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Abstract 

Image-processing transforms must satisfy a list of  formal requirements. We 
discuss these requirements and classify them into three categories: "architec- 
tural requirements" like locality, recursivity and causality in the scale space, 
"stability requirements" like the comparison principle and "morphological  re- 
quirements", which correspond to shape-preserving properties (rotation in- 
variance, scale invariance, etc.). A complete classification is given of  all image 
multiscale transforms satisfying these requirements. This classification yields a 
characterization of all classical models and includes new ones, which all are 
partial differential equations. The new models we introduce have more in- 
variance properties than all the previously known models and in particular 
have a projection invariance essential for shape recognition. Numerical ex- 
periments are presented and compared. The same method is applied to the 
multiscale analysis of  movies. By introducing a property of  Galilean in- 
variance, we find a single multiscale morphological  model for movie analysis. 
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1. Introduction 

Define a black and white image as a bounded real function u defined on 
[~N. u(x) represents the grey level or brightness at the point x. From the 
physical (or psychophysical) point of  view, images are obtained as the result 
of  the impression left by the light sent or reflected by real objects on a surface, 
which can be a retina, or any photosensitive surface in analogic or digital 
cameras. One of  the main challenges of  disciplines like psychophysics, com- 
puter vision, robotics, etc., is to understand how, from the local properties of  
an image, and in a way which is largely independent of  the natural or artifical 
perception devices, stable and reliable information on the shape of  the sur- 
rounding objects can be obtained. 

Most  practical devices for image analysis assume a preliminary step in the 
processing of the pictures which consists in passing from the original picture 
to smoothed versions, which still contain significant information.  At this stage 
of  the processing, the image is therefore t ransformed into new images, and the 
main parameter  of  this preliminary t ransform is the "scale",  which measures 
the degree of smoothing, or more trivially, the size of  the neighbourhoods 
which are used to give an estimate of  the brightness of  the picture at a given 
point. A "multiscale analysis", as it is generally called in image-processing 
theory, tends to give less local and therefore more reliable information on the 
grey level than the original fluctuating "pixel".  I t  is also considered by many 
authors as a necessary preliminary step in any task of artificial intelligence. 
Indeed, one of  the aims of artificial intelligence is to "under s t and"  pictures, 
that is, to identify the objects lying in them. Now, there can be objects of  
any size in a picture. So the preprocessing is assumed to be able to yield a 
reliable "r6sum6" of the picture at any level of  scale reduction and subsequent 
simplification. 

We define, without loss of  generality, a "multiscale analysis" to be a fami- 
ly of  t ransforms (Tt)t~=o which, when applied to the original picture f(x),  
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yield a sequence of pictures u ( t , x )  = ( T t f ) ( x ) .  Roughly speaking, Tt f  is a 
semi-local version of f where a neighbourhood of size t around x has been 
scanned for determining the value of Tt f ( x ) .  We do not now define the 
"size" t of the neighbourhood; its meaning will be clear from the 
mathematical formulations below. 

The aim of this paper is to list a series of formal properties, or axioms, 
which are likely to be satisfied by the "multiscale analysis" Tt and then to 
give the explicit formulae which can be deduced from these axioms. We shall 
see that under reasonable assumptions (including the comparison principle) on 
a multiscale analysis Tt, all sequences of pictures u ( t , x )  = ( T t f ) ( x )  are solu- 
tion of a partial differential equation of second order: 

OU 
- -  = F(D2u, Du, t) 
Ot 

with u(O,x) = f ( x ) .  

Moreover, we shall list a series of invariance properties which must be satisfied 
by image-analysis operators (in particular "shape-preserving" properties). 
Then we shall translate each invariance property for the multiscale analysis by 
describing all the F's  which yield the given property. This will allow us to 
characterize axiomatically the multiscale theories which have arisen in com- 
puter vision and to classify them completely. The Marr-Hildreth-Koenderink- 
Witkin multiscale analysis ("scale space") based on the heat equation 
Ou/Ot = Au, the Malik-Perona anisotropic diffusion Ou/Ot = d i v ( g ( I D u ] D u ) ) ,  
the "mean-curvature motion" Ou/Ot = d i v (Du / lDu[ ) IDu l  proposed earlier by 
some of the authors of the present paper, and the basic transforms arising in 
mathematical morphology (dilation and erosion), given by Ou/Ot = 4- IDu] will 
be therefore axiomatically characterized. 

Last but not least, the axiomatic classification of all multiscale analyses 
yields several new possibilities. Among the new axioms, we give a detailed 
study of "scale invariance" for multiscale analysis. (A multiscale analysis is 
scale-invariant if it is, in some sense, independent of the size of the analyzed 
objects). Within the new multiscale analyses, we find a class of "mor- 
phological multiscale analyses", that is, a class of multiscale analyses having 
the same invariants as the classical morphological operators, including scale 
invariance. The associated equations are 

OU 
- -  = f l ( tcurv(u))IDul ,  
Ot 

where fl is an arbitrary nondecreasing real function, curv(u) is the curvature 
of the level set of u passing through x, so that this equation has a geometric 
interpretation. This new multiscale analysis can be interpreted as an interpola- 
tion between the heat equation of MARR, HIDRETH, KOENDERINK, and WITKIN 
and the classical morphological operators like opening and closing. Its main 
virtue is to combine the advantages of both theories, but not their drawbacks. 
Indeed, it keeps the same noise-elimination properties as the heat equation but 
is shape-preserving like morphological operators. 
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We show there is a unique multiscale analysis satisfying all classical in- 
variance properties, as well as projection invariance. This new muhiscale 
analysis therefore has properties that no previously proposed theory has: It allows 
the analysis of planar shapes in a way which depends on neither their orienta- 
tion nor their location in the three-dimensional space. The equation is 

Ou = iDu[ (tcurv(u)) 1/3. 
Ot 

Of course, we can remove some of the above invariance properties in order 
to obtain more general operators. We obtain the form of all multiscale analysis 
T t satisfying the projection-invariance property, without imposing other shape- 
preserving properties. 

Finally, we study the multiscale analysis of movies. We add two new in- 
variance properties which take into account the particular nature of movies. 
Firstly, we assume the analysis to be invariant when the movie is uniformly 
slowed down or accelerated. Secondly, we assume that the analysis is invariant 
under "travelling", that is, a motion of the whole picture at constant velocity 
does not alter the analysis. (Thus the analysis is assumed to be able to 
"follow" such a uniform motion.) For obvious reasons, we call this axiom 
Galilean invariance. 

We show that the equation associated with the multiscale analysis Tt satis- 
fying all these invariance properties is given by 

ou ( Ot=lVul  ( tcurv(u))  1/3 (curv(u) accel(u)'~+'~ 
\ Itcurv(u)] 4/3 ,] ,] 

where 0 ____ q < 1, and accel(u) represents the acceleration of the movie in.the 
direction of the spatial gradient. 

All of these equations have unique solutions in the "viscosity" sense [121. 
They correspond to order-preserving semigroups and are obtained by identify- 
ing the generator of semigroups having all formal properties discussed above. 
These new partial differential equation models include several recently in- 
troduced "geometric equations", like the mean curvature motion Ou/Ot = 
div(Du/]Du l)I Du 1" 

Let us mention that our axiomatic approach to image processing is inspired 
by the systematic derivation of models in continuum mechanics from first 
principles. 

2. Axioms of multiscale analysis 

We shall distinguish three types of axioms: those which deal with the arch- 
itecture of the multiscale image analysis (causality, recursivity, regularity, 
locality), which we call the "architectural axioms". We shall add to the arch- 
itectural axioms a single axiom for characterizing the fact that the multiscale 
analysis under study corresponds to a smoothing of the original picture. This 
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axiom is known by physicists and mathematicians as the "comparison princi- 
ple" or "maximum principle" and is satisfied by the classical multiscale 
analysis. 

We finally consider the axioms which correspond to the shape-preserving 
properties of image analysis [3, 36, 54], that is, the invariance of the result 
of the analysis when fluctuations of brightness occur because of the 
geometrical and technical conditions of the perception. Those axioms are 
called "morphological axioms", since most of them have been formalized by 
the school of mathematical morphology. 

Let us now make an (informal) list of the axioms of the three groups and 
their main consequences. 

2. L Architectural axioms 

We first consider an axiom which is called in vision theory the "causali ty" 
property, or the "pyramidal architecture" property. According to this assump- 
tion, Tt can be computed from Ts for any s =< t, and To is of course the iden- 
tity. This is natural, since a coarser analysis of the original picture is likely 
to be deduced from a finer one without any dependence upon the original pic- 
ture. Of course, the finest picture analysis is the identity. A strong version of 
causality is the semigroup property 

[Recursivity] T o ( f )  = f , Ts o T t ( f )  = T s + t ( f )  on [12. N, for  all s, t >_ 0 and  f .  

If  [Recursivity] is satisfied, the visual process is reduced to a single loop if 
the scales are discretized. Indeed, Tt can be deduced from the n-th iteration 
of Tfln. 

A weaker version of the pyramidal hypothesis is following: We include 
Tt = Tt, o in a family of transition operators T~,t indexed by 0 =< s, t < oo and 
satisfying 

[Causality] Tt+s = Tt+~,s ~ T~ for  all 0 <_ s, t < co. 

In order to get back to [Recursivity], one needs to assume that Tt+s,s = Tt, o. 
From the viewpoint of the theory of perception, [Causality] is a sound 
hypothesis, if the image perceptual analysis consists in a sequence of filters 
which are applied sequentially. Since new images are constantly arriving at the 
retina, the image-analysis process is thought of as a flow of the picture 
through different filters, each associated with a scale t. If  we discretize such 
a process, it yields a series of operators Sn = T(n+l)h, nh applied successively, 
[47, 30]. 

Indeed, we notice that if t = nh, then T t = Tnh can be deduced from the 
n-th iteration of T h. Now, we need an axiom which states the independence 
of the multiscale analysis of the choice of h. So we assume the existence of 
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a so-called infinitesimal generator A for the semigroup Tt, defined by 

[Generator] ( T h f - f ) / h ~ A [ f ]  as h ~ O  + (or (Tt+h, t f - - f ) /h - -~At[ f l ) ,  for 
smooth f .  

A way of justifying [Generator] is to deduce it from axioms more natural from 
the viewpoint of perception. An example of such an axiom, which, combined 
with the other axioms of the theory, implies [Generator] is 

[Regularityl ]ITt(f + hg) - ( T t ( f )  + hg)[]oo -< Cht for all h, t in [0, 11, for 
smooth f and g, where of course C depends on f and g. 

This last axiom states a natural assumption of continuity of Tt and is 
therefore a strong justification for the existence of an infinitesimal generator 
for the multiscale analysis. 

We next require an axiom on the local character of the multiscale analysis 
Tt for t small (and therefore the local character of the infinitesimal generator 
A):  

[Locality] { Tt ( f )  - Tt (g) } (x) = o (t) as t ~ 0 +, for all smooth f and g such that 
D~ f ( x )  =D~g(x)  for all lot] __> 0 and for all x. 

Roughly speaking, this last axiom means that the value of T~(f) for t small, 
at any point x, is determined by the behaviour of f near x. 

2.2. Comparison principle 

The comparison principle is an obvious order-preserving property (the 
"maximum principle"). It means that no enhancement is made, but just a 
smoothing of the original image. Thus if one image g is everywhere brighter 
than another f, this ordering is preserved. 

[Comparison principle] Tt ( f )  <- Tt(g) on [~N for all t >= 0 and f, g such that 

f<=g. 

This axiom is equivalent, in the case where Tt is a linear filter, defined by 
T t f = f . F  t, to the inequality Ft >=0. Thus, this axiom is the most obvious 
generalization in the nonlinear case of a nonnegative smoothing kernel. 

We want to emphasize here that the comparison principle is quite natural 
for transforming a grey-level image into a grey-level image. If  another kind 
of structure (such as a n  edge map, depth map) is sought, the comparison prin- 
ciple is no longer valid, because, for instance, g >__ f can occur with a constant 
g without edges while f has many edges. 
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2.3. Morphological axioms 

Mostlof the next axioms, which we call the "morphological axioms", are 
well-known in mathematical morphology. They state that image analysis must 
be invariant under fluctuations of light and under changes of position, orien- 
tation and scale of the planar shapes. 

A first requirement essential to the understanding of images and shapes is 
to take into account how arbitrary the grey scale of perceptual or digital pic- 
tures is. This scale is due to fluctuations of illumination of the perceptum: in- 
deed, sun, clouds, artifical lights, reflections and the change of position of 
percipiens and perceptum strongly perturb the amount of light which is sent 
from any point of the world to the perception device. Then, the state of the 
percipiens can also be altered: Aperture, focus, trace of anterior perception, 
etc., of the perception device also drastically change the effect of the light on 
the photosensitive surface. 

In the case of digital pictures, many electronic devices are applied suc- 
cessively to an image before its arrival at the human eye or at some automatic 
image-analysis device: Since the grey scale of the resulting image has been 
changed by each device, the only sound assumption about the information- 
preserving properties of the whole chain of captors and transmittors is that 
they might preserve the order of grey levels. In other terms, if some point or 
some region was brighter than an another in the original picture, this order 
should be preserved in the final picture. (This property is, however, 
phenomenologically false: see KANIZSA [29].) 

We begin by stating that the image analysis must be independent of the 
(arbitrary) grey-level scale. In the following, we shall always assume the follow- 
ing weak form of this axiom: 

[Grey-level.shift invariance] Tt(O) = O, T t ( f  + C) = T t ( f )  + C for any f and 
any constant C. 

This axiom means that no a priori assumption is made on the range of the 
brightness of a picture to be observed. Of course, this is not absolutely true 
for natural or artificial photosensitive systems. It is however true that the inter- 
pretation of a photograph is widely independent of its exposure time: The 
photograph can be dark or light and yet be identified as essentially the same 
picture. This axiom is equivalent, in the case where Tt is a linear filter, de- 
fined by T t f = f , F  t, to the requirement that ~Ft(x)dx = 1. 

The strong form of the first morphological axiom is 

[Grey-scale invariance] T t ( h ( f ) )  = h ( T t ( f ) )  for aU f and all t >= O, where h is 
any nondecreasing real function. 

A stronger form of this axiom assumes the same relation when h is 
nondecreasing or nonincreasing. In this case, we only assume in the above 
argument that only the fact that two points have the same brightness is 
preserved by the whole chain of captors and transmittors. 
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The function h is simply an order-preserving rearrangement of the grey 
level. Notice that the second relation of [Grey-level-shift invariance] is a par- 
ticular case of [Grey-scale invariance]. 

We now list a series of axioms which preserve the invariance of image 
analysis under the respective positions of the percipiens and perceptum. Indeed, 
animals, humans and cameras are constantly changing position. Therefore, the 
stability of the resulting representation must be preserved when objects change 
scale, position and orientation before their projection on the perceptive surface. 

We first require that the multiscale analysis be translation-invariant, that is, 

[Translation invariance] Tt(rh . f )  = r h �9 (Tt f)  for all h in ~.N, t >_ O, where 
( rh ' f )  (x) = f ( x  + h). 

This only means that all points of the space are a priori equivalent. There 
is no a priori knowledge about location of any feature of the picture: This 
is clear from our above remarks about the arbitrary respective positions of the 
percipiens and perceptum. 

We add an optional axiom of isometry-invariance: 

[Isometry invariance] T t (R. f )  = R. Tt ( f )  for all f, t >__ 0 and for all transforms 
R defined by ( R . f ) ( x )  =f(Rx)  where R is an orthogonal transform of [R u. 

