
Arch. Rational Mech. Anal. 124 (1993) 99-155. �9 Springer-Verlag 1993 

Structured Deformations of Continua 

GIAYPIETRO DEE PmRO & DAVID R. O W ~ N  

Contents 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 
2. Classical deformations . . . . . . . . . . . . . . . . . . . . . . . . .  102 
3. Simple deformations . . . . . . . . . . . . . . . . . . . . . . . . . .  104 
4. Limits of simple deformations . . . . . . . . . . . . . . . . . . . . .  113 
5. Structured deformations . . . . . . . . . . . . . . . . . . . . . . . .  125 
6. Interpretations and examples . . . . . . . . . . . . . . . . . . . . . .  141 
7. Applications to specific continuum theories . . . . . . . . . . . . . . .  146 

7a. Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 
7b. Liquid crystals . . . . . . . . . . . . . . . . . . . . . . . . . .  148 
7c. Crystals with defects . . . . . . . . . . . . . . . . . . . . . . . .  150 
7d. Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 

1. Introduction 

A principal goal of continuum mechanics is to describe how a continuous 
body will deform under prescribed applied forces. An essential initial step 
towards this goal is that of  choosing a class of deformations for the con- 
tinuum. For the description of  many continua, some generally accepted re- 
quirements on the chosen class of deformations have emerged: deformations 
should be invertible, differentiable mappings with differentiable inverses, and 
compositions of  two deformations in the class should again be in the class. 
However, such classical deformations are not adequate for the description of 
all continua, and in many cases alternative choices must be made. One type 
of choice involves the introduction of  supplementary kinematical variables 
such as the director fields of  a polar continuum. Another choice involves the 
introduction of  supplementary fields that, although related to deformation, 
have the status of  internal variables. For example, in theories of  plasticity, the 
plastic deformation tensor is governed by an evolution law included in the con- 
stitutive equations of  the continuum. 

Our goal in this paper is to provide a methodology for both the construc- 
tion of classes of  deformations appropriate for continua with supplementary 
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kinematical variables and for the construction of  classes of deformations ap- 
propriate for continua with internal variables. Our initial goal was narrower: 
we attempted to describe deformations appropriate for continua with fractures 
by removing the requirement of  continuity made on classical deformations. 
Thus, we started from a class of  deformations that can exhibit jumps of 
limited magnitude over surfaces with prescribed regularity. The main difficulty 
we encountered was in the choice of  a class of regions to serve as the domains 
of deformations, i.e., a class of regions in space that the continuum with frac- 
tures can occupy. In order to allow the continuum to have unopened cracks, 
we had to generalize the notion of a fit region, introduced by NoLL & VIRGA 
[17], to that of  a piecewise fit region. This concept permitted us to define a 
class of  deformations, called simple deformations, rich enough to describe the 
formation and opening of  cracks of  a fairly general nature and to describe 
the smooth deformations, also called transplacements, of  regions away from 
the crack sites. 

In order to extend the scope of our description of fracture, we found it 
natural to consider limits of  sequences of  simple deformations. Among a varie- 
ty of  possible notions of  limits, we chose one in which the crack site for the 
limit deformation is the limit inferior of the sequence of crack sites. This em- 
bodies the idea that a point of the continuum is in the crack site for the limit 
if, from some term on, it belongs to the crack site of every term in the se- 
quence of simple deformations. In addition, our choice of limit requires that 
the sequence of  transplacements for the simple deformations converge in the 
sense of L ~~ to a mapping called the transplacement for the limit, and that 
the sequence of  gradients of transplacements converge in L ~. Our choice of  
this particular notion of  limit was dictated mainly for reasons of  simplicity, 
and different choices are necessary for the inclusion of some types of  deforma- 
tions not covered by our choice. 

The limits of  sequences of  simple deformations defined in this manner 
form a class of  deformations that we denote by Lim Sid. A surprising feature 
of  Lira Sid that emerges from our analysis is that the fractures associated with 
the terms of  a sequence of simple deformations can diffuse throughout the 
continuum and yet the crack site of  the limit can be the empty set. Moreover, 
the manner in which the fractures diffuse leads to limit deformations that may 
or may not be free from the effects of  fractures. Mathematically, the difference 
between the presence and absence of the effects of  fractures in the limit is 
reflected by the difference between G, the L~176 of the sequence n ~ Vfn 
of  the gradients, and Vg, the gradient of the L~ of the sequence of 
transplacements n ~ fn. Indeed, this difference reveals a difference between 
the deformation due to smooth changes away from crack sites, measured by 
G, and the local deformation at the macroscopic level, measured by Vg. This 
observation has led us far beyond our initial goal: not only does the class 
Lira Sid describe complicated processes of  fracture at the macroscopic level, 
but also it permits us to identify processes of microfracture that describe a 
continuum with structure. 

The limit procedure leading to the class Lim Sid turns out to yield some 
limits that correspond to the shrinking of  portions of a body to single points 
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and to other types of deformation that have no ready interpretation in most 
of  the applications that we consider in this paper. Moreover, that procedure 
does not yield a natural way of  composing limits of simple deformations. For 
these reasons, we identify another class Std whose elements we call structured 
deformations. Structured deformations are defined, without reference to a limit 
process, as triples (~c, g, G)  in which ~c is the crack site and g the transplace- 
ment associated with a simple deformation, and in which G is a tensor field 
having regularity properties similar to those of Vg. We define a notion of 
composition of structured deformations for which the composition of two 
structured deformations is again a structured deformation. The main 
mathematical result of  this paper, the Approximation Theorem (Theorem 5.8), 
shows that every structured deformation is a limit of  simple deformations, i.e., 
Std is a subset of  Lim Sid. Along with this result, we have the following rela- 
tions between classes of  deformations introduced in this paper: 

Lira Sid 
U 

Std 

C ,5 
Inv Std Sid 

,3 C 
Inv Sid 

U 
Cld 

where Cld denotes our choice for the set of  classical deformations, Sid is the 
set of simple deformations, and Inv Sid and Inv Std are the sets of those 
elements of Sid and Std, respectively, that have an inverse in a sense that we 
make precise. 

After a study of  the mathematical properties of Std, we describe classes 
of deformations appropriate to specific types of continua. In this description, 
we do not treat concepts, such as motions, that are linked to time; nor do 
we discuss the notion of stress and constitutive relations. There is a useful 
organization of the classes of  deformations considered here that is based on 
decompositions of structured deformations established at various points in the 
paper and summarized here in the relation: 

(1.1) (x, g, G) = (O, g, Vg) o (0,  i, U)  o (~J, i, 01/31) o (1c, i, I ) .  

This decomposition involves (in the order from right to left) a fracture without 
any displacement, a purely microscopic deformation that creates voids without 
distortion, a purely microscopic deformation that distorts without creating 
voids, and a simple deformation without fracture. The first three factors, taken 
indfvidually and then combined with a simple deformation without fracture, 
define deformations appropriate to continua with macrofracture, continua 
with voids, and continua with purely microscopic distortions, respectively. The 
last class includes the Cosserat continua. 

In the last section we describe the application of structured deformations 
to some specific continua. We use measures of local deformation due to 
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microfracture and local deformation without fracture to give precise geo- 
metrical meaning to the concepts of elastic and plastic deformation in plastici- 
ty, to the notions of director field and degree of orientation in liquid crystals, 
and to the continuous distributions of defects and lattice bases in theories of 
defective crystals. In addition, we attempt to describe deformations of mixtures 
within a collection of limits of simple deformations somewhat larger than the 
collection of structured deformations. 

We conclude this introduction with some remarks on notation. We denote 
by "~ a finite-dimensional Euclidean point space. The associated inner-product 
space is denoted by ~,, and Lin ~ d e n o t e s  the set of all linear mappings of 
~ i n t o  itself. Both ~ a n d  Lin ~ a r e  made into normed spaces with the norms 

(1.2) 1~1~:= (#. ~)1/2, I / IL in~ :=  sup IA~[~, 

where the subscripts ~ ,  Lin ~ w i l l  be omitted for simplicity. If the dimension 
of ~ is one, then ~, ~ and Lin ~/~ are all identified with the real line •. 
The empty set is denoted by 0. If  S is a subset of ~, then by int, clo, bdy 
we denote the interior, the closure and the boundary of S ,  respectively, and 
by vol S the volume (the Lebesgue measure) of S .  ~ ( x ,  5) denotes the open 
ball centered at x with radius & The identity mappings in g and Lin ~ are 
denoted by i and /, respectively, ig denotes the restriction of i to S ,  and 
I~ : S - ,  Lin ~ d e n o t e s  the m a p p i n g / ~  (x) : = / ,  x ~ S .  With some abuse of 
notation, we use the symbol I in place of I~. 

For mappings f l  : d ~  g~ and f 2 : f l ( S )  ~ g~, we define 

(1.3) (f2 ~ (x) :=f2(fl(x)) for all x ~ S ,  

and, if f l  is injective, we define 

(1.4) f1-1 (fl  (x)) : = x for all x ~ S .  

To within evident changes in domains and codomains of mappings, f2 ~ is 
the composition of f2 and f l ,  and f l  I is the inverse of f l .  

2. Classical deformations 

Classically, a deformation of a continuous body is a mapping whose do- 
main is the region in space initially occupied by the body. To each point in 
this region, the mapping assigns the point occupied after the deformation has 
occurred. An example of a collection of deformations is the class of all restric- 
tions to open sets of Cn-diffeomorphisms between Euclidean spaces [13]. 
However, as discussed in more detail in the article [141, the choice of open 
sets as domains for deformations has some disadvantages. Indeed, not all open 
sets enjoy properties which render their boundaries surface-like, namely, the 
property of having an exterior normal defined at almost every point of the 
boundary and the property of satisfying even a generalized version of the 
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Gauss-Green formula. Nevertheless, imposing specific regularity requirements 
on the boundary leads, in general, to the loss of some fundamental algebraic 
properties. For instance, the set of all open sets with piecewise continuously 
differentiable boundaries is not closed under finite intersection [17]. 

A collection of open sets having surface-like boundaries and yet enjoying 
nice algebraic properties has been identified by NoL~ & VmcA [17]. According 
to their definition, a subset S of the Euclidean space ~ is a fit region if 
(i) S is bounded, (ii) S is regularly open, i.e., S coincides with the interior 
of its closure, (iii) d has finite perimeter, and (iv) the boundary of d has 
zero volume. Among the properties of fit regions, several are relevant here: 

(FI) The intersection of finitely many fit regions is a fit region. 
(F2) Cl-diffeomorphisms of ~ map fit regions into fit regions. 
(F3) For almost every line L parallel to a given direction, to within a set of 

one-dimensional measure zero, the intersection L c~ S consists of finitely 
many pairwise disjoint closed intervals. 

(F1) and (F2) are proved in the article [17], and (F3) expresses a known prop- 
erty of sets of finite perimeter (see, e.g., [19], Sect. 4.2.2). It is worth noting 
that fit regions are not necessarily connected. Indeed, when ~ is one-dimen- 
sional, every fit region is a finite union of bounded open intervals whose 
closures are pairwise disjoint. When dim ~ is greater than one, examples pro- 
vided in the paper [17] show that there are fit regions having infinitely many 
connected components. 

As a starting point for our study we introduce a class of deformations 
which we call classical and which are appropriate for many branches of con- 
tinuum mechanics. 

2.1. Definition. Let S be a fit region of ~. A classical deformation from S 
is a mapping f from S into ~ satisfying: 
(Cld 1 ) f  can be extended to a CCdiffeomorphism of ~. 
(Cld 2) f is orientation-preserving, i.e., 

(2.1) det Vf(x) > 0 for all x ~ S .  

The set of all classical deformations from d is denoted by C l d ( S ) ,  and Cld 
denotes the set 

C l d : =  {f s C l d ( d )  I d is a fit region of ~}.  

This set has the following properties: 

(DI) Each f ~ Cld is injective. 
(D2) If f l  ~ Cld(Sr and f2 ~ C l d ( f l ( S ) ) ,  then f2 ~ E Cld(sJ ) .  
(D3) If  f ~  C l d ( d ) ,  then f - 1  belongs to C l d ( f ( d ) ) .  

Indeed, (D1) follows from (Cld 1), and (D2) and (D3) are consequences of the 
following facts: (i) by the property (F2) of the class of fit regions, the image 
of a fit region under a CCdiffeomorphism of ~ is a fit region, (ii) the com- 
position of two Cl-diffeomorphisms of g and the inverse of a Cl-diffeomor - 
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phism of ~ are C l-diffeomorphisms of ~. We remark explicitly that (i) im- 
plies that the image of a fit region under a classical deformation is a fit 
region. 

The fact that each f ~  Cld is the restriction to a bounded set of a Cl-dif - 
feomorphism of  ~ and the condition (2.1) imply that the determinant of  Vf 
is bounded below by a positive number m. By (D3), the determinant of Vf -1 
is bounded below by a positive number M -I. Because the determinant of  
Vf -1 ( f ( x ) )  is the reciprocal of  the determinant of Vf (x ) ,  we are led to the 
following statement. 

2.2. Proposition. Let S be a fit region of ~. For every f s Cld ( S )  it is possible 
to find two positive numbers m, M such that 

(2.2) m__de t  Vf(x) <=M for all x ~  S .  

The set C l d ( S )  can be made into a metric space by using, for example, 
the metric 

(2.3) d ( f l ' f 2 )  := [ ~  l f l ( x )  - f 2 ( x ) ' 2  dx + I IV f l (x )  - Vf2(x)12 

associated with the norm of  the Sobolev space H 1 ( ~ ) .  The resulting metric 
space is not complete. For example, if g~ is one-dimensional and 
d =  ( - 1 ,  1), the function f defined by 

[2xX f~ 0 < x < l  (2.4) f ( x )  :=  ' 
for - 1  < x < O  

does not belong to C l d ( d ) ,  because it is not continuously differentiable, but 
it can be obtained as the limit in H I ( ~ )  of  a Cauchy sequence in C l d ( S ) .  
This circumstance is very useful when one is interested in defining "generalized 
deformations"  to be used, for example, as weak solutions for boundary-value 
problems. However, not all limit elements of Cauchy sequences are of interest. 
For example, the sequence n ~ fn defined by 

X 
fn(x)  = , - 1  < x < 1, 

n 

is a Cauchy sequence whose limit is a constant function. Constant functions 
do not represent desirable deformations, because they map J into a single 
point. This suggests that a desirable set of  generalized deformations should 
be a proper subset of  some completion of C l d ( S ) ;  we shall develop this idea 
in Sections 4 and 5 in the more general context of deformations allowing for 
fractures in the body. 

3. Simple deformations 

The main concept that we introduce in this section, that of  a simple defor- 
mation, describes the geometrical changes associated with the formation and 
growth of  cracks in a continuous body. Namely, we wish to describe the for- 
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mation of cracks in an initially uncracked body, as well as the growth and 
the opening of the existing cracks in an initially cracked body. Fit regions are 
not adequate for this purpose. Indeed, property (ii) of fit regions (a fit region 
is regularly open) excludes regions representing a body containing unopened 
cracks. Moreover, functions that extend to Cl-diffeomorphisms of ~ are not 
adequate for describing the discontinuities in displacement associated with the 
opening of a crack. For these reasons, we relax the regularity requirements on 
deformations made in the preceding section. The following definition provides 
a generalization of the notion of a fit region that includes the possibility of 
unopened cracks. 

3.1. Definition. A subset S of ~ is a piecewise fit region if it is a finite union 
of fit regions. 

For example, the open set 

= <:1} (3.1) S : =  ( ( - 1 , 1 )  x ( - 1 , 1 ) )  \ {(x, 0 ) ~ R 2 l - � 8 9  

is not a fit region in [R 2 because it is not regularly open. Indeed, 
int clo S = ( -  1, 1 ) x ( -  1, 1 ) =t= sr However, sr is the union of the two fit 
regions 

(3.2) S I  :=  S \  {(x, y) fi IR2I _ 1  _< x__<l, - 1  -5_ y - 01, 

�89 <!  1/, (3.3) ,SgJ2 : = ,5;ge\ { (X, y)  E R2 I - _ < _ X = 2 , 0 ~ y = <  

and, therefore, is piecewise fit. Properties (FI) - (F3)  of fit regions have the 
following counterparts for piecewise fit regions: 

(PF1) Intersections and unions of finitely many piecewise fit regions are 
piecewise fit. 

(PF2) CLdiffeomorphisms of 8 ~ map piecewise fit regions into piecewise fit 
regions. 

(PF3) For almost every line L parallel to a given direction, to within a set of 
one-dimensional measure zero, the intersection L n S consists of finite- 
ly many pairwise disjoint closed intervals. 

Properties (PF1) and (PF2) are direct consequences of Definition 3.1, and 
(PF3) will be proved as a part of the proof of Theorem 3.8. In comparing 
(PF1) with (FI) we see that the class of piecewise fit regions is closed both 
under finite unions and finite intersections, whereas fit regions are closed only 
under finite intersections. Let us also recall that, when we speak of a finite 
union of fit regions, one or more of the fit regions may consist of infinitely 
many connected components. However, when go is one-dimensional, every 
piecewise fit region is a finite union of bounded open intervals. 

We interpret the region S in (3.1) as a two-dimensional body with an 
unopened crack. Moreover, we interpret the replacement of the region 
( - 1 ,  1 ) x  ( - 1 ,  1) by S as the creation of the unopened crack 

~:=  ((-1, i ) x  ( -1,  1)) \  S. 
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More generally, when describing the deformation of a fractured continuum, 
one must prescribe two elements: the crack created in the deformation and 
the position occupied after the deformation by each point of the body which 
is not on the crack. To this end, we make the following definition. 

3.2. Definition. Let d be a piecewise fit region in ~. A simple deformation 
from S is a pair (K , f ) ,  where x is a subset of S a n d f  is a mapping from 
S \  K into if, with the following properties: 

(Sid 1) vol K = 0. 
(Sid 2) f is injective. 
(Sid 3) S \  tc is the union of finitely many fit regions such that the restriction 

of f to each of the fit regions is a classical deformation. 

A finite collection A : =  { ~  [ j  ~ {1 . . . .  J}} of fit regions satisfying (Sid 3) 
for a simple deformation (x, f )  from S is called admissible for (K, f ) .  We 
may think of f as a "piecewise classical deformation" in which each 
undergoes the classical deformation 

(3.4) j~ : = f is 0 . 

