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Abstract 

The formation of  a visual image in electrophotography can be modeled as 
a time-dependent free boundary problem. The electric potential - u  satisfies 
Au = 1 in the toner region and Au = 0 outside this region, whereas on the in- 
terface (which is a moving boundary) 

Ou 
- v e l o c i t y  of  the interface, 

ON 

N being the outward normal to the toner region. It is proved that this problem 
has a smooth solution for a small time interval; furthermore, for a certain 
version o f  the free boundary condition, the solution is unique. 

O. Introduction 

The formation of  visual images in electrophotography is accomplished by 
means of  a toner injected onto the surface of  the photoconductor.  The toner 
is carried by biased carriers and, as a consequence, tends to accumulate in 
those regions of  the photoconductor  surface which carry surface charge cor- 
responding to dark spots in the document which is being copied (the distribu- 
tion of  this charge represents the electric image of  the document);  for more 
details see [1, 2, 5, 6, 7]. 

We consider here a 2-dimensional model wherein a pixel is represented by 
an interval - a  ___ x < a. We denote by - u  the potential of  the electric field 
which is responsible for the motion and settling of  the toner. A small potential 
difference M (M > 0) is maintained between boundaries y = b (where u = M) 
and y = - h  (where u = 0). The surface of  the photoconductor  is {y = 0}, and 
the electric image is assumed, for simplicity, to be a surface-distribution of  
uniform density tr, tr > 0, supported on an interval 

I = { ( x ,  0 ) ;  - y < x < ~ }  where 0 < ~ , < a .  
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Figure 1 shows the format ion of the visual image:  The  domain D where 
Au = 1 is precisely the region occupied by the toner. Off  D u I the function 
u is harmonic,  and it satisfies the boundary  conditions shown in Figure 1; fur- 
ther, 

[ % ] ~ - = % ( x , O + ) - % ( x , O - ) = - a ,  - y < x < y .  

Ux:O 

{-a,O) 

I 

I Au=O 
I 
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The domain D lies in {y > 0}, and F = OD c~ {y > 0} is called the free boundary. 
After the development of  the visual image has been completed, u becomes 
time-independent, and the equilibrium condition 

3u 
- - = 0  o n F  
ON 

must  hold. 
The above model was studied by FRIEDMAN & HU [3] under the conditions 

(0.1) h < b, M < ah. 

Both conditions are satisfied in the physical model. Indeed, in the units of  
volt-ampere-coulomb and microns, +u = k where k - 3, a = ao/(~:e0) where 
a0 ~ 4 x 10-1~ and Ke0 is the dielectric coefficient, Ke0 - 24 x 10-12. Thus 
a 15. Also, h = 20, b = 600 and M = 50. It follows that  h < b whereas the 
inequality M < ah becomes 50 < 15 x 20. 

It  was proved in [3] that  if 7/a is close to 1, then the problem has a unique 
solution with F initiating at x = - a  and terminating at x = a, and u - - M  
above F. On the other hand, if 7/a is small, then there exist infinitely many 
solutions for which the toner set D consists of  two symmetric components  [3]. 
The case of  small ? /a  was also studied, more recently, by H u  & WANG [4] who 
proved the existence of a solution with D a connected region. The uniqueness 
of  such a solution has not been proved and it is altogether unclear which of 
the solutions is dynamically stable, i.e., physical. It  should be noted that  both  
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cases, ?/a near 1 and ?/a near 0, are physically not very interesting since most 
pixels are neither nearly all dark nor nearly all light. For the case of  in- 
termediate y/a, no existence results are known. 

As the photocopying machines are becoming faster, there may not be 
enough time for the visual image to develop fully. Thus there is a need to 
study the time-dependent problem: How does the visual image evolve in time ? 

In the time-dependent case u is a function of  both (x, y) and t, and the 
toner region D = D(t) and the free boundary F = F(t) = OD(t) n [y > 0} also 
depend on t. Denote by Vn the velocity of points in F(t) in the direction of 
the outward normal N = N ( t )  to D(t). The continuity equation for the 
charged toner is Op/Ot = - V .  f where f = ltpE = - IzpVu is the current densi- 
ty;  here/~ is the electric field, p the charge density and /z  the mobility. Since 
p = const. = P0 > 0 in the toner and p = 0 outside the toner, the continuity 
equation means that the free boundary F(t) must move according to the law 

Ou 
(0.2) V, = - -  on F(t ) ,  

ON 

provided we take /~P0 = 1. 
In this paper we consider this evolutionary toner problem and prove the 

existence and uniqueness of a solution for a small time interval 0 _< t _< to. 
We also establish some geometric features of  the free boundary. The main 
results are stated, more precisely, in w 1, where the structure of  the paper is 
also outlined. 

Throughout  this paper it is assumed that (0.1) is satisfied. 

0.1) 

1. Statement of the main result 

Set 

R = [ ( x , y ) ;  - a < x < a ,  - h < y < b } .  

For simplicity we take ? = 1 in Figure 1 ; then, of course, a > 1. 
Consider a family of  curves 

F(t) :y = f ( x ,  t), -Xo(t) < x < Xo(t) 

for 0 _  t < to satisfying the following properties: 

f (x, t) = f ( - x ,  t),  

f ( x ,  t) > 0 if Ixl <x0( t ) ,  f (xo( t ) ,  t) = 0  where 

1 <xo(t)  < a  if 0<t_-<to,  Xo(0) = l ,  

C 
[f~(x, t)l _ - < - -  if Ix I < x 0 ( t ) ,  

I log t[ 

- c  if l < x < x o ( t )  ( C > c > O ) ,  fx(X, t) <_ Ilog t[ 
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(1.1) [fx(' ,  t)]o,~ < Co (0 < a < �89 Co > 0 ) ,  
= tt l o g  t[ = 

V (~ > O, )~1 < f t (  x, t) < Y2 if IXl < 1 -- fi (Yi = Yi(3) > 0 ) ,  

clt  [log t] <__ Xo(t) - 1 <_ Clt  Ilog t[ (C 1 > c 1 > 0) ,  

{ ( x , f ( x ,  t))} lies between the polygonal lines / l ( t ) , /2( t )  where 

li(t) has vertices ( - 1  - Qit [log t], 0), ( - 1 ,  Ait), (1, Ait) and 

(1 + Qit [log t t, 0), for some constants A2 >AI > 0, Q2 > Qx > 0. 

Here [ ]0,~ denotes the a-HOlder coefficient in the variable x. 
Denote by D (t) the domain bounded by F(t)  and the x-axis, and consider 

the following problem: 

(1.2) A u =  I10 i n D ( t ) ,  
in R \ D ( t ) ,  

the limits Uy(X •  exist for - 1  < x  < 1 and 

U y ( X , O + ) - u y ( x , O - )  = - a  if - l < x < l ,  

u is continuous in /~ x [0, to] V t ~ [0, to], and u 
is continuously differentiable in Rk{(x, 0) ;  - 1  _ x  _< 1], 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

u(x,  b, t) = M,  

u(x, - h ,  t) = O, 

Ux( q-a, y, t) = O, 

- a < x < a ,  

- a < x < a ,  

- h < y < b .  

By uniqueness u(x, y, t) = u( - x ,  y, t). 
We now wish to consider F(t)  as unknown, and impose the free boundary 

condition (0.2). We recast (0.2), however, in a way which depends more directly 
on u: 

Suppose we write 

(1.8) F ( t ) : x = x ( t , ) t ) ,  y = y ( t , ) t )  (0_-< t =< to) 

where )t is a parameter such that 

x(0, A) = ;t, y(0, )t) = 0, -)~o(t) < ~ < Ao(t), 

)t0(0) = 1, )t0(t ) < 1 if t > 0, 
(1.9) 

y(t,  20 > 0 i f t > O , I ) t ] < ) t o ( t ) ,  

y( t ,  4-)~o(t)) = 0  if t > 0. 

Notice that the condition (0.2) means that 

(0.2') ( ~ , d y )  Ou , N  = - - - - .  
ON 
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o r  

dx Ox dY + uy a OY 
(0.2") d t +  Ux = a 02 ' dt 02 

where a is an arbitrary function of  (x, y, t), odd in x. We henceforth make 
the choice a = 0, which is mathematically the simplest (see Remark 1.1 below 
for explanation). This means that we replace (0.2) by the condition 

de dy 
- Ux(X, y, t) ,  -- uy(x, y, t ) .  (1.10) dt dt 

Remark 1.1. Theorem 1,1 below asserts the existence and uniqueness of a solu- 
tion (u, F )  to (1 .1) - ( t .10)  (for small time). Similarly one can prove the ex- 
istence and uniqueness of  a solution to (1.1)-(1.9) and (0.2") for any smooth 
function a (x, y, t) odd in x. This solution however results in the same function 
u and in a reparametrization of F given by the functions x = ~(t, 2) ,  
y = y ( t ,  2) defined as follows: 

de 0~ 
--dt+ Ux(X' y' t) = a(X, y, t) ~ ,  X(O, 2) = 2 ,  

y = y ( t ,  2) = f ( X ( t ,  2) ,  t) ( V : y  = f ( x ,  t ) ) .  

Indeed, after solving the differential equation for X, we compute, using (0.2), 

dy + Uy (x, ;, t) de 
dt = fx ~; + f ,  + Uy 

= --iAx+ a f x + f t + U y  

a~ a~ 
= a ~ f x = a -'c3 2 

We conclude that the choice a = 0 made above is nothing but a certain 
parametrizafion of  F. 

Remark I.I  justifies the following definition: 

Definit ion 1.1. I f  u, F satisfy (1.1)-(1.10), then we say that they form a solu- 
tion to the evolutionary toner problem for 0 _  t _< to. 

The main result of  this paper is the following: 

Theorem 1.1. I f  (0.1) holds, then there exists a unique solution to the evolutionary 
toner problem for some time interval 0 < t <_ to (to > 0) .  
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In w 2 we study the function ~(x, y),  which is the initial state u(x, y, O) 
of  the solution u. In w 3 we establish interior C 2+~ estimates for the potential 

~ l o g  [(x - ~)2 + (y _ t/)2]W2 d~ dr 
D 

along F, where D is a domain in {y > 0} bounded by F and the y-axis; it is 
assumed that F is a C I+~ curve. These estimates are crucial for the proof  of  
Theorem 1.1. Section 4 outlines the strategy for proving Theorem 1.1: It is 
based on establishing a fixed point for a mapping ~ of a family S of  curves 
F ( t )  :x = ~(t, 2) y = y(t,  2) into itself. The images F(t) :x = x(t, )L), y = 
y(t, 2) are defined by the ordinary differential equation (1.10) where u is the 
solution to (1.2)-(1.7) and where D(t) are the domains bounded by /~(t) 
and the x-axis. The precise definition of S is given in w 5. In w 6 we begin 
with the analysis of  the ordinary differential equation, constructing barriers 
that are used to find simple yet sufficiently good approximations to the solu- 
tion. 