The next optional morphological axiom is the scale-invariance of image 
analysis. Set D z f ( x )  =f (~x) .  The scale invariance can be stated as 

[Scale invariance] For any ~ and t, there exists t' such that DzTt, = TtDz. 

This relation means that the result of the multiscale analysis T t is independent 
of the size of the analyzed features: This is very important in the world where 
we live, since the same object can be seen at very different distance and 
therefore at very different scales. Thus, it is essential for the stability of shape 
analysis that the result of an analysis of this object should not yield a different 
"shape" at different distances. Thus, the sequence of the shapes obtained by 
multiscale filtering must be independent of the (a priori unknown) size of the 

object  in the picture. Otherwise, objects seen at different distances would have 
a different multiscale analysis, and therefore recognition of an object would 
depend on the unknown distance from the object! 

Finally, we state an axiom which implies [Isometric invariance], [Scale in- 
variance] and also the invariance of the multiscale analysis under any planar 
projection of a planar shape. Combining those transformations leads to an ar- 
bitrary linear transform A of the plane. For any such transform set 
Af(x )  = f ( A x ) .  With the same formalism as in [Scale invariance], we get 

[Projection invariance] For any A and t, there exists t ' ( t ,A)  such that 
ATt, = TtA. 
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3. General form of regular multiscale analysis operators 

In this section, we characterize each multiscale filtering as the solution of  
a generic partial differential equation: In Theorem 2 we obtain a result ex- 
plaining why the main multiscale image processing models are parabolic partial 
differential equations of  order 2. 

More precisely, we shall prove that under the "architectural" conditions 
[Recursivity], [Regularity], [Locality], together with [Comparison principle], 
and the most obvious morphological conditions [Translation invariance] and 
the [Grey-level-shift invariance], there exists a continuous function F, such that 
for any given picture f, u(x, t) = Ttf  satisfies 

O u = F(DZu, Du) .  
Ot 

Moreover, for any symmetric matrices A and B, the inequality A __ B implies 
that F(A ,p )  >= F(B,p)  for any p. Conversely, any partial differential equation 
of  the preceding kind corresponds to a multiscale analysis satisfying the above- 
mentioned axioms. If, instead of the semigroup hypothesis [Recursivity], we 
have the weaker causality axiom [Causality], and the obvious adaptations of 
the other axioms to Tt, S, we shall prove the same result with a time-depen- 
dent F: 

Ou = F(D2u, Du, t ) .  
Ot 

We do not examine all the combinations of  the above axioms. Indeed, if 
we remove one of  the three "architectural" axioms plus the comparison princi- 
ple, we may lose the partial differential equation form of the multiscale 
analysis. If  we remove [Translation invariance], the equation becomes x-depen- 
dent, and F has the form F(DZu, Du, x) .  Notice in the same way that a 
dependence of  F on u, so that it has the form F(D2u, Du, u , t ) ,  only con- 
tradicts [Grey-level-shift invariance]. 

We consider a multiscale analysis Tt as a family parametrized by t >___ 0 of 
possibly nonlinear operators on functions defined on [R N. In practice, N = 2 
or N = 3 but the results below do not depend upon these specific choices. We 
denote this family by T t and we assume that it is well defined on C~, i.e., 
the space of bounded functions having bounded derivatives at any order, and 
that (T t f ) (x )  is a bounded continuous function on ~Nx [0, oo[ whenever f is 
in C~. This definition is not restrictive, since we shall of  course extend the 
domain of T~ to more general and less smooth functions. In practice, an im- 
age is not necessarily defined on the whole Euclidian space, but our axiomatic 
presentation needs this assumption for simplicity. If  not, most invariance pro- 
perties presented above would be difficult to treat simply and rigorously. We 
shall see anyway that no loss of  generality is made: Indeed, an image, if, e.g., 
rectangular, can be extended into an image defined in the whole space (for 
instance by reflection) and the partial differential equation models which we 
shall find at the end are compatible with such extensions. 
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We first reformulate the axioms of image processing in a more precise func- 
tional framework. We change the order of presentation of  the axioms with the 
aim of inserting useful mathematical comments on their consequences. We 
always assume 

[Translation invariance] Tt(rh . f )  = rh" (Ttf)  for all h in ~N, t >-- O, f in C~ ~ 
where ( r h ' f )  (X) = f ( x  + h). 

Next, we require the order-preserving property ("maximum principle"): 

[Comparison principle] Tt ( f )  <= Tt(g) on RN for all t >= 0 and f, g in C~ ~ such 
that f = < g. 

Further, we assume invariance under the addition of  constants: 

[Grey-scale-shift invariance] Tt(O) = O, T t ( f  + C) = T t ( f )  + C on R N for all 
t >=O, and f, g in C~ ~ 

Let ][f[[~o = supxe~,[f(x) [. Since f__< g + [ ] f -  g [[oo, [Comparison principle] 
and [Grey-scale-shift invariance] immediately imply that 

(1) []Zt( f )-Tt(g)[[~<=[[f-gf[oo for all t=> 0, f, g in C~.  

Of  course, (1) yields that Tt can be extended by continuity as a mapping 
from BUC(RN), the space of  bounded, uniformly continuous functions on 
[R u into Cb(~N) (the space of continuous bounded functions on RN). And 
then [Translation invariance] and (1) imply that Tt maps BUC(R N) into itself. 
To simplify notation, we now set X = BUC( [R N) and we remark that by densi- 
ty, axioms [Translation invariance], [Comparison principle], [Grey-scale-shift 
invariance] and (1) still hold for f, g in X. We also state the main architectural 
axiom for functions f in X. 

[Recursivity] To(f)  = f ,  Ts oTt ( f )  = Ts+t(f) on R N, for all s, t >__ 0 and f 
in X. 

It is tempting to believe that [Translation invariance], [Comparison princi- 
ple], [Grey-scale-shift invariance] and [Recursivityl suffice to ensure that Tt 
admits an infinitesimal generator, but this is an open question in nonlinear 
semigroup theory. We say that Tt admits an infinitesimal generator A if 

[Generatorl ( T t f - f ) / t ~ A [ f ]  uniformly on [R N, as t-~O +, for all f in C~ ~ 

As we shall see, [Generator] can in fact be deduced from the following axiom: 

[Regularity] lirA f +  hg) - ( T t ( f )  + hg)[Ioo <- Cht for all h, t in [0, 11 and all 
f, g in Q, where C >__ 0 is a constant depending only on Q, Q is the subset of 
C~ defined by 

(2) Q = [ f  in C~',Vn >_ 0, IID /ll  == Cn for all l a ] = n}, 

and Cn is an arbitrary increasing sequence of nonnegative constants. 
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Set d l ( f )  = ( T t f - f ) / t .  Then we can rewrite the last axiom as Ildr hg) - 
II ~ --< Ch for all h, t in [0, 1], which clearly gives some stability to the 

difference quotients approximating the infinitesimal generator. 
If we want to deduce the existence of an infinitesimal generator for any 

t in the case of  a time-dependent multiscale analysis Tt, then of course we 
need to impose [Regularity] for  any s and any family of operators Tt+s,t. 
Thus, in the axiom [Regularity], the time origin s = 0 is replaced by an ar- 
bitrary s >= 0, and [Regularity] becomes 

[Regularity-bis] IlTr+~,~(f+ hg) - Tt+s,s(f) + hg)11~o _-__ Chs. 

We also need an additional axiom giving some temporal stability to the dif- 
ferences (Tt+~,tf - f ) / s :  

[Temporal Regularity] jlzt+~,Af) - T~,0(f)lloo ~ Csn(t), where n(t)  is a 
positive function going to 0 as t goes to O, uniformly in s in ]0, 1] and where f 
is in Q. 

3.L Existence of a generator 

The following theorem (proved in Appendix l) states that this stability 
assumption is enough to ensure the existence of a generator for the multiscale 
analysis. 

Theorem 1. (i) Let T t be a multiscale analysis satisfying [Translation invariance], 
[Comparison principle], [Grey-scale-shift invariance], [Recursivity] and 
[Regularity]. Then it also satisfies [Generator]. Moreover, the convergence in 
[Generator] is uniform for f i n  Q, and thus, in particular, A[fn] --, A[f l  as n ~ co 
uniformly if f~, f a r e  in Q and D~fn--*D"f uniformly on RN for all [o~1 ____ 0. 

(ii) Let Tt be a multiscale analysis satisfying [Translation invariance], [Com- 
parison principle], [Grey-scale-shift invariance], [Causality], [Regularity-bis] 
and [Temporal regularity]. Then, the preceding conclusions are still valid with the 
obvious adaptation of [Generator]: 

[Generator] ( Tt+s, t f  - f )  ~s-oAt[f] uniformly on •N, as s ~ 0 +, for all f in Cff'. 

Remark. If  Tt is a linear operator, [Regularity] obviously reduces to 

(3) l iE ( f )  -fl]o~ <- Ct for all t in [0, 1], f in Q, 

which is a very natural condition from the :viewpoint of linear semJgroup 
theory: It only means that for smooth functions, orbits are Lipschitz con- 
tinuous at t = O. 

We require a final axiom which concerns the local character of the operator 
Tz for t small (and therefore the local character of the infinitesimal genera- 
tor A). 
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[Locality] {Tt(f) - Tt(g)l(x)  = o(t)  as t ~ O  +, for all f and g in C~ such that 
Oaf (x)  =D~g(x )  for all x and 1o~[ >= O. 

In the case of  a causal llmltiscale analysis, [Locality] becomes of course 

[Locality-bis] [Tt, s ( f )  - Tt, s (g) l (x)  = o( t  - s) as t - s ~ O  +. 

If  [Generator] holds, this axiom can be replaced without changes in the proofs 
below by the axiom 

[Locality] A[f]  (x) = A[g] (x) for all f and g in C~ ~ such that D=f(x) = D~g (x) 
for all x and [a[ __> 0. 

This last axiom means that the value of Tt ( f )  for t small, at any point x, 
is determined by the behaviour of f near x. 

Notice that [Regularity] implies that if f ( x )  = g(x) ,  then 
{ T t ( f ) -  Tt (g ) } ( x )=  o(t)  as t ~ 0  +. Thus [Regularity] is in some weaker 
sense also a locality assumption; but using [Generator] we can deduce from 
[Locality] that A [ f ] ( x ) = A [ g ] ( x ) ,  while this cannot be deduced from 
[Regularity]. Thus, roughly speaking, the meaning of [Locality] is that if two 
functions have the same derivatives at some point, then they have the same 
infinitesimal generator at this point. 

The result which follows shows that the architectural axioms and the com- 
parison principle, plus the translation-invariance properties, imply the existence 
of  a continuous function F defined on  sNx  ~Nx  ~ (where S N denotes the 
space of  N x N  symmetric matrices) which satisfies 

(4) F(A,p ,  t) >__ F(B,p,  t) for all p in R N, A, B in S N with A => B 

and such that 

(5) A,[f] = F(D2f, D f  t) for all f in C~.  

Here and below, A__>B means that A - B > 0  in the sense of symmetric 
matrices. Then, we also relate, as we should expect, the semigroup T t to the 
solution of the following fully nonlinear, second-order, "parabolic" equation 

(6) O u _ F(D2u, Du, t) = 0 in [~N ;K [0, QO[, 
Ot 

u(O,.)  =Uo( ' )  in R N. 

Existence and uniqueness of solutions of (6) is known provided the equation 
is understood in the "viscosity" sense, a notion of weak solutions which 
makes possible a rather complete understanding of such general equations. We 
refer to the survey article by CgANDALL, ISHn& LIONS [12] for more 
details. 
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3.2. Why a second-order partial differential equation ? 

Theorem 2. (i) Under conditions [Translation invariance], [Comparison princi- 
ple], [Grey-scale-shift invariance], [Recursivity], [Regularity] and [Locality], 
there exists a continuous function F on SN• [R N satisfying (4) such that 
( T t f -  f )  / t ~ F(D2f, Df ) ,  and therefore (5) holds. Moreover, ( Ttf  - - f )  / t ~F(D2f,  Df)  
uniformly on [R N as t tends to 0 +, uniformly on [R N, uniformly for f in C~ with 
a uniform modulus of continuity for its second derivatives. 

(ii) Let Tt be a multiscale analysis where the operators Tt, s satisfy [Transla- 
tion invariance], [Comparison principle], [Grey-scale-shift invariance], 
[Regularity-bis], [Temporal Regularity], [Locality-bis] and [Causality]. Then 
there exists a continuous function F(A,p,  t) satisfying (4) and (5) for all t >_ O. 

(iii) In addition, for  any u o in BUC(EN),  u( t ,x )  = Tt(uo)(x) is the unique 
viscosity solution of Ou/Ot = F(DZu, Du, t) in BUCx([O, O~ 

Remark. 1) Here and below, we denote by BUCx(NNx[O, co[) the space of 
bounded continuous functions on RNx [0, co[ that are uniformly continuous 
in x, uniformly in t. 
2) It can be shown that any continuous function F satisfying (4) leads to a 
unique "viscosity semigroup" Tt which satisfies [Translation invariance], 
[Generator] and [Locality]. 

Proof of Theorem 2. Let f, g in C~ satisfy 

f ( O ) = g ( O ) = O ,  D f ( O ) = D g ( O ) = p E ~  N, 
(7) 

D2f(0) = D2g(0) = A E S u. 

We are first going to show that A[f] (0) = A[g] (0). Once this is proved, we 
remark that [Translation invariance] and [Grey-scale-shift invariance] then easi- 
ly imply 

(8) 
A [ Z h ' f ] = r h "  (A[f ] ) ,  A [ f + C ] = A [ f ]  for all f i n  C~, h in ~N, C i n  JR. 

And thus we deduce 

(9) A[f] = F(DZf, D f )  

for some function F on sN• R N. We then prove the rest of  Theorem 2. In 
order to prove that A[f] (0) = A[g] (0), we introduce z in C~ (R N) such that 
z>=O, z ( x ) = [ x [  2 near 0 and we set f = f + e z .  Obviously, f>__g  for 
Ix[ <ce with c > 0 .  Next, we set w e = w ( x / e )  where w is in C~(Rw),  0 _ w _  1 
on [R N, w(x)  = 1 if ]x I =< c/2, w(x)  = 0 if Ix l __> c. We finally introduce f e  = 
w e f e +  (1 - w e ) g .  The function f~ has been constructed in order to satisfy 
two properties: First, all its derivatives at 0 are equal to the derivatives of f~, 
and second, fe___ g on R N. This last property implies that T t ( f  ~) >__ Tt(g) 
on [R N for all t__> 0, because of [Comparison principle]. Since i f ( 0 ) =  
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i f ( 0 )  = f ( 0 )  = g(0) = 0, we deduce that 

A [ f  el (0) >= A[g] (0) .  

But, in view of the first mentioned property of fe  and of [Locality], we 
obtain A [ f  c] (0) = A [ f  ~] (0) ; we easily deduce -from Theorem l(i) that 
A[ff ] (0)  ~ A [ f ] ( 0 ) ,  and by symmetry the assertion is proved. 

That F satisfies (4) is shown by a similar argument by considering A _>__ B 
and setting 

f ( x )  = [(p,x) + �89 (Ax, x)] w(x) ,  g(x)  = [(p,x) + �89 (Bx, x)] w(x ) .  

Indeed, f>_ g on ~U while f ( 0 )  = g(0) and therefore 

V ( A , p )  = A[f] (0) = limt_~0+ (Tt ( f )  (0) - f ( O ) ) i t  

-> limt-~0+ (TAg)  (0) - g (O)) / t  = A[g] (0) = F(B ,p ) .  