Notice that not only S but also S \  ~c is a piecewise fit region, as is clear 
from (Sid 3). Moreover, (Sid 3) combined with the property (F3) of fit regions 
ensures that the image of S \  ~c under f is piecewise fit. Indeed, by (F3), the 
image of S j  under fj is a fit region, so that the set 

(=Ul 4 J J f ( S \  K) = f  = U f ( ~ )  = U j ~ ( ~ )  
j j= l  j= l  

is piecewise fit. Although f need not extend to a C l-diffeomorphism of ~, 
nevertheless, (Sid 2) and (Sid 3) imply that f is a Cl-diffeomorphism. It is 
also an easy consequence of (Sid 3) and Proposition 2.2 that for any simple 
deformation (K, f )  from S there are positive numbers m, M such that 

(3.5) m<=detVf(x)<=M, m<_[Vf(x)I<_NM, for all x~ S \ K .  

Because S is piecewise fit, it can describe a body with unopened cracks. 
When K :# 0, S \  t< describes a body in which new cracks have been added 
to the pre-existing ones. 

We denote by S i d ( S )  the collection of all simple deformations from 5~ 
and by Sid the set 

(3.6) Sid :=  {0c, f )  ~ S i d ( S )  I S i s  piecewise fit}. 

Clearly, for each classical deformation f, the pair (0, f )  obeys (Sid 1)-(Sid 3). 
Therefore we can regard each element of Cld as an element of Sid, and thereby 
identify Cld with a subset of Sid. 

An important subclass of Sid is provided by piecewise affine simple deforma- 
tions. These are defined to be the simple deformations for which there exists 
an admissible collection A such that each restriction fj in (3.4) is affine. 
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When ~ = R and S is an interval of the real line, for a piecewise affine 
deformation (~c,f), tr consists of a finite number of points xk, k ~ {1...  K}, 
in S ,  and the restriction fk of f to each interval (xk, xk+l) is of the form 

3~(x) :=  ak + bkX, xk < X < Xk+l , 

with ak, bk constants chosen in such a way that f is injective and orientation- 
preserving. The intervals (Xk, Xk+i) then form an admissible collection for 
(x, f ) .  Indeed, each interval is a fit region; moreover, each of the restrictions 

A can be extended to the affine function x ~ ak + bkx, which is an orienta- 
tion-preserving Cl-diffeomorphism of •. As a first example of a piecewise 
affine deformation, take S to be the interval (0, 1), take K to be the set 

(3.7) a n : = [  h hE{ l ,  2 . . . .  n - 1 }  1 ,  

and take f to be the broken ramp function 

k k k + l  
(3.8) s n ( x ) : = x +  , -- < x < - - ,  k~{0, 1 . . . .  n - l / ,  

n n n 

with n a given positive integer. A related three-dimensional example which we 
shall use later is that of the deck of  cards, in which we take S to be the unit 
cube (0, I ) x  (0, 1 ) x  (0, 1), and K to be the set 

(3.9) rn :=  (0, 1) X (0, 1) xa= 

with an given by (3.7). This corresponds to slicing the cube with equidistant 
planes perpendicular to the x3-direction. Finally, we take f to be the function 

(3.10) tn(Xl, x2, x3) :=  (Xl + sn(x3) - x3, x2, x3), 

with sn given by (3.8), which assigns to the k th "card"  a rigid translation of 
amount k/n  in the xl-direction. 

An example of a deformation with fracture which is not a simple deforma- 
tion is supplied by cavitation. For ~ = 1;72, let S be the unit disc, let K be 
the singleton consisting of the center of the disc, and let f be the mapping 
which maps the point with polar coordinates (r, r into the point with polar 
coordinates 

(3.11) f ( r ,  (o) = ( h ( r )  + c, (o), 

where c is a positive constant and h is a continuously differentiable mapping 
of (0, 1) into the reals that is monotone increasing and has right-hand limit 
h ( 0 +  ) > - c .  If we compute the (n(0-component of the gradient, we find 

h( r )  + c 
(3.12) ( V f ) ~  - 

r 

Thus, (Vf)0~ tends to +c~ as r -+ 0. If  (K , f )  were a simple deformation, 
then by (Sid 3) there would be an admissible collection A of fit regions 5Sj 
such that the restriction f j  of f to each S j  is a classical deformation. Since 
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A is finite, the center of d belongs to the closure of at least one of the ~ .  
For the corresponding f j ,  the gradient is unbounded by (3.t2), and therefore 
there is no extension of fj  to a Cl-diffeomorphism of R 2. Thus, (Sid 3) is 
violated and (~c,f) is not a simple deformation. 

We wish now to establish for simple deformations counterparts of proper- 
ties (D1)-(D3) of classical deformations. A counterpart of (D1) is supplied 
by (Sid 2). The properties (D2), (D3) concerning the composition and the in- 
verse require the definition of the corresponding operations in the class of sim- 
ple deformations. Let us begin with the definition of composition. 

3.3. Definition. Let Z be a piecewise fit region of ~, let ( i ,  f )  be a simple 
deformation from S and let (H, h) be a simple deformation from f ( S \  i ) .  
Then the composition of (p, h) and ( i , f )  is the pair 

(3.13) (H, h) o (if, f ) : =  ( i  u f - l ( g ) ,  h ~  [~e\(xuf-~(,))). 

In the definition we have used the fact that, in a simple deformation ( i ,  f ) ,  
the image of S \  i under f is a piecewise fit region. We are now in position 
to prove a counterpart of property (D2) for simple deformations. 

3.4. Proposition. Let S ,  ( x , f )  and (H, h) be as in Definition 3.3. Then the com- 
position defined in (3.13) is a simple deformation from H. 

Proof. We have to prove that the pair ( i  u f - l ( t t ) ,  h of [se\(Kuf-~(a))) has 
the properties (Sid 1)-(Sid 3). (Sid 1) is satisfied, because by assumption i 
has zero volume, and because f - l ( p )  has zero volume as it is the image of 
a region with zero volume under a mapping f -1  which satisfies (3.5)1. To 
prove (Sid 2), it is sufficient to remark that h of [.~\(K~f-X(]/)) is a composi- 
tion of two injective mappings. To prove (Sid 3), take collections A~, A2 of 
fit regions S l j ,  j E {1, . . . ,  J}, S2p, p s {1 . . . .  , P], admissible for ( S \ i , f )  
and ( f ( S \  i )  \ / l ,  h) respectively. The collection 

A : =  [sgg'lj n f j - l ( d 2 p ) I  j ~ [1 . . . . .  J} ,  p s [1 . . . .  , P}} 

then is admissible for ( S \  ( i  u f - l ( t z ) ) ,  h of [d\ (Kuf-l(tt)) ). Indeed, A is 
finite and is made up of fit regions, because S l j ,  f j - l (d2p)  are fit, and the 
intersection of fit regions is fit. Moreover, since 3~ and hp are classical defor- 
mations, so are their restrictions to the fit regions S l j n f j - l ( d 2 p )  and 
f j ( S l j )  n $ 2 ; ,  respectively. Hence, the restriction 

(h of)lss,j  Nfj--1 (~2p) = h I fj(SC'lj ) N ~ 2  p 0 f l~lj (~fj--1 (~2p) 

of h of to each element of A is the composition of two classical deformations 
and, therefore, is a classical deformation. [] 

The definition of composition of simple deformations permits us to state 
the following decomposition theorem for simple deformations. 
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3.5. Proposition. Every simple deformation (x, f )  from S admits the &composi- 
tion 

(3.14) ( x , f )  = ( 0 , f )  o (K, i e \x ) .  

Moreover, the pairs (O, f )  and (tr i s \ x )  are simple deformations from 5Z \  Ic 
and S ,  respectively. 

Proof. If (0, f )  and (K, is\K) are simple deformations, then (3.14) follows 
from the definition (3.13). Thus, we have only to prove that ( 0 , f )  and 
(K, i s \x )  are simple deformations. (x, i s \x)  is a simple deformation from 
S because x satisfies (Sid 1) by assumption and the identity mapping satisfies 
(Sid 2) and (Sid 3). (0, f )  is a simple deformation from S \  1< because d \  x 
is piecewise fit, the empty set has volume zero, and f satisfies (Sid 2) and 
(Sid 3) by assumption. [] 

Because the simple deformation (x, i s \x )  describes the creation of a new 
crack site K and leaves every point of the body fixed, we call it a pure cracking. 
In contrast, (0, f )  is a simple deformation which does not involve the creation 
of a crack, and we call it a deformation without cracking. It is not difficult to 
see that, for a deformation without cracking (0, f ) ,  the mapping f is a 
classical deformation from S \  K only if the domain d \  x is a fit region. In 
the terminology just introduced, the decomposition in (3.14) can be expressed 
as follows: every simple deformation is the composition of a pure cracking and 
a deformation without cracking. There is only one simple deformation from S 
which is both a pure cracking and a deformation without cracking, and this 
is the identity deformation (0, i s ) .  

If (tc, f )  is a simple deformation from S ,  it is natural to define right and 
left inverses of (1c, f )  as pairs which, when composed with (tr f )  according 
to (3.13), result in the identity deformation: 

(3.15) 
(2, l) o (~r = (0, i s ) ,  

( K , f )  o (p, r) = (0, i f ( s \x )  ). 

The question of the existence and uniqueness of right and left inverses for a 
simple deformation is answered by the following proposition. 

3.6. Proposition. Let (K, f )  be a simple deformation from S .  A right inverse 
(p, r) and a left inverse (2, l) exists if and only if K = O. In this case, 

(p, r) = (2, l) = (0, f - 1 ) .  

Proof. If  K = 0, then by composing the pair (0, f -1) with (0, f )  we con- 
clude that ( 0 , f  -1) is both a right and a left inverse for (0, f ) .  Conversely, 
assume that a left inverse (2, l) of (K , f )  exists. Then from (3.13) and (3.15) 
it follows that 

1r u f - 1  ()~) = 0 ,  
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and this implies that ~c = 0 and f - l ( )~ )  = 0. On the other hand, because 2 
is a subset of  f ( S ) ,  it follows that f - l ( 2 ) = 0  implies 2 = 0 .  Because 
2 = K = 0, we obtain again from (3.13) and (3.15) that 

I of  = i~, 

i.e., I = f - 1 .  Following the same lines we can prove that, if a right inverse 
(p, r) exists, then ~r = p = 0 and r = f - i .  [] 

With this proposition we have proved that right and left inverses exist only 
for simple deformations without cracking. If  they exist, they are unique and 
coincide, and we can speak simply of the inverse of a deformation without 
cracking. It is natural to refer to simple deformations without cracking as in- 
vertible simple deformations and to write Inv Sid for the set of invertible simple 
deformations. 

With reference to the decomposition (3.14), we see that only the factor 
(~r ig\~)  does not have, in general, an inverse. This reflects the irreversibili- 
ty attributed to the process of  formation of a crack. For simple deformations, 
the property (D3) of classical deformations is replaced by: the inverse of a sim- 
ple deformation, whenever it exists, is a simple deformation. This property is 
established in the following proposition. 

3.7. Proposition. The inverse of an invertibIe simple deformation (0, f )  from 5J 
is a simple deformation from f ( S ) .  

Proof.  (S id l )  and (Sid2) are verified trivially for ( ( 0 , f - 1 ) .  To verify 
(Sid 3), we take an admissible collection A for (0, f )  and consider the collec- 
tion 

a ' : = [ f ( ~ j ) l j  E{1 . . . . .  J}}. 

Each f ( S j )  is a fit region. Moreover, because f l~r i is a classical deformation 
with range f ( S j . ) ,  its inverse exists and is a classical deformation from 
f ( S j ) .  Thus, A'  has the properties required by (Sid 3). [] 

The last result in this section is a more technical one: we show that the 
fundamental theorem of  calculus applies to simple deformations. 

3.8. Theorem. Let 5S be a piecewise fit region of ~, let (to, f )  be a simple defor- 
mation from S ,  and let ~ be a unit vector in ~$. For almost every line L parallel 
to ~ the following properties hold: 

(i) To within a set of one-dimensional measure zero, L n ~r \ • consists of 
finitely many pairwise disjoint closed intervals Iq, q E [1 . . . . .  Q}. 

(ii) For every q ~ {1 . . . .  , Q}, f Isqn~\~c extends to a piecewise continuously 

differentiable function f e on Iq. 
(iii) For every q ~ {1 . . . . .  Q} and every x, y ~ Iq with y = x + lY - x[ ~, the 

fundamental formula of calculus 

ly-xl 
(3.t6) f ( y - - )  - f ( x + )  = I V f ( x  + t<z) ~ d t  + ~ ( f ( z + )  - f ( z - ) )  

0 
z 
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holds, where z runs through the points of discontinuity o f f  e in (x, y) and 
f ( w + )  and f ( w - )  denote the right and left limits (with respect to c~) 
o f f  at w, respectively. 

Before proving this theorem, we introduce a subdivision B of d \  x which 
will be useful in subsequent developments, and we prove some properties of 
B. Let [ ~ [ j ~  {1, . . . ,J}} be an admissible collection for ( x , f ) ~  S id (S ) .  
Then B is the collection {~lJ  ~ [1 . . . . .  J}} defined recursively by 

~1:= S1, 
(3.17) (., ~ j : = i n t  \ , j ~ { 2  . . . . .  J}. 

=1 

3.9. Lemma. The subdivision B has the following properties for each j,  k 
[1, 2 . . . . .  J}: 

(i) ~ C S j ,  and ~.  n ~ = 0 if j =~ k. 

(ii) ~ j  is a fit region. J 
(iii) U ~ j  differs from S \  K by a set of volume zero. 

j=l  

Proof  of  Lemma 3.9. Property (i) follows directly from the definition of B. 
To prove (ii) we proceed by induction, observing that ~1  = d l  is fit. Let 
j~{2 . . . . .  J} be given and assume that 2 p  is fit for a l l pe{1  . . . . .  j - 1 1 .  
Then int (S j  \ ~p)  is fit because the interior of the difference of fit regions 
is fit [17]. Moreover, 

= int \ = int n ( ~  \ 2 p )  = n int ( Hj  \ ~p). 
p=l p=l 

Therefore, ~ is fit because it is the finite intersection of fit regions. To 
prove (iii), we first introduce the notation 

(3.18) ~ ~ ~.~ 

to mean that two subsets S ,  ~ of 8: differ by a set of volume zero, and 
we proceed again by induction. Clearly, 2 I  ~ d l  by (3.17). We let 

J J 
j ( {1, 2 . . . . .  J - 11 be given and assume that U ~.~p ~ U alp. We now can 
write p=l p =1 

j+l  ( O~j~p t ( O ~.~pt (5~j pLJ= ~_.~p) U @ =  u ~ + l =  u i n t  +1\ 
p=i p=l p=l 1 

0 U +1 \ L)=I p=l ; = ~ ~ , 1  = U . G .  
p=l 1 p 

Here we have used the fact that int S ~ S whenever v o l ( b d y S )  = 0, as is 

t h e c a s e f ~  ~ and ( 0  ~ u S S j + l ' w h ~ 1 7 6  o=I 
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aries are subsets of the set 
region @ is fit. [] 

j+l 
U bdy @ having volume zero, because each 

p=l 

Proof  of  Theorem 3.8. Take an admissible collection A for (K, f )  and consider 
the subdivision B defined in (3.17) in terms of A. Consider first the region 
2 1  of B; since ~ is fit, it follows from (F3) that, for almost every line L 
parallel to ,z, 

Q1 
(3.19) L c~ ~ 1  ~ O Iq1,1 

ql=l 
1 

with Iql,1, ql ~ {1 . . . . .  Q1}, closed pairwise disjoint intervals. Here ~ is the 
counterpart in one dimension of the symbol -- defined in (3.18). Among all 
lines satisfying (3.19), we select those for which 

Q2 
(3.20) L ~ ~ 2  1 [,.) iq2, 2 

q2=1 

with Iq2,2, q2 ~ {1 . . . . .  Q2}, closed and pairwise disjoint. Since ~ 1  and 5~2 

are disjoint, the interior of each interval lq~,~ is disjoint from the interior of 
each interval Iq2,Z. Again by (F3), almost every line L parallel to e satisfies 

simultaneously (3.19) and (3.20). Proceeding recursively, we find that almost 
every L parallel to e satisfies 

(3.21) r (-3 ~ 1 qj~'J.=l Iqj,j for all j6{1 ,  . . . , J } ,  

with /qj,j, qj ~ {1 . . . . .  Qj}, j ~ {1 . . . . .  J}, closed intervals with pairwise dis- 
joint interiors. Denote by lq, q ~ {1 . . . .  Q} the connected components of the 

j ej 

finite union U LI Iqj,j. It follows from (3.21) that 
j=l qj=l 

J J Qj O 

(3.22) j=IU ( t  (3 ~ j )  1 j=l ~) qj~--.=l Iqjj=2' 11q. 

In order to prove (i), it is sufficient to prove that 

J 
(3.23) U ( L n  3 j )  1Lc~5~C\K 

j=l 

for almost every line L parallel to 6. To do this, we observe that, by the asser- 
tion (iii) of the preceding lemma, 

(3.24) VOI [( 5~\ K) ~ (j=~ ~-~j) ] --= O, 

and that, by Fubini's Theorem, almost every line parallel to a given direction 
intersects each set of volume zero in a set o f  one-dimensional measure zero. 
Therefore, (3.23) holds for almost every line to which (3.22) applies. This 
proves the first assertion. 
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To prove (ii) it is sufficient to consider the restrictions of f to each ~ .  
As we know from (Sid 3), they are classical deformations, and therefore they 
extend to CLdiffeomorphisms fj of the whole space ~'. It is sufficient to set 

fj.(x) f o r x ( i n t l q j j  for qj6{1 Q j } , j 6 { 1  J}, 

= forf~ iq, U in I int' 

to get a piecewise continuously differentiable extension of f to Iq for each 
q ~ {1, . . . ,  Q}. Indeed, f~ (x )  = f j ( x )  for each j ( D . . . . .  J}, q1 ~ {1 . . . .  Qfl, 
and x ~ int Iqi J. Moreover, Iq is a finite union of intervals Iqj,j, and each f:- 

has a continuously differentiable extension to Iqj,j. At this point,  (iii) follows 

from the fundamental formula of  calculus applied to each [wi, wi+l] :=  
lq:,j n Ix, y]: 

Iwe+~-wi[ 
(3.26) fj(wi+~) -- fj(wi) = ~ Vfj(w~ + te) ~ dr, 

o 

for all i~ {1 . . . . .  Qj}, and from the observation that, for every j E {5 . . . .  , J}, 
fj  is defined in the whole space and that ) ~ ( x ) = f ( x )  and g f j ( x ) =  Vf(x)  
almost everywhere in lq~,j. Therefore, V~ can be replaced by Vf in (3.26). 
Moreover, 

fj(wi) = f ( w i + ) ,  J~(Wi+I) =f(Wi+l--) ,  

SO that ttie addition of  (3.26) over all intervals Iqj,j forming Iq leads to 
(3.56). [] 

4. Limits of simple deformations 

We have introduced simple deformations (K, f )  in order to describe the 
creation and opening of cracks. This corresponds to the idea we have of  
macroscopic fracture: we think of K as the site of  new macroscopic fractures 
that are revealed through the discontinuities of  f across ~c. 

