kinetic response function f =  ~0~3(k ). 

5. The Riemann problem 

We now formulate the Riemann problem for the field equations and jump 
conditions (2.4)-(2.7). We seek weak solutions of the differential equations 
(2.4), (2.5) on the upper half of the x, t-plane that satisfy the following initial 
conditions: 

/vL, 
7R, 0 < x < + o o ,  v ( x ' O §  0 < x < §  

where VL, ~R, vz, and vR are given constants, with YL > --1, 7R > --1. 

(5.1) 
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In order to motivate the class of  functions in which the solution is to be sought, 
we first note that  the initial value problem is formally invariant under the scale 
change x - +  k x ,  t - +  k t ,  suggesting that  we seek solutions with this invariance 
property as well. Where such solutions are smooth, they must have the form 
7 = 7 ( x / t ) ,  v = v ( x / t ) ;  it then follows f rom (2.4) and (2.5) that, in a domain 
where 7 and v are smooth, either 7 and v are both  constant, or the equality 
gr ' ( y (x / t ) )  = ~ ( x / t )  2 must  hold. But for the trilinear material, ?r'(7 ) is piecewise 
constant, so that fans cannot occur, and the last relation can hold only on shock 
waves. I f  either 7 or v jumps at x - -  s ( t ) ,  then the fact that  7 and v are constant 
on either side of  x = s ( t )  necessarily requires that s ( t )  = } t ,  where } is a constant. 
We conclude that  solutions with the invariance property described above must 
have the following form:  

V(x ,  t )  = ?j,  v ( x ,  t )  = vj, } j t  _<_ x <~ Sj+l t, j = 0, 1 , . . . ,  N,  (5.2) 

where 7j, vj, ~j and N are constants, with N a non-negative integer, and ?'o ---- ~'L 
7 N = V R ,  V o = V L ,  V N = V R ,  SO=--CX~, S N + I =  + ~ 1 7 6  see F igure l0 .  The 
case N = 0 can occur only if 7L = 7R and VL = YR. The 7j's are required to 
satisfy 7j > --1 for j = 0, . . . ,  N; if  N >  0, it is also required that 7j 4 = Yj+b 
j = 0, . . . ,  N -  1. In the field given by (5.2), there are N strain discontinuities 
on lines x = ~jt; they may be shock waves or phase boundaries. I f  x = ~jt 
is a shock wave, then ~j must take one of the four values ~=c, •  Since by Table 2, 
no discontinuity can travel faster than c, we have 

- c  =<_ ~1 < ~2 < . . .  < ~N --< c .  (5 .3)  

We seek solutions of  the Riemann problem in the class of  all functions of  the 
form described above. 

At each discontinuity, the jump conditions (2.6), (2.7) must be satisfied, so 
that  

Sj (~ j  - -  )"j--l) ~--- --(/)j - -  /)j--Z), / 
I ~ (7 j )  - -  I~ " ( ,~ j_ l )  = --~Sj(/)j --~)j--l), J j ----- 1 . . . . .  N ,  (5.4) 

T X =-~2 t X = ,S3t 

~, = SN-1 t 

X = S l t  V = V l  ~ 

/,,,:>1 
'Y = ~O' ~ V = VN. 1 N 

>' = ~N' 

0 X 
?" = ~/L'V-- VL ~2 -- ~"R' V = V R 

Fig. i0. Assumed form of solutions to the Riemann problem 
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where it is understood that ~ is the stress response function for the trilinear mate- 
rial (Figure 2). Let f j  stand for the driving traction on the discontinuity at x = ~jt; 
the admissibility condition (2.12) then requires that 

f j~j  > o, j = 1 . . . . .  N .  (5 .5)  

An admissible solution of the Riemann problem is a pair 7(x, t), v(x, t) of the form 
(5.2) such that (5.3)-(5.5) hold. We shall find that, in general, this Riemann prob- 
lem has many admissible solutions. 

6. General features of the Riemann problem 

We shall call the initial data in (5.1) metastable if  neither of the initial strains 
~L, VR belongs to phase 2. From here on, we shall consider only this case. Before 
constructing explicit global solutions, it is convenient to establish some general 
results pertaining to the structure of admissible solutions when the initial data 
are metastable. 

Let (~, v) be an admissible solution to a Riemann problem with metastable initial 
data. Then 

O) for j = O, . . . ,  N, no strain ~j in (5.2) belongs to phase 2; 
(ii) 0 J, v) involves at most two subsonic phase boundaries; i f  there are two, one 

moves with non-negative speed the other with non-positive speed; 
(iii) (7, v) involves at most two supersonic phase boundaries; i f  there are two, 

one moves with positive speed the other with negative speed; 
(iv) either all phase boundaries are subsonie, or all are supersonic. 

To prove (i), we first note that the result is trivially true if N = 0 or 1, so 
we may assume that N ~ 2. Suppose that, for some k 4= 0, N, we have ~,~, in 
phase 2. Since 2,2-shock waves do not exist, neither ~,~,_ ~ nor 7k +1 can be in phase 2. 
It follows that x = }~t is either a 1,2- or a 3,2-phase boundary. According to 
(4.6), the driving traction at this phase boundary must be positive in either case, 
whence by the admissibility requirement (5.5), necessarily sk =>--0. Similarly, 
the phase boundary x = s1,+1 t must be either of 2,1- or 2,3-type, so that by 
(4.6), (5.5), one has sk+l ~ 0. Thus ~ _>= s~+l, contradicting (5.3). It follows 
that no phase-2 strain 7k can emerge from metastable initial data; this is a conse- 
quence of the fact that admissibility prevents an increase in length of any portion 
of the bar that bears a phase-2 strain and is terminated at both ends by phase 
boundaries. 