Using the last conclusion of Theorem 1(0, namely, A[fn]-,A[f]  as n ~ o o  
uniformly if f~, f are in Q and D~fn~D~f  uniformly on [~N for all I c~[ _> 0, 
we also deduce by this argument that F is continuous on SNx R x. 

Proof of (ii). The proof is identical. We use part (ii) of Theorem I instead 
of  part (i). The continuity of F(DZu, Du, t) with respect to t comes from 
[Temporal regularity]. 

Proof of (iii). Finally, that Tt(uo)(x) is a viscosity solution of (6) is shown 
as in [12] (see also LioNs [34]) and thus we only sketch the proof in the time- 
independen t case. The rest of Theorem 2 then follows from general facts on 
viscosity solutions (see [12], for instance). In order to prove that 
u( t , x )  = Tt(uo) (x) is a viscosity solution of (6), it suffices to check that u is 
a viscosity subsolution of (6), the proof that it is a supersolution being shown 
in the same way. Let (to,Xo) in [0, oo]x~ u be a global maximum point of 
u -  4) where 4) is in Cb ~ (~Nx [0, T]) for any T < ~ .  We need to show that 

(lo) a0 
a t  ( t~176 - F (D2~( t~  x~176176  <= O. 

Without loss of generality, we may assume that U(to,Xo) = 4)(to,Xo) and thus 
u < 4) on [0, c~] x [R N. Again, without loss of generality, by standard approx- 
imation arguments in viscosity theory, we may assume that 4, is of the form 

(ll) O(t ,x)  = f ( x )  + g(t)  

where g(to) = O, f ( x  o) = U(to,Xo) and f is in C~(~N),  g is in C=([0, oo[). 
Then for h > 0, we consider 4)(to,Xo) = U(to,Xo) = Th(u(to -- h)) (Xo) where 
we set u(t)  = u ( t , . )  for all functions u on ~Nx[0,  ~[.  In this equality, we 
used the semigroup property [Recursivity]. Next, using [Comparison principle] 
and [Grey-scale-shift invariance] we obtain 

Th(u( t  o -- h)) <__ Th(4)(to -- h))  <__ Th( f )  + g(to - h) .  
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Therefore, we finally deduce that 

1 1 
h [g(to) - g(to - h)] + ~- { f -  Th(f)}-<_ O, 

and letting h go to O, using [Generator] or Theorem 1, we recover 

g'(to) -- F(D2f(xo) ,Df(xo))  <= O, 

and (10) is proved since aS g' o~(to,Xo) = (to) and D~f(to,Xo)= D~f(xo) for 

=1,2. 

Corollary 1. Let the assumptions of Theorem 2 hoM, but with [Generator] replac- 
ing [Regularity-bis]. Further assume that At[fn] (x) tends to At[f] (x ) when fn and 
all its derivatives respectively tend uniformly to f and all its derivatives. Then the 
same conclusion is still valid. These assumptions can be weakened slightly: If  the 
continuity property is true except at points where, e.g., Df  (x) = O, then the con- 
clusion At[f] = F(DZf, Df, t) remains true, except at points x where Df(x)  = O. 

The last statement of Corollary 1 is very important in Sections 5 and 6, 
since the morphological invariants force a discontinuity of F(A,p,  t) at p = 0. 

4. Axiomatic analysis of classical multiscale models 

4. L Axiomatization of the Marr-Hildreth-Koenderink-Witkin theory 

We now deduce from Theorem 2 a characterization of the heat equation 
Ou/Ot = Au as the unique linear and isometrically invariant multiscale model. 
Thus, we get a formal justification of a theory based on many formal and 
heuristic arguments which has always pointed to the heat equation as the only 
possible multiscale analysis. We give here a proof of this intuition: The heat 
equation is the only linear isometrically invariant multiscale analysis. Thus, for 
image models, linearity and grey-scale invariance are incompatible, and we also 
obtain an explanation for the coexistence of (at least) two different schools 
in image processing: mathematical morphology on one side and classical 
multiscale analysis on the other. 

The classical model comes from MARR & HILDRETH [40] and has been for- 
malized by WITKIN [6i], KOENDERINI( [30]. CANNY [8] proposed an efficient 
variant. The basic step of the multiscale analysis is the convolution of the 
original image with gaussians of increasing variance. KOENDERINI< [30] noticed 
that the convolution of the signal with gaussians at each scale is equivalent 
to the solution of the heat equation with the signal as initial datum. If this 
datum is denoted by u0, the "scale-space" analysis associated with u0 consists 
in solving the system 

Ou(t,x,y) 
- Au ( t , x , y ) ,  u(O,x,y) = Uo(x,y). 

Ot 
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The solution of this equation for an initial datum with bounded quadratic 
norm is u( t , x , y )  = Gt*uo where 

Gt(x,y) = (4n) -1 t-1 exp ( - (x  2 "Jr" y2)/4t) 

is the Gauss function. One of  the uses of the theory is "edge detection". Ac- 
cording to MARR & HrLDRETrI, (x,y)  is an edge point for the "scale" t i f  
&u(t ,x ,y)  changes sign and [Du(t,x,y)] is "large". Of course, this last condi- 
tion introduces some a priori defined threshold. Unfortunately, it is well 
known (and it is enough to look at the "edges"  found by this method to 
observe it [39]) that the edges at low scales give an inexact account of  the 
boundaries which, according to our perception, should be considered as cor- 
rect. This is still true for the low-pass filtering of  CANNY [7, 47] which is 
generally used as the best linear filter for white noise elimination and edge 
detection. On the other hand, if one makes a sharp low filtering, with small 
variance, all the edges keep their correct location. Now, the "m a in "  edges are 
embedded in a crowd of  "spur ious"  edges due to noise, texture, etc. The 
"scale space" theory of  WITKIN [61] proposes therefore to identify the main 
edges at a low scale, and then to "follow them backward" by making the scale 
decreasing again. This method could theoretically give the exact location of  
all main edges. However, its implementation is rather heavy from the computa- 
tional viewpoint and is unstable, because of  the follow-up of  edges across 
scales and the multiple thresholdings involved in the edge detection at each 
scale. 

Theorem 3. Let Tt be a multiscale analYsis satisfying [Causality], [Regularity- 
bis], [Locality-bis], [Translation invariance], [Grey-scale-shift invariance], [Tem- 
poral regularity], and [Comparison principle]. If  the Tt, s are linear and satisfy 
[Isometric invariance], then (up to a resealing t' = h( t ) )  u( t ,x )  = (Ttuo) (x) is 
the solution of the heat equation Ou/Ot - cAu = 0 in [RNx [0, Oo[, U(0, ") = U0(" ) 
in [R N, where c is some positive constant. 

Proof.  Let us begin with the scale-independent case. Since F(D2u, D u ) =  
limt-,o ( T t u -  u)/t,  F is linear in u and therefore satisfies 

F(rD2u + sD2v, rDu + sDv) = rF(D2u, Du) + sF(D2v, Dv) 

for any real numbers r and s and any functions u and v in X and at any point 
x. Since the values of  Du, Dr, DZu, D2v are arbitrary and can be in- 
dependently taken to be 0, we obtain for any vectors p, p '  and symmetric 
matrices A, A' that 

F(rA + sA', rp + sp') = rF(A,p)  + sF(A ' ,p ' ) ,  F(A ,p)  = F(A, O) + F(O,p).  

Thus F(A,p)  = F ' (p )  + F" (A), and F '  and F"  are linear. 
From the isometrical invariance, we also obtain F(tRAR, t R p ) = F ( A , p )  

for any isometry R of  R N. Taking A = 0, we obtain from the preceding rela- 
tions that F'(Rp) = F ' (p )  and therefore F'(Rp) = F ' (p )  for any isometry R. 
Since F '  is linear, this is only possible if F ' ( p ) =  0 for any p. Thus 
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F (A, p) = F" (A). By the isometry invariance again, we have 
F" (tRAR) = F" (A) for any isometry R and any symmetric matrix A. Since 
every symmetric matrix can be diagonalized in an orthonormal basis and every 
pair of orthonormal bases can be exchanged by some isometry, we see that 
F"  only depends on the eigenvalues X~ . . . .  ,2n of  A. Thus F " ( A ) =  
F"  (ha . . . . .  )~n). Since the eigenspaces can also be exchanged by isometries, 
F"  (21 , . . .  ,its) must be invariant under any permutation of the eigenvalues. 
Thus F only depends on the symmetric functions of  the eigenvalues. Now, the 
only linear symmetric function is the sum. Thus F" (A) only depends (linearly) 
on the trace of  A and therefore F" (A) = c trace (A) for some constant c. We 
conclude that F(DZu, Du) = cAu. Since F must be increasing in A, the con- 
stant c is nonnegative. This completes the proof  in the case of  a recursive arch- 
itecture. In case of  a causal architecture, we can apply exactly the same reason- 
ing and we obtain F(DZu, Du, t ) =  c ( t )Au  for some continuous nonnegative 
function c(t) .  Thus, with the rescaling Ot'(t)/Ot = c( t ) ,  we obtain again the 
heat equation Ou/Ot - Au = O. 

Remark on other invariants of the heat equation. It is easy to check that the 
equation is scale invariant with t ' =  t22. Let us prove that the grey-scale in- 
variance does not hold. Let Ou/Ot = Au and u = h(v) .  Then h'(v)Ov/Ot = 
h ' ( v ) A v + h " ( v ) l D v l  2. If  the equation were grey-scale invariant, then v 
would satisfy Ov/Ot = Av. Combining these equations yields h" ( v ) I D v l 2 =  O, 
and since v is arbitrary, h"=--O. Thus, the equation is only invariant under 
affine transforms of  the grey scale. 

4. 2. Basic operators of classical mathematical morphology 

The basic operations of  mathematical morphology, upon which all others 
are built, are dilations and erosions. In this subsection, we prove, using the 
mathematical tools obtained in Section 3, that the erosions are a multiscale 
analysis in the axiomatic sense, as well as the dilations. 

Let B be a bounded subset of ~N, which is called in mathematical mor- 
phology a "structuring element". Let t ___ 0 be a scale parameter. The dilation 
at scale t o f  function f with structuring element B is defined by 

Dt f (x )  = s u p [ f ( y ) , y  - x in tB}. 

Similarly, the erosion at scale t of  function f with structuring element B is 
defined by 

Et f (x )  = i n f { f ( y ) , y  - x in - tB] .  

One also defines the opening of  f at scale t, by composing DtEt and closing 
of f by EtDt. 

We first prove that the scale-dependent erosions and dilations satisfy the 
semigroup axiom if and only if the structuring element B is convex. Indeed, 
let us apply Dt to the characteristic function f of  a single point, 0 for in- 
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stance. Then Dl f  is the characteristic function of - lB .  Similarly, Dt+,f  is the 
characteristic function of  - ( t + s ) B .  Now, D s applied to D t f  yields 
- t B -  sB. 

I f  the semigroup property is true, then we must have (t + s) B = tB + sB. 
Conversely, it is obvious from the definition that if this property is satisfied, 
then dilation and erosion satisfy the semigroup property. 

Lemma.  (t + s) B = tB + sB for any s and t > 0 if and only if B is convex. 

Proof. I f  B is convex, then by the definition of convexity, for any s and t, 
sB + tB is included in (s + t) B, and the reverse inclusion is obvious. Converse- 
ly, assume that  sB + tB is contained in (s + t)B. Thus, for any x and y in 
B one can find z in B such that ( s + t ) z = s x + t y .  This means that the 
barycenter of  x and y with weights s~ (s + t) and t~ (s + t) is also in B. Since 
this is true for any positive s and t, this means that B is convex. 

Thus, we can characterize the structuring elements B yielding families of  
erosions and dilations which satisfy the architectural axioms as the convex sets. 
Let us now prove that  these families have an infinitesimal generator and can 
be obtained by a partial differential equation. We begin by defining the 
operator associated with a convex set B (which we assume, without loss of  
generality, to contain 0) by 

[lY lIB = SUpzEBY" Z, 

where y.  z denotes the Euclidean scalar product  of  y and z. When B is a ball, 
[]" lIB is the usual Euclidean norm. 

Proposition. The muItiscale analyses Dl f ( x )  and E f t ( x )  satisfy all above-men- 
tioned axioms (except [Projection invariance]), u (t, x) = D t f  (x) is the viscosity 
solution of Ou/Ot=l[DuHB and u ( t , x ) = E l f ( x )  is the viscosity solution of 
Ou/Ot = - [ [ D u  I1~. 

Proof. Of course, if we prove that these multiscale analyses satisfy all axioms, 
we can use Theorem 1 and deduce that au/at =F(D2u,  Du).  Let us assume 
that this has been proved and find what F is. Let u0 be a C 2 function on R N 
and set u( t ,x )  =Dtuo(x ). Of  course, u(O,x) = Uo(X) and 

u(h ,x )  - u(O,x) = sup{uo(y) ,y  - x  in hB} - uo(x) 

= sup{u0(y) - Uo(x),y - x in hB}. 

Since Uo(X) is differentiable in x, we get 

u(h ,x )  - u(O,x) = sup{Duo(x),  z ,z  E hB} + o(h) 

= hsup{Duo(x) "z ,z  ~ B} + o (h ) .  

By dividing by h and passing to the limit as h tends to zero, we get 
Ou/Ot(O) = ]lDuo][B. Thus the infinitesimal generator is ]]Du [[B. The proof  for 
the erosions is the same. 
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We now check that dilations satisfy all the above-mentioned axioms (except 
[Projection invariance]). [Recursivity] has been proved in the preceding lemma. 
Let us prove [Regularity]. (The proof  for erosions is identical because 

D t f  = - E t ( - f ) .  ) 

D r ( f +  hg) (x) - D t f ( x )  - hg(x )  

= sup[ f (y )  + hg(y)  for y - x  in tB} - sup[ f (y )  for y - x  in t B } - h g ( x )  

__< sup{f (y)  + hg(y)  - f ( y )  for y - x  in t B } - h g ( x )  

= h s u p { g ( y )  - g (x )  for y - x  in tBl <_ Cht 

if  g is in a family Q having uniformly bounded derivatives. By the same argu- 
ment  with - f  and - g  instead of f and g, we obtain 

D r ( f +  hg) (x) - D t f ( x )  - hg (x) >= h sup{g(x) - g(y )  for y - x in tB} >_ - C h t .  

Let us now check [Locality]: 

D t f ( x )  - D t g ( x )  = s u p [ f ( y )  for y -  x in t B } -  sup[g(y)  for y -  x in tB] 

_ _ < s u p { f ( y ) - g ( y )  for y - x  in t B } = o ( t ) .  

Using this relation with - f  and - g  yields 

O t f ( x )  - D ig (x )  >- sup{g(y) - f ( y )  for y - x in tB] = o ( t ) .  

[Comparison principlel is obvious, as well as [Grey-scale invariance], [Transla- 
tion invariance]. Thus [Generator]  is also true by Theorem 1. Of course, 
[Isometric invariance] is true if and only if B is a ball. [Scale invariance] is 
trivially true with t' ( t, )O = t. 