Our purpose in this section is more general: we wish to describe deforma- 
tions for which fractures are allowed to diffuse throughout the body. This pro- 
cess of  diffusion is obtained here from a limiting procedure on sequences 
n ~ (tcn,f~) of  simple deformations. 

4.1. Definition. Let S be a piecewise fit region of  ~. By Lira S i d ( d )  we mean 
the set of all triples (ir g, G), with ic C S ,  g ~ L ~ ( H ,  ~ ) ,  G~L~ Lin ~ ) ,  
for which there is a sequence n ~ (tCn,fn) in S i d ( d )  such that 

(i) K = lim inf Kn, 
/ ~ - + o o  

(ii) lim tig -f~]lL~(~,~) = O, 

( i i i )  lim II G - V f n l l L ~ ( ~ , g i n ~ )  = 0 .  
n --~oo 
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We denote by Lim Sid the set 

(4.1) Lim Sid : = { (/r g, G) E Lim Sid ( S )  I 5g is piecewise fit}. 

We call each element of Lim Sid a limit o f  simple deformations. If (K, g, G) 
L i m S i d ( S )  and if n ~ (~c~,f,) is a sequence in S i d ( S )  satisfying (i)-(ii i)  
in the above definition, then we say that n ~ (Kn, fn) determines (K, g, G). 
In (i), by lira inf ~cn we mean the set 

n---+ ~ 

(4.2) 1<:= 0 A K n. 
p=l  n=p 

This is the set of all points x of S for which there exists a p such that x ~ Ion 
for all n =>p. We recall that, by (Sid 3), each S \  I< n is the union of finitely 
many regions ~ such that the restriction of  fn to each ~ extends to a 
CLdiffeomorphism of ~. This implies that both fn and Vfn are bounded. 
Since K n has volume zero by (Sid 1), it follows that fn and Vfn can be iden- 
tified with elements of  the Lebesgue spaces L~~ ~ )  and L ~ ( S ,  Lin ~ ) ,  
respectively. 

The space Sid imbeds naturally into the space Lim Sid. Indeed, to each 
(K, f )  ~ Sid we can associate the element (K, f ,  Vf) of Lim Sid determined by 
the constant sequence n ~ ( K , f ) .  The fact, made evident by the following 
examples, that there are elements (K, g, G) of  Lim Sid with V g .  G shows 
that the imbedding of  Sid in Lim Sid is not surjective. 

4.2. Example. Let g~= JR, S =  (0, 1) and, for each n ~ N, take (Kn,fn) to be 
the pair (an, sn) defined by (3.7) and (3.8). It is easy to see that the 
sequence n ~ (on, sn) determines the triple (K, g, G), where tc is the empty 
set and g and G are given by 

(4.3) g ( x )  = 2x, G(x )  = 1, 0 < x < 1. 

4.3. Example. Consider the subsequence n ~ ( K 2 n , f 2 n )  Of the broken ramp 
sequence. Since each set K2n consists of dyadic rationals in (0, 1) and since 
Kzn C/~2 m for every n _< m, the set K consists of all dyadic rationals in (0, 1). 
On the other hand, the L~ of n ~ fzn and n ~ Vfzn are the functions 
defined in (4.3). We conclude that the dyadic broken ramp sequence deter- 
mines the triple (~, g, G), with ,c the set of all dyadic rationals in (0, 1) and 
g, G given by (4.3). 

Three-dimensional counterparts of the above examples are given by se- 
quences of "decks of  cards" constructed by using the sets rn and the func- 
tions tn defined in (3.9), (3.10). The last example shows that S \  I< is not, in 
general, a piecewise fit region; indeed, the complement of the dyadic rationals 
is not an open subset of  (0, 1). The same example also illustrates the follow- 
ing property of  limits of simple deformations. 
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4.4. Proposition. I f  a sequence n ~ (K~,f~) determines a triple (tc, g, G) in 
Lira Sid, then each subsequence determines a triple (K', g' ,  G')  in Lira Sid with 
g '  = g, G'  = G and to' D K, the inclusion being strict, in general. 

Of the next two examples, the first shows that Lim Sid includes triples in 
which the second entry may be a function as nasty as the Cantor function. 
The second shows that, if n ~ (K,, fn) determines (Ir g, G) and if all the f~ 
are of  bounded variation, then g need not be of bounded variation. 

4.5. Example. Let ~ =  N, d =  (0, 1), and let ~0 be any continuous non- 
decreasing map of  (0, 1) onto itself. For each n ~ N consider the points Xh, 
h ~ {0, 1 . . . . .  n}, defined by 

(4.4) x 0 : = 0 ,  x h : = m i n [ x ~ ( 0 , 1 ) ( 0 ( x ) = h l ,  h~{1 . . . . .  n}. 

That  there is at least one x such that q~(x) = h/n  is ensured by the fact that 
~0 is continuous and surjective. Define n ~ ( tcn,f , )  as follows: 

K n :~--  [ X l ,  . . .  , X n - 1 } ,  

h 
f ~ ( x ) : = x + - - ,  x h < x < x h + l ,  he {O ,  1 . . . . .  n -  1}. 

f /  

Each (K,, f~) is a piecewise affine simple deformation. Moreover, n ~ (K n, fn) 
determines a triple (K,g, G) in L imSid ( s J ) .  Indeed, V f n ( x ) =  1 for all 
x6  S \~ r  so that the L =-limit of Vf~ is the constant function 
x ,--, G(x )  = 1, and n ~ fn has as an L~ the function f ( x )  = x + ~o(x). 
To see this, note that by (4.4), 

f ~ ( x )  - x = ~O(Xh) 

for every x e  (xh, xh+~) and he{O, 1 . . . . .  n - l } ,  so that, in view of the 
monotonicity of (p, 

0 = x + (O(Xh) - - f n ( x )  <-- X + (O(X) - - f n ( x )  <= X + (O(xh+l) - - f n ( x )  
1 

= ~ o ( x h + l )  - ~ O ( X h )  = - .  
n 

It is now sufficient to observe that the Cantor function has all the properties 
assumed for ~ in order to conclude that (~c, g, G) may have as its second entry 
the identity plus the Cantor function. 

4.6. Example. Let ~ =  JR, 5 J =  (0, i) and let (Kn,fn) be the piecewise affine 

K n : ~  

f . ( x )  : = 

deformation: 

I 1 1 1 1 
2 '  3 . . . . .  2 n + l  ' 

I~ 1 if 1 1 - - -  < x <  h~{l, 
h 2 h +  1 ~ '  " 

otherwise. 

�9 . ,  n } ,  
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It can be verified that each fn is injective, and that n ~ fn and n ~ Vfn have 
L=-limits that we denote by g and G. The total variation of fn is 

and that of  g is 

V(fn) = 1 + 2 ~ < +oo, 
I L  

h = l  

V(g)  = lira V(fn) = + c o  
n ~-~ Oo  

Therefore, each f .  is of  bounded variation, but g is not. 

In Section 3 we showed that the function defined in (3.11) and representing 
cavitation is not a simple deformation. The following example shows that such 
a function may represent the second entry of  an element of  LimSid. For 
simplicity, we restrict ourselves to the special case h (r) = r. 

4.7. Example. Let 5~ be the unit disc of tR 2 without its center, and let 
n ~ (~Cn,fn) be the sequence defined by 

Xn:=[x]r(x)~ (0,1), ~0(x)= 2rch h ~ { 0 , 1 ,  n - l ~  
n 

f .(x):=x+c(cos2~h s i n 2 ~  2 . h  2~z(h+l )  , , - - < ( p ( x ) <  , h~10,1 . . . . .  n - l } .  
n n 

Here c is a positive constant, and r(x) and r  are the polar coordinates 
of  x. Each f .  represents the piecewise rigid deformation in which each sector 
2rch/n < ~0(x)< 2~z(h + 1)/n experiences a translation of amount  c in the 
radial direction ~0 = 2~h/n. 

It is easy to verify that each ( t c . , f . )  is a simple deformation from d and 
that the L~%limit of  n ~ Vf. is the constant function G(x) = L Moreover, 
the sequence n ~ fn converges in L ~176 to the function g given by 

g(x) : = x  + c(cos~0(x), sin~0(x)). 

Indeed, by direct computation we find that 

[ fn (x ) -g (x ) l=2c  sin 2~h ~o(x < c  - - - ~ o ( x )  ____-- 
2 \ n  = n n 

Our arguments prove that cavitation can indeed represent the second item of 
an element (K, g, G) of  Lim Sid. It is also interesting to remark that, in the 
present example, ~c turns out to be the set 

K = {x ~ sol r (x)  ~ ( 0 ,  1 ) ,  O(x) = 01.  

In general, it is not possible to compose limits of  simple deformations. 
However, it is possible to compose a limit of  simple deformations with a sim- 
ple deformation, and the result is a limit of simple deformations. 
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4.8. Definition. Let ( x , f )  ~ S i d ( S ) ,  and let (/z, h, H) ~ L i m S i d ( f ( S \  x)) .  
Then the composition of (/~, h, H) with 0c, f )  is the triple 

(4.5) (p, h, H) o (K, f )  

:=  (K t g f - l ( p ) ,  h of  [.e\(<uf-~(~)), (H of [ ~ , \ ( ~ u f - ~ ( t t ) ) )  Vf [ ~ \ ( ~ t 3 f - ' ( p ) ) ) "  

4.9. Proposition. Let (to, f )  ~ S i d ( S )  and (p, h, H) ~ L i m S i d ( f ( ~ \  x)) .  It 
follows that (p, h, H) o (~c,f) ~ L i m S i d ( d ) .  Specifically, for each sequence 
n ~ (p~, h~) ~ S i d ( f ( S \  K)) that determines (IZ, h, H), the sequence 

n ~ ((fin, hn) o (~c,f)) = n  H (it u f - l ( f l n ) ,  h n ofld.\(~cuf-~(..))) 

determines (p, h, H) o 0c, f ) .  

Proof." We have 

l imin f  ( K u f - l ( p ~ ) )  = I~l A (K w f - l ( p ~ ) )  
n~oo p = l  n=p 

= K U -1(~/n = ~c u f  -1 /t = tr u f - l ( p ) .  
p = l  = 1 n 

Moreover, 

lim Ilh~ o f -  h ~  ]tL=(~,~) = l i m  tlh. - hllL~<f(~\~),~) = O, 

lira l] (Vhn of)  V f -  (H of)  V f  t]L=(~e, Lin~ ) 
n ~ O o  

In the remainder of this section, we establish a variety of properties of the 
elements of Lim Sid. 

4.10. Theorem. Let (x,  g, G) E LimSid(5~).  Then (i) tc has volume zero, (ii) g 
and G have representatives go and Go which are continuous on s ~ \  to. 

Before proving the theorem we state a lemma which shows that, in spite 
of the fact that the domains of the transplacements f~ depend upon n, a no- 
tion of uniform convergence can be established for n ~ f~. 

4.11. Lemma. Let n H ( tr fn) be a sequence determining (to, g, G) ~ Lim Sid (5~'). 
Then g and G have representatives go : S \ K --* ~, Go : H \  Ir -* Lin ~ such 
that n ~ fn and n ~ Vf~ converge uniformly to go and Go in the following sense: 
for every e > O, there is an N e ~ N such that 

(4.6a) sup [fn(x) - go(X)l < ~ for all n > Ne, 
x ~ d \  Ucuxn) 

(4.6b) sup [Vfn(x) - Go(x)[ < e for all n > Ne. 
x ~ \  (~CUXn) 
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Proof.  Let m, n ~ N. From the definition of the L~ 

[If.--fm[]Loo(se,~/)=inffl. r [ f . ( ~ ) - - f m ( ~ ) I  S/ 'C ~, vol~A/= 01 , 

From the continuity of  f .  and fm on S \  (K. w tom), it follows that 

(4.7) Hf.-fmlfLO~(z,r) >=lf.(x) - f ro (x ) [  for all x e  S \ ( ~ & U X m ) .  

By the definition (4.2) of  ~c, for each x e S \ I r  there is a subsequence 
n '  ~ ( t r  n '  e N '  C N, such that x ~ d \  K.,, for all n'. Thus, by (4.7) 
and by the fact that  n '  ~ f~. has an L~~ g, we conclude that  n' ,--. f.,(x) 
has a limit, and we set 

(4.8) go(X) :=  lira f..(x) for all x ~ d \  ~c. 
nt--~oo 

Let x be in S \  (it u K~). Then by (4.7), with m restricted to N' ,  in the limit 
for rn---> co we have 

(4.9) Ilf.  - g IIL=(~,~ ) = I f . ( x )  - go(X)l. 
I f  we choose N~ such that  the L~176 of  f n - g  is less than e for all 
n > N  e, then (4.6a) follows from (4.9). Moreover, 

II f ,  - g [[Loo(~e,v) > ] I f .  - go I IL~<~,~>,  

and taking the limit as n--*co in the last inequality we find that  
J i g -  goTlL~(g,~l = 0, i.e., that  go is a representative of  g. A similar p roof  
applies to G. [] 

P roof  of Theorem 4.10. By (4.2), K is a countable union of sets each of which 
has volume zero by (Sid 1). Thus, x has volume zero. We wish to prove that 
the representative go of g defined in Lemma 4.11 is continuous. Let 
n ~ (~c, ,f , )  be a sequence in S i d ( S )  which determines (K, g, G). By the 
lemma, for any fixed s > 0 we may choose N~ 6 ~q such that, for all n > N~, 

8 
(4.10) sup [ f , (~ )  - go(i)[  < - - .  

~se \  (Kux~) 3 

Let x 6 d \  x be given. Choose n ' >  Ne such that x ~ S X K . . ;  because f . ,  is 
continuous with open domain H X K . , ,  we may choose d > 0 such that 
3 ( x ,  5) C Z \  x~, and, for all y ( ~ ( x ,  5), 

(4.11) If.'(Y) - f . , ( x ) [  < - .  
3 

Let z ~ ~ ( x ,  5) c~ ( S \  lc) be given. Because ~ ( x ,  5) C S \ t c , , ,  we have 
that both x and z are in ( S \  (K,, w tc)) c~ ~ (x, &) and, by (4.10) applied 
to both  x and z and by (4.11) with y = z we obtain 

(4.12) 

Igo(x) -go(z)l <= Igo(x)-f.,(x)[ + If . , (x)--fn , (z)]  + Ifn'(Z) -go(z)l < a. 
A similar proof  applies to G. [] 
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4.12. Remark. As shown by Example 4.3, S \  K in general is not an open set. 
Theorem 4.10 establishes the continuity of  go on its domain S \  tc but does 
not guarantee that go has a continuous extension to an open ball centered at 
a given point x in S \  K. Nevertheless, relation (4.12) does restrict the oscilla- 
tion, and therefore the jumps,  of  go in ~ ( x ,  O) c~ ( S \  tc) to be no greater 
than 2e. 

4.13. Remark. It  is not true in general that go is in C 1, or even differentiable, 
at the interior of  S \  K. Indeed, referring to Example 4.5, choose the function 
~0 to be 

~o(x) = f O  for 0 < x < � 8 9  
(4.13) 

- 1 for �89 1. 

With this choice, 1< is the empty set and yet the function go :x  ~ x + ~o(x) 
is not differentiable at x = �89 

Some of the examples in this section show that, although the permanent  
crack site tc for a limit of  simple deformations (K, g, G) may be empty, the 
cracks sites I< n for a determining sequence n ~ (Kn,f , )  can diffuse 
throughout the region S .  We now wish to identify precisely the region affected 
by such diffusion and to investigate the fact that, in the above examples, 
Vg :# G at the points where such diffusion of fracture occurs. Consider a se- 
quence n ~ K n in S and define the set 

(4.14) A ( n  ~ K~) :=  clo K , 
p = l  n 

where the closure is taken relative to S .  This set is closed in S because it 
is the intersection of sets that are closed in S .  It  includes the set K defined 
in (4.2) and the inclusion is in general strict. For example, for the sequence 
(3.7) K is the empty set and A is the whole interval (0, 1). I f  two sequences 
in S i d ( S )  determine the same element of  Lim S i d ( S ) ,  the two sets A need 
not coincide. For example, the identity (0, id,  I~ )  of  L i m S i d ( S )  is deter- 
mined by the constant sequence n ~ (0, i~) ,  as well as by the sequence 
n ~ (an, i~\Gn), with an as in (3.7). In the first case A is the empty set, 
and in the second case it coincides with S .  The intersection of the sets 
A ( n  ~ tc n) taken over all sequences which determine a given (K, g, G) 
L i m S i d ( S )  is denoted by ~b(K, g, G). This set is closed in S and includes Ir 
The complement  of  q~(K,g, G) in S i s  denoted by 7t(tc, g, G). It  is the set of  
all points x fi S such that there is at least one sequence n ~ (~&, f~) E S i d ( S )  

co 

which determines (~c, g, G) and such that x belongs to the exterior of  U I< n. 
n = l  

T is an open set included in S \ K  and may be empty. T(K, g, G) and 
q5 (to, g, G) are called the unfractured zone and the fractured zone for  (K, g, G),  
respectively. In the above example with (K, g, G) = (0, ig ,  Ise), because there 
is a sequence determining (K, g, G) for which A = 0, we have q~ (K, g, G) = 0 
and therefore T(K, g, G) = S .  
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4.14. Theorem. Let (K, g, G) fi L i m S i d ( S ) .  Then, at all points of the unfrac- 
tured zone T(tr g, G), go is continuously differentiable and Vg o = Go. 

Proof. Let x E 7~(tc, g, G). Then there is a sequence n ~ (tc~,f~) in S i d ( ~ )  
which determines (K, g, G) and there is a neighborhood S ( x )  of x such that 

~e-(x) and ~J ~c~ are disjoint. Consequently, each f~ is of class C 1 at x and 
n = l  

the sequence of the derivatives Vfn converges uniformly to Go in d~(x). 
Under these conditions, a corollary of the mean value theorem (see, e.g., [2, 
Thms. 3.6.1, 3.6.2]) ensures that go is of class C ~ and that its derivative at x 
is Go(x). [] 

4.15. Theorem. Let (Ic, g, G) ~ L i m S i d ( S ) ,  and suppose that det Go(x) > 0 at 
each point x in the unfractured zone T(K, g, G). Then the restriction of go to 
T(tr g, G) is a CLdiffeomorphism. 