Next, in w167 7 and 8 we establish, respectively, C a and C l+~ estimates for 
the curves F(t),  showing t h a t / ~ m a p s  S into itself. Finally, in w 9 we prove 
that a sequence of  iterates //lnD(t) converges to a unique fixed point of ~ ,  
thereby completing the proof  of Theorem 1.1. 

The estimates 
c C 

(1.11) [ logt l  <-fx(X,t) =<]logt] for 1 <X<Xo(t)  ( C > c > 0 )  
i i 

for the free boundary provide an interesting bound for the slope of  F(t) as 
it descends toward the x-axis. The lower bound is critical to the proof  of  
Theorem 1.1. The solution can in fact be continued, in the time, as long as 
such a bound can be a priori established, provided f ( x ,  t) remains uniformly 
positive for - 1 __ x _< 1. Indeed, this is so because the estimates of  w 7 work 
with arbitrary initial time rather than just with initial time 0 .  

In w 10 we study the shape of  the free boundary for Ix l < 1. We discover 
the rather surprising fact that, for any small t / >  0, the free boundary 
y = f ( x ,  t) for 0 _ x ___ 1 - q cannot be monotone decreasing in x. In fact, in 
the "average" sense it is actually monotone increasing! On the other hand, 
f ( x ,  t) is monotone decreasing for x > 1. The form of the free boundary is 
shown in Figure 2. It indicates that in a fast image-development of  a document 
with one black spot, the photocopy appears lighter at the center of  the spot 
than in the rim. This phenomenon is known as the "edge effect." 

y=f{x,t) 

\ 

Figure 2 
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w 2. The initial state 

set is empty, i.e., D(0 )=4~ .  Hence 

265 

~(x, y) --- 

- A ~  = a%E_~,ll(x ) 0(y) in R, 

~(x ,b)  = M ,  - a < x < a ,  
(2.1) 

~(x, - h )  --- 0, - a  < x < a ,  

~x(•  = 0 ,  - h < y < b  

where 0(y) is the Dirac function. 

Theorem 2.1. The following inequalities hold: 

(2.2) ~(x ,  0+)  < 0 if Ix] < 1, 

(2.3) ~y(X, 0) > 0 if 1 < Ix[ < a .  

Proof. By the maximum principle, ~(x, y) >0  in R. Introduce the function 

v(x, y) = ~(x, y) - ~(x, - y )  in - a < x < a ,  0 < y < h .  

Notice that 
v(x, h) = ~(x, h) > O. 

Since v(x, 0) = 0 and v is harmonic, it follows, by the maximum principle, 
that Vy (x, 0 +)  > 0. Since Vy (x, 0 +) = ~ty (x, 0 +) + ~ (x, 0 - )  and since, for 
]x] > 1, u is smooth and thus ~y(X, 0 - )  = ~y(X, 0 + ) ,  it follows that 

2~(x ,  0) =Vy(X, 0+)  > 0  if Ix] > 1, 

i.e., (2.3) holds. 
If Ix[ < 1, then Uy(X, 0"]-) - -  ~y(X, 0 - - )  1 --C7, SO that 

(2.4) 2~y(X, 0+)  = -(7 + vy(x, 0 + ) .  

In order to estimate vy (x, 0 +)  from above we first obtain an upper bound 
for v(x, h). Let w(x, y) be the solution to 

- A w  = (TZE_a, al(X) c~(y) in R 

with the same boundary condition as ~. By the comparison theorem, 

(2.5) ~(x, y) <__ w(x, y) . 

Observe that w is independent of x and, in fact, as easily verified, 

M +  (Tb (Y + h )  for - h  < y <  O, 

~ _ ~ h +  y for O < y < b .  
+ + h  
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Hence, by (2.5), 

M +  ab 
v(x,h) =~(x ,h)  <=w(x,h) = 2 - - h - a h - B .  

b + h  

The harmonic function V(x,y) =By/h majorizes v 
v(x,O) = V(x,O) = 0 .  Also v x =  V x = 0  on x =  •  By 
theorem it then follows that v _  V and 

B M +  ab 
"t)y(X, 0 + )  < Vy(x ,  O) . . . .  17 + 2 - -  

h b + h  

on y = h, and 
the comparison 

Recalling (2.4) we get, for I x [ <  1, that 

2~y(X, 0+)  < - 2 a  + 
2 ( M +  ab) 2 ( M -  ah) 

= __< 0 by (0.1), 
b + h  b + h  

and (2.2) follows. 

Remark 2.1. Theorem 2.1 implies that the velocity of the free boundary is in- 
itially positive for all x~ ( - 1 ,  1), but not for Ix] > 1. This means that F(t) 
begins growing only from points of the interval 

(2.6) I = [(x, O) ; - 1  < x < 1}. 

Set 
0 

a I log [ ( x - ~ )  2 +y211/2d~. (2.7) @ (x, y) = - 2 n  -1 

Then ~ is a harmonic function off  I, and it satisfies the jump relation 

(2.8) [qby] =- qby(X, O+ ) -- CrMy(X, O- - )  = - - a ,  - l < x < l .  

We can write 

(2.9) ~(x, y) = @(x, y) + gz(x, y) 

where ~, is harmonic in R. 

3. C 1+~ estimates on  VG(x,f(x)) 

In this section we study the function 

(3.1) G(x,y) = ~  11 log [ ( x - ~ ) 2 +  ( y _ r / ) 2 l l / 2 d ~ d t /  
D 

where D is a domain given by 

(3.2) D = {0 < y < f ( x ) ,  - a o  < x < ao}, 

for some aoE (0, a).  Denote by Ba(xo, Yo) the disc {(X-Xo) 2 + 
(y _yo)2  < p2}, and set, for simplicity, Ba(x o) = Ba(xo,f(xo)). We assume 
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that f satisfies the following conditions: 

(3.3) f (x)  = f ( - x )  and f (x)  > 0 if - a o  < x < a o, f ( •  = O, 

and there exist (Xo, Yo) and /X > 0 such that 

(3.4) - a o + / x < x o < a o - / x ,  /X <y0  < b - / x ,  

(3.5) If'(xl)l __< 1, 

] f ' (xa )  - f ' (x2)]  0 
(3.6) < - -  (/X" < 0 ) ,  Ixl-x2] 

for any (xi,f(xi)) (i = 1, 2) in Bu(xo), where O, o~ are positive constants and 
o~<1.  

Set 

(3.7) VG(x, f (x))  

= 2 n  ( x -  ~)2+  ( f (x)  -r / )  2d~drl' ( X - - ~ ) 2 - {  " ( f (x)  _r / )2  
D D 

1 
=- (A (x), E(x)).  

2n 

In this section we prove: 

l_emma 3.1. Let the assumptions (3.3)-(3.6) hoM. Then 

(3.8) --dA-(x) + ~ ~ C(llog/x I + 0), 

I dE(x) dE(Y)] 1 C CO]log/x[ 1 dA(x) da(YO + < = - - +  

(3.9) Ix - 21 ~ dr dr dr dr /X~ /X~ 

for all (x , f (x)) ,  ( 2 , f ( 2 ) )  in Buls(Xo) where C is a positive constant indepen- 
dent of O, ~ and/X. 

Proof.  For any small p > 0 introduce the truncated integrals 

I I  x - ~  
(3.10) A p ( x )  = ( x  - ~)2 q_ (f(x) " r/)2 d~ dr/, 

DkBp(X) 

(3.11) 

D\Bp(x) 

f (x) - r~ 
(x - -  ~)2 "l- (f(x) -- r/) 2 d{ dr/. 
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As is easily verified, 

(3.12) 

D\Bp(x) 

- ( x -  r + ( f ( x )  - , / ) 2 -  2 ( f ( x )  - I1) ( x -  r f ' ( x )  
(x - r + ( f ( x )  - i/)2 de dr/ 

+ SS 
OBp (x) nD 

x - r  
(x - r + ( f ( x )  - i/)2 N .  e I dSoi  =- I l p (X  ) + I2p(X ) 

where N is the exterior normal to OBp(x), and el is the unit vector in the 
direction of the x-axis. Writing 

(r r/) = ( x , f ( x ) )  + p(o)l ,  o92) 

in I2p , we get 

(3.13) [2p ": S 
1 

(D 1 (N. el) 
dm 

(co~ + co~ = 1) 

I ~'~ I ~'~ 
OB 1 (x) c~{ % - f  (x ) <if(x) (%-x)l S 

where 

S = OBl(x) n [ D  - ( p f ( X ) ) l  A{oo2 - f ( x )  < f ' ( x )  (Wl - X) I 

and A A B = (A\B) w (B\A) .  The first integral on the right-hand side of 
(3.13) is equal to - ~ .  Since the set S is contained in the set of points 
(r r/) such that 

0 xll+~, Ir/-f(x) - f ' (x )  (r <----Ir 

we deduce from (3.13) that 

(3.14) [I2p+~l ____C--0 p=. 

To estimate lip assume first that i f ( x )  = 0 and replace x - r by - r  and 
f ( x ) - r /  by - r / .  Then 

f l  --~2-[-r/2 
Ilp = (r ..1_ /,/2)2 de dr/. 

D\Bp(O) 
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For p > p > a > 0  we have 

I1~ - 6 p  

-- X l  --~2-1"- r/2 
-- (~2 _]_ //2)2 d~ dr /=  

[Bp(O)\Ba(O)] nD 

+[ SS 
[Bp(O)kBa(O)l nD 

= J1 + J 2 .  

I I __ ~ 2 3ff ,i,i 2 
(~2 _t_ r/2)2 d~ dr/ 

[Bp(O)\Ba(O)]n{rl<O} 

/~ ; ; 7 ~  2 ar dr/- ~r 
[Bp(O)\Ba(O)]n[rl<O} 

Clearly J1 = O. In J2 the symmetric difference between the two domains of in- 
tegration is contained in the set of  points (~, r/) such that 

0 
Ir/I-<---- [r p~ 

(recall our assumption that f '  vanishes at x). Hence 
p CO/p ~ 

S S IJ2l <_ C r dr ~ = C I 2~ (p~ - a ~) 

a 0 
where (r, ~0) are polar coordinates, and thus 

c _~ (3.15) [Ilp -- l la  [ <_ (pC~ -- r . 

It follows that {Ilp} forms a Cauchy sequence and therefore it has a limit, say 
L ; further, 

C0 p~ 
(3.16) 1 1 1 p - L  I = < - -  . 

So far we have assumed that f ' ( x ) =  O. If i f ( x ) ~ =  O, then we obtain 
another term 

C [ f ' ( x ) [  (p~ - a ~) 

on the right-hand side of (3.15), and since [ if(x)[  < 1, inequalities (3.15) and 
(3.16) remain valid with another constant C. 