Remark on openings and closings, Set Ot f ( x )  = v. Then v can obviously be 
computed as v(2t),  where v( t )  is solution o f  the partial differential equation 

Ou 
- -  = - s i g n  + (t - s)IIDu I1~ + sig n+ (s - t) IIDu liB, 
Os 

where the first term acts as an erosion until time t and then vanishes, while 
the second term becomes active when s is greater than t and yields a dilation 
of  scale t at time 2t. Of  course, closure is obtained by exchanging the signs 
of both terms. These last equations have the drawback of being discontinuous 
at t = 1. This can be easily remedied by making a change of  time scale which 
makes the equation "slow down" when t approaches 1. If  we set 

Ou 
- -  - -  - ( T -  s )  + l i D .  + ( s  - T )  + l i D .  IIR, 
Os 

then i t  is easily seen that  Otf  is v(2T),  where T is chosen such that 
t = Ts - s ; /2  for s = T. In other terms, O t f =  v(2(2T) 1/2) where v(s )  is the 
solution of  the preceding partial differential equation. Thus openings, closings 
(and every concatenation of  closings and openings) can be obtained as the 
result of  an  evolution equation Ou/Ot = F(t ,  IIDull). 
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4. 3. The anisotropic diffusion of Perona & Malik 

An important improvement of  the classical linear multiscale analysis, with 
a more accurate edge detection, was proposed by P~gONA & MALrK [47] who 
also proposed a partial differential equation model and were the first authors, 
to our knowledge, to state explicitly a maximum principle as a basic require- 
ment in image processing. (Notice, by the way, that the comparison principle 
is also stated in mathematical morphology [54] as an important and useful 
property of erosion, dilation, opening and closing.) 

The main idea of  PERONA & MAL~ is tO introduce a part of the edge detec- 
tion step in the filtering itself, allowing an interaction between scales from the 
beginning in the algorithm. They propose to replace the heat equation by a 
nonlinear equation: 

Ou 
(6) - -  = d i v ( g ( l D u l ) D u ) ,  u(O) = Uo. 

Ot 

In this equation, g is a smooth nonincreasing function with g ( 0 ) =  1, 
g(s) > 0 and g(s) tending to zero at infinity. The motivation is that the 
smoothing process obtained by the equation is "condi t ional" :  If Du(x,y)  is 
large, then the diffusion is small and therefore the exact localization of the 
"edges"  is kept. I f  Du(x,y)  is small, then the diffusion tends to regularize 
still more around (x,y) .  Thus the choice of  g corresponds to a sort of  
thresholding which has to be compared to the thresholding of  I Dul used in 
the final step of  the classical theory explained above. Since this thresholding 
introduced anyway a nonlinear device, it was natural to use it earlier in the 
method, in the smoothing process itself. The experimental results obtained by 
PEe.ONA & MALI~ are perceptually impressive and show that an , edge  detec- 
t o r "  based on this theory gives edges which remain much more stable across 
the scales, making therefore the backward following of edges across scales un- 
necessary. However, the "anisotropic diffusion" of PZRONA & MALrK is not 
properly a diffusion in the direction orthogonal to the gradient, and creates 
diffusion in the direction of the gradient. Indeed, 

div (g (I Du[) Ou) = g([ Ou[) ZXu + g'([ Du [)[Ou [ -1 O2u (Du, Ou). 
Set 

u~ = (u~cu, } - 2UxyUxUy + u~u2)/lDul 2 = D2u(Du• /lDu• l, Du• /] DuJ- I), 

which is the linear diffusion term in the direction orthogonal to Du, and 

uq~ = ( u=u 2 -- 2U~yUxUy + UyyU~) /l Du [2 _~ D2u ( Du/[ Du [, Du/l Du 1), 

which is the diffusion term in the direction of  ] Du 1. Then the anisotropic dif- 
fusion term can be rewritten as 

div (g(lOu]) Du) = g(lD~t]) ur162 + G'tIDul) u.., where G(s) = sg(s).  

This new form permits an easy interpretation. Since g is a positive function, 
the first term always is a diffusion "along the edges". The coefficient of the 
diffusion in the direction perpendicular to the edge can be: 
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positive if G'(IDu ] ) > 0. In this case, the equation behaves locally as a diffu- 
sion in both directions. 

zero if G'(]Du[) = 0. Then we have a diffusion exactly in the direction or- 
thogonal to the gradient. 

negative if G'(]Du t ) < 0. This corresponds to a local inversion of  the heat 
equation. In this case, there is a combination of  smoothing and "shock- 
capturing" in the equation. Related models have been developed by 
OSrlER& RU-D~ [45]. 

Let us discuss the well-posedness of  the equation. If  G'(t) < 0 for some 
t, then some images ask for a reverse heat equation. Then no uniqueness of  
the solution and no stability of  the process can be expected. If  G'(t) >= O, then 
the equation has two " g o o d "  properties: uniqueness of  the solution and the 
comparison principle. 

Let us now check which other axioms of  our list are true for the model. 
Of course, all architectural and all elementary invariance properties (shift in 
space and in grey scale, isometry) are true. One easily verifies that the scale 
invariance is true if and only if g is a power function. (The proof  is similar 
to that given in Section 5 below for morphological operators.) The grey-scale 
invariance can never hold. Indeed, the equation can be rewritten as 

O~U=V(D2u, Du) with v(a ,p)  =g ' ( lP l ) lp] - lA(p ,p)  + g([pl)trace(A). 
Ot 

The grey-scale invariance of  the multiscale analysis implies that 
F(tA, tp) = tF(A,p) (see Section 5). Choosing for A a symmetric matrix such 
that Ap = 0 and tr(A) * 0, we get g(t]pl) = g( lp l )  for all t > 0. Thus, g is 
a constant function and the model is the heat equation, which is not grey-scale 
invariant. 

4. 4. The constrained smoothing of Osher & Rudin 

OSI-IER & RUDIN [45, 51, 52] proposed a variational method for "denois- 
ing" images. Indeed, to denoise an image u0, they propose to minimize 
S]Du(x) ldx under constraints corresponding to the a priori  knowledge of  the 
statistics of the noise (for instance, the variance). The minimization algorithm 
leads to the evolution equation Ou/Ot = div(Du/]Du[) + it(u) ( u -  Uo) where 
it is a Lagrange multiplier depending on u. 

4. 5. The Alvarez-Lions-Morel "pure" anisotropic diffusion: mean curvature motion 

In [2], ALVAREZ, LIONS & MORBI~ propose and study a class of  nonlinear 
parabolic differential equations for image-processing which originates from the 
original idea of PERONA & MALIK: 

OU 
(1) - -  = ]Du I div(Ou/lOul), u(O,x,y) = Uo(x,y) 

Ot 
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where Uo(x,y) is the grey level of the image to be processed, u(t,x,y) is its 
smoothed version depending on the "scale parameter"  t. Roughly speaking, 
the interpretation of  the terms of  the equation are as follows: 
a) The term [Duld iv (Du/ IDul )=Au-D2u(Du,  Du)/lDu[ z represents a 
degenerate diffusion term, which diffuses u i n  the direction orthogonal to its 
gradient Du and does not diffuse at all in the direction of  Du. The aim of  
the degenerate diffusion term is to make u smooth on both sides of  an "edge"  
with a minimal smoothing of the edge itself. This means that for such a theory 
edges are nothing but the boundaries of  the level lines of  the image. Thus 
the equation answers exactly the requirements of  PERONA & MALIK for  an 
anisotropic diffusion, but there is no more an adaptive speed of the diffusion, 
while in the model of  PERONA & MALIK the diffusion is multiplied by 1/[Du I. 
Thus, the main difference between both models is that in the model of  
PERONA & MALIK, the diffusion is lowered when I Dul is big. Thus " impor-  
t an t"  edges are better conserved: It is a contrast-dependent smoothing. But 
the pure anisotropic diffusion satisfies, as we shall see, [Grey-scale invariance]. 
Obviously, this property contradicts the use of  contrast as a significant piece 
of  information. Let us observe that this implies that "edge detection" and 
mathematical morphology are incompatible. 

In the expression A u -  (1/[Du[2)D2u(Du, Du), notice that the first term, 
the Laplacian, is the same as in scale-space theory and the second is an "in- 
hibit ion" of  the diffusion in the direction of  the gradient. 

Let us denote by ~ the coordinate associated with the direction orthogonal 
to Du. Therefore, a formulation of  the preceding equation with respect to this 
new coordinate is 

0U 

Ot u~ , 

where, of  course, ~ depends on Du. In a more literal formulation, 

_ 2 Ou 1 (U2yU= - 2UxUyUxy + UxUyy) 
2 2 (5) at 1A x + Uy 

This equation has recently received a lot of  attention because of  its geometrical 
interpretation: Indeed, at least formally (see OSaER & SETI-IIAN [46], 
EVANS & St'RUCK [16], e.g.) the level sets of  the solution move in the normal 
direction with a speed proportional to their mean curvature (curvature in two 
dimensions). (This "mean-curvature mot ion"  effect will be shown in the ex- 
perimental results presented below.) As we shall see, this property of  mean- 
curvature motion implies that the proposed multiscale analysis satisfies the 
main "morphologica l"  axiom, that is, the invariance of the analysis under any 
rearrangement of  the grey-level scale. Thus, the mean-curvature motion is a 
morphological operator, which has been ignored by mathematical morphology. 
It is however quite close to the basic operations of  mathematical morphology. 
Indeed, dilation and erosion can be interpreted as a (forward and backward) 
motion of  level curves at constant spead in the direction of the normal. 



Image Processing 22t 

A theory of weak solutions based upon the so-called viscosity solutions 
theory has been proposed by CHEN, GIGA & GOID [10], EVANS & SPRUCK [16], 
GIGA, GOTO, ISI-III & SATO [20], and SoNaR [58], among others. 

5. Axioms and new operators of  multiscale mathematical morphology  

General assumptions on the multiscale analysis. In this section, we consider 
a multiscale analysis defined by an equation Ou/Ot =F(DZu, Du, t) and we 
assume that F(A,p,  t) >_ F(B,p, t) if A __> B (comparison principle). The F 's  
under consideration are always assumed to be continuous for p ~ 0. We also 
assume that the preceding equation uniquely defines Ttf as its solution with 
initial condition u(0) = f .  The uniqueness can be obtained for instance by us- 
ing the concept of viscosity solutions. (Thus, we extend our study to multiscale 
analyses which are more general than those deduced from the axioms of 
Theorems 1 and 2, but always correspond to the assumptions of Corollary t.) 
Indeed, we shall obtain a very interesting multiscale analysis when the con- 
tinuity assumption on F is weakened. (This weakening implies that the pro- 
posed analysis somehow satisfies weaker versions of [Regularity] and [Locali- 
ty].) 

If  the multiscale analysis Tt satisfies the morphological axiom [Grey-scale 
invariance], and if the dimension N is 2, we shall prove, as in [10], that F 
can be rewritten so that the preceding equation becomes 

( Ou = iDul G curv(u),lDu] , ,] 
Ot 

where G is nondecreasing with respect to its first term and ( (ou o.)) 
c u r v ( u ) ( x ) = d i v  Du = [ D u ] - i  5 u - D 2 u  [Du-u['[Du[ " 

This term can be interpreted as the curvature of the level line {y, u (y) = u(x)} 
passing through x. Thus we obtain a general description of morphological 
multiscale operators. 

The only operators already known in this class are the morphological 
operators (dilation, contraction and their combinations) which correspond to 
the case where G does not depend on curv(u) and has the special form: 
Ou/Ot = :t=]]Du]] B .  If  we add [Isometric invariance], then the resulting equa- 
tion in dimension 2 is, as we shall see, 

Ou 
- -  = [Du [ G(curv(u) ,  t) .  
Ot 

If, in addition, we assume [Scale invariance], then (modulo a possible rescaling 
of time t ' =  h( t ) )  the equation is 

Ou 
Ot = IDu I B(tcurv(u)), 
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where fl is a continuous nondecreasing function. Imposing the projection in- 
variance leads to a single equation 

O u = IDul  (tcurv(u)) 1/3. 
Ot 

Let us now examine the case of  higher dimensions. If  we assume the 
isometry invariance, then we arrive at the equation 

0U 
- -  = G ( 2 i , . . .  ,~N-I ,IDu[, t) ,  
Ot 

where 21 . . . . .  2N_ 1 are the principal curvatures of the level hypersurface, for 
some continuous function G defined on [R N-1 x [0, + co[ x [0, -t- co[ which is 
symmetric with respect to (2i . . . . .  '~N-1), positively homogeneous with 
respect to (21 . . . . .  ,~N-1, ]Du]) and nondecreasing with respect to each )~i 
( l _ i _ < N - 1 )  for all t in [0,+c~[.  

5.1. General form of morphological multiscale analysis 

The main axiom which we introduce in this section is 

[Grey-scale invariance] T,(h( f ) )  = h (T t ( f ) )  for all f i n  X and all t >__ O, where 
h is any C ~ nondecreasing real function. 

In the calculations below, we shall ignore the t-dependence of F because 
it does not change the calculations and results; we write F(D2u, Du) instead 
of  F(D2u, Du, t). 

In view of  the results of the preceding section, it is necessary and sufficient 
to consider a locally bounded function F on S N x R N satisfying (4) and to ask 
when do we have 

F ( h ' ( f ) D 2 f  + h " ( f ) D f Q D f ,  h ' ( f ) D f )  = h ' ( f )  F(D2f, Df)  on [~N 

for every f in C~ (RN), h in C ~ ([~N), h nondecreasing. This last relation is 
obtained by using the fact that if u(t) = Tt(f)  is solution of  (6), that is, if 
Ou/Ot-F(DZu, Du) = 0, then h(u(t))  is also solution of (6). 

Next, it is easy to see that [Grey-scale invariance] is in fact equivalent to 

[Grey-scale invariance]' F(#A + )Lp @p,#p) = lJF(A,p) for all p >- O, A in 
S N, p in R N, pesO, ~ in R. 

For )L = 0, this yields in particular that F is positively homogeneous: 

(13) F(tA, tp) = tF(A,p) for all t __> 0, A in S N, p in ~N, p =~ 0. 
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(In particular, F(0, 0) = 0 by continuity.) Now, if (13) holds, it is clear that 
[Grey-scale invariance]' reduces to 

(14) F(A + 2p |  = F(A,p)  for all 2 in R, A in S N, p in R N, p :# 0. 

Of course, if N = 1, this implies that F depends only on p, and in view of 
(13), F is necessarily given by 

(15) F(A,p)  = ap + + bp-  for some a, b in R, 

where p+ = max(p, 0), p -  = rain(p, 0). 

Nontrivial situations occur if N => 2, an assumption we make in all that 
follows. Our main result is 

Theorem 4. Let Tt be a muhiscale analysis satisfying [Grey-scale invariance]. 
Then the associated F satisfies 

(16) F(A,p)  = F(QpAQp,p) for all A in S N, p in ~N, p =I: O, 

where Qp is the projection matrix given by Qp = lN -- p | p / ] p  [ 2 

Remark. Qp is the matrix that corresponds to the projection onto the or- 
thogonal complement of ~p, that is, onto the hyperplane orthogonal to p. The 
condition (4 ) i s  essential: Indeed, if N = 2 ,  F ( A , p ) = a l i P 2 / l P [ -  a12pl/IP[ 
satisfies (14) (and (13)!) but (16) does not hold (choose Pl = 1, P2 = O, 
At( l , 0 )  = t(0, 1) and At(O, 1) = t(1,0) so that QpAQp = 0 while 
F(A,p)  = - 1 ) .  