Proof. We first observe that the positivity of det Go together with the con- 
tinuity both of Go and the mapping of an invertible linear mapping into its 
inverse [15, p. 250] imply that Go 1 is defined and continuous on T(K, g, G). 
Therefore, for eachx ~ T(tc, g, G) and for each 5 > 0 such that clo ~ ( x ,  fi) C 
T(~c, g, G), there exists M = M(x,  fi) > 0 such that 

(4.15) 0 < ]Go(~)-l[ __< M for all ~ ~ clo 3 ( x ,  5). 

Let us prove now that go restricted to T(~c, g, G) is injective. Assume to the 
contrary that there are two distinct points x, y in ~g(x, g, G) such that 

(4.16) go(Y) = go(X). 

Since x e T(K, g, G), there is a sequence n ~ (K,,,f~) in S i d ( S )  which 
determines (~c, g, G) and a number 5 ~ (0, [y - x[) such that clo ~ ( x ,  5) fi 

T(K, g, G) and that clo 2 ( x ,  5) and U Kn are disjoint. Because, for each 
n = l  

n ~ N, fn is a CLdiffeomorphism of clo ~_~(x, 5), 2 ( x ,  fi) is mapped by fn 
onto a neighborhood of fn(x). Moreover, by (4.15) and by the uniform con- 
vergence of n ~ V f  n to Go in clo ~ ( x ,  5), there exists N~ N such that 
n > N implies 

[ V f [  1(~)[__<2M for all ~ ( c l o ~ ( x ,  5),  

and therefore [2, Prop. 3.3.1] 

]fn(~) - f n (x ) ]  ___ (2M) -1 [~ - x [  for all ~ ~ clo ~ ( x ,  d). 

Since a Cl-diffeomorphism maps the interior of its domain onto the interior 
of its image and the boundary of its domain onto the boundary of its image, 
we conclude that f~ maps ~ ( x ,  5) onto an open neighborhood of f~(x) 
which includes ~ ( f ~ ( x ) ,  (2M) -1 5). Consider now the point y which, by 
assumption, belongs to T(~c, g, G) and therefore to S \  K. Thus, there is a 
subsequence n ' ~  (K~,,f~,) of n ~ (Kn,f~) such that y belongs to all 
d \  tc~,. In view of (4.16) and of the property (4.6a) of uniform convergence of 



Structured Deformations of Continua 121 

n ~ f~ to go, for sufficiently large n' we have 

(4.17) ]fn'(Y) - f~ ' ( x ) l  _---[fn'(Y) -go(Y)]  + ]go(Y) - go(X)] +]go(X) - fn ' (x ) ]  

< (2M) -1 ~. 

Thus, y does not belong to ~ ( x ,  ~), but, for sufficiently large n', its image 
under f , ,  belongs to 3 ( f n , ( X ) ,  (2M) -1 O), and therefore to the image under 
fn' of ~ ( x ,  c~). This contradicts the injectivity of f~,. We conclude that (4.16) 
holds only if y = x, and this proves that the restriction of go to T(x ,  g, G) 
is injective. By Theorem 4.14, go is of class C 1 and Vg o = Go in T(K, g, G); 
moreover, the determinant of  Go is strictly positive by hypothesis. These 
conditions ensure that go is a Cl-diffeomorphism of T ( x , g ,  G), (see 
[2, Cor. 4.2.2]). [] 

4.16. Remark. 
in S \  clo K 
and let n ~ (a: n, f , )  be given by 

x n : = I h  h E { l - n ,  2 - n  . . . . .  

(4.18) , k 

n 
f~(x)  : = 

+ 1 +  k + n + l  
n 

That (4.15) does not imply that go is injective in • \  ir or even 
is shown by the following example. Let ~ = ~, S = ( - 1 ,  1), 

- 1 , 0 ,  1 . . . . .  n -  1 ~ ,  

k k + l  
for -- < x <  - -  

n n 

k k + l  
for -- < x <  - -  

, k e { 0 ,  1 . . . . .  n - l } ,  

, k ~ { - n ,  - n +  1 . . . . .  - 1 } ,  

Each pair (Kn,fn) is a piecewise affine deformation; in particular, fn is injec- 
tive because the image of (0, 1) under fn consists of the intervals (0, ~-), 

3 4 5 (~ ,  g ) ,  (~ ,  ~) . . . . .  and that of ( -  1, 0) consists of the intervals (~-, 2 ) ,  
(3,4 ~) . . . . .  which are all pairwise disjoint. The sequence (4.18) determines 
the triple (x, g, G) with K = {0}, go given by 

go(X) = f2x in (0, 1), 
{. 2 x + 2  in ( - 1 , 0 ) ,  

and Go(x) = 1. Therefore, (4.15) is satisfied, but go is not injective. 

4.17. Theorem. Let (K, g, G) fi L i m S i d ( S ) ,  and let x s S \  tc. Assume that 
there is an open neighborhood S ( x )  of x included in sd  such that go can be ex- 
tended to an orientation-preserving Cl-diffeomorphism ge on ~ff (x). Then 

(4.19) detGo(x)  <= det Vge(x). 

Proof.  Choose  ~ > 0 such that the ball 2 ( x ,  ~) is included in S ( x ) .  For each 
> 0, denote by ge(~.~(X, ~ ) ) e  the set 

g e ( ~ ( X  ' O))e  :._= U ~ ( g e ( ~ ) ,  e ) .  
~ ~'(x, ~) 
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Since e < s '  implies ge (2 (x ,  fi))e C ge (~ (x ,  5)) e' and since the intersection 
of  all ge(~(X, 5 ) )  e with e > 0 is the closure in ~" of ge (~ (x ,  5)), we have 
that 

(4.20) volge(3(x ,  5)) c =  v o l g e ( ~ ( x ,  5)) + ~ ( e ) .  

Because ge is an orientation-preserving Cl-diffeomorphism, (4.20) can be 
written as 

(4.21) volge(~.~(x, 5)) e = ~ det Vge(~) d~ + G(e ) .  
~(x, 5) 

Choose a sequence n ~ (Kn,fn) in S i d ( d )  which determines (K,g, G). 
Then there is an N~ 6 N such that for all n > N~, 

(4.22) [[fn -g[IL~(~,Y)+I[  V f n -  Gl]L~(g, Lin~) < e. 

For each such n, by (4.22), by the definition of  the set ge(G/(x, 5)) e, and 
by the fact that ge is an extension of  g, it follows that 

f~( ~ ( x ,  5) \ Kn) s ge( ~ ( x ,  5)) e, 

so that, by (4.21), 

(4.23) v o l f ~ ( ~ ( x ,  5 ) \ K , ) _ <  ~ det Vg~(~) d~ + d~(e). 
~(x, ~) 

Since fn is an orientation-preserving Cl-diffeomorphism of the open set 
S \  tc~ and since tc~ has volume zero, 

v o l f ~ ( ~ ( x ,  5 ) \ K ~ )  = ~ detVfn(~) d~ = ~ detVf~(~) d~. 
9(x, 5) \ tc n 2(x, 5) 

On the other hand, by (4.22), for the representative Go of G we have 

v o l f ~ ( ~ ( x , O ) \ t c , )  = ~ detGo(~)d(+ G(e), 
~'(x, 5) 

and, by (4.23), 

det Go(~) d~ < l detVge(~) d~ + G(e ) .  
2(x, ~) ~(x, 5) 

Because e is arbitrary, we conclude that 

det Go(~) d~ <= ~ det Vg~(~) d~. 
~'(x, 5) ~(x, 5) 

It is clear that 5 can be replaced by an arbitrary positive number O' less than 
5. Then, by letting 5' tend to zero and using the continuity of  G O on S \  1r 
we obtain (4.19). [] 

4.18. Remark. If  x belongs to the interior of 5 J \ K ,  Theorem 4.17 has the 
following consequence: assume that go is of class C 1 in a neighborhood of 
x and that det Vgo(X) > 0. Then 

(4.24) det Go(x) - det Vgo(x). 
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The last result in this section is an extension to Lira Sid of  the fundamental 
formula of  calculus for simple deformations proved in Theorem 3.8. 

4.19. Theorem. Let a piecewise fit region S ,  a triple (1r g, G) E L i m S i d ( S ) ,  
and a unit vector ~ E ~/~ be given. Then 

(i) For almost every line L parallel to c~, L n 5 J \  1r is, to within a one- 
dimensional set of measure zero, a finite union of pairwise disjoint closed 
intervals Iq, q E { 1 . . . . .  Q }. 

(ii) For each sequence n ~ (tc~,fn) that determines (x,  g, G) and for 
almost every line L parallel to ~, not only does (i) hoM, but also, for 
each q E {1, . . . ,  Q} and N E N, f~ IIqnse\Kn extends to a piecewise con- 
tinuously differentiable function f e  on lq, and the fundamental formula 
(3.16) applies to f~ fo r  every x , y  in Iq with y = x  + [ y - x  I ~. 

(iii) In addition, for almost every x, y ~ Iq \  ~c with y = x + l Y -  x l c~, the 
formula 

]Y~ xl 
(4.25) go(Y) - go(X) = Go(x + t~) ~ dt + lim ~ ( f~(z~+) - f ~ ( Z n - ) )  

0 n--->oo 
Zn 

is valid, where go and G O are the representatives of g and G introduced 
in Theorem 4.10 and Zn runs through the points of discontinuity o f f  e in 
the interval (x, y). 

Proof.  Let n ~ (K~,f ,)  be a sequence that determines (x, g, G). By (Sid 1) 
in Definition 3.2, each set Kn has volume zero, and by item (i) of 
Theorem 4.10 the set K also has volume zero. Using the notation of (3.18) and 
(3.19), we have that S \  K~ = d \  tc and, therefore, for each n = 1 and for 
almost every line L parallel to c~, 

(4.26) L n ~Z\  tr 1 L n S \  K. 

By item (i) of  Theorem 3.8, for each integer n __> 1 and for almost every line 
L satisfying (4.26) there is a finite collection of  pairwise disjoint closed inter- 
vals Iqn,~, qn ~ {1 . . . . .  Qn} such that 

Qn 
(4.27) L ~ 5~\ /% 1 U Iqn,n" 

qn=l 

For each n _> 1, we define ~ to be the set of lines parallel to e for which 
not only (4.26) and (4.27) hold, but also (cf. items (ii), (iii) of Theorem 3.8) 

(ii)~ for each Iq~,n , qn E {1 . . . . .  Qn}, f~ IZqn,~\~ n extends to a piecewise 

continuously differentiable function f e  o n  Iqn,n ; 
(iii)~ for each q~ E [1 . . . . .  Q~} and every x, y ~ Iqn,, with y = x + IY - x] e ,  

there holds 

ly~xl 
(4.28) f n ( y - ) - f n ( x + ) =  V f n ( x + t e )  e d t +  E ( f n ( z n + ) - f n ( Z n - ) ) .  

o 
Zn 
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By items (ii) and (iii) of Theorem 3.8 and the above arguments, 2 n  has full 
measure, i.e., ~ differs from the collection of all lines parallel to ~ by a 

set of  measure zero. It follows that A 2 n has full measure and that both 
n= l  

(4.26) and (4.27) hold for every n _-2 1 and for every L ~ c p .  Relation 
n= l  

(4.26) implies that, for every such n and L, 

(4.29) LnSgC\(0~a=lKm) 1 L n S \ K n ~ L n S j k t c '  

Let a line L E A 2 ~  be given. For each n, m = 1, (4.26) and (4.27) imply that 
n= l  

Q= 
U Iqn,n 1 

qn=l 

Since each member of this relation is 
disjoint, closed intervals, this implies 

(4.30) {Iq,,n I qn ~ (1 . . . . .  Q~}} = 

Hence, if we put Q :=  Q1 and if, for 
then (4.26) and (4.27) yield 

Om 
[,3 Iqm,m. 

qm=l 

the union of a collection of pairwise 

{Iqm,rn I q= ~ (1, . . . ,  Qm}}. 

each q ~ [1 . . . . .  Q}, we put Iq 

Q 

: =  Iq, 1 , 

L n ~ f \ l C  1 U Iq, 
q = l  

which proves item (i). Item (ii) is proved by observing that item (iOn holds for 
the given line L and for every n > 1, and that, by (4.30), the intervals Iq=,= 
are now independent of n. Because item (iii)n holds for the given line L and 
for every n > 1, we can assert that (4.28) holds for each interval Iq and for 
every x, y ~ lq with y = x + [y - x] ~. In particular, if for a given Iq we take 

x ' Y ~ S C ~ I q \ (  O Kin) ' t h e n x ' y ~ S n I q k K n  for everyn>=l" 

continuous on S k x ~ ,  the limits fn (Y- )  and f~(x+) in (4.28) can be re- 
placed by f~(y) and f , (x) ,  respectively. If  in that relation we let n tend to *% 
then by (4.6)fn(Y) and fn(x) converge to go(Y) and go(x), respectively. We 
wish now to show that the integral in (4.28) tends to the integral in (4.25) as 
n tends to o o .  We first observe that, for every n _> 1, Vf~ and Go are defined 
on S k K ~  and S \ K ,  respectively, and, therefore, are defined almost 
everywhere on Iq. Moreover, (4.6b) tells us that for each e > 0 there exists an 
integer Ne such that 

ess sup 1Vf~(~) - Go(~)l < e 
~EI n 

for all n > N=. Consequently, for each n > Ne, 

lY~xl(vfn(X + t~) -- Go(x + t~)) ~dt < ely - x  I , 
0 
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which yields the desired conclusion. The formula (4.25) then follows from 
(iii), upon letting n tend to oo. This establishes (4.25) for every x, y in the set 

l 

S n  Iq\ ( U 1<3, which by (4.27) and (4.29), differs from Iq by a set of 
\ m = l  ! 

one-dimensional measure zero. [] 

5. Structured deformations 

The examples in Section 4 show on the one hand that an element of Lira 
Sid may contain significant kinematical information not provided by any single 
term of a sequence defining it. Thus, in Example 3.2, the limit of the broken 
ramp sequence describes a mapping of the interval (0, 1) onto the interval 
(0, 2) in which the smaller interval can be viewed as being fractured into in- 
finitely many infinitesimally small pieces that are scattered uniformly 
throughout the larger interval, a situation that cannot be described by any one 
term of the sequence. On the other hand, an element of Lim Sid may lose 
the injectivity or some of the regularity properties enjoyed by each term. In fact, 
Remark 4.16 provides an example of an element (to, g, G) of L i m S i d ( S )  in 
which the continuous representative go of g is not injective, and in Remark 4.13 
go is not differentiable at an interior point of S \  ~c. Although lack of injec- 
tivity is useful in some situations, for example, to describe mixtures of two 
continua as we indicate in Section 7d, in many other situations it is natural 
to consider only limits of simple deformations (K, g, G) in which go is injec- 
tive. Moreover, in order to be able to define compositions of triples (to, g, G) 
it is natural to require further that go and Go have smoothness properties 
stronger than the continuity guaranteed in Theorem 4.10, such as those en- 
joyed by f and Vf, respectively, in the case where f is the second entry of a 
simple deformation (~c,f). In this section we define and study a collection 
Std of triples meeting these requirements. 

5.1. Definition. Let a piecewise fit region d be given. A structured deformation 
from d is a triple (K, g, G) for which 
(Std 1) (to, g) is a simple deformation from S .  
(Std 2 ) G :  S \ ~ c  ~ Lin ~ is continuous and has a piecewise continuous 

extension to clo d ,  i.e., there exists a finite collection of fit regions 
[ ~  IJE{1 . . . . .  J}] whose union is 5~\ tc  such that, for each j E  
{1 . . . . .  J}, G ] ~  has a continuous extension to clo ~ .  

(Std3) There exists m > 0  such that, for all x f i s J \ K ,  m < d e t G ( x )  <_ 
det Vg(x). 

We emphasize that our definition of structured deformations makes no use 
of limits of simple deformations, even though both notions of deformation are 
described by triples (~c, g, G). Nevertheless, in the Approximation Theorem, 
Theorem 5.8, we prove that every structured deformation (K, g, G) is a limit 
of simple deformations. Of course, when we say that a given structured defor- 
mation (K, g, G) is a limit of simple deformations, we mean that the set K 
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and the L ~176 associated with the continuous functions g and G form 
a triple that satisfies Definition 4.1. 

It is helpful to re-examine the examples of limits of simple deformations 
in Section 4 to determine those (tr g, G)~  LimSid that also are structured 
deformations, in the sense that the triple (tc, go, Go), with go and Go the 
continuous mappings constructed in Theorem 4.10, satisfies Definition 5.1. 
The broken ramp sequence (Example 4.2) determines the limit of simple defor- 
mations (0, g, G), with g and G given by (4.3), which also is a structured 
deformation. However, the dyadic broken ramp sequence (Example 4.3) deter- 
mines the limit of simple deformations (K, g, G), with g and G again given 
by (4.3), but with K the set of dyadic rationals in (0, 1). Hence, 
H \ ~ r  = (0, 1 ) \  ~c is not open and, therefore, not piecewise fit; consequently, 
(K, g, G) is not a structured deformation from (0, 1). These two examples il- 
lustrate the role that the set K can play in distinguishing structured deforma- 
tions from general limits of simple deformations. The remaining examples in 
Section 4 include more pathological situations that may not lead to structured 
deformations. In Example 4.5, choosing ~0 to be the Cantor function provides 
us with an element (~c, g, G) of LimSid(0,  1) in which go is not differen- 
tiable, and, hence, (~, g, G) is not a structured deformation. The limit of sim- 
ple deformations (~r g, G) in Example 4.6 is not a structured deformation, 
because the set S \  ir with K = [~ [n E N\[0 ,  11}, is not a piecewise fit region. 

The two-dimensional cavitation (0, g, G) in Example 4.7 is a limit of simple 
deformations but not a structured deformation, because our discussion in Sec- 
tion 3 showed that (0, g) is not a simple deformation. Finally, the "one- 
dimensional kink" described in Remark 4.13 is not a structured deformation, 
because go is not differentiable on d \  ~c. 

We denote by S t d ( S )  the set of structured deformations from a given 
piecewise fit region S and by Std the set of all structured deformations: 

(5.1) S t d : =  {(tr g, G) ~ S t d ( S ) [  d is piecewise fit}. 

It is easy to see from (Sid 1)-(Sid 3) that for each (K, g) ~ S i d ( S ) ,  the triple 
(K, g, Vg) satisfies (Std 1)-(Std 3); therefore, we may identify Sid with a 
subset of Std. 

The appearance of a simple deformation (K, g) in the triple (to, g, G) 
denoting a structured deformation makes it easy to define the composition of 
structured deformations. 