From what we have proved so far it follows that 

(3.17) 

~(x )  
dr 

+ l i m  I f  p~0 
D\Bp(x) 

SS 
DXB/~ (x) 

- - ( x  - ~ )2  + ( f ( x )  -- r /)  2 - - 2  ( f ( x )  - I?) (x  - ~ ) f ' ( x )  

( x - - { ) 2 +  ( f ( x ) - r / )  2 

�9 ..+limp_~0 I I  

[B~(x)\Bp(x)l nD 

~ d ~  
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where the limit exists, and the last term is actually bounded by 

lim ]Ilp - I1~ I = CO, 
p~O 

by (3.15). Since 

D\!!x) " " " 

-SS  
D\B~(x) 

r dr d(o <= C[log P I, 

it follows that ]dA(x)/dx[ <= C ( [ l o g p [  + 0). 
We next consider Ep(x). We can write 

dEp(x) f l  f t ( x ) ( x - - ~ ) 2 - - g ( x - - ~ ) ( f ( x ) - - " ) -  ( f ( x )  - - . ) 2  d ~ d .  

D\Bp(x) 

+ SS 
aBp(x) nD 

( f ( x )  -- . )  N. ei 
(x - {)2 + ( f ( x )  - ,./)2 dS{rl =IJlp + J2p. 

We can proceed as in the case of  Ap(x) ; the only difference is in evaluating 
lira J2p : 

lim Jz.  = f I ('O2('01 p~0 ~ [(_012 d~ d('02 = O. 

OB 1 (x) n{o9 2 -f(x) <f'(x) (co 1 -x)} 

We obtain, analogously to (3.17), 

(3.18) 

IS - 
dE(x) - l i m  f ' ( x ) ( x - ~ ) 2 - 2 ( x - ~ ) ( f ( x )  - " )  )(f(x)2 - " ) 2 f ' ( x )  d~ d .  

dx p~0 (X- -~)2+  ( f ( x ) - - .  
D\Bp(x) 

where the last limit in fact exists; furthermore, [dE/dx] is bounded by 
C(]log p I + 0). 

We now proceed to estimate the a-H61der coefficient of  dA/dx. Introducing 
the function 

(3.19) 

q~(x, ~, . )  = 
--(x -- ~)2 + ( f ( x )  - -  . ) 2  - 2  ( f ( x )  -- . )  (x - ~) f ' (x)  

( x - - ~ ) 2 +  ( f ( x )  - - . ) 2  

- -  (X - -  ~ ) 2  ..[_ ( f ( x )  - -  . ) 2  2 ( f ( x )  - . )  (x - ~) f ' (x)  
m 

(X -- ~)2 + ( f ( x )  -- . ) 2  (X -- ~)2 + ( f (x )  - . ) 2  



A Free Boundary Problem in Electrophotography 271 

we can write 

(3.20) dAp (x) 
dr 

IBu(xo)\Bp(x)l AD D\Bu(xo) 

I x - ~ N'el 
+ (x - ~)2 + (f(x) __?,./)2 dS~. 

OBp (x) AD 

- El(x, p, la) + E2(x, p, p) + E3(x, p), 

where we shall take 0 < p </1/8.  
We begin by estimating 

1 
(3.21) r ix_2i~ lEl (x ,p ,p) -El (Y ,p ,p)[ ,  

distinguishing two cases: 

Case (i): [(x _~.)2 + ( f ( x )  _f (~ ) )2 ]1 /2  <=p/4, 
Case (ii): [ ( x - 2 )  2 + (f(x) - f ( f f ) ) 2 ]  1/2 >-p/4. 

By (3.19) and the mean value theorem, 

I~(x, ~, n) - ~(~, ~,n)t 

d ( - - ( x - ~ ) 2 +  ( f ( x ) - r / )2~  
 sup \ ;- / Ix-~t 

2 ( f ( x )  - r/) (x 2~-) 2 
+ s u p  ( x - - ~  + (f(x) -~ )  [ i f ( x ) - f ' ( : ~ ) l  

d ( 2 ( f ( x ) - r l ) ( x - ~ )  "~l lx_2 I 
I f ' (x ) [ -  sup ~ k,(x - ~)2 + (f(x) --  ) 2 /  

+ sup 

where sup ] h (x)] here means the sup of  t h (2)] when 2 varies over the interval 
with endpoints  x, 2. Setting 

R = [(x - ~)2 _[.. (f(x) __ /,/)211/2 

and using the assumption of  case (i), we easily find that 

(3.22) c lx _ ~ l  + c o  Ix - ~ l  ~ [ ~0(x, ~, r/) -- ~ (2 ,  ~, r/) I ~ PC~R 2 

since I x - s  < p < R .  

+ Ix -~1  ~, 
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For x ~ Bp/4 (Xo) we have 

[Bu/4(x)\Bp(x)I n[r/-f(x) <if(x) (x - ~)1 

Therefore 

~(x ,  ~, 1/) d~ d r / =  O. 

(3.23) El(X, p, It) = ~I qb(x, ~, r/) d{ dr/ 
[Bp (Xo)\Bp/4 (x)l nD 

where 

"[- l~ r ~, 11) d~ dr/=~Jl(X/ "-1- J2 (x )  
Sp(x) 

Sp(x) = {[Bu/4(x)\Bp(x)] (3 DIA{[Bv/4(x ) \Bp(x) I  n { r / - f ( x )  < f ' ( x ) ( x  -- {)}}. 

Set 
f21 = [Bu(xo)kBu/4(x)] n D, f22 = [Bu(xo)\Bv/4(2)] n D.  

To estimate Jl(X) - J l ( X )  we use the estimate (3.22) if ({, r/) ~f2i n f22; 
if ({, r / )~f2 i n 0 2, then we simply use the estimate 

C 
I ~ (  X, ~, r/)l ~ R 2  

and a similar estimate for ~(Y, ~, r/) (with /~). We get 

1 f l  (Pl-c~ ~0R21 ix_ l lJ (x) - - J l ( X ) [  ~ C ~ - +  < d r /  

B u(xo)\Bu/8(Xo) 

+ I + dr/. 
Ix 

/~i Ag22 

The first integral is bounded by 

Cp 1-~ CO - - +  

In the second integral r and/~ are =/~ and the domain of integration has area 
O ( # Ix - ~ ] ). Hence the integral is bounded by C ]x - ~ ]/p. We conclude that 

1 C CO 
_ _  I �9 

(3.24/ I x _ "~l c~ IS1 (x) -- S 1 (3~) I ~ ~/~ "t- / dc~ 

To estimate I J 2 ( x ) - J 2 ( x ) l  we first examine the difference of the sets 
Sp(x) and Sp(fO. These sets have the form S p ( x ) =  91 n f)l and S p ( 2 ) =  
Q2 n ~2 where 

Dt = [Bt, /4(x)\Bp(x)l  ca {rl - f ( x )  <= f ' ( x )  (x - ~)}, 

~'12 = [Bp/4(-'~/\Bp('~)] ('~ {/7 - f ( 2 )  < f ' ( 2 )  (2") - ~ ) l .  
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We can write 

(3.25) IJz(x) - Jz(2) I <_ 
Sp(x) ~Sp(~) 

+ I~ (lr r ,1)1 +1r r ~)1). 
Sp(x) nSp(~) 

Using (3.22) we find that the first integral is bounded by 

,u/ 4 ORe~ / It~ 

C I x - y l  ~ RdR t ~ - + u ~ R 2  d(o 

p 0 

+ 

In the second integral the integrand is bounded by C/R 2. Furthermore, the 
domain of integration, (~i  n 51) & (~2 n ~)2), has an interior piece with 
R ~ - p  and area - - I x - Y ]  pl+~ and an exterior piece with R ~ / t  and area 
~-I x - 2 1  ~t+~. Hence this integral is bounded by 

Clx ~1 \ ~ -  + u~ ] <= Clx-  xl ~ 

We conclude that 

1 C CO 
Ix - ~ 1 ~  I]2(x) - J2(~)l _-_ u~ + u~ 

Combining this with (3.24) and recalling (3.23), we obtain 

1 C(1 + 0) 
(3.26) l x _ y l ~ ] E l ( X , p ,  la) - E l ( Y ,  P, ~)1 _-< 

tt ~ 

if case (i) holds. 
Consider next case (ii) and set 

2 = 4[ (x - 2) 2 + ( f ( x )  - f (Y) )  2] 1/2 

The same argument that was used to prove (3.24) shows that 

1 S ~ ( x ,  ~, ~) ar dr  - 
[X - -  s  ~ [Ba(xo}\B~.(x)lnD [Ba(xo)\B2(Y)lnD 

q~ ( ~, ~, tl ) d~ drl 

C(1 + O) 
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On the other hand, by the proof  of  (3.15), 

1 ~ ~(x ,~ ,T1)  d C d ~ l -  I~ q) (2 ,~ , r l )d~dTl l  
IX -- X[ ~ [B~(x)\Bp(x)]nO [B~(2)\Bp(2)lnD I 

11 
[B~ (x)\Bp(x)Ic~D [B.~ (~)\Ba(Y.)]nD 

1 0 0 
~ " <  C - - .  

We conclude that (3.26) also holds in case (ii). 
From the definition of  E2 in (3.20) we see that we can apply (3.22) pro- 

vided that ( x , f ( x ) )  and ( ~ , f ( g ) )  belong to B~,/z(Xo). We then get 

(3.27) ] x _ ~ l , ~ ] E z ( x , p , t ~ ) - - E z ( Y ; p ,  l t ) <  C ~ T - +  d(drl  

O',~u[Xo) 

Consider finally 

E3(x ,  P)  -- E3(x ,  P)  = I G ( x ,  ~, i"1) dS~, - ~ G ( x ,  ~, rl) dS~e 
OBp(x) nD oep(s nD 

where 
x - ( x  - 0 2 

G(x, ~, rl) = (x - ~)2 + ( f ( x )  - r l )  ~N" el = [(X -- ~)2 _1_ ( f ( x )  -- r/)2l 3/2 

in the first integral, and G($, ~, ~/) is similarly defined in the second integral. 
Notice that 

(3.28) ~ G(x, ~, rl) dS~. = ~. 
OBp(x) n{rl - f ( x )  <f'(x) (4 - x)] 

Also, with v = (Vl, v2) = (2 - x, f ( 2 )  - f ( x ) ) ,  

E3(x, p) - E3(x, p) = I G(x, ~, rl) dS01 
OBp(x) nD(O 

- ~ G(:~, ~ + v l ,  t/ + v2) dSr 
OBp(x) c~{D(t) -v} 

Since, as is immediately seen, 

G(2, ~ + v 1, rl + v2) = G(x, ~, rl) , 

we deduce, after using (3.28), that 

[E3(x, p) - E3(~, P)l < ~ ]G(x, ~, tl)l dS~ n 
OBp(x) nOn{r/ --f(x) <f'(x) (~--x)} 
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where f2 is the symmetric difference of the sets D(t )  and D(t )  - v .  In the 
last integral, the integrand is bounded by C/p and the domain of integration 
has measure 

Hence 

(3.29) 

C~ lx 
<= l ~  P" 

1 CO 
]E3(x, p) - E3(x, p)] _-< ~ .  

Ix 2 p~ 

Combining (3.26), (3.27), (3.29) and using (3.20), we deduce the HOlder 
estimate (3.9) for dA/dx. The same analysis can be used to derive the HOlder 
estimate (3.9) for dE~&. 