Turning to (ii), we note first that the assertion is trivially true if N ~ 2, so 
we may assume that N ~ 3 .  We first show that if x = s k t  and X = S k + l t ,  
k = 1, . . . ,  N -  1, are adjacent subsonic phase boundaries in the representation 
(5.2), then necessarily 

~k < 0 =< ~k+~. (6.1) 
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To prove (6.1), we begin by inferring from the result in (i) that either (a) x = skt 
is a 3,1-phase boundary while x = Sk+l t is of 1,3-type, or (b) the reverse is 
true. Suppose (a) is the case. Then by (4.7) and (4.9), we have 

1 fl(Sk+1) 
7k ~- ~-~k))]k--1, 7k-kl = fl(Sk+l) 7k - -  fl(Sk) )'k--Z, (6.2) 

where fl is defined in (4.8). The driving tractions f k  and fk+l acting on the two 
phase boundaries can be calculated from (4.5) and (4.4), respectively; using 
these in the admissibility conditions (5.5) for j = k and ] = k q- 1 leads im- 
mediately to the inequalities 

gk'Sk < O, 

where 

gk = 7MYra - -  7k--17k, 

g k + l S k _ l _ l  >>= O ,  (6.3) 

g k  + 1 --~ 7 M Y r a  - -  Y k ~ k  -t- 1 ~ (6.4) 

Suppose that Sk > 0. Then by (5.3), sl,+1 > 0 as well, so that (6.3) gives gk <= O, 
gk+~ >~ O, hence 

g k + l  - -  g k  ~ O .  (6.5) 

By (6.4) and (6.2), 

g k - k l  - -  g k  - -  fl2(~k) [fl(Sk) - -  f l (Sk§  (6.6) 

from (6.5) and (6.6), it follows that fl(Sk) ~ fl(Sk+l). On the other hand, since Sk 
and Sk+l are both positive and subsonic, the definition (4.8) yields fl(Sk) < fl(Sk+l). 
This contradiction shows that Sk ---<- 0. Next, if one assumes that Sk+l < 0, an 
argument similar to that given above leads again to a contradiction, establishing 
the result (6.1) in case (a). Case (b), in which phases 3 and 1 are interchanged, 
is treated by a similar argument. This establishes (6.1). 

It then follows that for no value of j among the integers 0, . . . ,  N -  1 can 
it be that e i t h e r ~ j < ~ j + ~ < 0  or 0 < ~ < s j + l  when x = ~ j t  and x = s j + l t  
are subsonic phase boundaries. Thus there are two possibilities: Either there are 
exactly two subsonic phase boundaries x = +~t and x = ~k+lt, with Sk ~ 0, 
Sk+l > 0, Sk < Sk+~, or there are three, with velocities Sk, Sk+l and ,~k+2 such 
that 

Sk < Sk+~ --- 0 < Sk+2- (6.7) 

In order to complete the proof of proposition (ii), we need only show that the 
second possibility cannot occur. Suppose the contrary, so that there are three 
subsonic phase boundaries whose velocities satisfy (6.7). Note from (6.7), (4.8) 
that fl(Sk) > fl(Sk+0 > 0 and fl(sk+2) > fl(Sk+l) > 0, whence 

fl(Sk) fl(Sk+2) > flZ(sk+l)- (6.8) 

Again, there are two cases: either (a) x = }k t, x = Sk+lt  = 0 and x = sk+2t 
are phase boundaries of type 1,3, type 3,1 and type 1,3, respectively, or (b), they 
are of type 3,1, type 1,3 and type 3,1, respectively. In either of these two cases, the 
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admissibility conditions (5.5) applied to the two moving phase boundaries 
x = .skt and x = .s~+zt can be shown to require that fl(.s~) fl(.sk+z) ~< fl2(.s~+l), 
contradicting (6.8) and ruling out the occurrence of three subsonic phase bounda- 
ries. Proposition (ii) is therefore established. 

To prove proposition (iii), we first note that, according to proposition (i), 
each phase boundary is either of 3,1-type or of 1,3-type, so that, according to 
Table 2, the velocity of a supersonically moving phase boundary must lie in one 
of the two intervals [c', e,), ( - -e , ,  --e']. Suppose there were two or more super- 
sonic phase boundaries with velocities in [c', c,), and let x -:  skt and x = sk+xt 
be two adjacent ones. By Table 2, each of these must be of 1,3-type, which is 
impossible. Similarly, there cannot be two or more phase boundary velocities 
in the interval ( - -c , ,  --e']. Thus at most two supersonic phase boundaries can 
occur; if there are two, one moves with velocity in [e', e,), the other with velocity 
in ( - -e , ,  --e'], establishing proposition (iii). 