5.2. Definition. Let a piecewise fit region S and structured deformations 
(K, g, G) fi Std(5~),  (p, h, H) fi S t d ( g ( 5 ~ \ K ) )  be given. The composition 
(p, h, H) o (K, g, G) is defined to be the triple 

(5.2) (/r h o g l ~ \ ( ~ g - ~ ( u ) ) ,  ( (Hog)  G)I~\(~u-~(/~))). 

5.3. Proposition. A composition of structured deformations is a structured de- 
formation. 
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Proof. The reader will notice that the first two components of  the triple in 
(5.2) describe the simple deformation (/x, h ) o  (K, g) defined in (3.13). By 
Proposition 3.4, (//, h) o (K, g) ~ S i d ( d ) ,  so that (//, h, H) o (#c, g, G) obeys 
(Std l). Moreover, we can write 

(5.3) d e t ( ( H  og) G) = de t (H og) de tG _-_6 det(Vh og) det Vg 

= de t ( (Vh og) Vg) = d e t ( V ( h  og)) ,  

where we have dropped explicit indication of restrictions and have used (Std 3) 
for (//, h, H) and for (K, g, G) along with the chain rule. Relation (5.3) shows 
that the triple (5.2) also satisfies the last inequality in (Std 3). The remaining 
inequality in (Std 3) follows from the first equality in (5.3) and the fact that 
each factor in the second member in (5.3) is bounded below by a positive 
number. We wish finally to show that this triple also satisfies (Std 2). To this 
end, we choose finite collections of fit regions {~kIk  ~ {1 . . . .  , K}} in S \  K 
and [ ~ 1 / ~ { 1 ,  . . . ,  L}} in g ( d \ l c ) \ / /  satisfying (Std 2) for G and for H, 
respectively, as well as an admissible collection { ~ l j 6  {1, . . . , J } }  as in 
(Sid 3) for the simple deformation (K, g) from S .  Because for each 
j fi {1, . . . ,  J} the restriction gj of g to ~ j  is a classical deformation, its in- 
verse gj-1 is a classical deformation from the fit region g j ( ~ ) .  Because for 
each l ~ {1 . . . .  , L} ~ is a fit region, the set ~ n g j ( S j )  is a fit region and, 
therefore, so is gj-l(9r Consequently, for every j, k, and l as 
above, the set 

(5.4) d]kl :=  gj-1 ( ~  C~ gj(dj))  n 

is a fit region; we have 

(5.5) g j - l ( ~ n g j ( 5 ~ j ) )  = g - l ( ~ / n g ( d j ) )  = g-l(Yc~/) n 5Jj., 

so that 

j , k , l  j , k , l  

= g - l ( g ( S J \ ~ c ) \ / / )  n ( S \ t r  n ( d X K ) ,  

and, since the range of g-1 is included in d \  ~c, 

U Sjk l = g - l ( g ( S k t c ) \ / / )  = H \  (tc u g - l ( / \ ) ) .  
j ,k, 1 

Thus, the sets Sjkz form a collection of fit regions whose union is 
5 J \  (/r u g-X(//)).  Because ~ k l  C ~ ,  by (Std 2), G has a continuous exten- 
sion to clo Sj~I; because, by (5.4), (5.5), and the injectivity of g, 

g(-~jkl) = g ( g - l ( ~ )  n 5Sj n ~ )  = ~ n g(s~j) n g ( ~ )  C Yc'~l, 

(Std 2) implies that H has a continuous extension to clo g (Sjkl).  Moreover, 
g has a continuous extension to clo ~ D clo 5Sj~t and, thus, H o g has a con- 
tinuous extension to clo Sjg l. We conclude that ( H o g )  G has a continuous 
extension to clo S j ~  and that (Std 2) is satisfied by the triple in (5.2). [] 
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It is natural to consider the triple (0, io~e, I s )  as the identity element in 
S t d ( d ) .  Indeed, we observe not only that (0, isr I s ) E  Std(5~r but also 
that �9 

(5.6) (Ir g, G) o (0, i s ,  I s )  = (0, ig(s \x) ,  Ig(s \x ) )  o (K, g, G) = (K, g, G) 

for all (~c, g, G) E S t d ( S ) .  The next proposition concerns the existence of a 
left inverse for a structured deformation and is a natural counterpart of Prop- 
osition 3.6 for simple deformations. 

5.4. Proposition. Let (x,  g, G) E Std(sJ )  be given. There exists (4, l, L)  E 
Std(g(s~e\  K)) satisfying 

(~, l, L) o (tc, g, G) = (0, i s ,  I s )  (5.7) 

if and only if 

(5.8) 

In this case, 

/c = 0, det G = det Vg. 

(5.9) )~ = 0, l = g - l ,  L = G -1 og-1, 

(5.10) (tr g, G) o (2, I, L) = (0, ig(S), Ig(s)). 

Proof. Suppose that (5.7) holds for some structured deformation ()~, l, L) 
from g ( S \  ~c). The definition of  composition (5.2) then shows for the simple 
deformations (4, I) and (K, g) that 

()L, 1) o (x, g) = (0, ise), 

and Proposition 3.6 implies that 

(5.11) )L = tr = 0, l = g-1. 

Furthermore, (5.2) tells us that (Log)  G =  I s ,  so that L o g  = G -1 and, 
thus, 

(5.12) L = G -1 og-1. 

Because (4, l , L ) E  S t d ( g ( S k K ) ) ,  the inequality in (Std 3), (5.11), (5.12), 
and the Inverse Function Theorem tell us that 

(det G) -~ og-1 = det(G-1 og-1) = de tL  <__ detVl  = det(V (g - l ) ) ,  

i.e., 

(5.13) (det G) -1 =< det (V (g-l)  o g) = (det Vg) -1. 

It is immediate f rom (5.13) and (Std 3) that the relation det G = det Vg in 
(5.8) holds. 

Conversely, suppose that (5.8) holds and put 2 = 0 ,  l = g  -1, and 
L = G -1 og-1. It is then clear that (5.7) and (5.10) hold, and it only remains 
to show that (0, g-Z, G-1 og-1) fi Std(g(5~)) .  Because (0, g) fi S i d ( S ) ,  
Proposition 3.7 tells us that (0, g- l )  ~ S i d ( g ( S ) ) ,  so that (Std 1) is satisfied 
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for (0, g- l ,  G-1 og-1). To verify (Std 3) we note that 

(5.14) de t (G-1 og-1) = (det G -a) og-1 = (det G) -1 og-1, 

and the second relation in (5.8) implies 

(5.15) (det G) -a og - a =  (det Vg) -1 o g - l =  (det (Vg)  -1) og-i  

= det ( ( V g ) - i  og-1) = det (V (g - l ) ) ,  

which yields with equality the second relation in (Std 3) for (0, g-a, G-1 o g-1). 
Moreover, this equality, relation (3.5), and the fact that (13, g - 1 ) E Sid (g ( S \ K )) 
provide a positive lower bound for de t (G -1 og-1) on g ( H X x ) .  Thus, 
(Std 3) is satisfied. To verify (Std 2) for (0, g-l ,  G-1 og-a),  we choose an ad- 
missible collection {Xk] k 6 {1 . . . . .  K}} for (0, g) and fit regions ~a . . . . .  ~J 
satisfying (Std 2) for (13, g, G) and note that, for each j ,  G -1 ] ~ has a con- 
tinuous extension Hj to clo ~ .  Put 

(5.16) ~ k : =  g~(dk n ~j) C g ( d ) ,  

and observe that each set ~ k  is a fit region, as it is the image of d k  n 
under the classical deformation gk. Choosing an extension g~ to all of ~ that 
is a C a-diffeomorphism, we can write 

clo ~ k  = clo(g~(SgCk c~ ~ ) )  = g~ . (c lo (S  k r~ ~ ) ) ,  

and we note that for each y E int clo ~ k  = ~ k ,  

H j ( g  -1 (y))  = H j ( g ~ l ( y ) )  = (G -1 og -1) (y). 

Moreover, //7 ogk-1 has the extension Hj o(g~)-i  IcIo@~, which is continuous. 
Thus, G -1 og -1 is piecewise continuous on clo S ,  and (Std 2) is satis- 
fied. D 

Proposition 5.4 has the following immediate corollary. 

5.5. Proposition. Let (x, g, G) E Std be given. Then (~:, g, G) has an inverse 
(2, 1, L) E Std i f  and only i f  x = 0 and det G = det Vg, in which case 

(5.17) (2, 1, L) = (13, g-a, G-1 og-1). 

Propositions 5.4 and 5.5 tell us that the existence of  an inverse in Std is 
equivalent to the existence of  a left inverse which, in turn, is equivalent to 
the relations (5.8). We use the notation 

(5.18) (0, g, G) -1 := (0, g-l,  G-1 og-1) 

for the inverse of  (t3, g, G), and we write Inv Std for the set of  invertible struc- 
tured deformations: 

(5.19) Inv Std :=  {(K, g, G) E Std I tc = 13, det G = det Vg}. 

We recall that, from Proposition 3.6, the condition K = 0 is both necessary 
and sufficient in order that the simple deformation (to, g) be invertible. Thus, 
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the conditions det G = det Vg and tr = 0 play the corresponding role in deter- 
mining which structured deformations are invertible. From the imbedding 
g ~ (0, g, Vg) of  Cld into Std we conclude that each invertible simple defor- 
mation and, in particular, each classical deformation, when regarded as a 
structured deformation, is an invertible structured deformation. 

A principal goal in the remainder of  this section is to show that Std can 
be identified with a subset of Lira Sid. In order to do so, it is helpful to record 
a simple consequence of  the definition of composition of structured deforma- 
tions that gives a counterpart of  the decomposition (3.14) for simple deforma- 
tions. 

5.6. Proposition. Each structured deformation (K, g, G) is a composition of the 
simple deformation (~r g, Vg) and of a structured deformation of the form 
(0, i, H):  

(5.20) (K, g, G) = (0, ig(s\x), (G og-1 ) ( (Vg)  -1 og-1)) o (/r g, Vg). 

The next result, the Approximation Lemma, is central to the Approxima- 
tion Theorem, which asserts that every structured deformation is a limit of  
simple deformations. The lemma shows that a structured deformation of the 
form (0, i, H) can be approximated to any desired accuracy by a simple defor- 
mation ()t, h). Before stating the Approximation Lemma, we let a piecewise 
fit region S be given and choose a Cartesian coordinate system for ~ With 
origin O in such a way that clo S is included in the coordinate cube 

(5.21) clo ,~'C (1,  2)3. 

(For definiteness and simplicity, we here consider the case where ~ is three- 
dimensional.) For each prime p ~ N and subset Z of  the integers Z, we define 
a family H(p, Z) of coordinate planes: 

(5.22) H(p, Z) :=  Ire C ~ l  zc is a coordinate plane whose distance from O 

is m/p for some m ~ Z}. 

In particular, H(p, Z) is the set of all coordinate planes obtained from any 
one of the three coordinate planes through O by a translation of  amount  an 
integral multiple of p-1.  

In stating the Approximation Lemma for a given (0, i, H) E S t d ( H ) ,  we 
also refer to sets occurring in (Std 2) of Definition 5.1 as well as sets con- 
structed from them. Specifically, we choose fit regions ~ . . . . .  ~ whose 
union is S and such that, for e a c h j  ~ {1 . . . . .  J}, H ] ~  has a continuous ex- 

tension H: : clo ~ j  ~ Lin ~ .  Consider the subdivision B of  sr into mutually 
disjoint fit regions ~ j ,  j E {1 . . . . .  J}, constructed by using the procedure in 
(3.17) with S j  there replaced by Yc~j. We now define 

J 
(5.23) F(B) :=  U ( (bdy  ~ j )  n 5~'), 

j=l 
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i.e., F(B)  is the set of points in ~ that are in the boundary of at least one 
of  the subdividing regions 2 j ,  and for each e > 0 we define 

(5.24) F(B)c :=  {x ( F ( B ) ]  dist(x, bdy d )  < el. 

5.7. Approximation I_emma. Let a piecewise fit region sr be given and choose 
a Cartesian coordinate system for ~ satisfying (5.21). Let (0, i, H) ~ S t d ( d )  be 
given, choose sets {Xjl j e {1 . . . . .  JI} as in (Std 2), and consider the subdivision 
B as in (3.17), with 4"  there replaced by 22~j. Then, for each e > 0 and each 
prime p ~ N, there exist a piecewise affine simple deformation ()~, h) from 2S and 
primes Pl, P2 greater than p such that 
(i) 2 is covered by the set F(B)e defined in (5.24) together with the planes 

7 ~ H ( p l ,  {1 . . . . .  P l -  l/) with l ~ { l ,  2l; 
(ii) ]lh - illL~(~e,~) < e; 

(iii) It Vh - Hl]L~o(g, Lin ~.) < e. 
Moreover, (2, h), Pl ,  and P2 can be chosen so that, if  

(5.25) i f : =  int[x ~ S I H(x) = I } ,  

then 2 c~ ~ = 0 and h ] ~ = i y. 

Proof.  Let e > 0 and let a prime p be given. Because for each j E {1 . . . . .  J} 
the extension Hj : clo ~ j  ~ Lin ~ of H is continuous, Hj is uniformly con- 
tinuous; moreover, by (Std 3), there exists m > 0 such that 

(5.26) m < det Hj <= 1, 

and we may choose fl > 0 satisfying 

(5.27) 1 e/2 < fl < 1. 
sup In(x) l 
xE~r 

The uniform continuity of  the finitely many functions H 1 , . . . ,  Hj tells us 
that we may choose c~ > 0 such that, for each j ~ {1 . . . . .  J}, 

(5.28) 
e 

(x,y ~ clo 8 ,  Ix-yl <~)  = IHJ(x) -Hi(Y)] < 2J" 

Choose a prime Pl such that 

( 
(5.29) Pl > max Ip 

with 

(5.30) 

+ 1 ,  1 
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and put 

(5.3~) 
C ( P I ) : = [  ~ C  (0' 1)3 ~----[k~l kl q-1] B1 k2-t-1] [kp31 k3-1- 1] , X , X , , 

Pl Pl Pl 

k 1, k 2, k 3 E [1 . . . . .  Pl - 2}~ 
) 

i.e., C(pl) is the set of all closed cubes ~ in (0, 1) 3 whose parallel faces are 
included in consecutive planes in H(pl ,  {1 . . . . .  Pl - 1}). The condition (5.21) 
tells us that clo S is covered by C(pl), and the relation (5.29) implies 

that the diagonal V~/p l  of each cube is less than both e/2M and & Con- 
sequently, we may write for each c~E C(pl)  

(5.32) x, yE ~ = I x - y ]  <min{e /2M,  c~} 

and for each j 6 {1 . . . . .  J}, by (5.28), 
8 

(5.33) x, yE ( ~ n c l o  Hi)  = [gj (x)  - H i ( y ) [  < 2J"  

In order to define the set ~l C S and the mapping h : H \ ,~ --, ~, we need to 
consider three cases for the cubes ~E  C(p~), one of which, namely, when 
and S are disjoint so that the domain of h does not intersect ~,  is a trivial 
case and we need not mention it further. We now treat the remaining two 
cases: ~ is included in 441, or ~ is neither included in nor disjoint from S .  

It is convenient here to put 

(5.34) D 1 := { ~E C(pl) ] ~ C  5~}. 

To treat the first case, let a cube ~E D1 be given. Because ~ C S ,  H is con- 
tinuous on ~, and, because ~ is closed, H is uniformly continuous on ~. 
Moreover, because the fit regions Z j ,  j E [1 . . . . .  J}, cover H,  they cover ~. 
For each x, y in the convex set ~,  we construct a list of points in the segment 
[x,y] C ~ a s  follows. Choose j~ ~ [1 . . . . .  J] such that x E ~ 1 '  and choose 
w~ E clo Xj- I such that 

[ w l - y l  = m i n { l z - y ]  ] z E c l o  ~ j j~n[x ,y ]} .  

Note that [Wl, y] n ~ j .  = 0, so that [wl, y] is covered by the remaining 
J - 1 sets Yc~j. Choosing J2 E [1 . . . . .  J} \ {Jl} such that wl E 92~j 2, we obtain 
by the same procedure a list of points w0, wl, we . . . . .  wj, in [x, y] with 
J'<_-J, w0 = x ,  wj, = y, and satisfying: for each k ~ {1 . . . . .  J'}, w~_l and w~ 
are both in the set clo ~'~Jk" This list permits us to use (5.33) and the triangle 
inequality to write 

J' J 'c  8 
[H(x) - H ( y )  / < IH(wk_l) -- H(wk)[ < 2J = 2 ' 

k=l 
and to conclude that 

(5.35) x, yE ~ =  ]H(x) - H ( y ) [  < - - .  
2 
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Now, we choose a point c~ in the cube ~, we define the affine map ~ , :  
~ b y  

(5.36) ~ ( x )  := c~ + tgH(c~) Ix - c~], x ~ ~', 

and we note that e~  satisfies 

(5.37) Ve~(x) =pH(c~,) for all x6 ~. 

By (5.27) and (Std 3) we also have for all x 6 ~ that 

(5.38) det V~(x) ~_]~3< 1, 

and, by (5.27), (5.35), and (5.37), that 

c (5.39) I V ~ , ( x ) - H ( x ) l  <-B]H(c~)-H(x) I  + ( 1 - / ? ) l H ( x ) l  < ~  + 3  = e .  

The last relation shows that, on ~, the requirement (iii) of the lemma is 
satisfied by ~ .  The requirement (ii) is satisfied on ~ as well. In fact, for 
each x ~ ~, by (5.36), (5.32) and (5.30), we have 

(5.40) l e ~ , ( x ) - i ( x ) [  = l c ~ + 1 3 H ( c ~ ) [ x - c ~ l  - x  I 

_-< I / ? g ( c ~ - )  - I I  I x  - < I B H ( c ~ . )  - I I  ~ -< e .  