4. Outline of the proof of the main result 

To prove Theorem 1.1 we shall proceed as follows: 
Choose a family of curves 

F ( t ) : x = X ( t ,  4 ) , y = y ( t , ~ ) ,  O<-t<-to,  

(4.1) X(0,4) = 4 ,  y (0 ,4 )  =0 ,  - )%(0  < 2 < 4 o ( 0 ,  

y(t, 4) =y( t ,  - 4 ) ,  X(t, 4) = -X(t,  - 2 )  

with 4o(0) = 4 ;  4o(0 < 1 if t > 0 ;  y(t, 4) > 0  if 141 < 4 o ( 0 ,  t > 0 ;  and 
y(t,  4o(0) = 0. Denote b y / ) ( t )  the region bounded by /~(t) and the x-axis. 

Recall that the function ~(x, y) ( = u(x, y, 0)) studied in w 1 has the form 
(2.9) where q~(x, y) is defined in (2.7), and 

A~u = 0 in R, 

(4.2) ~u(x, b) = M -  q~(x, b) ,  ~u(x, - h )  = - ~ ( x ,  - h ) ,  

q/x(-4-a, y) = -q~x(.4-a, y ) .  

Let w be the solution of 

Aw = X~(t) (x, y) in R, 
(4.3) 

w(x,  b) = O, w(x,  - h )  = O, wx( =l=a, y) = O. 

We can write 

(4.4) w(x, y, t) = G(x, y, t) + ((x ,  y, t) 
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where 

(4.5) 

(4.6) 

Set 

(4.7) 

1 
G(x, y, t) = Z-  ~ log [(x - ~)2 + (y __ r/)211/2 d~ dr/, 

z g  D(t) 

zX~ = 0 in R, 

~(x, b, t) = - O ( x ,  b, t) , ~(x, - h ,  t) = - O ( x ,  - h ,  t), 

~x'( 4-a, y, t) = - G x (  +a, y, t ) .  

u = ~  + w = q ~  + ~, + G +  ~ 

and consider the differential equation (1.10). 
In the following sections it will be shown that this system has a solution 

x = x ( t ,  2), y =y ( t ,  2) for 0 _< t _  to; it determines a family of curves F(t)  
as in (1.8) and a family of sets D( t ) :  

(4.8) D(t)  is bounded by F(t)  and {y = 0}. 

Our plan is to show that the mapping from {D(t)} to {D(t)} has a unique 
fixed point. The solution u = u(x,y ,  t) corresponding to this fixed point, 
together with the corresponding family F(t) ,  forms a solution to the evolu- 
tionary toner problem, i.e., to (1.1)-(1.10). 

The existence proof also establishes an asymptotic behavior of the curves 
F(t)  near the critial points (4-1, 0), for t ~ 0. 

5. The ordinary differential equation 

We assume that the functions y(t,  2),  y(t, 2) are defined in 

Qto = [(t, 2) ;  - 2o ( t )  < 2 < 20(0,  0 < t < min (to, i(2))} 

for some t o > 0, and satisfy the following conditions: 

�9 (0 ,2)  =)~, y (0 ,2 )  = 0 ,  y(t, 2) > 0  if 0 < t < ~ ( 2 ) ,  

(5.1) y(~(2) ,  3:) = y( t ,  2o(t)) = O, 

x(t, -3~) = - x ( t , , t ) ,  y(t, - 2 )  = y ( t ,  - 2 ) ,  

2 --,y(t, 2) and 2 ~ y ( t ,  ):) belong to C 1+~ for each tr [0, to], 

(5.2) 
1 0 
- - < - - x ( t ,  2) < 2 .  
2 02 

Consequently, the inverse function 2 = ~(x, t) of x = X(t, 2) is well defined. 
If  we set 

y = y ( t ,  2) = y ( t ,  ~.(x, t)) - f ( x ,  t ) ,  



A Free Boundary Problem in Electrophotography 277 

the function f ( x , t )  is then defined for -Xo(t) <X<Xo(t) ,  
Xo(t) > 1, and 

(5.3) f (x ,  t) = f ( ' x ,  t),  

for some 

(5.4) 

(5.5) 

(5.6) 

f (x ,  t) f > 0  if -Xo(t) < x < Xo(t), 
( = 0 if Ix I = x 0 ( t ) ,  

l + Q l t [ l o g t [ < X o ( t ) < l + Q z t [ l o g t [  (Qz > Q1 > 0) ,  

the curve {(x , f (x ,  t))} lies between the polygonal lines 
/a(t), /2(t) where li(t) has vertices ( - 1  - Qit]log t[, 0), 

(-- 1, )'it), (1,) ' i t) ,  (1 + Qi t ]log t I, 0) 

with Y2 > Yl > O, 

(5.7) 

(5.8) 

L1 
IL(x,  t)l < - -  if Ixl ~xo(t), 

/log t] 

L0 
fx(X,t) > - -  if l < x < x o ( t )  

Itog tl 

where 0 < L o < L1, and 

I fx(X, t) - f x (2 ,  t) I L 2 (5.9) 
ix - 2 1  ~ - min [ / (x ,  t ) , f (2 ,  t)] ~ 

where L 2 > 0 ,  0 < a < � 8 9  
Set 

W = (Q1, Q2, L0, LI, L2, o~) 

if -Xo(t) < x, ~ < Xo(t) 

and denote by S w  the class of  functions (2, y) satisfying (5.1)-(5.9). 
We shall need an explicit form for the first derivatives of the function 

defined in (2.7): 
1 

(5.10) O~(x, y) a I 0 ~ x x  - 4rc Ox log [(x - ~)2 + y21 d~ 
O 

-1 

a l o g [ ( x - ~ ) 2 + y Z ] l l  ~=  a 
= 4-~ 4~n log 

OcI)(x, y) a 

03, 2re 

1 

l Y d~ 
(x - ~)2 + yZ 

-1 

(x - 1) 2 + y2 

(x + 1) 2 + y2 '  

a l-arctan 1 - x 1 + x-] 
- [ + arctan ] 2n y y 

where arctan is taken to have values in [ - ~ ,  ~] ( a r c t a n ( - x ) =  - a r c t a n x ) .  
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In view of (4.7), the ordinary differential equations (1.10) can then be writ- 
ten in the form 

a 
2 = - - -  log 

4~ 
(5.11) 

(1 - x) 2 + y2 
(1 + X) 2 d- y2 

- q/x(x, y) - Wx(X, y, t ) ,  

= 2~rz--a [arctan 1 Y- x + arctan 1 Y+ xl - ~y(X, y) - Wy(X, y, t). 

From (4.5) we have 

VG(x, y, t) I ~ C ss (ss Is 
b(t) b(t) b(t) / 

where 1/p + 1/p" = 1. Since [/5(t)] _ Ct and since the last integral is bounded 
if 1 < p < 2 ,  we get 

!-c$ 
Ira(x, y, t)[ <= Cot 2 V ~ > O. 

The same bound holds also for G(x,  y, t) and thus, by the definition of 
in (4.6), also for V~. We conclude that 

(5.12) IVw(x,y, t)] ~ G t  ~ 

Set 

(5.13) B = ~,y(1, 0) .  

We wish to consider the behavior of the solution of the ordinary differen- 
tial equations (5.11) near the point (1, 0). For simplicity we set ~ = x -  1. 
Then, by (5.12), (5.13), 

O" 

4~z 
-- - - -  log (~2 + y2) + o(1) ,  

(5.14) 20 = Z-  -- arctan + arctan - B + o(1) 
Y Y 

= ~ I -  a rc tan~  + 2 1  - 

as t ~ 0 ,  (~,y)  ~ (0,0).  
By Theorem 2.1, 

(5.15) B > 0, 

B + o(1) 

o" 
- - - B > 0 .  
2 
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We want to approximate (5.14) by the system 

(5.16) = _ __a log ~z, 
4~z 

(5.17) = 
if ~ > 0 .  

If we set 

(5.18) F ( z )  = 
i ct~ ]log ~21 ' 

0 

the solution to (5.16) with ~(0) = ~0 is given by 

(5.19) F ( ~ ( t ) )  - F ( ~ o )  = - -  t .  
4~z 

In the next section we shall use this approximate solution to construct bar- 
riers (or invariant domains) for solutions of the complete system (5.11), and 
then derive a simple but sufficiently effective approximation to the solution 
of the system. 

6. Construction of barriers 

We shall prove that the solution of (5.11) with ~ = x -  1, ~ ( 0 )  = ~o < O, 

I ol small, must remain in the region Re0 indicated in Figure 3. 

I 

{~o,0) (~o,01 (~o,0) 

Figure 3 
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We need to construct upper  barriers/"1 and F3 and lower barr iers /"z and 
/"4. From (5.17) we see that  

y= (2-B)  t+y (?Jconstant)  

for G(t) < 0. Combining this with (5.19) we get the solution 

a 1 
(6.1) 2oy = F(G) + 9~o, 2o = 

2n a - 2B 

where Yo is a constant. We now construct upper and lower barriers F1, F2 
having a form similar to (6.1). 

We begin with an upper barrier F1 defined as 

1 /"l:y=~[f(~-eGo) - F(Go - e~o)], G0_-< G_-< elGot 

(6.2) 
a 1 

where 2 = e '  > 0, 
2n a - 2B 

for any small e ' >  0 and for sufficiently small e > 0. 
We need to show that  the vector field atong /'1 as determined by (5.14) 

has smaller slope than / 1 .  The slope of  this vector field is 

~ a  [ - a r c t a n ~ + a r c t a n ~ - ~  1 2 n  Y - B + o ( l )  ay 

dG -~l~176176176 

) < - -  - B + o(1) 
o" I 1 1 log ~2 + ~5 [F(~ - ego) - F(~0 - EGo)] 2 

1 1 
< -  = slope of  F1 (by (6.2)). 

]log (~ - e~0)2 [ 

The last inequality is a consequence of  

1 
~2 + ~ [F(~ -e~o)  - F(~o - e~o)] 2 > (~ -/3~o) 2 

which is clearly valid if ~o - G --- ego; if e~o < ~ < el Go I, then the second 
term on the left-hand side majorizes the right-hand side. 