Finally, we take up proposition (iv). Suppose that (7,, v) involves both subsonic 
and supersonic phase boundaries. Then there are phase boundary velocities si 
and .sg such that .si E (--ct, c') and either .S~ E [e', e,)  or sk E (--e , ,  --c']. Sup- 
pose first that .SkE [c', c ,) ;  assume that i corresponds to the subsonic phase 
boundary with greatest velocity, k to the supersonic phase boundary, so that there 
can be no other phase boundaries between x = .sit and x = .skt. By Table 2, 
the supersonic phase boundary must be of 1,3-type. The subsonic boundary 
x =: "sit must therefore be of 3,1-type. (No shock wave could intervene between 
these two phase boundaries, because it would have to be a 1,1-shock, whose veloc- 
ity .~c could not lie between si and .sk.) According to Figure 8, the phase-1 strain 
between the two phase boundaries must be negative if x = .skt is to be supersonic. 
But it can be readily shown that this is inconsistent with the assumption that 
the 3,1-phase boundary at x - - s i t  is subsonic. This contradiction rules out 
"sic (--c', c'), skE [c', c,);  the possibility that .S~E (--c , ,  --c'] is ruled out by 
a similar argument. Proposition (iv) is thus proved. 

The arguments used to establish the four results above depend critically on 
the admissibility inequalities (5.5), which in turn are consequences of the second 
law of thermodynamics, if the processes under consideration here are viewed as 
taking place isothermally. 

7. Explicit solutions 

The qualitative results established in the preceding section make it possible 
to construct explicitly all admissible solutions to the Riemann problem for the 
trilinear material in the case of metastable initial data. We say the initial data is 
of  p, q-type if 7L is in phase p, 7R in phase q, and we speak of a p, q-Riemann 
problem. For metastable initial data, there are four cases of the Riemann problem: 
Initial data are either of 1,3-type, 3,1-type, 1,1-type or 3,3-type. In the first two 
cases, the initial data involve two distinct phases, while in the last two, the initial 
data are associated with a single phase. By symmetry, the second case need not 
be considered once the first case has been treated. We begin with the case of 1,3- 
initial data. 
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(i) The Riemann problem for 1,3-initial data 

For such data, one has YL E (--  1, 7~], 7R E [Tm, 00). In view of proposition 
(i) of the preceding section, the solution 7, v must involve an odd number of phase 
boundaries. However, by results (ii)-(iv) of that section, no more than two 
phase boundaries can occur. Thus precisely one phase boundary is involved, and 
it may be either subsonic or supersonic. We begin with the subsonic case. 

(i(a)) 1-3 initial data: solutions with one subsonic phase boundary. In (5.2), 
we take N ~ 3 ,  with s l = - - e ,  s2=/~ ,  s 3 = §  where - - e ' < ~ < c ' ;  
this allows for one subsonic phase boundary x -- ~t and two shock waves, the 
left one at x = ~ e t  of  1,1-type, the right one at x = c't of  3,3-type. Thus we 
have see (Figure l l (a)) :  

~',V ~--- 1 +  + 
7, v, 

~ ~' R, I)R, 

- -  o c  ~ x ~ - - e t ,  

--ct  < x < ~t, 

st < x < c't 

c ' < x <  + e o  
+ + 

where 7, v, 7, v and  } are unknowns, with 

(7.1) 

- + 

0 < 7 <= 7M , 7 > 7 m ,  - - e '  < J < e ' .  (7.2) 

(The fact that ? > 0 follows from Figure 8 and the assumption that I~1 < c'.) 
The five unknowns are to be found from the jump conditions (5.4), which under 

t 
x =.~t l 

k Phase 3 
= I x:c,t 

" ~ -  ~ .r Phase 3 

a. 0 x 'Y 
"F = 9: o , x=c ' t  
V : V  0 / 

I / "  x = ~ t  

x = - c t  I / / / ~  

b 0 x 

Fig. l l .  Form of solutions to Riemann problem with 1,3-initial data. 
(a) Subsonic phase boundary, (b) Supersonic phase boundary 
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the present circumstances reduce to 

- - c (~  - -  YL) = - - ( v  - -  vr) , (7.3) 
�9 + 

s(~, -- ~ ) =  --(+ -- v) ,  (7.4) 

c,2  _ = _ ; ) ,  ( 7 . 5 )  

c'O,'R - -  ; )  = - - ( v g  - -  + ) .  (7 .6)  

These comprise four equations for the five unknowns, suggesting a one-para- 
+ + 

meter family of solutions. Indeed, solving (7.3)-(7.6) for ~,, v, ~ and v in terms 
of J gives 

where 

- c ' + ~  + c - - k  

7 - -  c + k  h, 7 - -  c, k h, 

- c ' + ~  + c - - ~  
v = vL - -  c~z. + ~ ch, v = vR + c'?R c' - -  ~ c'h, 

(7.7) 

h = (cvL + c'vR + VR --  VD/(C + C'). (7.8) 

Note that h depends only on the material and the given data, and that the strains 
+ 

~, and ~ depend on the initial data only through h. By (7.2), (7.7), the inequalities 

c ' + ~  c - ~  
O < -~--~ h ~ ~'M, c, ~ h ~ )'m, - - c '  < J < c', (7.9) 

must hold. One shows easily that the leftmost inequality in (7.9) holds automatical- 
ly if the remaining inequalities are satisfied. It also follows that the initial data 
must necessarily be such that 

h > 0. (7.10) 

Thus altogether, h and k must satisfy 

c ' - - ~  c + ~  
�9 --C' C'. <--h ~ T M c ,  < s <  (7.11) ~'~ c - - s  + ~ '  

In the s, h-plane of Figure 12, the inequalities (7.11) describe the region on and 
between the top and bottom curves Ca and C2. The respective equations for Ca 
and C2 are h = 7M(C -k S)/(C' + ~) and h = ~,~(c' - -  ~)/(c - -  ~), - - c '  < ~ < c'. 