Proof  of  Theorem 4. In order to show (16), it is enough to fix p in ~N, 
p t 0. We can select a coordinate system such that p = l p l  (0 . . . .  ,0 ,1 ) ,  in 
which case QpAQp becomes (A/j)l<=i,j<=u where Ai'j =Aij if 1 < i ,  j < N -  1, 

Ai'j=O otherwise, while p |  = Ip]e(fiUi~.)l<_i,j<=U . Then clearly (14) ira- 
2 and plies that F(A) does not depend on ANN. Set M = a~vl + . . .  + aN, N-I 

I~ = eI N + (M/e - e) ( fiNifiNj)l<=i,j<=N. Then one easily checks that 
QpAQp <= A + I e and A <= QpAQp + It. Using F(A,p)  >= F(B,p)  if A = B, and 
letting e tend to zero, we obtain F(A,p)  = F(QpAQp,p) since F does not de-  
pend on ANN and is continuous for p =~ 0. 

Corollary 2. Let N = 2 and let T t be a multiscale analysis satisfying [Grey-scale 
invariance]. Then the associated F satisfies 

(17) 

F(A,p)  = G(tr(A) - I p l - 2 t r ( A . p |  for all A in S2, p in ~2, p ~ 0  

for some function G on • x R  2, continuous on ~ x  ( ~ 2 - [ 0 ] ) ,  satisfying 

(18) G(t,p)  is nondecreasing with respect to t in [R for all p in R 2, p ~ O. 
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Proof.  One just needs to observe that if we use an orthogonal coordinate 
system on [R 2 whose second basis vector is given by P/IPl, then 

QpAQp = (tr(QpAQp) o ) ,  

\ 0 o 
and moreover, 

tr(QpAQp) = tr(A) - tr(AP) - tr(PA) + tr(PAP) 

= tr(A) 2tr(AP) + t r (AP 2) 

= tr (A) - tr (AP) 

where P =p  @p/lpl 2 (so that p2 = p).  

Another important  application of  Theorem 4 is to the situation where we 
add an isometry invariance axiom: 

[Isometric invariance] T t ( R . f ) = R .  ~ ( f )  for all f in X, t >= 0 and for all 
transforms R defined on X by 

(19) (R. f )  (x) = f ( R x )  

where R is an orthogonal transform of R N. 

Proceeding as we did for obtaining [Grey-scale invariance]', we immediately 
translate this condition in terms of F into 

(20) F(tRAR, tRp) = F(A,p) for all A in S N, p in •U, p .  0, R in 0 x,  

where 0 u denotes the group of  orthogonal transforms of  R N. 
We need to introduce some notation. Since QpAQp leaves (Rp) -~ invariant 

(for p .  0 fixed) and since QpAQp vanishes on Rp, QpAQp admits N real 
eigenvalues which include 0 and (21 . . . . .  )~N-I), which are the real eigen- 
values of  the restriction of QpAQp to (Rp) • Of course, if N =  2, then 
)~ = tr(QpAQp) = tr(A) - tr(Ap |  12) �9 

With this notation we can prove the 

Corollary 3. Let N >= 2. Let Tt be a multiscale analysis satisfying [Grey-scale in- 
variance]. If  [Isometric invariance] holds, then 

(21) F(A,p) = G(21 . . . .  ,2N-1, [P I), for all A in S N, p in ~u, p :t= O, for some 
continuous function G defined on [R N-1 x [0, + oo[ which satisfies 

(22) G()L1 . . . . .  ;.N-l,q) is symmetric with respect to (21 . . . . .  )~N-1) and 
nondecreasing with respect to each 2i (1 _< i < N - 1 )  for all q in 
[0, x ~ [ .  

Remark. We shall present below some examples of such nonlinear functions. 
At this stage, let us mention only the special one where G = g(Xi=l ..... U-1 ;ti, q), 
i.e., F(A, p)  = g ( t r  (A) - tr (Ap | p/1P 12, [ p [ )) where g (i", q) is nondecreasing 
with respect to r for all q in [0, oo[. 
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Proof of Corollary 3. The first step consists in showing that for p ~ 0 fixed, 
(20) implies that F is a function only (of p and) of (,~1 . . . .  ,)~N-1) which 
satisfies (22). In order to do so, we consider the subgroup of  O N defined by 
those transforms R that leave p invariant, i.e., Rp = p so that tRp = p. Then, 
clearly Qp and R commute and thus (20) implies that F(tRQpAQpR)= 
F(QpAQp), where we ignore the dependence upon p, which is fixed. 
Therefore, F(A,p) = G1 ( j - l , . . . ,  2N-I,P), where ()q . . . .  , J-N-I) are the eigen- 
values of  QpAQp. Let R be in O N and q =  tRp. We notice that QqtRARQq = 
tRQpAQpR, and then QqtRARQq and QpAQp have the same eigenvalues. Thus 
by using [Isometric invariance], we obtain F(A,p) = F(tRAR, tRp) = 
GI(~I . . . . .  J-N-l, tRP) �9 Thus F only depends on the modulus of  p. Therefore 
we can write F ( A , p ) =  GI(J-1 . . . . .  ;.N-I,lPl). Moreover, F is a symmetric 
function of  (21 . . . . .  2N_1), and, since F satisfies (4), it is clearly nondecreas- 
ing with respect to each j-i for 1 _< i ___ N - 1. 

5.2. Geometric interpretation of the derived equations 

Let u~C2([R N) and let Xo~[R N. If Du(xo) #:0, there is, near x0, a C 2 
hypersurface containing Xo on which u is constant: It is of  course the level 
surface of  u going through Xo (or level curve if N = 2). Then, (RDU(Xo)) • 
is the tangent hyperplane and [Du[ -1QDuD2uQDu restricted to (IP.Du)" is the 
curvature tensor. In particular, the ,~i/]Du] are the principal curvatures 
(1 _ i _< N - 1) while Curv(u)  is the mean curvature. We explain now how 
the above classification can be understood and recovered (at least formally) 
in a geometrical way. 

The "mathematical  morphology"  axiom [Grey-scale invariance] means that 
the evolution equation reflects in fact only an evolution of  the level curves or 
surfaces F = (u = 2} for some 2 in R: Of course, all this is a bit formal since 
the evolution of the curve or the surface has to be carefully defined. It is 
possible to view mathematical morphology as the motion of  level sets of the 
level of  grey of the image and then the axioms say that this motion should 
be translation-invariant, local (one might also add isometry invariance but this 
is not needed in the main line of  arguments). At a mathematical level, we may 
parametrize the level surface with curvilinear X(y, t) coordinates in [R N with 
y in R at-l, t __> 0, and the motion can then formally be described by 

(23) X' = - g (X) n 

where n = n(X) is the unit normal, g depends upon X(. ,  t) and corresponds 
to the "velocity prescription" while X ' =  OX/Ot. With arguments similar to 
those developed in Section 3, one can show that (if the evolution is well de- 
fined on smooth surfaces for a short time) g can depend only on the normal 
and the curvature tensor at the point X (i.e., the first and second derivatives 
of X with respect to y).  In addition, g must be nondecreasing with respect 
to the curvature tensor in order to avoid the crossing of two different level 
surfaces or curves. (Otherwise the reconstruction of  u would be meaningless !) 
Recall next that n = Du/[Du] and that the curvature tensor is essentially given 
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by IDul-* QDuD2UQDu. The formulation in terms of  u can be understood as 
follows (See OSI~ER & SETmAN [461, C~IES, GIGA & GOID [191, BARGES [51, 
EVANS & SI"RtrCK [161, SONER [58], among others): By definition, we have 

(24) u ( X ( t ) ,  t)  = ;. for t __> 0. 
Ou 

Hence, if we differentiate (24) with respect to t, we obtain - -  - (Du. n) g = 0, 
Ot 

or 

Ou 
(25) 

Ot 
rDulg(rOu[ 2u - -  - QD~ o Qou, Du/[Du[)  = 0 

and we recover precisely the classification we obtained above! 

6. Scale and projection-invariant multiscale analysis (N = 2) 

General assumptions on the multiscale analysis. In this section, as in the 
preceding one, we consider a multiscale analysis defined by an equation 
Ou/Ot = F(DZu, Du, t) and we assume the comparison principle that 
F ( A , p ,  t) >= F(B ,p ,  t) if  A = B. The F ' s  under consideration are always con- 
tinuous for p .  0. We also assume that the preceding equation uniquely 
defines Tt f  as its solution with initial condition u(0) = f .  The uniqueness can, 
for instance, be obtained by using the concept of  viscosity solution. We also 
assume, to avoid spurious cases, that the analysis is not cyclic, that is, Tt = T~ 
implies t -- s. In this section, by "multiscale analysis" we always mean a fami- 
ly of  operators T t satisfying the preceding assumptions. This section is 
devoted to a study of  the effect of  the scale-invariance axiom, and more 
generally of  the projection invariance on the multiscale analysis. For simplicity, 
we restrict the study to the dimension N = 2 and we also assume the isometry 
invariance of  the multiscale analysis. 

We state the scale invariance more precisely as 

[Scale invariance] For any positive 2 and t, there exists t ' >  0 such that 
D x T  t, = TtD ~. Moreover, t ' ( t ,  2) is differentiable with respect to ~ at )L = 1, and 
the function g ( t )  = Ot'/O)~(t, 1) is continuous and positive for  t > O. 

Remark. The assumption on t', g ( t )  = &'/OX(t ,  1) > 0, can be interpreted by 
looking at the relation D x T  t, = TtD z when the scale 2 increases, i.e., when the 
size of  the image is reduced before analysis by Tt. Then, the corresponding 
analysis time before reduction is increased. In less formal terms, we can say 
that the analysis time somehow increases with the size of the picture. This is 
a natural assumption, satisfied by all classical models. The continuity and dif- 
ferentiability assumptions on t '  are also satisfied by all classical models and 
seem natural. 

Notice that no condition has been imposed on the relation between t' and 
(t, ~.). In order to fix ideas, let us examine the classical multiscale analysis with 
respect to this axiom. In the case of the basic morphological operators, dila- 
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tion and erosion, it is easily seen that t ' ( t , ) . )  = At. In the case of the heat 
equation and of  anisotropic diffusion, one has t ' ( t ,  2) = 2zt. The meaning of  
these relations is clear: When, for instance, ~ is bigger than 1, D~ contracts 
the image. Thus, the analysis scale must be smaller. Now, it is clear that the 
dependence of  t '  upon the scale t and the contraction ratio 2 cannot be a 
priori fixed since it is different in those classical examples. So we shall only 
make regularity assumptions on the function t '  and try to deduce its form. 

For any linear transform A, set A f ( x )  = f ( A x ) .  With the same formalism 
as in [Scale invariance], we shall finally consider 

[Projection invariance] For any A and t, there exists t ' ( t , A )  such that 
AT  e = TtA. 

Notice that scale invariance is a particular case of  projection invariance. 
Therefore, we keep the notation t '  in [Projection invariance] and we prove in 
the next lemma that the functions t '  in both axioms can be identified. 

I_emma 1 (N = 2). Let (Tt)t>o be a muhiscale analysis satisfying [Projection 
invariance] and [Scale invariance] for continuous scale space functions t ' ( t , B )  
and t' ( t, 2.). Then 

(i) For any linear transforms B and C and any t one has the semigroup proper- 
ty t ' ( t ,  BC) = t ' ( t ' ( t , B ) ,  C) (or t '(t ,)~p) = t ' ( t ' ( t , ) Q , p ) ) .  

(ii) t ' ( t ,B )  is increasing with respect to t. Moreover, i f  R is an isometry, then 
t ' ( t ,B )  = t. (Thus [Projection invariance] implies [Isometric invariance].) 

(iii) The function t ' ( t ,B )  only depends on t and IdetB]:  t ' ( t , B )  = 
t ' ( t ,  I detBI 1/2). 

(iv) There exists a unique differentiable increasing function h on [R + such that 
h ( O ) = O ,  h ( 1 ) = l ,  h ( t ) ~ + ~  when t ~ + o o ,  and t ' ( t , A ) = h - l ( ) ~ h ( t ) ) .  
Therefore, if  St = Th-l(t), then the projection invariance holds with t ' ( t , B )  = 
]detB[ 1/2t. 

Proof.  (i) We have BCTt,(t, BO = T t B C =  BTt,(t,B)C ~-BCTt,(t,(t,B),C). The map 
which associates T t with t being one-to-one, this implies the stated relation. 

(ii) Let us prove that t ' ( t ,A )  is one-to-one with respect to t for any A. In- 
deed, if not, there would exist some A and some (s, t) such that t ' ( t , A )  = 
t ' ( s , A ) .  Thus, by projection invariance, ATt, o,A) = TtA and ATt,(s,A) = TsA. 
Hence, T s = Tt, which contradicts the fact that Tt is one-to-one. Notice that 
t ' (0,  ~) = 0 (which follows immediately from the injectivity of the family Tt). 
Since t '  is continuous, one-to-one and nonnegative, we deduce that it is in- 
creasing with respect to t. 

Let R be an isometry. Then, iterating the formula of (i) we have 
t '  ( t '  ( t ' . . . ,  t '  (t, R), R, R . . . . .  R) )) = t '  (t, Rn). Since there exists a subsequence 
of  R n tending to Id and since t '  is continuous, we have for this subsequence 
l i m t ' ( t ' ( t ' (  . . . .  t ' ( t , R ) , R , R  . . . . .  R)) )  = t ' ( t ,  Id) = t. (Notice that t ' ( t ,  Id) = t 
because of [Projection invariance] and the fact that the map t--*Tt is one- 
to-one.) 
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Assume for contradiction that t ' ( t , R ) = t " <  t. Then t ' ( t ' ( t ,R ) ,R )=  
t '( t",R) <__ t'(t,R) = t" by the monotonicity of  t '  with respect to t. Iterating, 
we obtain t '(t '(t ' ,  . . . .  t ' ( t ,R),R,R . . . . .  R) )) <_ t" < t. This is a contradiction, 
since the left member tends to t. Thus t'(t,R) > t. We prove the converse ine- 
quality in the same way; therefore t'(t,R) = t. 

(iii) We begin by noting that any linear transform B of  R 2 can be ob- 
tained as a product of  isometries and of affine transforms of  the kind A (2) : 
(x, y) ~ (Lx, y) where 2 is nonnegative. Thus B = R1A (2~) R2A (22) . . .  A (2 n) Rn. 
Iterativety using (i) and (ii), we obtain 

t' (t, B) = t' ( t '( t '(  . . . .  t' (t,A (21)) ,A (22)) . . . . .  A ()-n)))- . .  ) .  

Again using (i) and the relation A ( 2 a ) A ( 2 2 ) . . . A ( ) L ~ ) =  A(21)~2. . .2 , ) ,  we 
obtain 

t'(t,B) = t ' ( t , ) .122. . .  An) = t'(t, Ide t (B) [ ) .  

(iv) Using (i) and (iii), we have t'(t, 2/2) = t '(t '(t , /2),2) for any positive 
2 and/2. Differentiating this relation with respect to/2 and setting/2 = 1 yields 

(26) 20t '  (t, 2) Ot' Ot' 
O~ = ~-t (t, 1.) Ot  (t, 2 ) .  

Remark, The last relation is an identity, for each positive t, between Radon 
measures on •. Indeed, since t'(t, 2) is a nondecreasing function with respect 
to t, Ot'/Ot(t,.) is a Radon measure on ~. Thus by (26) the derivative with 
respect to 2 makes sense and we see that t '  is nondecreasing with respect to 
2. In (26) and in the following, we use the following easy fact: If 
u ( 2 )  = k ( h ( 2 ) )  is a nondecreasing function on JR, and if h is a C I function 
with h ' >  0, then u ' (~)  = k ' (h (2) )h ' (2 )  and k'(h) is a Radon measure. 