We next construct the lower barrier F2: 

i Fz:y=-~[F(~+e[Gol) - F(~o + e]Go])], ~ o < G  < -4e[Gol, 
(6.3) a 1 

where 2 . . . .  + e' ,  e '  > 0. 
2n a - 2B 
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We compute the slope dy/dC from (5.14), along 1"2: 

- arctan (r + e]Cot) - F ( r  + elCol) dy= 
- B + o ( 1 )  

[ 1 1 dC a log C 2 + [F(C + ~1~ol) - F(Co + ~l~ol)] 2 
- 4 ~  

If Co < ~ = -e[~01, then the expression in the arctan is negative and large in 
absolute value, if I~01~ 0 (e is small but fixed). Hence the arctan ( . . . )  is 
approximately equal to - ~ .  Also the denominator is positive and smaller 
than 

a [log (2 a (1 + v / 1 ) ~  I _--< ~ (1 + V/l) (1 + V/z) Ilog (C + elr 

if ~o _-< ~-< -4e18ol,  where vh, 82 are positive numbers which converge to 
zero if Co ~ 0. Since 

o" 
- -~r  - B  
2n 

we deduce that along F2, 

dy 1 

ff  

4n 

1 > , 

dy 
m 

1 
> = slope of F 2 

d~ ~ Ilog (r + ~1r 
if r r -4e1r  

We proceed to construct the barrier /"3, F4. From (5.17) we have that 
y = - B t  + ), (with 9~ a constant) for C(t) > 0. Recalling (5.19) we see that 

a 
(6.4) 4nBY = F(~) + ?o, ?0 constant, 

is an approximate solution. This suggests the upper barrier 
1 

F 3 :y = - ~- [F(r - er - F(~o - er for e[r =< r __< ~o 

(6.5) a 
where 2 -  e', ~0 is small; 

4riB 
~' is any small number and e is positive and sufficiently small. To verify this 
we compute along /"3 the slope of the vector field (5.14): 

~a I - a r c t a n ( - ; a n  1 - ) + ~ - B + o ( 1 )  

- ~ -  [ F ( ~  - e ~ o )  - F ( ~ o  - e ~ o ) l  

d(  - ~-~4n log [~2 + ~-~ (F(r  -er  - F(~o - ar - er 2 
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For ( >  e l~0[ the expression in the arctan is positive and large so that 
arctan ( . . . )  is approximately ~. The denominator is negative and 

4riB 1 
> - (1 + t h)  

o I log (~ - e~o)] 

(cf. the argument in the case of /"2)  ; r/1 --+ 0 if ~0 ~ O. It follows that 

__  1 1 
dy < = slope o f / "3 .  
d~ 2 [ log (~ - esXo)[ 

Consider next 

1 
F4:y  = - ~ - [ F ( ~ + e o ) - F ( ~ o + e ~ o ]  for -e]~ot--<(--<~o 

(6.6) 
O" 

where Z = - -  + e'  
4riB 

with any small e' > 0 and sufficiently small e > 0. We can argue as in the case 
of F~ to deduce that along /'4 

dy > - B  + o(1) 

d~ ff log ~2+ [ F ( ~ + e G o ) - f ( ~ o + e ~ o ) ]  2 
- 4 n  ~Z 

1 1 
> = slope of /"4; 

Z ]log ((  + e~o)21 

hence /'4 is a lower barrier. 
We finally have to fit endpoints of F1 with/ '3  and / ' 2  with/"4.  This gives 

the approximate equations for (0, Co: 

(a  - 2B) 2nV([ C01) = 4nBF(~o), 
t7 t7 

(6.7) 

( a  - 2B) 2nF(  l C0l) = 4 n B F ( ~ 0 ) ,  
O" O- 

the ratio of the left-hand side to the right-hand side (in both expressions) goes 
to 1 as G0 ~ O. 

From the relation 

i - i d~ 
d~ x + 

log ~ log x (log ~)2 
0 0 

we deduce that 

(6.8) F(x) =- _ _  

0 

d~ 
[log ~2 [ ilogx~ I 1 + o for x -~O.  
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Hence (6.7) implies that 

(6.9) ~0 = ~ Iff0] , ~0 = t r -  2 ~ B  I~0[. 
2B 2B 

�9 From the form of the barriers we conclude that the solution of (5.11), or 
(5.14), with ~ ( 0 ) =  ~0, y ( 0 ) =  0 behaves approximately like a solution to 
(5.16), (5.17). More precisely: 

1.emma 6.1. The solution to (5.11) with ~(0) = ~o < O, y(O) = 0 satisfies 

(6.10) 

t7 
F(~ x + o( l~ol))  - F(~o + o(1~o[)) = ~ t,  

y = 
.),,,+o,,,, 

- ~ t ( 1  + o(1)) + y 

if ~ < 0 ,  

if ~ > 0  

1 
where o ( 1 ) ~ 0 ,  V-o(]~ol)--*0 /f ~o--*0, uniformly in (~ ,y ) .  

r 

7. C 1 estimate of F(t) 

By Lemma 3.1 Vw(x,  y, t) is in C 1+" on y = f ( x ,  t) ; it is not, however, 
that smooth elsewhere. Since we shall need to work with C a+" functions of 
(x, y) on the right-hand sides in (5.10, we are forced to modify the function 
Vw(x,  y, t). Figure 4 is a visual aid in describing the modification. The inter- 
nal longitudinal curve is the curve y = f ( x ,  t). Each transversal line segment 
l is of  lenght e0t, where e0 is small enough. Along each l we take a cutoff 
function (l, (t = 1 on I c~ [y = f ( x ,  t)], and define 

(7.1) ,4(x, y, t) = Wx(X, f (x ,  t), t) (1. 

We construct the l and (l to be symmetric with respect to the y-axis, (1 = 0 
at the endpoints of 1, and along the segment l the directional derivative Dz(l 

-xo(t) x*=O xo(t) 

Figure 4 
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of (l is O(1/ t ) .  Then, by (5.12), 

[Dv41 = 0 (~7~']  
, , S o l  

along l, 

for any small fi > 0. On the other hand, the derivative of A along the curve 
F( t )  is bounded by C([ logy I + 0), as a consequence of Lemma3.1 with 
p = el[log Y I, el > 0 and small (the assumptions (5.6)-(5.8) enable us to 
choose e0 and e0. The angle between l and F is at least ___ L0/[log t[ by (5.8), 
and therefore 

(7.2) iV~(x,y  ' t) I ~ C6 + Ci logy  I Ilog tl 
t �89 

for any small ~ > 0. Similarly we define 

(7.3) B(x ,  y, t) = Wy(X , f ( x ,  t), t) (l 

and, then, 

G (7.4) IVB(x, y, t) I __< ~ + CIlog y I [log t l .  
S o 

The reason we choose the line segments l to be horizontal near y = 0 is 
that otherwise, the singularity in the C 1+~ estimates at (Xo(t), t) (which oc- 
curs as we take/~ ~ 0 in Lemma 3.1) propagates into the entire subinterval of 
l lying in [y > 0} (with one endpoint at (Xo(t), 0)).  The factor Ilog t[ on the 
right-hand sides of (7.2), (7.4), which results from this choice of l, does not 
cause any difficulties. 

We henceforth replace (5.11) by 

(7.5) 

a (1 - x) 2 + y2 
2 = - - -  log 

4n (1 -t- X) 2 -t- y2 
- qJx(X, y) - A(x ,  y, t ) ,  

~-  arc tanl  - x  Y = + arctan - V/y(X, y) - :9(x, y, t ) .  
Y 

Suppose we follow the procedure outlined in w 4 and establish a fixed point, 
using (7.5) instead of (5.11). At the fixed point, x(t ,  Z ) = x ( t ,  2) and 
y(t,  2) = y(t ,  2), and therefore A and/~  coincide with wx and Wy respectively, 
i.e., (7.5) reduces to (5.11). This fixed point would then be a fixed point also 
for the mapping based on the ordinary differential equation (5.11), and thus 
the existence proof would be completed. 

We proceed to prove that the curves F ( t )  belong to the class d w .  We 
begin by studying the C 1 nature of these curves near x = 1, y -- 0, and again 
resort to the change of variable ~ = x - 1. If  we differentiate (7.5) with respect 
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to the parameter )~ and set X = 0~/02, Y =  Oy/O)~, we obtain 

X =  a { - X  a y . 2~ ~2 + y2 2~ ~2 + y2 Y 

(7.6) 

§ gl(~, y) X + g2(~, y) y -  &{X-  O"Iy, 
a~ Oy 

cr 
= a Y y2 X q- ~2 y2 Y 2~z ~2 + 27~ + 

+ g3(~, y) X TI- g4(~, y) y -  OJBx-  OB y, 
O~ Oy 

(7.7) X(0) = 1, Y(0) = 0; 

the functions gi have uniformly bounded derivatives. 
The slope of F(t)  is given by W = Y/X, as 2 varies. From (7.6) we easily 

obtain an equation for W(t) - W(~( t ) ,  y( t))  =- W(~( t ) ,  y( t ) ,  )L) : 

(7.8) 

OB a ~ + ( g 4 - g l ) +  W 
W = - a y + g3 - + ~2 q- y2 2re ~2 + y2 

(2~r Y + ~2 h- y2 

Hence 

(7.9) t 

0 

X exp 

-k- ~y -- g2 W2, W(O) = O. 

a y(s)  
2~ ~2(S) + yZ(s) 

+ g3 (~(s),  y(s))  - ~ (~(s) ,  y(s) ,  s) 

~2(g ) _~_ y2(~.) 
s 

+ (g4 -- gl) (~(r) ,  y(r))  

+ 

t 

2~ ~2(T) -1-y2(2") 

x W(~(r),  y ( r ) ) l  ds. 

0A (~ ( r ) , y ( r ) ,  ~) - g2(~(z) y(v)) ]  +~ 
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By Lemma 6.1, the trajectories of (7.5) with I~0[ small approximately 
satisfy the equations (see (6.10)) 

O" 
F(~) - F(~o) = ~ t, 

(7.10) y =  ( 2 - B )  t if ~ < 0 ,  

y = - B t +  ), if ~ > 0, y constant ,  

where F is given by (6.8). 
Choose any M large. By (7.10) (or, more precisely, by (6.10)), if 1~01 is 

sufficiently small, we have: 

If I~(t)[ <=My(t), then [f(~(t))l  lF( 0)l, 
(7.11) a 

so that  IF(~o)] = ~ t ,  y ( t )= 21F(~o) [ 

where 2 is a positive constant 21 if ~(t) < 0 and another positive constant 22 
if ~(t) > 0. 

1.emma 7.1. The following inequality holds: 
t 

I I ~ (s)l ds <_ C log I log [ ~0 I[ 
(7.12) ~2(s) + yZ(s) - [log I~0[I 

Proof.  We split the integral into integrals over {[~(s)l>y(s)} and 
{[~(s)[ _y(s )} ,  and use (7.11). We obtain 

t 

S S ~ 2 ( s )  + y 2 ( s )  = I~(s)__ q- ,~ ,,~u,, I{ 
; [~(s)l < y(s)}[.  (7.13) 

o {l~(s)l>y(s)l 

Here and in the sequel, when we write integrals such as 

l or  l , 
{1 ~(s)[ >_-y (s)} {1 ~(s)l _-<y (s)] 

it is always to be understood that  s varies in the interval 0 _< s _  t. 
By (5.14), 

- 4 ~  (~2 + yZ), 

and log (~2 + y2) = log ~2 if y(s) <= I (s)l. Hence, in this range, 

G d~ 
- - d S  
4zr i log ~z]" 



A Free Boundary Problem in Electrophotography 

Also, from (6.10) we see (using (6.8)) that the range of [~(s) I 
I~(s)l > y(s) lies in an interval = ElF(Co)I, col~ol 1, Co >0. Hence 

(7.14) f ds < C d~ 
3 I~(s) l  - I l l  Ilog ~l 

II ~(s)l >y(s)l Cll ~d/I log ]~x 0 [1 

287 

when 

= log log c o I~o I ~ c l ~  l log I~o 

log c, I(o [ - log l log I~o r l - l log I~oll 

On the complementary set {]~(s) I = y(s)} we have 

47~ �9 
- -  ~ ~ - l o g  ( x z  + y2)  -- --log y2 -- --log I~o] 
(7 

by (7.11), whereas I~(s)l <_<_y(s)<_ IF(~o)]. It follows that 

(7.15) I{s; I~(s)l < y(s)]l ~ c [F(~o)] 
]log Ir 

Assertion (7.12) follows from using (7.15) and (7.14) in (7.13). 