Let 1,3-initial data be given such that h in (7.8) is positive. For any such h, 
Figure 12 shows that there is a range of J (a subinterval of ( - -c ' ,  c')) in which 

- -  + 4- 
(7.11) hold. For each J in this range and for the given h, define 7, 7, v and V by 
(7.7), ~ and v by (7.1). Then (7.2) are satisfied, and the set of all pairs 7, v so con- 
structed comprises a 1-parameter family (parameter ~) of solutions to the Rie- 
mann problem for the given h; in each solution there is a subsonically moving 
phase boundary. The condition (7.10) on the initial data is therefore necessary and 
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sufficient for the existence of solutions of the form (7.1) with a subsonic 1,3-phase 
boundary in the case of 1,3-initial data. We now determine which of these solu- 
tions, if any, are admissible. 

h 

K 
-c' 0 C' 

Fig. 12. The ~, h-plane for 1,3-initial data 

%l{ffff')~/z 

Since the phase boundary in the solutions constructed above is of 1,3-type, 
+ 

the associated driving traction f i s  given by (4.4), with 7, 7 given by (7.7)~,2 ; thus 

f (c'+ ~ ) ( c -  ~)h2) 
f = �89 (# -- it') t 7mYM (C' -- ~) (C + S) I " (7.12) 

With this f, the admissibility condition (5.5) leads to the requirement 

{ ( c ' + ~ ) ( e - - ~ )  } 
7mTM -- (C' --  S) (C ~- =~ h2 ~ >= O. (7.13) 

Inequality (7.13) reduces the set of solutions to that corresponding to the hatched 
regions in Figure 12; the "Maxwell curve" M shown in the figure is the curve 
along which the contents of the braces in (7.12) vanish, and thus on which f =  0. 
All points in the hatched region correspond to admissible solutions of the present 
Riemann problem. As expected, the entropy condition for admissibility (5.5) does 
not deliver uniqueness. Indeed, Figure 12 shows that, for every positive value 
of h except h = a0/(/#t') 1'2, there is a 1-parameter family (parameter ~) of admis- 
sible solutions of the Riemann problem. For the exceptional value of h, there is 
a unique admissible solution; it has a stationary 1,3-phase boundary (~ = 0) 
with zero driving traction. This solution tends for large time to an equilibrium 
mixture of phases 1 and 3 at the Maxwell stress. All other values of the initial 
datum h in the interval [a,~/(##') 1/2, (rM/(##') m] correspond to solutions that give 
rise either to long-time mixed-phase equilibria corresponding to } = 0  or to 
single-phase equilibria (} 4 = 0); the mixed-phase equilibria are not Maxwell 
states, and hence are metastable. For values of h outside this interval, the corre- 
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sponding long-time equilibrium states involve only a single phase: phase 1 if  
0 < h < %/(##,)1j2, so that ~ > 0, phase 3 if h > ~M/(##')  1/2, in which case 
~ < 0 .  

For some special values of the initial data, one, or even both, of the shock 
waves may be absent. 

Finally, we shall show that the extent of the lack of uniqueness remaining after 
the imposition of admissibility is exactly that required for the further imposition 
of the kinetic relation (3.6) at the phase boundary, and that when the kinetic 
relation is invoked, it singles out precisely one solution to the Riemann problem 
presently under consideration. We first use (7.12) to map the 'S, h-plane of Figure 12 
into the ,S, f-plane of Figure 9. The hatched regions in Figure 9 are the images in 
the i, f-plane of the hatched regions in the ,S, h-plane corresponding to the totality 
of admissible solutions. The curves C~' and C* are the images of the left half 
of C1 and the right half of (72, respectively; the i-axis in the 4, f-plane is the image 
of the Maxwell curve M in the ,S, h-plane. In Figure 9, we have sketched schemati- 
cally the graph K* of the kinetic relation f = ~01a(i), with 'S restricted to the inter- 

h-plane of K* is found from (3.6), (7.12) 

- -  - ( c ' - ? i ) ( c - - i ) J  ; ( 7 . 1 4 )  

the curve K is shown in Figure 12. The fact that the kinetic response function 
~o13(i) is monotonically increasing can be used to show that ~b(,s) in (7.14) is mono- 
tonically decreasing. Also, q)(i)--> + cx~ as ,S-+ --c', and ~0(i)-+ 0 as s -+  c'. 
It follows that for any given h > 0, (7.14) determines a unique 'S in the interval 
( - - e ' ,  c'), with the understanding that 'S = 0 if the given h lies in the interval 
[q)(0--), q~(0+)]; see Figure 12. This unique }, when used in (7.7), furnishes the 
unique admissible "subsonic" solution to the 1,3-Riemann problem that is 
consistent with the kinetic relation f =  ~p13(i). 

Since two distinct phases are present in the initial data, the occurrence of a 
phase boundary in the solution is inevitable, and no appeal to the initiation cri- 
terion is necessary. 