However, if we define h restricted to the interior of each cube ~ D 1 to be 
hlint  ~ : =  ~'lint ~', we find that h need not be injective, because the images 
e~,(int ~ )  of the cubes ~ in D1 need not be disjoint. To remedy this 
situation we compose each affine mapping ~ with a piecewise rigid map- 
ping r~ that fractures e ~ , ( ~ )  into smaller, mutually congruent parallel- 
epipeds, and then moves the smaller parallelepipeds into ~ without in- 
terpenetration. To this end, we let a prime p' > p be given and note that the 
set 

(5.41) ~ . ( g ( p ' ,  Z)) := [ ~ ( r r )  I 7r ~ H(p',  7/)} 

is a collection of planes in space, each of which is parallel to one of the faces 
of the parallelepiped ~ . ( ~ ) .  Two consecutive planes in c~f(H(p',  7/)) 
parallel to a given face of ~ f ( ~ )  have distances 7/p' from one another, 
with 7 a positive number depending only on V ~  and the normal to the 
face. Therefore, the collection c~f(H(p', 7/)) subdivides ~' into infinitely 
many mutually congruent closed parallelepipeds, and we denote by P(p') this 
collection of parallelepipeds. We consider now two finite subsets of P(p ') :  

(5.42) P ( p ' ) ~ . : =  [ ~  P(p')l  ~ n ~ ( ~ )  . 0}, 

(5.43) e(p')  ~-:= { ~  e(p ' )  I ~ C int ~}; 

thus, the elements of P(p ' ) ,~  form a cover of , z ~ ( ~ )  by mutually con- 
gruent non-overlapping parallelepipeds, and the elements of P(p ' )~  are 
mutually congruent non-overlapping parallelepipeds in the interior of ~. We 
observe from (5.37), (5.38), and (5.26) that 

(5.44) vol ~ . ( < ~ )  = ]73 det H(c~.)vol ~ <  vol ~.  
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Now, by (5.37), for each ~ f i  P(p') we have 

(5.45) v(p') :=  vol ~ = / ? 3  det H ( c f )  (p , ) -3 ,  

because each 9 is the image of a cube of volume (p,)-3 under ~ ,  and 
this tells us that 

(5.46) lira v(p') = O. 
pr---r co 

Using (5.42), (5.43) and the fact that volbdy ~ =  volbdy ~ ( ~ )  = 0, we 
conclude that 

(5.47) lim vol U P(p ' )~  = vol ~ ( ~ ) ,  
p'--+oo 

(5.48) lim vol U P(p') ~ = vol ~ .  
p'--,oo 

Relations (5.44), (5.47) and (5.48) imply that we can choose a prime p f > p 
such that vol U P  ' ( p ) ~  < vol U P(p') ~ for all p '  > p ~. Since all parallel- 
epipeds in P(p') have the same volume v (p ' ) ,  we conclude that the set P(p')~ 
of  non-overlapping parallelepipeds covering ~ ( ~ )  has fewer elements than 
the set P(p')~ of  non-overlapping parallelepipeds contained in int ~ when- 
ever p '  >p~, .  Consequently, since all the parallelepipeds in both collections 
are congruent, we can choose an injective, piecewise rigid mapping 
r ~ :  ~ , (  ~ ) \ ~ , ( H ( p ' ,  7/))--, int ~ ;  using (5.21) we may put 

(5.49) 2 ~  :=  {x ~ ~z n i n t  ~ l  rc ~ H(p', {1, . . . , p '  - 1})}, 

and define the mapping h~,: (int ~ ) \ 2 ~  ~ int ~ by 

(5.50) h~(x ) :=r f (c~(x ) ) ,  x6 (int ~ ) \ 2 ~ .  

Because the range of  r~, is included in ~ and ~ has diagonal x/3/p' less 
than e, h~  satisfies item (ii) on its domain, and, because Vr~ = I, we have 

(5.51) Vh~ = V ~ .  

Relations (5.51) and (5.39) then tell us that h ~ satisfies (iii) on its domain. 
Finally, relation (5.49) tells us that 2 ~ is consistent with (i). To summarize, 
we have shown that our construction yields a piecewise affine simple deforma- 
tion (2~ ,  h~)  from int ~ that satisfies (i)-(i i i)  and whose range is included 
in int ~ when ~ is in D~ and when p '  is a prime greater than or equal 
to p p .  

Now let a cube ~6C(pl)  be given such that ~ n S ~ 0  and 
~ \ S : V  0, and note that 

(5.52) ~ n b d y S ~  0. 

Therefore, HI ~-~se need not be uniformly continuous, and we need to sub- 
divide ~ n ~ into smaller regions before we can approximate H. We use the 
chosen subdivision B = [~'1,  . . . ,  ~-~]} of S and for each j  ~ {1 . . . . .  J} we put 

(5.53) ~ := (clo @ )  n ~; 
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we note that, by the construction of B, 

(5.54) ~ C ( c l o Z j ) n  ~ ,  

so that (5.33) yields 

(5.55) x,y~ ~ ~ In(x)-H(y)] =[gj(x)-Hj(y)]  <e. 
We also put 

(5.56) D 2 : z { ~ j z c l o ~ j o  ~-~ I ~j :~0,  ~ o d : : ~ 9 ,  ~r 

j 6[1 . . . . .  J}, ~ C(pI)}. 

For each ~ 6 / 9 2 ,  we chooseyj6  ~ and define e v j :  g ~ g  by 

(5.57) ea~j(X) : =  yj + f lH(y j )  [x - y:], x ~ ~. 
Using the same procedure as described in the case ~ (D1, for each g j  (D2 
we can choose a prime p vj such that, for all primes pj  __> p vj, there exists an 
injective, piecewise rigid mapping r~j which maps evj( ~)  \ e~j (H(pj, Z)) 
into int ~ .  Note that, in establishing the counterparts of (5.47) and (5.48), 
the property volbdy ga= 0 is replaced by volbdy ~jj = 0, which holds 
because ~ ,  by (5.53), is the closure of a fit region. Let a prime pj >__ p ~j be 
given. As in (5.49) and (5.50), we define 

(5.58) 2 ~,j := [x ~ 7r n int ~ I Jr ~ H(pj, [1 . . . . .  p j  - 11)}, 

(5.59) h ~ : ( x ) : =  rvj(,af:(x)), x6 (int ~ ) \ 2 f : ,  

and note that )~:  is covered by the collection of planes H(pj, {1 . . . . .  p j  - 1}) 
and that h~, satisfies 

Ilhv:-il lL~(~:,~) < e, 

II Vh~j - HIIL~< ~:,tin~ ) < ~. 
As in the preceding case, our goal is that of constructing a piecewise affine 
simple deformation, now from (int ~ )  c~ S ,  that satisfies (i)-(iii). To this 
end, for each j we put 
(5.60) by(x) := hvj(x) for all 

to obtain a mapping by :  U ((int ~ ) \  
we have ~: c 

(int ~ ) \ ) ~ v :  = i n t  ~ n ((int g : ) \ ~ : ) ;  

because int ~ is a fit region and (int ~ ) \  2v: !s a piecewise fit region, we 
may conclude that the domain of h v is a piecew~se fit region. Since the sets 
int ~j are pairwise disjoint and ;.~: C int ~ ,  we have 

((int ~ ) \ 2 % ) = ( ~ U  int ~ ) \ ~ 2 v :  (5.61) v:_ U v v 

=((S\F(B))c~intga)\ U 2 ~ = ( S ~ i n t  ~ , \ ( ( F ( B ) ) n i n t ~ ) u ( @ ~ c ~ f  ) .  

x~ (int ~ ) \ 2 v ;  

,~v;) --' int ~. For each ~ C 
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We now define 

(5.62) 2~:= (F(B) c~ int ~ )  ~ ~)U 

and observe that ( 2 f ,  h~.) is a piecewise affine simple deformation from 

( 2 ~ j ) = 0  by (5.58) and v o l F ( B ) = 0  b y ~  (int ~ )  n d .  Indeed, vol ~9 ~ 

(5.23). Moreover, h~. is injective because each h~.j is injective and 
h~..(int ~ \ 2 ~ 9 )  C int ~ .  Finally, (5.58), (5.59), and (5.60) tell us that the 

J . 

domain of h ~ is a finite union of fit regions, each of which is the intersec- 
tion of int ~ with an open cube of edge length 1/p/, and the restriction of 
h ~ to each of these fit regions extends to ~" as an affine deformation. Thus, 
(2 ~, h ~.) is a piecewise affine simple deformation from (int ~ )  n S .  To 
show that (2~,  h~) satisfies (i) we note that, by (5.32) and (5.52), the set 
F(B) c~ ~ lies within a distance e from bdy S ,  i.e., by (5.24), 

(5.63) F(B) n ~ C F(B)~, 

so that, by (5.58) and (5.62), 2 ~ is covered by the collection 

(5.64) {re I I1 . . . . .  p / -  1})} u F(B)e. 

That h~ satisfies (ii) and (iii) is a direct consequence of the fact that each 
h~j satisfies these conditions in its domain. We conclude that our procedure 
yields a piecewise affine simple deformation (2 ~, h ~) from (int ~ )  n S 
with the required properties (i)-(iii) when ~ \ 5 ~ . 0 ,  ~ n  S : # 0 ,  and 
pj>p~j for all ~ C 

We are now prepared to construct the simple deformation (2, h) in the 
statement of the lemma. First of all, we define P2 to be the maximum of the 
primes p ~ and p ~j as ~ varies over the cubes in D1 and ~ varies over the 
regions in D2, respectively, and we put p '  = P2 in (5.49) and pj' = P2 in (5.58). 
We define h : U ( S n  int ~ \  2~) ~ ~, with ~ running through those cubes 

in the set C(pl) in (5.31) whose intersections with d are not empty, by setting 

(5.65) h(x):=h~(x) for all x~ S n i n t  ~ \ 2 ~ ,  

with h~ given by (5.50) for ~ in D~ and by (5.60), (5.59) for ~ with 
~ ~ .  0 and ~ \  ~ *  0. We take 2 to be the complement in ~ of the do- 

main of h and note that, because the domain of h is 

(5.66) U ( ~ n  int ~ \ 2 ~ )  = S \  U ( ( ~ n b d y  ~ )  ~ 2 ~ ) ,  

the set Z obeys item (i); it follows from the above construction that (2, h) is 
a piecewise affine simple deformation obeying items (ii) and (iii). 

We now wish to modify the definition of h on some of the regions in 
D1 u D2 in order to obtain a simple deformation (2, h) that satisfies 

(5.67) 2 c~ i f =  0, h I y = i~, 
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with Y given by (5.25). The key observation that permits us to do so is that 
if ~ D 1 and ~ n Y ,  0, or if ~j ~ D 2 and ~ ch ~:~ 0, instead of the 
specifications (5.36) and (5.57) of ~ and ~ j  we may take 

(5.68) ~ = ~ ]  = i. 

We define 

(5.69) 2 := U { ~  D 1 u/)21 ~ n  Y•0}, 

and we note that each x ~ ~ belongs to some j;o6 D1 u / )2  and, therefore, to 
2 .  Thus ~ C 5? and, because ~ is open, ~ C int 2 ;  because ~ C S ,  we 
have 

(5.70) ~ C d n i n t  ~ .  

Moreover, ~g" is a finite union of closures of fit regions, and, therefore, int 2~ 
is a fit region and d n int ~ is piecewise fit. We now modify the definition 
(5.65) of h by replacing all of the fit regions int~ ;~ with S P n  ~:I: 0 by the 
single piecewise fit region d n int 2 and by putting 

(5.71) h ( x ) : = x  for a l l x ~ s f f n i n t ~ .  

We leave the definition of h(x)  for x E S \  int ~ unchanged. This definition 
permits us to write the domain of h in the form 

/ k 

U (sSn int ~ \ 2 ~ )  W ( t i n  int ~ )  = d n  ( U (int ~ \  ts~) u int ~ ,  
~ D  1 u/)2 ~ ~(D~ u D 2 / ~'n N=0 ~n ~'=0 

with 2 y  as in (5.49) when 9 =  tEED1 and with Zy as in (5.58) when 
a~ = ~ ~/)2. If we define 2 to be the complement in S of the domain of 
h, then the last relations yield 

(5.72) it = U ( ( ~ n  b d y ~ )  u i t ~ )  u ( ~ n  bdy .~)  
Z~D~ u/)2 
~ n  Y=0 

"~- ~ (  U \  ~"EDI~A ge=oU D 2 (int J'~ \ i t s ) u  int ~ ) ,  

and (5.67)~ follows immediately from (5.70) and (5.72). Moreover, (5.67)2 
follows directly from (5.71) and (5.70). The observations that showed that the 
original pair (it, h) is a piecewise affine simple deformation from S satisfying 
(i)-(iii) are easily adapted to show that the modified pair also is a piecewise 
affine simple deformation satisfying these conditions. [] 

We now state and prove the Approximation Theorem. 

5.8. Approximation Theorem. For each piecewise fit region S and each 
(~:, g, G) E Std(Ag), there exists a sequence n ~ (Kn,fn) E S i d ( S )  that deter- 
mines (K, g, G) in the sense of Definition 4.1. 
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Proof .  Let (x, g, G) ~ S t d ( S )  be given. Our first step is to reduce the prob- 
lem of finding a sequence n ~ (Kn,fn) that determines (K, g, G) to that of 
finding a sequence that determines a structured deformation of the form 
(0, i, H). Specifically, suppose that the sequence n ~ (2n, h~) ~ Sid (g ( ~ ' \  ~c)) 
determines the structured deformation (0, ig(~g\,O, H) from g ( d \  ~c), with 

(5.73) H : =  (G og -1)  ( ( V g )  - I  o g  -1 )  

as given by (5.20). By (4.5) and Proposition 4.9, because (K, g) ~ S i d ( S ) ,  the 
sequence n ~ ( ~ ,  h~) o (to, g) determines the triple 

(5.74) (0, ig(~e\x), H) o (x, g) = (K w g-1(0) ,  ig(og\~c ) og, (Hog)  Vg) 

= (x  u 0, g, G(Vg) -1 Vg) = (K, g, G). 

Next, we let (0, i, H) E S t d ( d )  be given, and we define recursively a sequence 
n ~ (2, ,  hn) in S i d ( S )  that determines (0, i, H) as follows. Put  p :=  2 and 
e 1 :=  �89 in the Approximation Lemma to obtain primes p~, p21 greater than 

3 and ()~t, hi) ~ S i d ( d )  satisfying 
(i)~ )q is covered by the collection of planes rc 6 H(p~, {1 . . . . .  p~ - 1 } )  

with l~{1, 2}, together with the set F(B)el C S defined as in 
(5.24), 

(ii)1 ][h I - iIILOO(S,~) < e l, 

(iii)l [I Vhl - H[lL~(g, Lin~) < el. 

Let n ~ rN \ [0} be given. Suppose further that for each k ~ [2 . . . .  , n} we have 
chosen primes ~ k Pl ,  P2 and a simple deformation (;tk, h~), with p~, p2 ~ both 
greater than max{p~ -~, ~-1 P2 2} and satisfying 

(i)~ 2~ is covered by U II(p~, {1 . . . . .  p~ - 1}) w {F(B)ek}, 
I=1 

(ii)k [[hk - i]lL=(~,y) < e k, 

(iii)k 11Vhk- HI[r=(~,L~T)< e k, 

with e k :=  1/(k + 1). To choose p~+l, p~,+l and (2n+ 1, h~+a) ~ S i d ( S ) ,  we 
again use the Approximation Lemma, with e ~+1 :=  1/(n + 2) and with 
p : = m a x [ p ~  p~}. The chosen primes ~+1 p~+l , ~,~ , and the simple deformation 
()~,,+~, hn+~) satisfy (i)~+z, (ii)~+z, and (iii)n+ 1. This completes the recursive 
choice of a sequence of  simple deformations n ~ ( ~ ,  h~)~ S i d ( S ) .  We 
note that properties (ii)~ and (iii),, imply that conditions (ii) and (iii) in 
Definition 4.1 are satisfied, and it remains to verify that condition (i) holds, 
i.e., that lira inf 3~ = 0. 

R ----r O~ 

Let x 6 ~ be given. Because the primes p],+l, p~+t chosen at the (n + 1)st 
stage are greater than all the primes chosen at preceding stages and because 
S obeys (5.21), the relation 

2 
x 6 U H  (pz, [I . . . . .  p/' - 1}) 

l=1 

can be satisfied at most for three values of  n. Moreover, because 
dist(x, bdy ~r > 0 and lira e ~ = 0, the relation x ~ F(B)e, can be satisfied 

n - - ~ c o  
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at most for finitely many values of  n. Hence, by (i)n, the relation x E 2~ can be 
valid at most for finitely many values of  n, and the definition of  lim inf 2~ 

tells us that x ~ lim inf 2~. Because x 6 S is arbitrary, we conclude that 
jr --4 co  

lim inf ).~ = 0. [] 
n - - * r  

5.9. Remark. It is convenient to restate the Approximation Theorem as follows: 
every structured deformation is a limit of simple deformations. Note that in order 
to consider a structured deformation (K, g, G) as a limit of simple deforma- 
tions, one must identify g and G with the L~-functions that they represent. 
With this identification, the Approximation Theorem establishes the desired in- 
clusion: Std C Lim Sid. 

An immediate consequence of the Approximation Theorem is that the frac- 
tured zone q~(K, g, G) and the unfractured zone T(lc, g, G), defined following 
(4.14) for each (K, g, G) E L i m S i d ( S ) ,  also are defined for each structured 
deformation. This fact permits us to characterize the unfractured zone directly 
in terms of  K, Vg and G, when (to, g, G) is a structured deformation. We 
recall from Section 4 that for each (x, g, G) E L i m S i d ( S ) ,  T(K, g, G) is the 
set of  all points x ~ S such that, for at least one sequence n ~ (Kn, fn) that 

determines (x,  g, G), x belongs to ext(0n=l ~cn). We have already established 

that T(K, g, G) is open and T(K, g, G) c~ K = 13. Moreover, by Theorem 4.14, 
gol ~'(x,g,G) is of class C 1 and Vgo = Go on T(K, g, G), i.e., 

(5.75) 

T (x ,  g, G) C int[x ~ d \  x I go is differentiable at x and Vgo(x) = Go(x)}. 

The next theorem establishes the opposite inclusion when (K, g, G) is a struc- 
tured deformation and tells us that ~ (x ,  g, G) is the largest set on which 
(x, g, G) is locally a classical deformation. 

5.10. Theorem. For each structured deformation (to, g, G) from d ,  

(5.76) ~g(~c, g, G) = int{x ~ d \  x I Vg(x) = G(x)}. 

Proof.  As in the proof of the Approximation Theorem, our first step is to 
show that it suffices to verify (5.76) for structured deformations of the form 
(0, i, H). Let (tc, g, G) ~ S t d ( H )  be given and consider (0, ig(~e\x), H) 
S t d ( g ( S \ K ) ) ,  with H as in (5.73). For each x~  S \ x ,  put z : = g ( x )  and 
note that 

(5.77) Vg(x) = G(x) 

Therefore, we may write 

(5.78) 

r I = G(x) (Vg(x) )  -1 

r I = G ( g - l ( z ) ) ( V g ( g - l ( z ) ) ) - i  r [ = H ( z ) .  

g(Ix E S \  K I Vg(x)  = G(x)}) = {z ~ g ( S \  ~c) l H(z)  = I}. 
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Assume now that (5.76) holds for (0, ig(sr H), i.e., 

(5.79) ~(0,  ig(se\,~), H) = int{z E g(~r K) I H(z) = I}. 