Set g(t) = Ot'/O2(t, 1). In order to show that there is a function h such 
that t ' ( t , ) . )=h- l (2h ( t ) )  for every t > 0  and 2 > 0 ,  we set G(x ,y )=  
t ' (x ,y/h(x)) ,  so that t'(t, 2) = G( t ,h ( t )2) .  This change of function is per- 
missible i f  h(t) > 0 for t > 0. Then (26) becomes 

( oyOG -~xaG(t'~'h(t))) h(t) 2 OG (t,h(t) 2) =g(t)  2h ' ( t ) -z- ( t ,  2h(t)) + t 

Oy 

We now choose h so that OG/ax = 0. It is enough to set h(t) = exp (~]ds/g(s)). 
Since gh' =h, we obtain OG(t, 2h(t))/Ox = 0 and therefore aG(x,y)/Ox = O. 
Thus G(x,y) = fl(y) for some differentiable nondecreasing function ft. We ob- 
tain that t ' ( t ,  2 ) = f l ( h ( t ) 2 ) .  Returning to the definition of  g( t ) ,  we have 
g( t )  = Ot'(t, 1)/02 = h( t )  f l ' ( h ( t ) ) .  Since gh' = h, we deduce  tha t  
1 =h' ( t ) f l ' (h( t ) ) .  Integrating this last relation between 0 and t yields 
fl(h(t)) = t+f l (h(O)) ,  Using the fact that t ' ( 0 , 2 ) = 0  (which derives im- 
mediately from the injectivity of  the family T 0, we obtain b ( h ( 0 ) )  = 0 and 
therefore t'(t, 2) = h- l (2h( t ) ) .  Notice that h(0)  = 0 because if not, t'(t,~) 
could not be defined for small 2, and h( + oo) = + ~ because if not, t ' ( t ,  2) 
could: not be defined for large ,~. 
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To finish the proof, we set St = Th-l(t) and we prove that the projection 
invariance holds with t '(t,)O = )~t: 

StB = Th-,(t)B = BTt,(h-~(t),2) = BTh-,(.~h(h-l(t)) = BTh-,(xt) = BS2t. 

Theorem 5. (N = 2). (i) Let T t be a multiscale analysis. I f  the muhiscale 
analysis satisfies [Projection invariance] and [Scale invariance], then, with a 
possible rescaling z =  h(t) ,  

O U = % G ( t 4 [ O u l 3 c u r v ( u ) , t 4 [ O u l 2  (u~ - (ur/~)2-~) 
Ot t u~ / 

where G & a continuous 'function, rl represents the direction of the gradient and 
represents the orthogonal direction of the gradient. 

(ii) Let T t be a multiscale analysis defined by an equation Ou/Ot = 
]Ou[ G(curv (u ) , t )  (which derives from the fact that the multiscale analysis 
satisfies [Grey-scale invariance], [Isometric invariance]). I f  the multiscale analysis 
satisfies [Scale invariance] and the assumptions of Lemma 1, then, with a possible 
rescaling z = h( t ) ,  the equation of the multiscale analysis is 

Ou 
__ = [Dul f l ( tcurv(u) )  , 
Ot 

where fl & a continuous nondecreasing real function. 
(iii) If  both hypothesis (i) and (ii) hold, then the only possible equation &, up 

to a rescaling, 

vv. = ID u ] ( tcurv(u) )  1/3 
Ot 

Remark. If we want [Recursivity] (after some rescaling) to be satisfied by the 
model obtained in (i) and (ii), then fl is necessarily a power function, 
p ( s )  = Isl - s. 

Proof. (i) By the preceding lemma, we can assume that t ' ( t ,B)  = ,~l/2t, where 
). = [de t (B) ] .  Set u ( t ) =  Ttuo and v ( t , x )=u( ,~ l /2 t ,  B x ) = B T t ,  u 0. Since by 
assumption, BTztuo = TtBuo, we also have v(t)  = TtBuo and v( t ,x)  is solution 
of  Ov/Ot = F(D2v, Dv, t). Thus 

2 0u (~.t, Bx) = F(BD2utB, BDu, t) .  
Ot 

Now u( t ,x)  is solution of Ou(21/2 t, Bx) / Ot = F(D2u, Du, 21/2 t) and by match- 
ing both equations we get 

F(BD2u tB, BDu, t ) =  21/2F(D2u, Du, ~. 1/2 t).  
Thus 

(27) F(BAtB, Bp, t) = [det B [ 1/2 F(A,p,  [det B [ 1/2 t) 
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for  any vector  p and symmet r ic  mat r ix  A. Let us choose B such tha t  de tB  = 1 
and  Bp = ( 1 , 0 ) .  This is equivalent  to taking p/llpll 2 -  ap ~ as the first row 
for  B for  an arb i t ra ry  real n u m b e r  a and  taking p ~ as second row. Then,  by 
using (27), we obta in  

F(A,p,t) = F(A(p• - aA(p•177 ),A(p•177 ), a2A(p• • 

- 2 a A ( p , p  • ) +A(p,p), ( 1 , 0 ) , t )  

Since this relat ion is t rue for  any a we can choose a =A(p•177 
and we obta in  

/ 
F(A,p,t) = G ~A(p•177 ),A(p,p) 

Again  using (27) for  B = 2 Id, we obta in  

F(BAtB, Bp, t) =G(A4A(p•177 

A(p• t) 
A(p•177 ) ' " 

A(p• 
2Cp U , t) 

=2F(A,p, tA)=AG(A(p•177 A(p~'P)2 ) A(p• • ) ,tA . 

Therefore  if  we replace t by t/X and we choose 2 = t, we get 

1 ( •177 t4(A A(p~-,p)2"~) F(A,p,t) =--Gt t4A(p ) '  (P'P) A ( p 2 , p 2 ) )  " 

(ii) We consider  the equa t ion  Ou/Ot = IDul G'(curv(u),t). We can make  the 
same initial calculat ions as above and obta in  G'(s, tA) = G'(As, t). Changing  
t to t/2, and  taking A = 1/t we get G'(s,t) = G'(ts, 1) =fl(ts) for  some func-  
t ion ft. 

(iii) By (i), (ii) and  L e m m a  l(iv),  there exists a rescaling h for  which F 
assumes the two representat ions  given by (i) and  (ii). Then,  

F(A,p,t) G t4A(p • • t 4 = --t ' P )' (P' P ) A (pp -L ,ps ),] 

(tA(p',p" IDul, 
= i l k  IDu] 3 ] 

Thus,  G does not  depend  on its second argument ,  and  we have 

for  any k, t > 0 and  s. 

Lett ing tk = ts I 1/3, we  obta in  fl (s) = Is 11/3 fl, (s ign ( s ) ) .  Then  (iii) follows by 
using tha t  F (  - A ,  - p ,  t) = --F(A,p, t). 
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7. Multiscale analysis of movies 

We formalize a movie as a bounded function Uo(x,y, O) defined on [R 3, 
where x and y are the spatial variables and 0 the time variable. This section 
is concerned with the axiomatic characterization of  the multiscale analysis Tt 
of  movies. As in the preceding section, we assume that the map t--*Tt is one- 
to -one. 

Of course, all axioms (including comparison principle) considered in the 
second section make sense in this context, but we need to specify them and 
to take into account the special role of time (0). In all that follows, the 
multiscale analyses to be considered are of  the form Ou/Ot = F(DZu, Du, t), 
where F now has ten scalar arguments. The assumptions on F are the same 
as those in Sections 3 and 5, that is, F(A,p,  t) is nondecreasing with respect 
to its first argument, and F(A,p,  t) is continuous at all points where p :V 0. 

Finally, we assume that the solution u (x, y, 0, t) of  the equation is uniquely 
defined as a viscosity solution. (This will of  course be checked a posteriori 
for the models we derive). 

Let us now consider the morphological invariants: We keep [Grey-scale in- 
variance], which yields the relations obtained in Section 3: 

(13) F(GI ,  2p, t) = 2F(A,p,  t) for all ;t __> 0, A in 8 3, p in [~3, p =~ 0. 

(16) F(A,p,  t) = F(QpAQp,p, t) for all A in S 3, p in ~3, p .  0, 

where Qp is the projection matrix given by Qp =IN _ p @ p / ] p [ 2 .  
We assume the analysis to be invariant under all linear transforms of  the 

spatial plane N2x[0}. Therefore, by Lemma 1, we can find a rescaling of the 
multiscale analysis such that the corresponding F satisfies 

[Projection invariancel F(BA tB, Bp, t) = ]det (B) I 1/2 F(A,p ,  t ldet (B) I 1/2). 

7.1. Axioms for multiscale analysis of movies 

We now state two new axioms which take into account the particular nature 
of movies. First, we assume the analysis to be invariant when the movie is 
uniformly slowed down or accelerated. Set S~(x,y ,O)= (x,y,)LO) and, with 
the usual notation, Szu = u(x,y, 20). 

[Time-scale invariance] For any real number 2 and t >_ 0, there exists t ' ( t ,  2) 
such that Sx Tt, = TtSa. In addition, t ' ( t ,  2) is differentiable with respect to 2. 

By the same obvious argument as in the beginning of the proof  of Theorem 5, 
this relation is equivalent to 

Off 
[Time-scale invariance] F( S~AtS~, S~p, t) = Ott ( t, ~ ) F(A,p,  t'). 
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We finally assume that the analysis is invariant under "travelling", that is, 
a motion of  the whole picture at  constant velocity does not alter the analysis. 
(Thus the analysis is assumed to be able to " fo l low" such a uniform motion.) 
For obvious reasons, we call this axiom Galilean invariance. In order to for- 
malize it, we denote by B ( v )  = B(Vl ,V2)  the uniform translation operator 
defined by 

B(x , y ,  O) = (x -- VlO, y -- v20, 0) .  

B ( v )  represents a uniform motion with constant velocity v = (vi,v2). 

[Galilean invariance] For any 
B ( v )  Tt. = TtB(v) .  Moreover, 
nondecreasing with respect to t. 

v and t, there exists t " ( t , B ( v ) )  such that 
t" ( t , B ( - v ) )  = t" ( t , B ( v ) )  and t" is 

The second statement means that reversing time should not alter the analysis. 
Let us simplify the axiom. By using Lemma 10), we have 

t ~ ( t "  ( t , B ( v ) ) , B ( v ) )  = t" ( t"  ( t , B ( v ) ) , B ( - v ) )  = t" ( t , B ( v )  B ( - v ) )  

= t" (t, Id) = t. 

Repeating the argument of  Lemma 1OiL we deduce from this relation that 
t" ( t , B ( v ) )  = t. Thus [Galilean invariance] reduces to the simpler relation (to 
which we give the same name) 

[Galilean invariance] F ( t B ( v ) A B ( v ) ,  t B ( v ) p , t )  = F ( A , p ,  t ) f o r  any v in ~2. 

We are going to introduce some notation in order to state our results. We write 
Vu = (ux, Uy). Thus Vu is associated with the spatial gradient of  u(x ,y ,  0). 
We associate with Du two other vectors Du • and Du • defined by 

2 Du • = MDu = ( -Uy,  Ux, O) , Du • = NDu = ( -UxUo, -UyU o, Ux + �9 

We define Yl ( D2u, Du)  = D2u (Du • Du  • ) ,  ~2 ( D2u, Du)  = DZu (Du • Du • ) 
and y3(D2u, D u ) = D 2 u ( D u • 1 7 7  Since Du • and Du • are orthogonal to 
Du and to each other, we see that QDuAQDu is entirely characterized by the 
values of  Yl, Y2 and Y3. Moreover, the spatial curvature curv(u)  and the ac- 
celeration accel(u) (see Appendix 3) are given by 

c u r v  ( u )  - 
]Vul 3' 

- v l l) accel (u) - 

I V u l  5 
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7.2. Characterization of multiscale analysis of movies 

Theorem 6. (i) If  the multiscale analysis satisfies [Grey-scale invariance], 
[Isometric invariance] with respect to the spatial variables x and y, and [Galilean 
invariance], then, with a possible rescaling z = h(t),  we have 

Ou 
- -  = I V u l F ( c n r v ( u ) ,  accel(u),  t ) .  
Ot 

(ii) If  the hypothesis of (i) and [Projection invariance], [Time-scale invariance], 
all hoM, then, with a possible rescaling z = h(t) ,  

0u = (t curv (u)) a/3lVu[ ((curv (u) accel (u)] t  curv (u)[ -4/3) + ) q 
Ot 

where O <_ q < 1. 

Proof of Theorem 6. (i) The proof  essentially consists in reducing the number 
of  scalar arguments of  F. As we stated above, we start with ten parameters 
and we wish to arrive at at most two final and invariant parameters. There 
are certainly other ways to arrive at the final equations, but the one that we 
propose is rather quick. We begin the parameter reduction by using the conse- 
quence (i6) of  [Grey-scale invariance]. Let us fix some notation. 

We write p = (Pl,P2,P3) = (P*,P3). Thus, p* is associated with the spatial 
gradient of  u(x,y, 0). We associate with p two other vectors p �9 and p ~- 
defined by 

p• = Mp = ( - p 2 , P l , 0 ) ,  p•  =Np = ( - P I P 3 ,  -PaP3,P 2 +p2) .  

Since p • and p ~: are orthogonal to p and to each other, we see that QpAQp 
is entirely characterized by the values of  ) p l ( A , p ) = A ( p • 1 7 7  y 2 ( A , p ) =  
A ( p •  • and 7 3 ( A , p ) = A ( p • 1 7 7  Thus, (16) implies that F(A,p, t )  can 
be rewritten as 

(27) F(A,p, t) = F(yl ,  )P2, )'3,P, t). 

Of course the F on the right side is not the same as that on the left side, 
but we keep the same notation because it does not lead to ambiguous situa- 
tions. The next step in the reduction of  the number of  arguments is to use 
the spatial isometry invariance to reduce (PI,P2,P3) to (]p* [,P3). Indeed, we 
remark that the operators M and N defining p • and p • commute with 
spatial isometries. Thus, if R is a spatial isometry (that is, an isometry leaving 
(0, 0, 1) invariant), then 

~1 ( RAtR, Rp) = RAtR (MRp, MRp) = RAtR (RMp, RMp) = A (Mp, Mp) 

because RtR = Id. In the same way, Yz and ~3 are invariant under spatial 
isometries. Thus choosing R such that Rp = (0,[p* ],P3), using ]Isometric in- 
variance], F(RAtR, Rp, t) = F(A,p, t) and (27), and setting A = RAtR we ob- 
tain 

(28) F(A, p, t) = F ( Yl (A, Rp ), )P2 (21, Rp), ~3 (Z, gp ), Rp, t ) .  
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Since Rp belongs to R 2, six arguments are left to F from the initial ten. In 
order to get rid of  two more, let us now use the Galilean invariance, 
F(tB(v)AB(v) ,  tB(v)p, t) = F(A,p, t). We choose B(v) = B(bp31p* ],PB/IP*I) 
where b is some free 
yield tB(v) Rp = (0, [p* 
}'l(tB(v)dB(v),  tB(v)Rp) 
tion yields 

}'l(A,p) = yl(d, Rp) 

}'2(A,p) = ?2(.4,Rp) 

~3(A,p) = ~3(d, Rp) 

Yl ( tB(v) AB(v), tB(v) p) 

}'2 ( tB(v) AB(v), tB(v) p) = 

~'3 ( tB(v) AB(v), tB(v) p) = 

parameter. B(v) has been chosen in order to 
1,0). By (28), we have to compute 
and the corresponding )'2 and }'3. An easy calcula- 

= alilp* 12, 

= 67121P* 12p3 -- ~13IP* ]3, 

= a22 I P* I2P~ + a331P* [4 _ 2a23 I P* ]3P3 ; 

= }'I ( tB(v) AB(v), tB(v) Rp) = a~lp* 12 

= Yl ( A , p )  ; 

x 2 (tB(v) AB(v), tB(v) Rp) 

bghllP* 14p3 + a211P* 12p3 - a311P* 13 

blp* 12p3}'1(A, p) + }'2(A,p) ; 

r3 ('B(v) AB(v), ~B(v) Rp) 

b2all]p * 16p~ + 2ba12 Ip* 14p~ - 2bc713 Ip* 15p3 

+ a221p* 12p 2 + a33IP* 1 4 -  2(tz31P* 13p3 

4 2 A -- b2[p*l P 3 } ' I ( , P )  +2blp*12p3Y2(A,P) + }'3(A,P) 

These relations, (28) and [Galilean invariance] yield 

F(A,p, t) = F(Yl, Ya, }'3, IP* I, P3) 

= F(}'I, blp* 12p3Yl -t- Y2, bZlP * 14p32yl + 2b[p* 12p3}' 2 q- }'3, [P* [, 0).  