(i(b)) 1,3-initial data: solutions with one supersonic phase  boundary.  The case 
of "supersonic" solutions to the 1,3-Riemann problem is quite different. By 
Table 2, if there is a supersonic 1,3-phase boundary, its velocity must lie in the 
interval (c', %). Thus in conformity with the results of Section 6, we take N = 2 
and 'Sl = --c in (5.2), and we set 'S2 --~ }, with --c'  < 'S < c..  This allows for 
a single supersonic phase boundary at x ~ i t  and a shock wave of 1,1-type at 
x = - -e t ;  see Figure l lb .  We thus write 

TL, vL, - -  oo < x < - - c t ,  

7, v = ]70 ,  Vo, - - c t  < x < ,st, (7.15) 
t 7R, vR, ,st < x < + ~x~, 

where 70, vo and i are unknowns, subject to --1 < 7o < 0, c' < "s < %.  (From 
Figure 8, it can be seen that 7o must be negative since the phase boundary is to 
be supersonic; part of the bar is thus contracted.) t t  is readily shown that the jump 

val (--c', c'). The pre-image K in the 'S, 
to be described by 
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conditions (5.4) reduce in this case to three equations for the three unknowns. 
Analysis of  these equations shows that they have a solution with )'o, s satisfying 
the restrictions given above if and only if the 1,3-initial data are such that 

1 
c -~ c r {C~R --  C - -  [e'272 -~ (c 2 -~ c ,2) YR -~ r < h < 0, (7.16) 

where h is defined by (7.8). The leftmost inequality in (7.16) arises from the re- 
quirement that Vo be greater than --1, which in turn stems from the requirement 
that the mapping x -+ x + u(x, t) be invertible at each t. I f  the initial data satisfy 
(7.16), then there is a "supersonic" solution of the above form to the 1,3-Riemann 
problem, and it is unique. Moreover, it can be verified that this solution is auto- 
matically admissible. We observe that there is no possibility o f  imposing the kinetic 
relation in the supersonic case o f  the 1,3-Riemann problem. 

(ii) The Riemann problem f o r  1,1-initial data 

If  the initial data involve only phase-1 strains, it is clear that a solution of  
the form (5.2) must involve either no phase boundaries or an even number of  
them. The results of  Section 6 then show that the number of phase boundaries 
is either zero or two. Moreover, Table 2 can be used to show that if  phase boun- 
daries are present, they are necessarily subsonic. 

The 1,1-case exhibits a feature not present in the case of  the 1,3-Riemann 
problem just discussed. We shall find that, for certain initial data, there is a solu- 
tion with no phase boundary as well as a solution with two phase boundaries 
satisfying the kinetic relation, making it necessary to invoke an additional consti- 
tutive principle to select between these two solutions. Making such a selection 
is equivalent to specifying when the bar changes phase and when it does not ;  
this is precisely the role of the initiation criterion for the phase 1 ---> phase 3 trans- 
formation. 

(ii(a)) 1,1-initial data: solutions with no phase boundaries. Take N = 2 in (5.2), 
and set sl = --c, s2 = c, corresponding to two shock waves of 1,1-type; see 
Figure 13(a). We thus seek a solution in the form 

YL, VL, --  oo < X < - -e t ,  

"7, v = ]7'0, Vo, - -c t  < x < ct, (7.17) 
! 
IT'R, VR, ct < X < + oe ,  

in which V/~ and )~R both belong to (--1,  7M], and Vo, Vo are the only unknowns. 
Let 

h = (eVL + CTR + VR - -  V L ) / ( 2 e )  (7.18) 

be the 1,1-counterpart of h as defined for the 1,3-case in (7.8). Analysis of the 
jump conditions (5.4) in this simple case shows immediately that Yo = h, and 
that there is a solution o f  the f o r m  (7.17) (i.e., without phase boundaries) to the 1,1- 
Riemann problem i f  and only i f  the 1,1-initial data are such that 

--1 < h ~ aMity; (7.19) 
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moreover, when the datum h lies in this range, there is precisely one such solution. 
Since this solution involves only shock waves, it is trivially admissible because the 
material is trilinear; the kinetic relation is of course irrelevant, since no phase 
boundaries are present. 

't 
?=70, 
V = V 0 

I 
X= -ct l x=ct 

Sh Phase 1 y . .  

V = V L Phase1 V P h a s e l  v ~ v R 

a 0 x 

tf X=~t 7 = ?2' x=#. t  

v = v, ~ Phase 3 / v = v3 

x=-ct Phase1 \ / Phosel x=ct 

v = Phase1 ~ /  Phase1 v = VR 

b 0 x 

Fig. 13. Form of solutions to Riemann problem with 1,1-initial data. 
(a) No phase boundaries, (b) Two phase boundaries 

(ii(b)) 1,1-initial data: solutions with two phase boundaries. In view of the re- 
sults of  Section 6, in this case we must take N = 4 in (5.2) and set ~ = --e, 
s 2 = s ,  s a = s , ,  s , = c ,  where - - c ' < ~ _ ~ 0 _ ~ , < c ' .  This corresponds to. 
two shock waves of 1,1-type and two subsonic phase boundaries, one of 1,3-type 
at x = ~t, another of 3,1-type at x = ~,t ;  see Figure 13b. We thus seek a solu- 
tion in the form 

[ ~L~ OL~ 

[~1 ,  Vt, 

~, U = ] ~22, V2, 

[ ~'3~ V3, 

[ ~'R, VR~ 

- -  o o  < x ~ - - c t ,  

--et  < x <  ~t, 

~t < x < ~,t ,  

~ , t  < x < ct, 

c t <  x <  + 0 %  

(7.20) 

in which ~L, ~g both belong to (--1, vM], and ~'1, vl, ~2, v2, ~'s, v3, s and ~, are 
unknowns. 