Lemma 7.2. The following estimates hold: 

t 

y(s )  ds < , 
(7.16) ~ 2 ( S  ) q- y 2 ( s )  = ]log tl 

0 

(7.17) 

t 

I y ( s )  c 
~2(s ) + y2(s) ds _> [log t [  

0 

- -  at points (~(t, 2), y(t,  2) )  with ~(t, 2) > 0, 

where C, c are positive constants. 

Proof. We first establish both (7A6), (7.17) in case ~(t, 2) > 0. For any large 
M > 0, we write 

t 

iy s, =i +S (7.18) ~2(s ) + y2(s) 

0 {I ~(s)l >My(s)l  [1 ~(s)l ~_My(s)] 
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Then (cf. (7.14)) 

S 
{I~(s)I > My(s)I 

y(s)  
~2(S)  + y 2 ( s )  

ds <= C]F(~o)] 

< C[F(~ )[ 0 

Since 
1 

S 

I ds 

I~(s)l 2 
{[~(s)l >My(s)l 

c0ir I 

ClMI go [/1 log [ ~0 [I 

d~ x 1 
~ - -  if e-+O 

~2 [log ~] e[iog e[ 

(cf. the proof of (6.8)), it follows that 

f C 1 y(s)  ds <_ 
(7.19) ~2(s) +y2(s)  -Mllog]~oll 

{[ ~ (s)[ > My(s)} 

d~ 
~Zllog ~2 l" 

Next, by (7.11), 

S S y(s) ds = Clf(~o)l ~2(s ) + ~2[F(~0)12 (7.20) ~2(s ) + y2(s) 
{I ~(s)[ <=My(s)} [1 ~(s) I <__My(s)} 

where C is a constant independent of M; here " ~ - "  means that "__<" holds 
with constant C and ">_" holds with another positive constant C, of course 
not the same. Also, by (7.11), 

4~ 4 = log ((2 + y2) ~_. - l o g  ( f (~o))  z ~ - l o g  t 2. 
o" 

Hence 

y(s)  ds --~ 
(7.21) ~2(s) + yZ(s) ]log t[ 

{I ~(s)l <_My(s)} 0<[ ~l < C]F(~o)I 
~<0 

C 
[log t[ 

~2 + t~2(F(~0))2 

(Since ~(t, )L) > 0, the integral on the right-hand side should actually extend 
also to a range of ~'s with ~ > 0; however this portion of the integral is 
bounded by the same integral taken only over ~ < 0.) Using (7.21) and (7.19) 
in (7.18), and choosing M large enough, we obtain both (7.16) and (7.17). 

Notice that the condition ~(t, )L) > 0 was implicitly used in the proof of 
(7.17). This condition implies that the trajectory (~(s), y(s) for 0 _< s <_ t con- 
tains at least the part of the full trajectory in {y > 0} which lies in {~ < 0], 
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and this allows us to assert that the domain of integration for the ~-variable 
in (7.21) contains an interval - f f [F(~) [  < ~ < 0 and is contained in another 
interval -C[F(~o)[  < ~ < 0[F(~0)[. 

If  we drop the restriction that ~(t, 2) > 0, we can only establish (7.4) with 
" = "  instead of " = " ,  and this together with (7.19), (7.21), establishes the 
assertion (7.16). 

We now proceed to estimate W from (7.9). We prove that 

C 
(7.22) I W(t)l < - - ,  

= Ilog t[ 

r 
(7.23) [ W(t)[ > - -  

[log t[ 
at (~(t, 2), y(t, 2)) ,  if ~(t, 2) > O. 

Recall that W =  W(t, )~) is a function of both t and 2, and W(0, 2) = 0. 
Hence for any 2 there exists a constant C(2) such that 

c ( z )  
(7.24) ]W(t, 2)] <__ [log t I " 

We are considering here values of 2 near x = 1, which correspond to values 
of ~0 < 0 with t~0] small. Although C(2) may possibly become unbounded 
as 2 ~ 1, the inequality (7.24) is still useful. 

By (7.2), (7.4), 

t * 

(IV. l +lV l) ft�89 C _  l 
[1 logy(s)l >1/(I logs i sz+6) 1 = 1  

[log s I [log y(s)  Ids.  

The asterisk over the last integral indicates that we only integrate over the 
range of s for which VX or VB do not vanish. From the definition of A, B 
it follows that, in ~*, s =  t. The last integral can now be estimated by 
substituting y = y(s) and using the relation dy/ds = 1. We get the bound 

I 6 
exp[-1/t~+ ]logtl] !-d~ 

C[log t] l " l log y l dy <= Ct2 
0 

Hence 

t !_~ 
(7.25) I (I VXl + I V l) _-< ct 2 

0 

Using (7.25), the bounds I gi[ <= C and Lemmas 7.1, 7.2, we see that the 
exponent in (7.9) is bounded by 

c c ( 2 )  c + -  
[log tl Ilog tl Ilog t l"  
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If  0 _< t _< t a, where tz is small enough so that C(2) ___ Ilog t[ in (7.24), then 
we deduce, using (7.9) and Lemma 7.2, that 

(7.26) IW(t)l <_ 1 + ~ -  1 + ~ - ] )  log t"  

We may decrease C(2) if necessary so that it actually satisfies 

C()L) = sup I w(t, 2) logt I. 
O<_t<_t~ 

Then (7.25) implies that C()0 ___< C where C is independent of 2. This allows 
us to repeat the above argument with tz _< t ____ 2tz, etc. We conclude that 
(7.22) holds for small t, say 0 _< t _< t .  where t,is positive and independent of )L. 

The proof of (7.23) follows from (7.9) upon using (7.22), (7.25) and (7.17). 
So far we considered only what happens if I~01 is small, i.e., if 2 is 

near 1. The same considerations apply also to the case where 2 is near - 1 .  
We therefore known how the trajectories of the ordinary differential equations 
behave in {y __> 01 when 1 - 61 < 121 < 1 and 0 _< t_< tl,  where 6i and t are 
sufficiently small positive numbers. 

All the other trajectories, i.e., those with - 1  + 61 -< 2 _< 1 - 61, are very 
smooth if 0 _< t<_ to where to is a sufficiently small positive number 
such that all these trajectories stay in a region - 1  + 00 < x  < 1 -  c~0 for 
some 0 < ~0 < 61; here we take 0 < to < q .  For all these trajectories 

(7.27) x0~ - 1, v0_~ - 0 if t --, 0, 
02 02 

and the corresponding portions of the F( t )  are uniformly C 1+~. Further- 
more, by continuity, 

(7.28) If~(x, t) I <= Ct, [fx(' ,  t)]0,, = Ct if Ix[ < 1 - 60. 

One can easily check that with the exception of (5.2) and the HOlder condi- 
tion (5.9), the family (x(t, 2), y(t, 2)) satisfies all the conditions imposed on 
(~(t, 2),  y(t,  )~)) in w provided 0 __ t_< to. Indeed, (5.7) and (5.8) for 
(2, 29) follow from (7.22), (7.23) and (7.28), and (5.4)- (5.6) follow from Lem- 
ma 6.1. Furthermore, the new constants Li, Qi, to, are actually independent 
of  the constants Lg, Q~, t o in w 5. By appropriate choice of  these initial con- 
stants, we conclude that, with the exception of (5.2) and (5.9), the mapping 

(7.29) /Z/{y(t, 2),  3~(t, 2)} --* {x(t, 2), y(t, 2)} 

maps sZ w into itself. 
The proof of (5.9) is given in w 8. Here again it suffices to consider only 

the portion of F(t) for which the trajectories initiate at (G0, 0) with G0 < 0 
and I~0[ sufficiently small. The proof of (5.2) for (y, y) will follow from 
(7.27) and the proof of (5.9), and therefore need not be further discussed. 
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8. C 1+~ e s t i m a t e  o f  F(t) 

Writing Y =  XW in the first differential equation of (7.6), we can im- 
mediately solve for X: 

X(t) =exp [ f I a ~(s) 2n ~2(s) + y2(s) 
o 

a y(s) 
2n ~2(S) "t- y2 ( s )  

W(s) + (gl  + g2) (~(s), y(s)) 

a~ 
+ g2 (~(s) ,  y(s)) W(s) - ~ (~(s), y(s), s) 

O~ 

-O'~ W(s))) ds. 

Using (7.22) and Lemmas 7.1, 7.2 we find that X(t) = 1 if it --, I (i.e., if 
~0 < 0, [G0] ~ 0), that is, 

(8.1) 
o~(t, it) 

Oit 
- -  = 1, or  ~ ( t ,  i t )  - ~ ( t ,  2 )  = it - 2 .  

This implies that 

(8.2) if 2.1 < 22, then ~(t, itl) < ~(t, it2) along F(t). 

The right end-point (Xo(t), t) of F(t) corresponds to some value 
it = )~o(t). From (8.2) it follows that F(t) is formed precisely by the points 
(x(t, it), y(t, it)) with - i to ( t )  < it < ito(t). 

To prove the H61der continuity of  the slope of  F(t), we take two values 
it and 2 near ito(t), but smaller than ito(t) and their Corresponding trajec- 
tories. For simplicity we set 

~(t)  = ~(t, it),  y ( t )  = y( t ,  i t ) ,  W(t) = W(t, i t ) ,  

~(t) = ~(t, 2), y(t) = y(t, ~.), W(t) = W(t, ~.). 

Set 
y 

q~(~,Y) ~ 2 + y : ,  G({,y) ~ : + y Z "  

W e  easily compute that 

2~y ~2 _ y2 
(8.3) qb~ = Gy = (~2 + y2) 2 '  ~y = - G~ - . (~2 + y 2 ) 2  
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From (7.8) we deduce that 

(• )) w- gz d W - I ~  ~ + / 2 ( ~ , y  1~--~-~7 = 

dt I~ - i I ~ = r + y2. 