Relations (5.78), (5.79) and the fact that g is a Cl-diffeomorphism imply that 

(5.80) g - l (  T(0, ig(.~\K), H)) = g-1 (int g({x E S \  K I Vg(x) = G(x)})) 

= int{x E S \  K I Vg(x) = G(x)}. 

Thus, the inclusion opposite to (5.75), 

(5.81) int{x s d \  K l Vg(x) = G(x)l C T(tr g, G), 

would follow from (5.80) if we can prove the inclusion 

(5.82) g - l (  t[t(O ' ig(sZ\~c), H)) Q ~[t(K, g, G). 

To this end, let z E T(O, ig(se\x), H) be given. We may then choose r > 0 
and a sequence n ~ (/2~, h~) ~ S i d ( g ( S X  x))  that determines (0, ig(y\x), H) 
such that 3 ( z ,  r),C g ( S \  K) and 

(5.83) 3 ( z , r )  n(O~=l/2n) =0"  

Using the injectivity of g-1 and (5.83) we may write 

(5.84) 0 = g- i  ( ~ ( z ,  r))  n g-1 /2 = g - i  (~.~(Z, r))  (q g-1 (/2n �9 
i n = l  

Because g - l ( ~ ( z ,  r))  C S \  K, we have 

(5.85) g-l ( ~ ( z ,  r) ) n K = O, 

and (5.84) then can be written as 

0 = g - l ( ~ ( z , r ) ) n ( 0  (g-l(/2n) WK)~. (5.86) 
2 r t = l  / 

Moreover, g-1 is a Cl-diffeomorphism, so there exists g > O  such that 
~ ( g - l ( z ) ,  ~) C g - l ( ~ ( z ,  r)) and, by (5.86), we have 

(5.87) ~,~(g-a(z), 7) n (,=10 (g-l(/2n) w tr = 0. 

By Proposition 4.9, the sequence 

n ~ (/2n, hn) ~ (K, g) = (1r u g-l(/2n), hn ~ ]S\(Kug-L(Un))) s Sid(sS) 

determines (to, g, G), and relation (5.87) then tells us that g-1 (z) ~ gt(tc, g, G), 
so that the inclusion (5.82) is established. Consequently, we have reduced the 
verification of (5.81) to that of  (5.79) which, by Theorem 4.14 and the fact 
that ~P(O, ig(j\K), H) is open, reduces finally to the verification of  

(5.88) int{z E g ( S \  tc)] H(z) = I} C ~[-t(O,ig(sl\x), H). 
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Of course, it suffices to verify that, for each piecewise fit region S and for 
every (0, i, H) 6 S t d ( S ) ,  

(5.89) f f  C T(0,  i e, H) ,  

with f f  as defined in (5.25). By the Approximation Lemma, each term 
()~,,fn) in the determining sequence for (0, i~e, H) in the Approximation 
Theorem can be chosen so that 2~ n i f = 0 .  Because f f  is open, (5.89) 
follows from the definition of the unfractured zone ~g(0, ig, H). [] 

Because each structured deformation (x, g, G) from S satisfies both 
(K, g) ~ S i d ( S )  and Oc, g, G) s L i m S i d ( S ) ,  we may apply both Theo- 
rem 3.8 and Theorem 4.19 to obtain the following version of  the Fundamental 
Theorem of Calculus for structured deformations. 

5.11. Theorem. Let a piecewise fit region S ,  a triple (K, g, G) E S t d ( d ) ,  and 
a unit vector ~ in ~" be given. Then 

(i) For almost every line L parallel to ~, L n ~ \  ~c is, to within a one- 
dimensional set of measure zero, a finite union of pairwise disjoint inter- 
vals Iq, qE[1 . . . . .  Q}. 

(ii) For each sequence n ~ (~cn,fn) which determines (K, g, G) and for 
almost every line L parallel to ~, not only does (i) hold, but also, for 
each q E {1 . . . . .  Q} and n E N, fn Is.\x= and gls.,\~ extend to piecewise 
Cl_functions f e  and g= on Iq, and }he fundame'~tal formula (3.16) ap- 

plies to f~ and g for every x, y in Iq. 
(iii) /n addition, for every x, y s Iq with y = x + l y - x I e., 

]x-~ Yl 
(5.90) g ( y - - ) - - g ( x + )  = G ( x + t e )  e d t +  lim ~ ( f n ( z ~ + ) - f , ( z ~ - ) ) ,  

0 n ~ o o  
ztt 

where z~ are the discontinuity points o f f  e in (x, y). 

Proof.  All of the assertions in this theorem are immediate consequences of 
Theorems 3.8 and 4.19, except for the assertion that formula (5.90) holds 
everywhere in Iq. Equation (4.25) tells us only that (5.90) holds for all x, y 

co 

in the set S n Iq\  U Kin, which differs from Iq by a set of one-dimensional 
m = l  

measure zero and, hence, is dense in Iq. To extend the validity of (5.90) to 
all x and y in Iq, it suffices to note that by (ii) of the present theorem, g ex- 
tends to Iq as a piecewise continuous function and, therefore, has left and 
right limits at each point of  Iq. Moreover, the proof  of Theorem 4.19 shows 
that G is an integrable function on Iq, and it follows that the integral in (5.90) 
as a function of  x and y extends to Iq as a continuous function. [] 

6. Interpretations and examples 

The concepts and results in Sections 2 through 5 have been presented with 
only hints of possible interpretations in mechanics. In this section we make 
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explicit such interpretations and provide justifications based on the mathe- 
matical results established in previous sections. In addition, we show how 
structured deformations can be used to describe the deformations of specific 
classes of  continua with microstructure. 

In our theory, a piecewise fit region S represents a region occupied by a 
continuous body, and the set (int clo S ) \  S represents the site of pre-exist- 
ing, unopened cracks. In a simple deformation (K, f )  from H,  K is the collec- 
tion of all points of the body at which a new crack is created, and f specifies 
the position occupied by the remaining points of the body after the deforma- 
tion. We call K the new crack site, or briefly the crack site, and f the 
transplacement of  the given simple deformation. We point out that new cracks 
can be created through a simple deformation, but pre-existing cracks cannot 
disappear; in other words, the process of  forming a crack via simple deforma- 
tions is irreversible. A theory in which all cracking is reversible recently has 
been formulated by NOLL [16]. 

A macroscopic fracture, or macrofracture, is here identified with the crea- 
tion of  a new crack. Besides macrofractures, our scheme allows for the 
presence of microfractures. The simultaneous formation of microfractures and 
macrofractures is described mathematically as the result of a limit procedure 
in which a sequence n ~ (~cn, fn) of  simple deformations determines a limit 
of  simple deformations (x, g, G). In a limit of simple deformations, the site 
of  all fractures, both macroscopic and microscopic, is the fractured zone 
q5 (~r g, G) defined in Section 4, and the site of the macrofractures is the crack 
site t~. The broken ramp sequences in Examples 4.2, 4.3 illustrate a typical 
situation in which each individual term of the determining sequence involves 
macrofractures which, for growing values of  n, spread all over the body with 
decreasing amplitudes of  the associated jumps. In the limit, the jumps disap- 
pear, but ~c turns out to be the empty set in the first example and the set of 
all dyadic rationals between 0 and 1 in the second example. Thus, there are 
no macrofractures in the first case, whereas in the second case the macrofrac- 
tures are diffused throughout the body. In the examples under consideration, 
the fractured zone can easily be determined. Indeed, Theorem 4.14 tells us that 
the fractured zone includes all points x for which Vgo(x) 4= Go(x), and in 
both examples this condition is satisfied at all points of the body. 

Among the collection of limits of simple deformations, we have identified 
the subclass of structured deformations. This subclass has the property that, 
for each structured deformation (K, g, G), the pair (K, g) is a simple defor- 
mation. Another useful property is provided by Proposition 5.3: the composi- 
tion of  two structured deformations is a structured deformation. We now use 
these two properties to define local measures of deformation due to micro- 
fracture. First of all we observe that the gradient Vfn of each transplace- 
ment in the determining sequence n ~ ( ten,f  n) can be regarded as a local 
measure of  deformation at those points of S at which no fracture occurs. 
It is then natural to consider the limit element G of  the sequence n ~ Vf~ 
as a local measure of deformation without fracture, in the sense that G is 
not affected by the presence of  either mierofractures or macrofractures. It 
is also natural to consider Vg as a local measure of the macroscopic defor- 
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mation determined by the macroscopically observed transplacements g. For 
these reasons, we call Vg and G the macroscopic deformation tensor and the 
tensor of deformation without fracture, respectively. Theorem 5.10 characterizes 
the fractured zone for a structured deformation as the complement in S of 
the interior of the region in which these two deformation tensors agree. 

For a structured deformation (K, g, G) from S ,  the fundamental formula 
of  calculus for simple deformations (3.16) tells us that 

lY X [ v g  
(6.1) g ( y ) - g ( x ) =  ~ ( x + t ~ ) ~ d t + ~  ( g ( z + ) - g ( z - ) ) ,  

0 
z 

i.e., that the relative transplacement g(y) - g(x) of y and x, with x, y in S \  tc 
and y = x  + l y - x l  e, is a sum of an integral representing the relative 
transplacement due to macroscopic deformation and of  a sum of jumps 
representing the relative transplacement due to macroscopic fracture. On the 
other hand, the fundamental formula of calculus for structured deformations 
(5.90) 

[y-x[ 
(6.2) g(y) - g(x) = ~ G(x + t~) ~ dt + lim ~ (fn(zn+) - f ~ ( z n - ) )  

0 n--~r 

shows that the relative transplacement of  y and x also is the sum of  an integral 
involving the relative transplacement without fracture, plus a term which ac- 
counts for all fractures occurring in the simple deformations (K~,fn) of  the 
determining sequence. Note that, in the limit, this term may result both from 
macroscopic and microscopic fractures. Subtracting (6.1) from (6.2) yields 

ly-xl 
(6.3) (Vg(x  + tc~) - G(x § t e ) )  e d t  

0 

= J i r n  ~ ( f n ( Z n + ) - f n ( Z n - ) ) -  ~ ( g ( z + ) - g ( z - ) ) ,  
gn Z 

where the right-hand side consists of the difference between the relative trans- 
placement due to fracture and that due to macrofracture; therefore, the right- 
hand side of (6.3) represents the relative transplacement due to microfracture. 
This formula tells us that the relative transplacement due to microfracture 
admits an integral representation in which the tensor field 

(6.4) M(x) :=  Vg(x) - G(x), x ~ d \  x ,  

provides a local measure of deformation due to microfracture. The additive 
decomposition 

(6.5) Vg = G + M 

expresses the macroscopic deformation tensor as the sum of the tensor of 
deformation without fracture and of a local measure of deformation due to 
microfracture. For reasons that we give presently, we call M the Burgers micro- 
fracture tensor. 

Multiplicative decompositions of  Vg involving G and appropriate local 
measures of  deformation due to microfracture can be obtained from the global 
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decomposit ion of structured deformations 

(6.6) (,% g, G) = (0, ig(se\K), (G og-1) (Vg)- i  og-1) o (K, g, Vg) ,  

established in Proposit ion 5.6, and from its counterpart  

(6.7) (to, g, G) = (K, g, Vg) o (0, iss\x, (Vg) - 1 G ) ,  

that also follows f rom the formula (5.2) for the composit ion of  two structured 
deformations. In both cases, a structured deformation is decomposed into a 
simple deformation and a structured deformation of  the form (0, i, H). The 
latter can be interpreted as a purely microscopic deformation; indeed, because 
tc = 0, no macrofracture occurs; because g = i, no point is macroscopically 
displaced. Thus, the factorization (6.6) represents a structured deformation as 
a simple deformation followed by a purely microscopic deformation,  and (6.7) 
represents the same structured deformation as a purely microscopic deforma- 
tion followed by a simple deformation.  This suggests the local multiplicative 
decompositions 

(6.8) Vg = M l G, 

(6.9) Vg = GMr, 

of  the macroscopic deformation tensor Vg, with Mt : = Vg G-1 and M r : = G-1 Vg; 
Mt and Mr are called the left microfracture tensor and the right microfracture 
tensor, respectively. 

In conclusion, both additive and multiplicative decompositions of  Vg in- 
volving G and a measure of  deformation due to microfracture arise from our 
analysis. For each structured deformation (~c, g, G), the tensor fields M, MI 
and Mr are determined by g and G. Thus, there is no difference in principle 
between adopting one decomposit ion or the other, and, once G and one of 
the above tensor fields are known, the other two can be determined from their 
definitions. For a structured deformation (K, g, G), the fact that (~c, g) is a 
simple deformation implies that g is differentiable in S \  tc. Therefore, if we 
integrate relation (6.5) along a closed curve c in S \  K, we obtain 

(6.10) 0 =  ~ Vg d.~ =~Gd.~ + ~M d.~; 

this shows that the circulation of  - G  along ~ equals that of  M, and, there- 
fore, measures the relative transplacement due to microfracture along the 
closed curve c.  The circulation of  M (or of  - G) along ~ is called the Burgers 
vector in continuum theories of  dislocations [8, 9]. This motivates our choice 
of  the name Burgers microfracture tensor for M. 

Of  course, de tVg  represents the macroscopic local volume change; 
analogously, det G represents the local volume change without fracture, so that 
the inequality (4.19), also occurring in (Std 3), Definition 5.1, asserts that the 
local volume change without fracture cannot exceed the macroscopic local volume 
change. In other words, microfracture can create voids but cannot consolidate 
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the body. Accordingly, we interpret the scalar field 

det G 
(6.11) (0 :=  = (det Mr) -1 = (det MI) -1, 

det Vg 

whose values lie in the interval (0, 11, as the volume fraction and 1 - (o as the 
void fraction for the given structured deformation (K, g, G). When ~0 = 1, there 
is no volume change due to microfracture, i.e., deformation due to microfrac- 
ture cannot entail the opening of  cracks at the microscopic level. In particular, 
if we consider the set of invertible structured deformations as defined by 
(5.19), we see that, because for such deformations the crack site x is empty, 
invertible structured deformations describe situations in which deformation 
due to microfracture occurs without the formation of  new cracks; because for 
invertible structured deformations the volume fraction is one, by (6.11), they 
describe deformations in which no volume change occurs due to microfracture. 

We are now in a position to describe the deformations of particular classes 
of  continua. We recall the decompositions (6.6), (6.7), according to which a 
structured deformation can be thought of as the composition of a simple 
deformation and a purely microscopic deformation. For definiteness, we con- 
sider here the decomposition (6.6) which we rewrite in the form 

(6.12) (to, g, G) = (13, i, H) o (K, g, Vg). 

Sets of deformations appropriate to particular classes of continua can be con- 
structed by requiring that each factor in this decomposition be subject to fur- 
ther restrictions. For example, the requirement K = 0 yields the deformations 
of a continuum without macrofractures, and H = I yields the deformations of 
a continuum without microfractures. Taking both x = 13 and H = I and requiring 
further that all transplacements g be classical deformations yields the deforma- 
tions of  a classical continuum. Suitable restrictions on the transplacements g 
yield deformations of continua subject to internal constraints, such as rigidity, 
incompressibility, or inextensibility in a given material direction. Similarly, 
restrictions on H yield deformations of particular classes of continua with 
microfractures, some of  which will be identified below. 

For each purely microscopic deformation (0, i, H) from Z and for all 
x ~ S ,  set 

(6.13) U(x) :=  (~o(x)) -1/3 H(x) ,  

where the volume fraction ~0, defined in (6.11), 
also that the tensor field U is unimodular, i.e., 
Consider the decomposition 

(6.i4) (0, i, H) = (0, i, U) o (13, i, 

in which both triples on the right-hand side are 
tions. The deformation (0, i, ~01/3 I )  involves a 

here reduces to det H. Note 
det U(x) = 1 for all x ~ ~ .  

q)l/3 I )  

purely microscopic deforma- 
creation of voids; the fact 

that the tensor of deformation without fracture is spherical at each point is 
expressed by saying that there is no distortion in the deformation without frac- 
ture. Accordngly, we call the two factors in the decomposition (6.14) a creation 
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of voids without distortion and a purely microscopic distortion, respectively. 
Notice that, by (5.19), a purely microscopic distortion (0, i, U) is an invertible 
structured deformation. 

The term continuum with voids is commonly used to describe a continuum 
in which the only purely microscopic deformations that can occur are creations 
of  voids without distortion. In a similar way, a continuum in which the only 
purely microscopic deformations are purely microscopic distortions may be 
called a continuum without voids. 

Particular classes of continua without voids can be identified by imposing 
further restrictions on the field U. Examples taken from the list given in the 
book [1, Sect. 2], are shown in the following table. 

Name of  continuum Range of U 

continuum with spin 

Cosserat continuum 

continuum without voids 

all proper orthogonal tensors with 
axes parallel to a fixed direction 

all proper orthogonal tensors 

all proper unimodular tensors 

A continuum that can undergo arbitrary, purely microscopic deformations is 
called a micromorphic continuum. In another class of continua mentioned in 
reference [1], the continua with vector microstructure, the field H can take ar- 
bitrary values in the set of  second-order tensors. Deformations of  such con- 
tinua need not be structured deformations because they can violate the condi- 
tion (Std 3) on the positiveness of the determinant of H. (In fact, they need 
not even be limits of simple deformations.) Further classes of continua in the 
same list, namely liquid crystals and bodies with continuous distribution of 
dislocations, will be considered in the next section. 

7. Applications to specific continuum theories 

In this section we examine several existing continuum theories and propose 
sets of non-classical deformations that clarify concepts in these theories. 

7a. Plasticity 

The subject of plasticity treats large deformations of a continuous body 
that can occur under nearly constant stress and that cannot be reversed by 
reversal of  the stress alone. The most widely used theories of plasticity are 
formulated in the geometrical context of  classical deformations of a con- 
tinuum. They introduce notions of "elastic deformation" and "plastic d e f o r -  
mat ion"  not as purely geometrical quantities but in the context of internal 
variables that appear in decompositions of the deformation gradient and in 
other constitutive relations. This approach has the advantage of  describing 
plastic behavior in the same classical geometrical framework that is used in 
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elasticity and fluid mechanics. It has the disadvantage that, however well 
motivated on physical grounds the chosen notions of elastic and plastic defor- 
mation might be, certain additional choices must be made as to how the local 
deformation should decompose into elastic and plastic parts and how each 
part should transform under changes in observer and reference configuration. 
The multiplicity of such choices has led to lingering controversies [11]. 