The jump conditions (5.4) reduce in the present case to six equations for  the 
eight unknowns, and these equations can be readily solved for the strains and 
particle velocities in terms of the phase boundary speeds ~ and ~, ;  in particular, 
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one finds 

c '2 - -  i 2 1 1 

~'1 = 2c c2 _ ~------~ A(~, ~,----~ h, 72 = 2c A(~, ~,-------~ h, 

(7.21) 
c,2 __ ~2, 1 

73 = 2c c~ _ ~2, A(L  ~,------~ h,  

where h is given by (7.18), and 

A(~, i , )~= [ c'2-c-~2 c , 2 _  k2,] 
4 - s , - - s §  c + ~ ,  3 > 0 .  (7.22) 

In order that the strains 71, 72, Y3 belong to the appropriate phases, one must 
ensure that 

--1 < 71 ~ 7M, 72 > 7m, --1 < 7a ~ 7M. (7.23) 

Using an approach parallel to that in sub-section (i(a)), we are able to pro- 
ceed directly from (7.21) to show that there is a non-empty region in ~, J , ,  h-space 
in which the requirements (7.23) and the admissibility conditions (5.5) are satis- 
fied, so that (for a given h in a suitable range) conditions (7.21), (7.22) provide a 
2-parameter family (parameters i, i , )  of admissible solutions with two phase 
boundaries to the 1,1-Riemann problem. Imposing the kinetic relations at the 
two phase boundaries would then lead to a pair of equations to determine }, ~, 
and hence a unique solution. 

It is more efficient, however, to impose immediately the appropriate kinetic 
relations at the two phase boundaries. To this end, we first use (4.4), (4.5) and 
(7.21) to find the driving t rac t ionsfandf ,  acting on the phase boundaries x = i t  
and x = i , t ,  respectively: 

( f = ~ (~ - ~ ' )  7m7~  d - ~2 y~ , 
(7.24) 

f ,  = - 3  (~ - ~ ' )  ~'mT~ - -  d - -  ~ ,  ~ ' 

where 72 is given by (7.21)2. The kinetic relations are 

f =  ~13(s), f ,  = ~3~(s,), (7.25) 

where ~01a and q~31 are the kinetic response functions associated with phase bound- 
aries of 1,3-type and 3,1-type, respectively. The analysis is greatly simplified by 
assuming, as we shall, that the bar is symmetric in the sense that the driving 
traction acting on a 1,3-phase boundary moving with velcoity } is the negative 
of the driving traction acting on a 3,1-phase boundary moving with velocity --}. 
Thus the kinetic response functions ~P13 and 9~3~ are required to satisfy 

~13(s) = --~%~(--s), --c'  < ~ < c'. (7.26) 

Note that, by (7.26) and Figure 5, q13(0+)=--~03~(0--) = f ~ ,  ~013(0--)= 
--~ozt(O+ ) = f * .  
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Eliminating )'2 between the two statements in (7.24) yields 

( f  - - . fo)  c ,2  _ ~2 = - - ( f .  + fo )  c,2 _ ~2. ],  

where fo = ~ -- #') 7myM/2 > O. Using (7.25) to express f and ];~ in (7.27) 
in terms of qha and ~031 and invoking (7.26) allows us to rewrite (7.27) in the 
form 

0(s) = 0(--~,),  (7.28) 

where the function 0 is defined by 

172 __  ~2  

0(~) --- [~q3(s) --fo] r _ }2,  --c'  < ~ =< 0. (7.29) 

The fact that tp13 is non-positive and strictly increasing on (-- oo, 0] makes it 
possible to show that 0 is strictly increasing on ( - -c ' ,  0]. Since both } and --},  
lie in (--c', 0], it then follows from (7.28) that 

}, ---- --~. (7.30) 

This result allows us to simplify (7.22) and (7.21) to get 

Yl = )'3 = (c + ~) (c '2 - -  c~) ch, )'2 -- (c,2 _ c~) ch, - - c '  < ~ < O, 

(7.31) 

where h is given in terms of initial data by (7.18). Recall from (5.3) that ) < J , ,  
so that, by (7.30), ~ 4= 0. Since ~ < 0 < ~,, all particles of the bar are in 
phase 3 in the long-time equilibrium state; mixed phase equilibria cannot emerge 
as long-time limits from pure phase-1 initial states. 

In order to complete the solution, we must determine the phase boundary 
speed ~ from the kinetic relation (7.25)i, making use of (7.24)1 and (7.31)2; it 
is then only necessary to verify that the strains given by (7.31), evaluated at the 
appropriate k, conform to the requirements (7.23). We begin by noting that, in 
view of (7.31), the inequalities (7.23) reduce to 

--1 < (c + ~) (e '2 - -  c~) ch ~ )'Mr (C ,2 - -  Ck) ch ~ )'m" (7.32) 

The rightmost inequality in (7.32) shows that the initial data must be such that 
h > 0, and if this is the case, the leftmost inequality holds automatically, Indeed. 
the remaining inequalities to be enforced are 

e '~ - c~ ( c  + ~) ( c  '~ - c~)  
-~ = --c '  < ~ < 0. (7.33) 7~ c 2 _ ck < h < )'M C ( C , 2  _ _  ~2) , 