Since this relation is true for any b, we can fix b = -}'2/(]P* 12p3}'I) and we 
obtain 

F(A,p,t) = F  ( , 1 , } ' 3 -  '--~'lP*l't)Yl 

and four little scalar arguments are left. Using the second relation deduced 
from [Grey-scale invariance], 

(13) F(itA, itp, t) = itF(A,p, t) for all it __> 0, 

and the relations 

)~l(itA, itp) = i t3~l (A,p) ,  yz(itA, itp) = it4?~z(A,p), 

?J3(itA, itP) = itsY3(A,P), 
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we finally get 

2 F ( A , p ,  t) = F ( X 3 g l ,  j-5 (93 - -  9 2 / 9 1 ) ,  j- Ip*l, t ) .  

With j - [ p * l =  1, this yields 

(29) F ( A , p , t )  = l p * l F  /p~i 3, 
(73 - 9 17 ) .N , ,)  

(ii) Let us now satisfy the curiosity of  the reader by giving the explicit for- 
mulas of  92, 92, 93 and 9193-  9z z: 

91 (A ,p )  = a l lp  2 - 2a12plp2 + a22P 2, 

92(A,P) = a22plP2P3 - allPlP2P3 + a12(P~ - P~) P3 + a~3(P 2 + P~) P2 

- a23 (P~ + p2) P l ,  

93(A,p  ) 2 2 2 2 = al lPlP3 + a22P2P3 + 2a12PlP2P~ + a33(P~ + p~)2 

- 2a13(p~ + P~)PlP3 - 2a23(p~ + P3, 

9 1 7 3  + 2 2 2 _ a - = ( - a ~ 3 p z  12t'3 - a23Pl + alla22P 2 

+ al~ a33P~ - 2a~l a23P2P3 + a22a33p 2 -'2a22a13PlP3 

-2a33a12PlP2 + 2alza13P2P3 + 2a12a23plP3 + 2a13az3plP2). 

Notice that in obtaining this form for F, we have used [Grey-scale in- 
variance], [Isometry invariance] and [Galilean invariance]. It is easy to check 
that conversely the equation (29) defines a multiscale analysis satisfying all of 
these invariants (provided its solutions are uniquely defined as, e.g., viscosity 
solutions). Indeed, this can be calculated directly by using the above formula 
for 92 and 93. (By the way, 91/1p'13 is nothing but the spatial curvature of 
u. ) Now, this is not necessary since we have used only equivalent formulations 
except the step concerning [Galilean invariance]. In this case, the computation 
is straightforward by using the above formulas. 

We now state the invariance of the analysis for a spatial dilation, which 
is a particular case of  

[Projection invariance] F(BAtB,  Bp, t) = ]de t (B) [1 /2F(A ,p ,  t] det (B) ] 1/2) , 

where we take B (x, y, z) = (2x, j-y, z). Therefore det (B) =/]2.  The explicit for- 
mula given above for 71, 92, 73 easily yield 

YI(BAtB,  Bp) = 7491(A,p),  72(BAtB, Bp) = j -492 (A ,p ) ,  

Y3 (BAtB, Bp) = j-4 93 ( A , p ) .  
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Thus we deduce from [Projection invariance] that 

This yields 

)~F(A,p, t2) = Z l P * I F ( r  1113, (Y3-?z/71)[p,[5 , t~ )  

= F(BAtB, Bp, t) = ~,Ip*EF "~1 (~3 -- Y2/~l) 
p*] 3' Alp*l 5 

F(A,p, t )  = ]p* [ F ([p~Y,i 3, 

Taking 2 = t, we obtain 

t? 1 
F ( A , p , t ) = l p * [ F  [p. ]3' 

and only two arguments are left. 

)J3 -- Y2/~l) 
, 

(Y3~ ~2/~'1)~ 
tlp*l 5 ] 

,0 

y3(BAtB, Bp) = )L4~3(h,p). 

Thus, by [Projection invariance], 
therefore 

F (  tyl . (Y3-)~2/~1)~ 

F(BAtB, Bp, t) = 21/2F(A,p,t)~l/2), and 

= ~.I/2F(A,p, t)~ 1/2) 

/Z)~l/2t~l ( ~ 3 -  Y2/yl)~ 
= ) ~ I / 2 [ p * ] F ~ - ~  , ;1/2tlp, i5 / "  

Therefore, F satisfies a relation of the kind 

r S S t 

which can be rewritten as 

z -1/21p* I F(X3/2s, s'21/2) = Ip*Lf(s, s'). 

Setting 2 = Is[ -213, we obtain 

F(s, s') = Is ]l/3 F(sign(s),  s'ls ] -1/3). 

We conclude the reduction process by again using [Projection invariance] 
with orthogonal affinities. Because of the isometry invariance, we only need 
to look at a special orthogonal affinity, say B(x,y, 0) -- (2x, y, 0). Take, for 
simplicity, P2 = 0. Then 

yI(BAtB, Bp) = 22y1(A,p), y2(BAtB, Bp) = ,~372(A,p), 
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This last formula depends essentially on one argument. We obtain 

F ( A , p ,  t) = 171t[ 1t3 F(s ign(71) ,  (73 - 7 2 / ~ ) 1 ) [ P *  [ - 4  t-4/3171 [ -1/3) 

and it is easy to check that F is invariant under the affinity being considered 
even if P2 :t= 0. 

The reduction of  arguments has concluded and we can now only hope to 
identify the shape of F by some invariance property. In order to do this we 
use [Time-scale invariance] and we obtain the relation 

[ Yltl l/3 F (sign(71),2 2 (73 - 77~1) [p* l -4 t-4/31~,)l [ -1[3) 

Therefore, F ( s i g n ( 7 1 ) , s )  satisfies 

Or' (~)1/3F ( s(t'/t)-4/3~ 
(30) F(sign(71),s) = Ot (t, 2) sign(),1), ~ , ] .  

Assuming that  71 has, e.g., positive sign, let us identify E Forgetting the sign 
argument in F we have 

(s(t'lt  -'/3) 
(3t) F ( s )  = kF \ 22 

where k depends on t and 2. We consider two cases: 
(a) I f  the function ( t ' / t ) -4 /3 /2z  does not assume two different values, then 
we obtain t ' =  Ct2 -3/2. Substituting this in (30) and letting 2 vary yields 
F = 0 .  
(b) Otherwise, the function ( t ' / t ) -4 /3 /22  assumes two different values, and 
since it is continuous, its range contains an interval L Thus we can rewrite 
(30) as F(as )  = k ( a ) F ( s ) ,  where a > 0 can assume an arbitrary value in some 
interval L Then, we can conclude that  F ( s )  = cs  q. 

Indeed, assume that s > 0 and set G ( x )  = L o g F ( e x p ( x ) )  and 
g ( y )  = L o g k ( e x p ( y ) ) .  Recall that since F is nondecreasing and F(0)  -- 0, we 
have k > 0 and F >  0 for s > 0 and a > 0. Then G and g satisfy 

G(x  + y)  - G(y )  = g ( x )  for any x in some interval I and any y > 0. 

I f  y and z are two rational numbers in /, one easily deduces that 
g ( y )  = ( y / z ) g ( z ) ,  and since g is continuous like G, this relation is still true 
for any y and z in I. We conclude that g(y )  = qy for some nonnegative con- 
stant q and for any y in L Thus we can write G(x  + y )  - G(y )  = qx if x is 
in I for any y > 0. Differentiating with respect to x yields G ' ( x  + y)  = q. Thus, 
G(x)  = qx + d. Returning to F, we conclude that  F ( s )  = eds q. 

Replacing F ( s )  by cs q in (30) and using t ' ( 0 , 2 ) =  0 yields 

(32) t'(t, 4) = t2 3q/2(1-q) . 
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We can car ry  out  exactly the same p r o o f  for  s < 0 and  we get F(s) = --ed's q" 
for  some constants  d '  and  q'. Now, the relat ion (32) implies tha t  q and q '  mus t  
be equal.  Finally, we obta in  

F(A,p,t) 

=tyltlX/3G(sign(,1),sign ( , 3 - ~ ) )  t ( ,3-~1)]p*l-4t-4/31), l l  -1/3 q 

where q > O. 
I f  we change u to - u ,  we mus t  have tha t  F(A,p,t) = - F ( - A , - p , t ) ;  

then  we obta in  tha t  

F(A,p, t) 

= s ign(Y1)]?l t ]  1/3 G(s ign (y3  yl - Y~)) [ (Y3 - Y~/Yl)]P* [ -4  t-4/3]),l]-l/3[q" 
Let H = Y3Yl - ),2 = ) , l acce l (u)  and  

H( ) , I ,  ),2, ),3) = sign(Y1)[),1 ]1/3 G(sign() ,3) , l  - ),22)) ((),3 - Y2/),1)[),ll-1/3)q; 

then  we have 

F(A,p, t) = H(y 1, Y2, Y3) t(1-4q)/3117"* I -4q 

We notice tha t  F(A,p, t) must  be  cont inuous  with respect to t in t = 0. This 
would require q __< �88 however, in order  to get a well-defined solut ion,  it is 
enough  tha t  for  some rescaling t ' - h ( t )  o f  the equat ion,  F becomes  con-  
t inuous.  Such a rescaling is possible  if  and  only if 0 __< q __< 1. 

Now, to use the [Compar i son  principle],  F mus t  sat isfy the growth condi-  
t ion:  For all p, t, if  A __> B, then  F(A,p, t) >= F(B,p, t). Then,  we use the results 
o f  the  Append ix  2. In  order  to  verify the growth o f  the funct ion  H,  we mus t  
have the following condi t ions on H:  

OH OH OH OH ~ 2 
( 3 3 )  - -  > O, - -  > O, 4 - -  > 

0Yl 0Y3 0Yi 0Y3 

First, we are going to s implify the f o r m  o f  F:  I f  H is nondeereas ing with 
respect  to Y3, we can choose  Yl > 0 and  Y2 = 0. Then  H = Y3Yl implies tha t  
s i g n ( T / )  = s i g n ( y 3 ) .  We have H ( y l , 0 , 1  ) >=H(yl,0, O) __>H(y~,0, - 1 ) .  
Hence ,  G(1) ~ 0 ~ G ( - 1 ) .  Secondly, if  H is nondecreas ing with respect  to 
y~, we can choose  Y3 = 0 and Y2 * 0 so tha t  if  H = - y ~  = 0, then 
s i g n ( / / )  = - 1, and  H ( 1 ,  Y2, 0) ~ H(  -- 1, Y2, 0). Thus  if G ( - 1 )  __> - G ( - 1 ) ,  
then  G ( - 1 ) = 0 .  Therefore  we obta in  G ( - 1 ) = 0  and G ( 1 ) > 0 ,  and  
H(Yl, Y2, Y3) = sign(yl)]Yl[ 1/3 ( H+ [Yl[ -4/3)q, where H + = s u p ( 0 , / / ) .  

Next,  we prove the cont inui ty  o f  H, when  y l - 0 .  In  the first case: 
YlY3 _-< 0; then  H=< 0, so H(yl,Y2,Y3) = 0. In  the second case: YlY3 --~ 0; 
then  H_<__ Yl Y3, I H ( y l ,  Y2, •3)1 ~ l YI[ tt3 (Y~1711 --1/3)q, which tends to 0 when  
y ~ 0 ,  because  q < 1. Thus  H is a cont inuous  funct ion,  and  for  all Y2, Y3, 
limTx-oH(Yl, Y2, Y3) = 0. 
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Finally, we check (33): We set H(?I ,  72, 73) = sign(71) 172[1/3X q, where  

3f = H + 172[ -4/3. Then 

aN = 1 172 I -2/3xq "J- sign (?2) l Yt I ~/3 q xq-2 & 
072 3 J72 ' 

_ 4 7~ sign(71) (x  3722 "~ 
Ox 1 731711 -4/3 + _ sign(71) -7/3 
072 3- 3 [71[ 317t) I 7~--4/3) " 

Thus, OH/Oyl = (1 - q)/3171 ] -2/3xq + q xq-2 72/1711,-4/3 And if 0 __< q _< 1, we 
have 

OH 
- - > _ 0 ,  
071 

OH qsign(71) ]71]~/3 x q-1 Ya _ 
073 1711 -4/3 qxq-I > O, 

OH _ 2qxq_l 72, 
072 71 

4 OH OH 0(~2~2) 2 (l ~ 7 2 q T ~  
071 073 = 4q(xq-a) 2 [71 [ -2/3x + q 7~ ~-~1) 

= ~4 q(xq-1) 2 (1 -q)[71[-a /3x>_O since 0 _ _ q ~  1 and x__0 .  

We conclude that the function 

F = sign(y1) 17lt [ 1/3 ((H+/71) [P*I -4 t-4/31711 -1/3)q 

satisfies the [Comparison principle]. 

8. Numerical experiments 

In order to show the performances of the different multiscale analysis 
models introduced above, we present some numerical experimental results. We 
compare three different multiscale analysis models. 
1) Classical Mathematical Morphology. Erosion and Dilatation: 

Ou 
- = •  
at 

2) Mean Curvature Motion: 

3u = [Du I t cu rv (u) ,  
Ot 
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3) Our New Model: 

~u = IDu I (tcurv(u))1/3. 
Ot 

The three models satisfy [Grey-scale invariancel and thus the evolution of the 
shapes in the picture under the action of  the multiscale analysis depends only 
on the curvature of  the level line (see Section 5.t). To fix ideas we first show 
analytically the evolution of  a circle for the three models. 

In model (1) the velocity of propagation of  the level lines is constant. If  
an initial level line is a circle of radius r (0 ) ,  then, at the scale t, this level 

l ine corresponds to a circle of  radius r ( t )  = r(O) 4- t. In particular it can be 
removed in t ime t = r (0) .  

In model (2) the velocity of propagation of  the level lines is proportional 
to the curvature of  the level line. The evolution of  the radius r( t)  of  a circle 
is given by the equation: r ( t )  = ( ( r (0 )  2 -  t 2) +)1/2  In this case it is known 
that asymptotically all the level lines tend to circles. 

0 

[a} (b) 

Q 

(c) (d) 

Fig. 1. We present the evolution of a simple synthetic picture (140x 140 pixels) com- 
posed of two ellipses of different size. (a) Original picture. (b) Erosion of original pic- 
ture (scale = 15). Singularities are developed at the extreme points of the ellipses. (c) 
Analysis of the original picture by using model (3) (scale = 28). The shape of the 
ellipses remains stable. (d) Analysis of the original picture by using model (2) 
(scale = 32). The original ellipses tend to circles. 