( ~  Y 
+ 42 + y2 + ~ y ( r  ( W + W )  

where 

(8.4) 
J(t) - 

a 1 1 

2n {2 - i {~  [qs(~, y) - q~(~, y)] + I'~ -21" 

12_~1~ (~,y, t)  - O~ (r y, t) 

w - #  
+ J(t) 

14 - ~ 1  ~ 

- - [ g 3 ( ~ , Y )  - g3(~,Y)l  

+ 1 ~ = ~  ~y ( ~ , y , t ) -  ~yy (~, y, t) 

g' a 

- -  [G(4, y) - G(~,  y)]  + I x _ ~ 1 ~  [#(~,  y) - / ~ ( ( ,  y)] 

+ 2n [2 _ i t~ [qs((,  y) - q~(g, y)l  + [2 Z [  [~ (~, t/) - ~-y (r y) 

12 - ~ I ~ [g2(r Y) - g 2 ( ( ,  Y)] 

w h e r e / t  = g4 - g l .  Hence  

w ( t )  - # ( t )  
(8.5) 

= oi ds J(s) exp dr  42 + y2 ~- P(~,Y) ~ 2 + y 2  

From (8.1) and (7.22) we have 

(8.6) Oy(t, )~) < _ _ _  
02 = I log t I 

Hence  

(8.7) 14 - ~1 ~ + [Y - Y l  ~ = C],~ - AI ~. 

Since gi is in C a, it follows that  

1 
(8.8) i2 _ ~, l~ [ gi( {, Y) - g*( ~, Y)I =< C.  
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We next show that 

1 
(8.9) [,~_~[~{[Iv.g(~,y,t)-vd(~,y,t)ll+[lvB(~,y,t)mVB(~,y,t)[]} 

C C 
< l - t�89 + ~ l  l ~ 1 7 6  

where y = min (y, y). Indeed, from the definition of A in (7.1) we have de- 
duced (7.2), and similarly we can show, using Lemma 3.1, that 

[VXl0,~ _-< C C 1 log S ll log t[ 

t�89 + lYl ~ ' 

where [ ]0,~ stands here for the a-HOlder coefficient in (~, 0). In view of 
(8.7), the assertion (8.9) for A follows. The proof for B is the same. 

From Lemmas 7.1, 7.2 and the estimate (7.24) we deduce that the expres- 
sion in the exponent in (8.9) is uniformly bounded if ]~0[ is small enough. 

Notice that if 2 < 2, then 3) = y, and, as in the proof of  (7.25), 
t 

, ~ Z ~  I log~(s ) l l log  sl ds if t ~ O .  

0 

Using this in (8.9), and then also using (8.8), we conclude from (8.5), (8.4) that 

(8.1o) 
Iw( t )  - ~ ( t ) ]  

IZ - i l "  

I O~(Xr) I~(s) -- ~(s)l 
<--_C+ ds c ~ - I X - X l  ~ 

0 0 

+ ly(s) - Y(s)l/ l log s] dr 

t 

+ C I Oqb(Xr)1~ 

0 

(s) - ~(x)l / l log sl + ly(s)  - y(s) l  ~ l  
 -il o ~ 

w h e r e  x r = ?'~(s) + (1 - r) ~(s),  ry(s) + (1 - r ) y ( s ) ;  here we used the mean 
value theorem and (8.3) in evaluating the difference of  the q~'s and G's in (8.4), 
and we also used the fact that �89 + 6 + o ~ < 1  in (8.9) (which is valid if 
0 < o~ <�89 and 6 is sufficiently small). 

By (8.1), (8.6), 

l~(s) - 8(s)l 

1,~ -~ . I  ~ 
Cl~(s) - ~(s)l 1-'~, 

[y(s) -y(s)J  c c 
])~ ~[~ _-< ly(s) - Y ( s ) [  1-~ < - - -  

- I l ogs l  ~ - t l o g s l  
Ir - 8(s)] 1-~. 
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Consequently, using (8.3), we obtain 

(8 .11)  
I W(t )  - r~(t)[  

I.z - i l  ~ 

I J  s rl I ]~rYr] dr+ C ]~2r-y2r[ d ]~(t) _ ~(t) i i_~; 
<= C+ C ds ({2 + y ] ) 2  ~ (r +yr2)2 

o o o 

here we used the fact (which follows from (8.1)) that 

(8.12) I~( t )  - ~ ( t ) l  = t r  - ~ ( s ) l .  

To prove the H61der continuity we only need to show, in view of (8.12), 
that 

]w(t)  - ~( t ) [  C 
(8.13) __< 

1)~ - [ l  s min [y(t), y(t)]  ~" 

The initial point of  F(t) is given by (~o( t ) ,0)  where ~ o ( t ) = ~ o ( t ) - 1 .  
Recall also that 

(8.14) ~0(t) = t log t. 

To prove (8.13) we consider two cases: 

Case (i): I~o(O) - 4o(0)[ > gl~o(t)[, 

Case (ii): [Go(O) - 4o(0)1 _-< el~o(t)l 
where g is a small positive number. 

In case (i), 

I w( t )  - # ( t ) l  I w(t) l  + IW(t)l 
(8 .15)  __< 

I,~ - i l  ~ (g l~o(t ) [ )  ~ 

C 

= I log  t[[t l o g  t[ ~ 

by (8.14), (7.22). 
In case (ii) we have, by (8.12) and the approximate equations (6.10), that 

~r(t) ~ ~(t), yr(t) =y( t )  

in (8.11) and, therefore, 

(8.16) 
[ W ( t )  - # ( t ) l  

I,z - i l  ~ 

c +  Cl&(t) l  1-~ 
j I~(s)y(s)l 

(~2 (s) + y2(s))2 

t 
1 f l~2(s) - Y2(s)[ 

+ l t ( r ( s ) 7 ds " 
0 
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We evaluate the integrals by the same method used to prove Lemmas 7.1, 
7.2. First 

t 

(8.17) I Ir y(s)l 
( r  - - } - y 2 ( s ) ) 2  

0 

By (7.11), (7.15), 

( 8 . 1 8 )  J2 <_C f 
{l~(s)[<=y(s)l 

+S 
{I ~(s)] =>y(s)} II~(s)l <y(s)} 

�9 "" --Jx q'J2. 

ds C iF(~o(t))l C 
Y2(s) = [F(~o(t))l 2 [log]~o(t)l] 16(01 

Next, since ly(s)l ~ ClF(~o(t))l, 
clio(01 

Ja <- C[F(~o(t))[ ]r 3 _-< C]f(~o(t))] 
[lr _->y(s)l Cl~o(t)l/llogl~(t)ll 

The last integral is 

~ 1 /  f ( C ~ o ( t )  "~2 log I C~0(t)] 1 
~ \ l o g  I~0(t)l/ [log [r I 

(by integration by parts; cf. the proof of (6.8)) and, therefore, 
C 

J1  < 
= I ~o(t) I 

Combining this with (8.18), we conclude from (8.17) that 
t 

S (8.19) [~(s) y(s)l ds < . 
(r +Y2(S))2 = I~o(t)l 

0 

Next we estimate 

d~ 
]~]3 ilog r 

t 

(~2(s) + yZ(s))Z ds . . . .  + 
o II ~(sll >_y (s)} {I ~(s)] __<y (sl} 

--  L 1 + L 2 �9 

cl~o(OI 

LI <=C I ds I ~ 2 ( S  ) ~ C 

{l~(s)] =>y(s)} C]~o(t)l/[logl~(t) I 

d~ 
Ir Ilog r 

<_ c / " Ir log 
[[log-]~o(O [ 

I~o(t)] 
Ilog I~o~t~ll 

C 
. 

= [~o(t)l 
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Also, 

L2 < C I ds C 
Y2(S) --I~o(t)l 

[l~(s)l--<y(s)l 

by (8.18). It follows that 

(8.20) 

t 

f (s)) z ds C 
~2(s) < 

({2(s) + y 2  = i~o(t) I " 
0 

Finally, 

(8.21) 

t 
I y2(s) C 

(~e(s) + y2(s))2 ds <-- I~0(t)l 

Indeed, the left-hand side is bounded by 

f ds i ds C - - + C  . 
~2(S)  y Z ( s )  

[l~(s)l __>y(s)} {1 ~(s)[-y(s)} 

The first integral bounded by 

Clio(t)[ 

f d~ C < - - ,  
c I~l 3 [log ~[ = I~o(t)l 

C[~o(t)[/]log[~(t)l] 

and the second integral has already been estimated in (8.18) by C/]~o(t) ]. 
Using (8.19)-(8.21) in (8.16) we find that 

I r e ( t )  - ~(t/I  c c 
(8.22) 12 i1 ~ < - -< - [Go(t)[ [t log t] ~' 

where we have used also (8.14). Recalling (8.15), we conclude that (8.22) holds 
in both cases. This implies (8.13), since the right-hand side of (8.13) is larger 
than C/t ~. 

So far we have (tacitly) assumed in the above analysis that ~(0) and 4(0) 
are near 0, i.e., x(0) and ~(0) are near +1.  The same estimate holds if x(0) 
and ~(0) are near - 1 .  Finally if x(0) ,  Y(0) are in some interval [ -1  + i l ,  
1 -  ill] with fil > 0, then the C 1+~ estimate is rather immediate (see the 
paragraph containing (7.27)). 

A review of the proof shows that the constant C in (8.13) is independent 
of the constant L2 in (5.9). Hence by choosing L2 larger than this constant 
C, we conclude that the mapping (7.27) maps S w  into itself. 
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Remark 8.L Since we have proved (8.22), which is stronger than (8.13), it 
follows that if we replace (5.9) by 

L2 
(8.23) [fx (', t)]0,~ < 

= It log tl ~'  

t h e n / / / s t i l l  maps the new class d w  into itself; we denote this new class by 
d ~ . 

9. A fixed point 

We have shown that / ~  maps a family {X(t, 2),  y(t, ,~)} in d ~ into 
another family {x(t, 2), y(t, 2 ) / i n  S ~  provided 0 __<_ t _< to where to is a suf- 
ficiently small positive constant. Denote by/~(t)  and /3  (t) the boundaries and 
domains corresponding to {2(t, ;t), y(t,  ,~)}, and define F(t), D(t) similarly 
with respect to {x(t, 2), y(t, )L)}. Then we write 

D (t) = ~e'/3 ( t) .  

Choose any element {x(t, 2), y(t, )~)} in S ~ with the corresponding do- 
mains D(t) and boundaries F(t), and define the iterates 

Dn+a(t) =/A'D~(t) (n = 1, 2 . . . .  ) 

where D~(t) = D(t). 
The modification of Vw as described in connection with Figure 4 is 

somewhat arbitrary. We could for instance replace the transversal segments ly 
(of direction y) with concentric segments of larger length; the length being 

Cot if the midpoint is in Ixl < 1, and it grows to ~ e0tllog t I as the direc- 
tions of  l~ become horizontal. Let us choose the cutoff functions (r such that 
they are equal to 1 on each symmetrically situated subinterval of 17 of length 
1 
~lIrl.  From the approximate behavior of the trajectories as described in w 6 
(see Lemma 6.1) we can deduce that if t is small enough and the internal 
longitudinals are the curves F(t) corresponding, say, to the domains DZ(t), 
then we can carry out the modifications of wx, Wy by (7.1), (7.3) with the 
same ly, (l~ for all the Dn(t), n -> 2. Furthermore, for each n - 2, each line 
segment Ir (or its extension) forms angle __< 00 < ~ (00 constant) with the 
direction (x~(t,)L), yt(t, 2)) of the trajectory at the point (x(t,)~), y(t, 2)).  