The region in the ~, h-plane described by (7.33) and shown in Figure 14 lies be- 
tween the curves G1 and G 2 and the lines } = - -c ' ,  s ~ 0; note that for every 
h > ~rm/lZ, there is a non-empty range of J such that (7.33) holds. If k ~  0 - 
with h fixed in [am//Z, aM/be], the solution given by (7.20), (7.31) tends to the solu- 
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tion without phase boundaries constructed in subsection (ii(a)). Thus the vertical 
segment "s = O, am/# <-- h <-- aM/# in Figure 14 may be thought of as corre- 
sponding to solutions without phase boundaries. 

h~ 

Gl ~ K '  

-r 0 ~" 

Fig. 14. The D, h-plane for 1,1-initial data 

If (7.30) and (7.31) are used to compute the driving tractions in (7.24), it is 
found that 

f = �89 (l z - -  #')  7mTM --  (C,2 Z C-~2 (C ~- ~ c2h2 ' f*  = - f "  (7.34) 

Since ~ < 0, 3, > 0, it then follows that the admissibility of both phase bound- 
aries is equivalent to the single inequality f ~  0. Making use of (7.34)1, we find 
that the admissible subset of the region described by (7.33) is that determined 
by the following inequalities: 

(TmTM) lt2 (e '2 - e~) (e + ~)1/2 (e + ~) (c '2 - c~) 
c [(c ' z  - ~ )  ( e  - ~)1~/2 ~ h < 7M c(c ,~  _ ~z )  

, - - c ' <  ~ < 0 ;  

(7.35) 

this admissible region is shown hatched in Figure 14. 
Because of (7.34)2, (7.30) and (7.26), each of the kinetic relations in (7.25) 

implies the other, so we need only consider, Say, (7.25)1. We shall now show that 
(7.25)1 picks out a unique admissible, two-phase-boundary solution of the 1,1- 
Riemann problem. As in the discussion of the 1,3-Riemann problem above, we 
begin by using (7.34)1 to map the region in the ~; h -plane characterized by (7.35) 
and shown in Figure 14 into the },f-plane. It is found that the image of this set 
under the mapping is exactly the region between the curve C* and the }-axis 
shown in Figure 9. From this, as in the case of the 1,3-Riemann problem, it follows 
that a kinetic response function ~01a(}) appropriate for quasi-static motions re- 
mains appropriate in the dynamical case, provided ~ is restricted to the subsonic 
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range. Finally, we note that when the driving traction is eliminated between (7.25)1 
and (7.34)1, the result is an equation to determine the value of the parameter 
in terms of the given h; this equation may be written in the form 

1 + 0 
h = kV(~) ~_ (?mTM) 112 -~- [ (C,2 __ j2) (e --  k) _1 __ _ _ - -  - 

(7.36) 

The graph of the function kg in (7.36) is shown as the curve K' in Figure 14; 5 v 
is a strictly decreasing function of J on (--c ' ,  0), and tF(--c'  + )  = + 0% kg(0--) 
= tr,/#, where a ,  ---- ao(1 --f*m/fo) 112. Since f *  ~ 0, one has ao ~ a, ~ aM. 
It follows that for all initial data such that 

h > a,/tz, (7.37) 

the kinetic relation, expressed in the form (7.36), determines a unique velocity 
"s ---- V(h) < 0 for the left phase boundary x = it. 

Thus there is a unique admissible solution to the 1,1-Riemann problem of the 
form (7.20), with two phase boundaries conforming to the kinetic relations (7.25), 
i f  and only i f  the given 1,1-data are such that 

a,/l~ < h < -k cx~. (7.38) 

On the other hand, from the results of subsection (ii(a)), it follows that, when 
the initial datum h satisfies 

a,/# < h ~ au/iz, (7.39) 

the given Riemann problem also has an admissible solution of the form (7.17) 
with no phase boundaries. Thus for --1 < h ~ a,//z, the 1,1-Riemann problem 
never leads to a phase transformation; for h > aM/#, it always does. For the 
intermediate values of h where both types of solutions exist, a criterion for the 
initiation of a phase transition is necessary to select the appropriate solution; 
such a criterion will be discussed below. 

(ii(c)) 1,1-initial data: initiation criterion for the phase transformation. As 
observed above, when the 1,1-initial data are such that h lies in the interval (~r,//z, 
aM//Z], the bar may respond by generating only shock waves at x ---- t = 0, thus 
remaining entirely in phase 1 for all time, or it may generate a pair of phase 
boundaries as well as shock waves at x = t ---- 0, in which case the bar ultimately 
finds itself entirely in phase 3. To determine which of these events occurs, we 
adapt to the present dynamical setting the initiation criterion discussed for quasi- 
static phase transformations in Section 3. The particle located at x ---- 0 in the 
reference state "computes",  as it were, the value of h from the given 1,1-initial 
data in the Riemaml problem according to (7.18). If  this h is at least as great as 
the value trcr/# defined in (3.8), then the magnitude of the driving traction on either 
a leftward-moving 1,3- or a rightward-moving 3,1-phase boundary issuing from 
x ---- 0 would exceed the critical value [f~l for the phase 1 ~ phase 3 transition, 
as is easily shown. According to our initiation criterion, the particle would then 
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spontaneously jump from phase 1 to phase 3, generating -- in the present problem 
--  the two phase boundaries  constructed above. T h e  criterion thus asserts that 
the bar will respond to 1,1-initial data in the Riemann problem by generating two 
shock waves but remaining entirely in phase 1 as long as the initial data is such 
that -=1 < h < acr/#; this is the solution constructed in subsection (ii(a)). On 
the other hand, when h ~ ac"/t~, a spontaneous phase transition occurs at x = 0, 
and the two-phase-boundary solution consistent with the kinetic relation is ini- 
tiated, leading to a long-time equilibrium state in which the bar is entirely in 
phase 3; this is the solution of subsection (ii(b)). 