Here we choose to describe elastic deformation as deformation without 
fracture and plastic deformation as deformation due to microfracture. Within 
the class of structured deformations (~c, g, G) we define the elastic deformation 
tensor to be G, the tensor of deformation without fracture. This definition 
agrees with descriptions of  deformations at the microscopic level in metals, 
where deformations are considered to be elastic when no substantial activation 
of defects in the crystalline structure occurs. This definition also agrees with 
the caveat made in theories of  plasticity: plastic deformation need not be the 
gradient of a displacement of  the body, or even of  a piece of the body. In 
fact, our results in Section 5 require only that G be a limit of gradients, and 
this limit need not be a gradient. Furthermore, the plastic behavior of many 
materials involves neither macroscopic fracture nor local volume changes due 
to microfracture. For such materials, an appropriate class of deformations is 
the class Inv Std of  invertible structured deformations for which, by definition, 
the crack site is empty and det Vg = det G. 

An important consequence of our definition of the elastic deformation ten- 
sor, that usually enters as an assumption in existing theories of plasticity, is 
the fact that the tensor transforms in the same manner as the local 
macroscopic deformation Vg under changes in observer and reference con- 
figuration (see [181). Here, we consider changes in observer and reference con- 
figuration in the sense described in the book [71. In particular, we consider 
changes in reference configuration that are classical deformations. 

7.1. Proposition. Under changes in observer, 

(7.1) Vg --+ Q Vg, G ~ QG, 

and under changes in reference configuration, 

(7.2) Vg ~ Vg H, G ~ GH. 

Proof.  The laws of change in observer and change in reference configuration 
tell us that deformation gradients F transform according to F-~ QF and 
F ~  FH, which immediately yields the properties of Vg in (7.1) and (7.2). 
Here, Q is the orthogonal tensor associated with the change in observer and 
H is the unimodular tensor associated with the change in reference configura- 
tion. Because G is the limit of the sequence n ~ Vfn and, for every n ~ N, 
the deformation gradient Vfn transforms in the same way as Vg, we conclude 
that G transforms as in (7.1) and (7.2). [] 

Our description of  plastic deformation as deformation due to microfracture 
leads naturally to the choice of the local measures of  deformation due to 
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microfracture: 

(7.3) M = Vg - G, 

(7.4) M l = Vg G -1, 

(7.5) M r = G -I Vg, 

as plastic deformation tensors for a given structured deformation (to, g, G). 
Counterparts of  M, MI and Mr are the tensors F p - I of  NZMAT-NASSZR [12], 
FP of  CLIFTON [3], and F p of  LEE & LIU [101, respectively (cf. [181 for further 
discussion of  this correspondence). The relations (7.3)-(7.5) give rise to cor- 
responding decompositions of  the macroscopic deformation tensor Vg into 
elastic and plastic parts. When there is no local volume change due to 
microfracture, the relation det Vg = det G implies det Mz = det Mr = 1. In this 
case, the tensor field H in (6.12) satisfies det H =  1, so that (0, i, H)  
represents a purely microscopic distortion. 

Just as we showed in Proposition 7.1 that the transformation laws for the 
elastic deformation tensor G are determined by those for deformation gra- 
dients, we obtain a corresponding result for each of the plastic deformation 
tensors M, Ml, and Mr [181. 

7.2. Proposition. The tensors M, Ml, and Mr transform under changes in 
observer and changes in reference configuration according to the rules: 

(7.6) M ~ QM, M --+ MH,  

M v (7.7) MI ~ Q lQ , Mt -+ Mt,  

(7.8) M r ~ Mr, M r -+ H -1MrH.  

We note that the plastic deformation tensor M transforms in the same way 
as do the elastic deformation tensor G and the macroscopic deformation ten- 
sor Vg. 

7b. Liquid crystals 

Liquid crystals are substances that behave mechanically in many ways like 
fluids, but whose optical and electrical properties are more like those of 
anisotropic, crystalline solids. Based on the observed presence in many liquid 
crystals of nearly rigid, rod-like molecules that tend to align within small 
regions of  the liquid crystal, theories of liquid crystals often postulate the ex- 
istence of a director field for each global state of the liquid crystal, i.e., a 
field /~ whose value /~(x) at a point x is a unit vector, interpreted as the 
average of the orientations of a collection of molecules. In addition, a scalar 
order-parameter S sometimes is introduced to represent derivations of 
molecular orientation from the director field .e. 

We show here that a director field automatically arises within a specified 
class of  structured deformations, and we also discuss the possibility of defin- 
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ing an order-parameter within that class. For simplicity, we discuss only 
"statical configurations" of liquid crystals, i.e., situations in which there is 
no movement of the continuum that represents the liquid crystal, but in which 
the director field ~ can change. To this end, we consider purely microscopic 
deformations (0, i, H) in S t d ( S )  for which H(x) is an orthogonal tensor for 
every point x in the given region S .  By the Approximation Theorem, 
Theorem 5.8, we may choose a sequence j ~ (Jcj,fj) of piecewise affine sire- 
ple deformations such that, in 

(7.9) 

(7.10) 

and such that 

(7.11) 

the sense of L=-convergence on S ,  

lira f b = i, 
j-~oo 

lim V f / =  H,  
j-~oo 

lim inf ir b = 0. 
j--*oo 

Relations (7.9) and (7.10) tell us that f /  is approximately a piecewise rigid 
mapping and that the finitely many values of Vfj are approximately or- 
thogonal. Therefore, it is natural to regard each of the affine restrictions of 
f / a s  imparting an approximately rigid transplacement to one of the molecules 
of the liquid crystal, which we identify as one of the connected components 
of d \  tcj. If  all the molecules in S have a common initial alignment de- 
fined by a unit vector "4, then the finitely many values of Vfj "4 give the cor- 
responding alignments after the simple deformation (~cj,fj). Moreover, Lem- 
ma 4.11 tells us that, for each x ( d ,  

(7.12) H(x) "4= lim Vfj,(x) .4, 
j I.--+ oo 

(7.13) x = lim f j , (x)  
j'-+oo 

for some subsequence j ' ~  (tcj,,f/,) of j ~ (tcj,fj) that may depend upon 
the point x. Therefore, (7.12) permits us to assert: the unit vector H(x)  .4 is 
the limiting alignment of the orientations Vfj,(x) .4 of molecules at x as j '  tends 
to infinity. (Our identification of molecules with connected components of 
S \  ~c/suggests that the size of the molecules tends to zero as j and j '  tend 
to ~.) Therefore, we define the director field /~ for the deformation (0, i, H) 
and for the initial direction .4 by the relation 

(7.14) /~(x) = H(x) .4 for all x ~ ~r 

The following proposition gives a precise sense in which the director field 
/~ is a limit of the average orientations of collections of molecules. 

7.3. Proposition. Let a unit vector "4 and (0, i, H) E S t d ( d )  be given with H 
orthogonal-valued. For each x E S and each determining sequence j ~ (~cj, f j)  
for (0, i, H), 

(7.15) 
1 

/~(x) = lira ~ VJ~(y) "4dy. 
i-+~o v o l ( 2 ( x ,  (j + 1) -1) c~ d )  ~<x,(j+l>-l~g 
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Proof.  For each j e N we have 

Vfj(y) .4' dy 
~(x , ( j+ l )  - l )  nsg 

= ~ (Vfj(y)  A" - H(y) / ( )  dy 
GJ(x,(j+l)- l)  c~S 

+ ~ (H(y) L - H(x) f )  dy + 
2 ( x , ( j + l ) - t )  n S  

and (7.15) then follows from (7.10), 
S .  [] 

l H(x) .~ dy, 
~'(x, (j + 1) -1) c~d 

(7.14), and the continuity of H on 

We recall that in the relation (7.12) the choice of subsequence depends 
upon the given point x, as is also the case in the following formula for the 
director at x: 

(7.16) F~(x) = H(x) A+= lim Vfj,(x) j,--,o~ 

In contrast to this fact, the relation (7.15) holds for every determining se- 
quence j ~ (xj, fb) and for every x 6 S .  Thus, for a given point x in S ,  no 
special determining sequence for (0, i, H) need be chosen in order to 
guarantee the validity of (7.15). 

It is interesting to try to use the present kinematical setting in order to 
identify the order parameter S mentioned above. In descriptions of nematic 
liquid crystals [20] one finds a measure of deviation of  molecular orientations 
from the director ~ (x)  that corresponds in our setting to the quantity 

(7.17) S(x) :=  lim 3 ~(x,(j+l)-l)n~ 1 
j-+oo 2 v o l ( 3 ( x ,  ( j +  1) -1) n S )  3 ' 

Here, ( /~(x) .  Vfj(y) A') 2 measures the angular deviation from /~(x) of the 
axis of the molecule located at y. Using the same arguments given in the proof 
of  Proposition 7.3, we conclude that S(x) = 1, a relation that describes the 
completely oriented nematic phase of  the liquid crystal. Hence, the L~~ - 
vergence of  j ~ Vfj to H leads to a class of  liquid crystals in which the 
order-parameter takes on only the value 1. In further studies along these lines, 
it would be necessary to weaken the type of convergence of  the gradients in 
order to obtain other values of the order parameter. 

7c. Crystals with defects 

Continuum theories of  defective crystalline solids describe substances with 
microscopically regular atomic lattices that are weakened by the presence of 
defects, i.e., irregularities in the lattice structure that collectively can support 
large deformations of  the crystal. In such theories, the discrete structure of 
the atomic lattice at the microscopic scale is replaced by a continuous 
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distribution of basic lattice vectors that are specified mathematically as a triple 
( ~ 1, ~2, e3) of vector fields such that the triple of vectors ( el (x), e2 (x), e3 (x)) 
is a basis of ~ a t  each point x of the body. The presence of defects is then 
inferred from topological properties associated with the fields (e l ,  e2, e3)- 
We show here that lattice vector fields automatically arise within a specified 
class of structured deformations in the same way as the director field for liquid 
crystals arose in the previous discussion, and this provides a mathematical 
description of the process of "continuizing" a crystalline structure [9]. We fur- 
ther indicate how continuous distributions of dislocations can be obtained as 
limits of simple deformations, and we identify the position of a class of 
"neutral changes in state" for defective crystals [4, 5, 6] within the class of 
structured deformations. 

We restrict our attention to purely microscopic distortions of a defective 
crystal; other deformations can then be obtained via composition with ar- 
bitrary simple deformations. Let (0, i, H) in S t d ( S )  be given such that 
det H =  1, and let an orthonormal basis (,(1, ,d:, ,(3) of ~ b e  given. We 
choose a determining sequence m ~ (Xm, fm) for (0, i, H) such that each 
simple deformation is piecewise affine. Note that, for each m ~ N and 
x ~ S \ K  m, (Vfm(X) z/l, Vfm(X) Z/z, Vfm(X) /(3) is a basis of ~,, and that, as 
Vfm has only finitely many values, this basis takes on only finitely many 
values. Therefore, {(Vfm(X) "(1, Vfm(X) z~2, Vfm(x) L3)]x  ~ d \  xm} is a finite 
set of bases of ~ t h a t  we interpret as the set of discrete lattice bases for all 
the atomic sites of the crystal in the deformed state determined by UCm,fm). 
The same arguments that led to (7.12) and (7.13) tell us that, for each x ~ 5r 
there is a subsequence m' ~ (lCm,,fm,) of m ~ ( K m , f m )  such that 

(7.18) H(x)/Jz = lim Vfm,(X ) /~l, l ~ {1, 2, 3}. 
m i.- .~ c o  

We call (H(x) "(1, H(x)/ f2,  H(x) ~3) the lattice basis at x for (0, i, H) and 
(La, ~e,-(3) .  Moreover, the proof of Proposition7.3 immediately shows 
that, for every x ( S and l ( {1, 2, 3/, 

Vfm(y ) ~ dy 
(7.19) lim ~N'(x'(m+l)-l) c~s~' = H(x) / f l .  

m,oo v o l ( ~ ( x ,  (m + 1) -1) n d )  

Thus, our use of structured deformations (0, i, H) permits us to show that 
the lattice basis field (H/f1, H~2, H/f3) is a limit of averages of discrete lattice 
bases. 

Two classes of structured deformations of interest in the study of defective 
crystals arise from the following factorization of a classical deformation f ,  
regarded as a structured deformation (0 , f ,  Vf) :  

(7.20) (O,f, Vf) = (0 , f ,  I )  o (0, i, Vf).  

The factor (0 , f ,  I )  has G = / ,  so there is no local deformation without frac- 
ture; because tc = 0 ,  there is no macrofracture. Therefore, we think of 
(0, f ,  I )  as a deformation due to microfracture. The limit of the deck of cards 
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discussed following Example 4.3 is a deformation (0, s, I )  of  this type with s 
a simple shear. The second factor (0, i, Vf)  in (7.20) involves some deforma- 
tion due to microfracture whenever Vi = I .  Vf. However, because G = Vf is 
a gradient, the line integral }~ G d.~ must vanish for every rectifiable closed 
curve c in the domain o f f ,  i.e., the Burgers vector for (0, i, Vf)  vanishes. This 
situation is described by saying that the purely microscopic deformation 
(0, i, Vf)  introduces no new defects in a crystal. Extensive studies of  classes 
of  "changes of  state" of defective crystals by DAVINI & PARRY [4, 5] and 
FONSECA & PARRY [61 have focused on a class of  "neutral" ,  or "defect-pre- 
serving", changes of  state; when det V f =  1, our deformations (0, i, Vf)  cor- 
respond to a proper subset of  the collection of  neutral changes in state, and our 
deformations (0, f ,  I )  correspond to "rearrangements"  in the above studies. 

In closing this subsection, we indicate how limits of  simple deformations per- 
mit one to describe continuous distributions of  defects in a body. Indeed, the 
limit of  the "deck of  cards" (0, s, I )  with s a simple shear suffices to illustrate 
this point. Each simple deformation (rn, tn) defined in (3.9) and (3.10) 
describes the effect of n - 1 edge dislocations passing through the deck of cards. 
The glide plane of  each dislocation is one of the interfaces between the cards, 
and one may view the n - 1 edge dislocations as passing through the deck one 
after another, starting with the activation of  the plane on the bottom card and 
proceeding to higher and higher cards in the deck. The structured deformation 
(0, s, I )  is determined by the sequence n ~ (rn, t~) and can be visualized as 
the effect of  infinitely many parallel glide planes, each causing an infinitesimal 
displacement of the region above that plane parallel to that plane. Thus, 
(0, s, I )  describes the effect of a continuous distribution of  edge dislocations 
passing through a body. Of course, our theory provides the possibility of 
generalizing this example in many directions, as our examples in Section 4 
suggest. 

7d. Mixtures 

Continuum theories of  mixtures describe a distinguished continuum, called 
the mixture, as well as auxiliary continua, called the constituents, that are per- 
mitted to interpenetrate. Such interpenetration cannot be described by using a 
structured deformation, because the transplacement for such a deformation 
must be injective. Mixture theories often assign to each constituent its own 
classical deformation and then explore various methods for identifying an 
associated deformation of the mixture. The need to include in a mixture theory 
the possibility o f  diffusion among the constituents leads to many possible 
choices of  an associated deformation of  the mixture and, hence, to a diversity 
of  mixture theories. 

We here propose a description of  deformations of  a mixture and of its consti- 
tuents in which we approximate a deformation of  the mixture by a simple defor- 
mation that, by virtue of  its injectivity, places all the constituents in space 
without interpenetration of  matter. Each constituent undergoes in the approx- 
imation a simple deformation that separates the constituent into pieces, with 
spaces between the pieces left for other constituents to occupy. Thus, in the 
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approximation, the constituents are dispersed in space without interpenetration 
of matter. A deformation of the mixture is defined to be a limit of approx- 
imating simple deformations. In the passage to the limit, the volume of the 
pieces of the constituents goes to zero and the number of pieces goes to infinity, 
so that, in the limit, different constituents are permitted to interpenetrate. For 
example, consider as an approximating simple deformation the cutting and shuf- 
fling of a deck of cards. The cut divides the deck in two parts: each part can 
be thought of as a constituent of the mixture and the shuffling as the dispersion 
of the two constituents without interpenetration. A sequence of cuts and shuf- 
fles of decks whose cards are taken to be thinner but more numerous at each 
stage in the sequence leads to a limit of simple deformations that describes each 
of the two constituents diffused throughout one and the same region in space. 
Thus, the occurrence of interpenetration of matter in the limit can be resolved 
by choosing arbitrarily accurate approximations of a given deformation by sim- 
ple deformations in which interpenetration of matter does not occur. 

A starting point toward a precise description of these ideas may be found 
in the following definition. 

7.4. Definition. Let a piecewise fit region S and (K, g, G) E L i m S i d ( d )  be 
given. The triple (~c, g, G), is called a mixing deformation from d if there exists 
a finite collection [ H j [ j ~ [ 1  . . . . .  J}} of pairwise disjoint, piecewise fit 
regions such that 

J 
(Mix 1) H \  K = U S ] ,  

j=l 

(Mix 2) for each j E {1 . . . . .  JI, (13, &, Gi) ( S t d ( ~ ) .  

In (Mix 2), gj and Gj denote the restrictions to ~ of go and G o, the con- 
tinuous representatives of g and G on S \ ~c defined in Lemma 4.11. We inter- 
pret each region d j  as a reference region for the j th constituent of the mix- 
ture and go ( ~ )  as the region occupied by the jth constituent of the mixture 
for the given mixing deformation. The transplacement gj is injective, because 
(0, &, G i) is a structured deformation from ~ .  Because (~c, g, G) is as- 
sumed to be a limit of simple deformations and not a structured deformation, 
go : S \  K ~ ~ need not be injective. We interpret go(S)  to be the region 
occupied by the mixture in the given mixing deformation. For example, the 
triple (K, g, G) defined in Remark 4.16 is a mixing deformation that "shuf- 
fles" the two intervals ( -1 ,  0) and (0, l) to form the interval (0, 2). 

Of course, condition (Mix 2) permits us to apply to the deformation 
(13, &, Gi) of each constituent the concepts introduced in Section 6 for ar- 
bitrary structured deformations. For example, we define the volume fraction (o i 
for the j th  constituent in the mixing deformation (to, g, G) to be the scalar 
field (Oj : go( J ~ k  K) -~ R given by 

I 0 if X~go(d j ) ,  
~0j(x) = det Gj 

k.~let V& (gffi (x)) i f x E g o ( ~ . ) .  
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If  we decompose each structured deformation (0, gj,  Gj) according to (6.12) 
and (6.14), the factor (0, i, ~01/3I) represents a creation of voids without 
distortion for the j th constituent. This deformation gives a measure of  the 
dispersion of  the constituent in space, in the sense that it tells us what fraction 
of  the volume in space is available for occupation by other constituents. It 
is then natural to think of  the region int[x fi g o ( S \  K)[ ~oj(x) = 1} as the un- 
dispersed zone for the jth constituent in the mixing deformation (to, g, G). 
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