Since 
c 

IVr < _-< , 
= t l log t ] t 

the analysis in w167 7, 8 remains unchanged. 
Now take two domains 

Dl(t) =Dnl(t), D2(t ) =Dn2(t) 

and introduce in addition to the usual Hausdorff  distance 01( t )  ~ Ol(Dl(t), 
D2(t) ) another distance function based on measuring distances along the half 
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lines [y in {x _> 0} or in {x =< 0} containing the line segments ly: 

0(t) - 0 (DI ( t ) ,  D2(t))  = sup diam {/',/c~ [ODl(t) w OD2(t)]}. 

Clearly (since 00 < ~), 

(9.1) c~l(t) <= O(t).  

Denote by r i=  (xi, Y l ) =  (xi(t,)~), yi(t)) the trajectories defining the 
boundaries F/(t) of  /d/Di(t) and by ;7 i = (-4i, Bi) the modifications of  Vw i. 

The ordinary differential equation for r~ is then 

(9.2) ki(t) = - V g ( r i ( t ) )  - Xi(ri(t),  t ) .  

Recall also that 

_ _  - y - t /  d ~  d r  + Vl f f i  (9.3) Vwi(x, y, t) = . 2~ ' 

Di(t) 

where 
t0 2 = (X i ~ )2  + (y _ r/)2 

and g~ui is a smooth function. 
We can write 

(9.4) IAl(r, t) - • ( r ,  t)l 

---< I ' "1  + I ' " ]  + 
[1) 1 (t) uD2(t)]nBca(r ) [Dl(t ) nD2(t)]~Bca(r ) 

I. . .I  
[D 1 (t) zXD 2 (t)] C~Bcs(r) 

--= J1 + J2 + J3. 

Here c is any fixed large positive constant. The integrand in Jl  is bounded 
by C/p (using (9.3)). Hence SS c 
(9.5) J1 < - -  < CO 

P 
Bc~ 

In J3 we estimate the integrand also by C/p and conclude that 

(9.6) J3 <= C~i(t) [log fil(t)[.  

Finally, using the definition of X i above and setting Z( t )  = [ D l ( t ) n  D2(t ) ] \  
Bca (r) we see that 

J 2 ~ C f ~  x l ( t ) - ~  x 2 ( t ) d ~ d y  
33 
z(t) 

where (xi(t),  yi(t)) = ri(t) and p~ = (xi(t) - ~)2 + (yi(t) _ r/)2. Applying 
the mean value theorem we get 

SS J2 N C 0 1 ( t )  ~ < CO1(t) [log 01(t)[. 

Z(t) 
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Combining this estimate with (9.6), (9.5) we get, after using (9.1), 

(9.7) [Al(r, t) - A2(r, t)l <= CO(t)[log 0(t ) [ .  

We now take the difference of  (9.2) with i = 1 and i = 2. After using (9.7) 
and the corresponding estimate for the Bi, we obtain 

(9.8) [q - r2]t <= ]V~(r l( t ) )  - V~(r2(t))[ 

+ ]Xl (q ( t ) ,  t) - X1 ( r 2 ( t ) ,  t)l + CO(t)Ilog O(t)]. 

By the mean value theorem and (7.2), (7.4), 

1,~1 ( r l ( t ) ,  t) -- X1 (r2(t), t)] = y(t)  ]rl(t) -- r2(t) [ 
where 

(9.9) 
1 

9'(0 - t�89 + C[logy(t)l Ilog t t ,  

and where y(t) belongs to the interval (yl(t) ,  y2(t)).  
By the mean value theorem, also 

IV~(rl( t ) )  - VK(r2(t), t)l _ cIveuf  Iq(t)  - r2(t)l 

and, as easily verified, 
C 

(9.10) Ivzff( x, Y)I < �9 
= Ixl + y  

We can then write 

t 

(9. l l)  Irl(t) - re(t) I ~ C~O(s)I log 0(s)  I e f~['''] ds 
0 

where the expression in [. . .]  is the sum of y(t)  plus the right-hand side of 
(9.10) evaluated at a point in the interval (rl(t),r2(t)). By the results of  w 8 
((7.22) and Lemmas 7.1, 7.2) it follows that 

[ J J) sup exp [... --+ l if t ~ 0 .  
0 < s < t  

Hence (9.11) implies that 

(9.12) O(~/D l(t),/Z/D2(t) ) _< C I 0(s) l log 0(s) I ds. 
0 

We apply (9.12) to the domain D l ( t ) = D n ( t ) ,  D2(t ) = Dn+l(t). Setting 

gn(t) = O(Dn(t), On+l(t)) , 
we get 

t 

(9.13) gn+l(t) < C ~ g~(s) Ilog gn(s)[. 
0 
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We assert that 

(9.14) gn(t) <_ Ant  n [log tl n 

Indeed, this is true for n = 1 if A is sufficiently large. Proceeding by induction 
we assume that (9.14) holds for some n and prove it for n + 1. 

Applying (9.13) we get 

t 

gn+l(t) <-__ CA n I sn ]log s In ]log [A + log s + log ]log s III ds. 
0 

Since log s is negative whereas A + log l log s t is positive if s is small, 

0 < log I a + log s + log [log s [I --< [log s 1. 

It follows that 
t 

gn+l (t) <-_ CA n ~ s n [log s l n+l ds.  
0 

(9.15) 

But 

and therefore 

t snllog sl n+l tn+l l l~ t ln+l t 
= + ~ s n l l o g s l n d s  

0 n + l  o 

' ]n+l 2tn+l [log t l n+l 
~s n Ilog s 
0 n + l  

if t is small. We substitute this into (9.15) and choose A > 2C to complete the 
proof of (9.14) for n + 1. 

By compactness, any subsequence of {Fn(t)} = {ODn(t) n {y >= 0}} has a 
further subsequence which converges to a C 1+~ curve F ( t ) .  We assert that the 
complete family {Fn(t)} has a unique limit. Indeed, this follows from the fact 
that for any two sequences (Fn~(t)}, {Fn2(t)}, 

~(Dn~( t ) ,Dn2( t ) )  - * 0  as nl ,  n2--r co, 

by (9.14). If  we denote by D ( t )  the limit in the d-metric of the Dn( t ) ,  then 

J/ fD(t)  = D ( t ) .  

It can be easily checked that u(x,  y, t) is continuous in (x, y, t), and this com- 
pletes the existence part of Theorem 1.1. 

To prove uniqueness suppose we have another solution with domains s 
and set 

cS(t) = t~(D( t ) ,  D ( t ) )  . 

We can choose the same lv, (ly for both domains, and therefore (9.12) can be 
applied. We thus get 

t 
~(t) __< C $ ~(s ) ] log  ~(s)] ds. 

0 
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We deduce as before that 

O(t) <__Antn[logtl V n >  1, 

so that 5( t )  =-O, i.e., the two solutions coincide. 
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10. The shape of the free boundary 

Theorem 10.1. The function ~(x, y) satisfies 

(10.1) Ftxy(X, O) < 0 if 0 < x < a, x er 1. 

Proof.  Consider ~x in 

R a = { 0 < x < a ,  - h < y < b } \ B a ( 1 , 0 ) ,  ~ > 0 .  

Notice that ~x and a~y are continuous across {(x, 0 ) , 0 _ x _ <  1 - ~ }  
(~xy(x,O+) - ~ y ( X ,  0 - ) )  = - a x  = 0) so that ux is actually harmonic in Rs. 
By (2.9) and (5.10) we see that 

~ x < 0  in Bs (1 ,0 )  

if 5 is small enough. Since, further, ~x = 0 on aRa\OBs(l, 0), it follows by 
the maximum principle that 

(10.2) ~ < 0  in 0 < x < a ,  - h < y < b .  

Consider the harmonic function 

w(x, y) = gx(x, y) - Ftx(X, - y )  

in R0 h = {0 < x < a, 0 < y < h}. This function is bounded in a neighborhood 
of (1, 0), as a consequence of  (2.9) and the fact that Cx(x, y) = ~bx(x, - y )  
(cf. (5.10)). Also w = 0 on x = 0, x = a and y = 0, and w(x, h) < 0, by (10.2). 
Therefore, by the maximum principle, w < 0 in Rh0 and Wy (x, 0 +)  < 0. This 
yields (10.1). 

Let us define curves Fo(t) in {y > 0} by 

x = Xo(t, ,~), y = yo(t, 2) 

20 = --Ftx(Xo, Yo), Yo = --Uy(XO, Yo), 

x0(0 ,2 )  =)~, y0(0 ,~)  = 0  ( - 1 < ; . <  1). 

where 

(10.3) 

Since 

(10.4) Ox~o = 1, ayo = 0 at t = O, 
02 Oy 

Fo(t) can be written in the form 

(10.5) Fo(t) = {y =fo (x ,  t)} 
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provided t is small, 

(10.6) 

From (5.11), (5.12) it follows that 

3_0 
If(x, t) - f o ( x ,  t)] < Ct 2 , • > O. 

Set 

(10.7) go (x) = 
OxOy 

By Theorem 10.1, g ' (x)  > 0 if 0 < x < 1. 
By (10.4), 

0 Oyo/02 
Ox f~  t) OXo/02 

On the other hand, for any r / >  O, 

d Oy o _ 02~ OXo 02u Oyo 

dt Oy Ox 03, 02 Oy 2 02 

if 0 _< x ___ 1 - t/, by (10.4). It follows that 

0 
Ox fo(x,  t) = go(x) (1 + O(t) )  

X 

02~(x, O) g(x)  = ~ go(Y) dy 
0 

OY~ (1 + O ( t ) ) .  
O2 

- go(x) (1 + O(t))  

and, by (10.6), that  

(10.8) f ( x , t )  = g ( x )  t +  0 t 2 , O<_x<_ 1 - t l .  

We summarize these results: 

Theorem 10.2. For any tl > 0 the free boundary y = f ( x ,  t) satisfies (10.8), where 
g ' (x)  > 0  i f O < x <  1. 

Thus f ( x ,  t) is increasing in x in an "average" sense. 
From (10.8) we see the precise linear growth in t, of  the free boundary, 

when 0 < x _ < l - r / .  
We recall that  

C c 
(10.9) - -  <=fx(x, t) < if 1 _< x < Xo(t) 

]log t I [log t] -- 

where C >  c > O. Thus f ( x ,  t) decreases in x for 1 < x  <Xo(t) ,  at rate 
1/I log t[. The shape of the free boundary, for a small time t, is described 

in Figure 1 of  Section 1. 
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