In his study of the viscosity-capillarity admissibility condition of SLEMROD 
(1983), SHEARER (1986) considers general materials of the type represented by 
Figure 1. It is of interest to note that, for a certain class of single-phase initial data 
he finds that a given Riemann problem has two solutions, each admissible by his 
criterion, one of  which involves a phase transition; while the  other does not. 
Our discussion above would suggest that such a finding manifests the need for a 
criterion by which the phase transition is to be initiated. 

A notable special case of  the 1,1-Riemann problem arises when the bar is 
initially at rest in a smooth phase-1 state: Thus VL = VR = 0, and 7r~ = )jR, 
with the initial strain in phase 1. By (7.18), h = 7'L = 7R in this case. According 
to the discussion above, if the initial strain is at least as great as acr/t~, a phase 
transition will occur, leading eventually to a pure phase-3 equilibrium state. Thus 
even an initially smooth, single-phase equilibrium state may break up dynamically 
into a mixture of phases 1 and 3, ultimately coming to equilibrium in a new phase. 

(iii) The Riemann problem with 3,3-initial data 

In this case, there are three possible scenarios. The first two are analogous to 
the two alternatives just discussed in the case of 1,1-initial data: Either two shock 
waves and no phase boundaries occur, leaving the bar entirely in phase 3, or a 
phase transition occurs at x = 0, generating a 3,1-phase boundary moving 
leftward and a 1,3-phase boundary moving to the right, both subsonic, in addition 
to shock waves. The details are similar to those in the 1,1-case, so we omit them. 
In the third possibility here, the solution involves two supersonic phase boundaries, 
unaccompanied by shock waves. As in the supersonic subcase for 1,3-initial data, 
this solution is uniquely determined by the data when it exists, and no kinetic 
relation can be imposed. The respective sets of initial data that lead to either of 
the first two possibilities, on the one hand, or to the third possibility on the other 
hand, are disjoint. 

8. Concluding remarks 

In the case of metastable initial data, it has been shown above that, as expected, 
the Riemann problem for the trilinear material requires more than the "entropy 
jump condition" of admissibility (2.12) to render solutions unique. We have further 
shown that, among the many admissible solutions corresponding to the same 
initial data and involving phase transitions accompanied by subsonically propa- 
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gating phase boundaries, a kinetic relation controlling the rate at which the tran- 
sition occurs will pick a unique solution. Under certain conditions, two types of 
solutions can arise from a given set of initial data, one of which involves a phase 
transition while the other does not. An initiation criterion for the relevant phase 
transition is needed to choose between these two types of  response; when such 
a criterion mandates the occurrence of a phase transition, the kinetic relation 
controls the evolution of the resulting phase boundaries. The fact that the mathe- 
matics needs and can accommodate these two supplementary mechanisms, an 
initiation criterion and a kinetic relation, seems to be qualitatively consistent with 
the view taken by materials scientists, for whom models of nucleation and of 
growth of the product phase in the parent phase are an important part of the 
explanation of the phase transition process. 

Kinetic relations of forms other than that used here could of course be studied. 
In particular, rate equations based on thermal activation models for the kinetics 
of phase transformations could be investigated; see, for example, ~ Chapter 17 
of RALLS, COURTNEY • WULFF (1976). 

As we have shown, under certain conditions there are solutions to the Riemann 
problem with metastable initial data that involve supersonically propagating 
phase boundaries. For these, a kinetic relation cannot be imposed, since a solu- 
tion, when it exists, is uniquely determined by the initial data alone. 

It would be of interest to make clear the relationship between the present 
direct approach to the phase transformation problem through kinetic relations 
and nucleation criteria, and the approaches based on various "admissibility cri- 
teria" of  the kind proposed, for example, by DAFnRMOS (1973) or by SLt~MROD 
(1983). 

An attempt to generalize the present analysis from the case of the trilinear 
material of Figure 2 to any material with a stress-strain curve qualitatively like 
that of Figure 1 would encounter a number of complications not present in the 
trilinear material. First, such materials generally give rise to solutions involving 
"fans" as well as shock waves. Second, shock waves in such materials are in gen- 
eral dissipative, in contrast to the dissipation-free "linear" shock waves arising 
in the present model. Third, the velocity of shock waves would be apriori unknown 
in the more general case. How many of the qualitative properties of  the solutions 
constructed in the present paper survive for all materials in the class typified by 
the curve in Figure 1 is as yet unclear. 

One can consider the case of a trilinear stress-strain curve in which the slope 
of the phase-2 branch, while less than the slopes for phases 1 and 3, is neverthe- 
less positive, so that --  in contrast to the case treated here -- stress is an increasing 
(although still neither convex nor concave) function of strain. For such a material, 
equilibrium mixtures of phases cannot occur, and there is no counterpart of  the 
quasi-static theory sketched in Section 3. In the dynamical setting, however, the 
situation is different. Analysis of a 1,3-Riemann problem for this kind of  material 
shows that a kinetic relation can again be imposed, and --  when invoked -- it 
will pick a unique solution from among infinitely many admissible ones. This 
suggests that such a material wiU support dynamical mixtures of phases controlled 
by a given kinetic relation, but such mixtures will tend to single-phase equilibria 
in the long-time limit. 
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