Image Processing 241 

In model (3) the velocity of propagation of the level lines is proportional 
to the curvature of  the level line to the power �89 The evolution of the ra- 
dius r(t) of  a circle is given by the equation: r(t) = ( ( r (0 )  4 / 3 -  t 4/3) +)3/4. 
Moreover, since this multiscale analysis satisfies [Projection invariance], the 
more complex forms remain stable. For instance, if an initial level line is an 
ellipse, then due to [Projection invariance] this level line remains an ellipse for 
any scale t. 

J 

(a) 

!r y 
(c) 

I 
IP ,, Y 

qp, 
: i i 

i 

'i i 

(b) 

i : 

i 

(d) 

Fig. 2. We present an experiment in order to evaluate the performance of the different 
multiscale models under the action of projections. We transform a synthetic shape 
(60x250 pixels) by using the projection B(x,y)= (2x, y/2). We remark that since 
detB = 1 the scale of the analysis t is the same for the original shape and its projec- 
tion. (a) The original picture, which consists of the synthetic shape and its projections 
(from right to left) with 2 = =1,1 ~, 2. (b) Erosion of the original picture (scale = 15). 
(c) Analysis of the original picture by using model (3) (scale = 28). (d) Analysis of the 
original picture by using model (2) (scale = 32). 
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Therefore,  in these three models,  at the scale t, any detail enclosed in a 
circle o f  radius t is removed. However, the evolution o f  the level lines is quite 
different for the different models.  For instance,  at the scale to = r ( 0 ) / 2 ,  the 
radius o f  the circle obta ined is r ( t o ) = r ( 0 ) / 2  for model  (1), r ( t o ) =  
r (0 )  (1 - 2  -2)  1/2 for model  (2) and r(to) = r ( 0 )  (1 -2-4/3) 3/4 for model  (3). 

Fig. 3. We reconstruct the original synthetic shape shown in Figure 2 by using the in- 
projection B(x,y) = (x/~,Xy) with 2 = I '  1,2. (a) Reconstruction based on Fig- verse 

ure 2(a). (b) Reconstruction based on Figure 2(b). (c) Reconstruction based on 
Figure 2(c); in this case we notice that the three shapes are in principle identical, but, 
of course, the discretization of the equation and the projections on a grid introduce 
some approximation errors. (d) Reconstruction based on Figure 2(d). 

y 

Fig. 4. We present the multiscale analysis of a real picture (200 x 220 pixels) by using 
model (3). From left to right and from top to bottom we have the original picture and 
the analyzed versions in the scale t = 1, 2, 3, 4, 5. 



Fig. 4 
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9. Conclusions 

We summarize in Table I all multiscale models already known and all the 
new models we have introduced or discussed. The table is organized as a tree, 
where axioms are progressively added from left to right. Thus the final models 
(with all invariance properties) are the leaves of  the tree. 

Let us now give a brief r6sum6 of  our conclusions about multiscale image 
analysis models. 

t) First of all, we have explained why the classical multiscale models could 
not be improved: In the case of the "American school"  (the heat equation), 
the model cannot be improved because of  the incompatibility between the 
linearity Of the model and the morphological invariants like grey-scale in- 
variance or projection invariance. 

In the case of  the "Fontainebleau school", no partial differential equation 
model was developed, and the known operators, dilation and erosions, seem 
to be the only ones to have a simple direct formulation without partial dif- 
ferential equations. 

2) By making a union of the axiomatics of both schools, we have been able to 
construct a new class of  multiscale analyses which have all the properties of  
the models known before, and more, since we also achieve projection in- 
variance. And projection invariance is an essential tool in the analysis of  
natural scenes and in shape recognition [18]. 

3) As a consequence of the equations obtained, we have been able to define 
a concept of "multiscale curvature", which derives immediately from our 
"best  invariant" equation. This leads us to a correct definition of  the 
multiscale analysis of  curves and shapes as it has been proposed in [3, 36]. 
Now, to define a reliable multiscale curvature has been acknowledged by the 
computer-vision community as a key problem to achieve efficient shape 
recognition algorithms. Furthermore,  our proofs show that there is a single 
way to  define a morphologically invariant multiscale curvature. 

4) Finally, we have applied the same methodology to the analysis of movies. 
We have proved that the addition of a single new and obvious axiom, the 
Galilean invariance, leads to a single possibility for multiscale analysis of  
movies. In the same way as we got a definition of multiscale curvature, we 
get a natural concept of  "multiscale acceleration". 

5) Beyond the problems of computer vision, we want to emphasize that 
somehow the preceding results give the first mathematical hints of  how 
biological vision is possible (a problem which has been quite well formulated 
in MARR'S classical book [39]). Indeed, as we stated in Section 1, biological 
vision presupposes the capability of  passing from information from the local 
retina to global intelligence of  shapes. But this process must be invariant under 
all transforms we listed in Section 1 (change of  brightness, perspective, etc.). 
We have given mathematical evidence that such a process is possible. 
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Appendix 1: Proof of Theorem 1 

The proof  involves several steps. To preserve some compactness in notation, 
we set fit, s ( f ) =  ( T t ( f ) -  T s ( f ) ) / ( t - s )  and f i t ( f ) =  f i t , 0 ( f ) =  ( T t ( f ) - f ) / t .  
Notice that we can rewrite [Regularity] ([] Tt ( f + hg ) - ( Tt ( f ) + hg ) ][ ~ <_ Cht 
for all h, t in [0, 1] and all f, g in Q),  as 

(A1) IIfit(f+ hg) - fit(f)11oo =< Ch for all h, t in [0, 1] and all f, g in Q. 

Step L We begin by proving that the functions f i t ( f ) =  ( T t ( f ) - f ) / t  are 
uniformly bounded. Indeed, we have T t ( 0 ) = 0  by [Grey-scale-shift in- 
variance]. Using [Regularity] with h = 1 and f = 0 and g = f we deduce that 

(A2) []Tt(f) -f][o~ < Cot for t in [0, 1] 

for some constant Co which depends only on bounds of derivatives of  f in 
c7. 

Step 2. We now prove that the functions f i t ( f )  are uniformly Lipschitz con- 
tinuous. More precisely, 

(A3) f i t ( f)  is Lipschitz continuous on NN uniformly for t in ]0, 1] (and 
uniformly for f belonging to a set Q). 

To this end, let z be in [~N [Z[ = 1; we wish to estimate [trhz{fi t( f)}-f i t( f)  [[oo 
for h in [0, 1]. We first observe that because of  [Translation invariance], 

Zhz[ f i t( f)  } = fit( Zhz" f )  . 

Then, we recall that V h z . f = f +  hgh for some gh in C~ (and that bounds 
uniform in h on derivatives of  gh depend only on bounds on derivatives of 
f ) .  Therefore, by (A1) ([Regularity]), we have ] [ f i t ( rhz . f ) -  fit(f)[too _-< Ch, 
and then (A3) is proved. 

Step 3. From the preceding steps, we can already deduce a compactness proper- 
ty for fit(g) as t tends to zero. Now, we need more, since we want the whole 
sequence to converge to the same limit. So we need a Cauchy estimate. Our 
next assertion is that for all t, s in [0, !] 2 we have 

(a4) []fit+s,t(f) -- ds( f )  IIo~ <-- m(t) 

for some continuous, nonnegative, nondecreasing function rn on [0,�89 such 
that m(0)  = 0, and m depends only on bounds of derivatives o f f .  Again this 
follows from [Regularity]. Indeed, we can write 

4 ( f )  = 4 ( f )  * P z [ 4 ( f )  *Pe - 4 ( f ) }  

where p e = e - N p ( . / e ) ,  p>=O, ~p(y) d y = l ,  p E C ~ ~  We deduce from 
(A3) that ~u 

(A5) ]]5~(f) *Pe - Os(f)lifo --- CIE for all e > 0, 
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for s o m e  C 1 ~ 0 depending only on bounds on derivatives of  f. Then, 
because of  (1) and [Recursivity], we have 

(A6) IlT~+s(f) - T t ( f +  SOs(f) * p~)lloo ~ Cl~s for all e > 0. 

On the other hand, since Os(f)*pe belongs to C~, [Regularity] implies that 

(A7) []Tt(f + Sfis(f) * pe) - Tt(f) - SOs(f) *Pe]]~ --< Cest 

for some CE --> 0 depending only upon e > 0 and bounds on derivatives of f. 
Collecting the estimates (A5)-(A7) ,  we finally deduce that 

rl0t+s,t(f) - Os(f)II=o 2Cle + Cd 

and we conclude that (A4) holds by setting m(t) = inf~]o,l] (2Cle + Cet). 

Step 4. We now are in a position to give a Cauchy estimate in 0 < h _< t _< �89 
for f is(f)  : 

(A8) []fit(f)--Oh(f)['~176176 where r = t -  [h]h" 

(We denote by [a] the largest integer N such that N ___ a. ) Indeed, denoting 
N = [t/h], we observe that fit(f) = (Nh/t) ONh(f) + (r/t) ONh+r, Nh(f), and 
using (A4) with t = Nh, s = r, we deduce that 

(A9) [Ot ( f )_Nh f iNh( f )_ r  [ r  t t fir(f) N -- m(Nh). 
t 

Writing fiNh(f) = ( ( N -  1) h/Nh) O(N-~)h(f) + (h/Nh) fiNh,(N-a)h(f) and us- 
ing (A4) with t = ( N -  1)h, s = h, we deduce that 

(A10) ONh(f) N -  1 O ( N _ l ) h ( f )  _ 1 I 1 N ~ Oh(f) < - - m ( ( N -  1)h ) .  
~ = N  

Combining this inequality with (A9), we obtain 

7 O(N-1)h(f) -- 7 t o~ 

r h 
<_-- m(Nh) +-- m ( ( N -  1) h ) .  

t t 

Reiterating the argument which leads to (A10), we obtain after ( N -  1) more 
steps that 

(A12) I O t ( f ) - N h f i h ( f )  . . . .  r I r h E t t fir(f) < m(Nh) + m(jh). 
of t t j=I , . . . ,N-1 
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In particular, in view of (A2) and since m is nondecreasing, we deduce 

r 
114(f) - 0h(f)I1~ ~ + ( N -  1) m ( t )  + 2 - C o ,  

t 

and (A8) is proved since t = Nh + r. 
It is now easy to conclude. Using (A2) and (A3), we pick h n going to 0 

so that f h n ( f )  converges uniformly on compact sets to a bounded Lipschitz 
function on NN, which we denote by A If]. Then we deduce from (A8) that 

(A13) 114(f) - A[f] II~ ~ m(t), 

and Theorem l(i) is proved. 
We now indicate briefly which adjustments are necessary in order to prove 

the second item of  Theorem 1. We consider operators Tt, s, but, without loss 
of  generality, we assume that s = O. To keep the same notation as in the 
preceding proof, we set 

ft, s ( f )  = To, t ( f )  - T o ,  s ( f )  
t - s  

, f i t ( f )  = ft, o ( f )  - To, t ( f )  - f  
t 

The only step to be modified in the preceding proof  is Step 3. Indeed, the 
operators T0,t satisfy the same assumptions as the operators Tt, except [Recur- 
sivity] and this axiom is only used in Step 3. 
Step 3-bis. We prove again that for all t, s in [0,�89 we have 

(A4) I l f t+s, t ( f )  - 4 ( f ) I 1 ~  ~ m ( t )  

for some continuous, nonnegative, nondecreasing function m on [0, -~] such 2 
that m(0) = 0, and m depends only on bounds of  derivatives of f. Again we 
write 

f s ( f )  = f s ( f )  *Pe - { f s ( f )  *P~ - f~ ( f )}  

where & is defined as above. We deduce from (A3) that 

(A5)" �9 [[0s(f) * &  - Os(f)[[oo -<_ C~e for all e > 0 

for some C1 >_-0 depending only on bounds on derivatives of  f. Then, 
because of (1) and [Causality], 

IlTo, t+~( f )  - To, t ( f  + s O s ( f ) ,  p3ll~ ----[ITt, t + s ( f )  - ( f  + S O s ( f ) , v ~ ) l l ~  

since by [Temporal regularity], we have ][Tt, t+s ( f )  - To, s(f)]1~ <- Csn(t). Us- 
ing (A5) and the definition of  0s, we obtain 

(A6) [ [T0, ,+s( f ) -To,  t ( f+SOs ( f )*P~) [ [oo<= C l e s + C s n ( t )  for all e > 0 .  

Now, [Regularity] implies that 

(A7) [[To, t ( f  + s f s ( f )  . pe ) - To, t ( f )  - s f , ( f )  * p~[[oo <= res t ,  
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for some C~ => 0 depending only upon e > 0 and bounds on derivatives of f 
Collecting the estimates (A5)-(A7) ,  we finally deduce 

IlOt+s,t(f) - 4(f)[l~o _-< 2Cle + Cn(t) + c d ,  

and we conclude (A4) by setting re(t) = infe~10,112Cle + Cd) + Cn(t). 

A p p e n d i x  2 :  E l l i p t i c i t y  c o n d i t i o n s  o n  F 

In order to have the maximum principle for the equation 
Ou/Ot = F(D2u, Du, t), F must satisfy the inequality. F(A,p,t)  >= F(B,p,t) 
where A, B are symmetric and A __> B. [Grey-scale invariance] implies that F 
depends only on QpAQp, where Q p = I N - p Q p / ] p l  2. Moreover, if A >_S, 
then QpAQp >= QpBQp since Qp is symmetric. Thus we can limit the study to 
the restriction of  A in a plane: 

Let H ( A ) =  H(ya,  72, ?3) be a differentiable function, where A = (71 72~. 
\ 72 73 / 

We begin by finding conditions on H which imply that H(A) >= H(B) if A = B. 

Set B (~  0 0 ) e > 0 ;  then H ( A + B ) > H ( A ) ~  OH = , = ___0. 
07a 

(: 0) 0. 
Now set B = , e > 0; then H(A + B) > H(A) = >= O. 

= 073 

Finally set B ( lely e ) = , y __-> 0 and e (  JR; then H(A +B) >_H(A)~ 
- e l e ly  -1 

OH OH OH 
- -  + sign(e) + y-1 _ _  __> 0 for all y _> 0, or equivalently, 

Y 0?1 372 0?3 

4 3X3 07i => 

Since H is nondecreasing, we have the three following conditions: 

(1) OH OH OH OH O( ~ 2 
= 0, (2) - -  => 0, (3) 4 >__ 

071 0?3 0?3 071 \ 0 7 #  

On the other hand, these conditions are sufficient. Indeed, for every positive 
B, we can find a, b, c,y in N + such that 

(lO) (o0) (y l) 
B = a  +b  + c  . 

0 0 0 1 -4-1 y-1 

Then, the conditions (l), (2), (3) imply that H(A + B) >= H(A). 
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Appendix  3: Interpretation of  accel (u) 

In order to understand the meaning of  the term accel(u) in the equation, 
let us give the following lemma: 

Lemma. Consider a picture in translation motion. Let v be the velocity vector of 
the translation: v = (vx(O),vy(O)) .  Define v 1 = (v, Vu)/lIVu]l, the flow on the 
direction of Vu. Then, accel(u) = -OVl(O)/O0. Thus accel(u) is the accelera- 
tion in the direction of Vu, which can be called the apparent acceleration. 
Moreover, accel(u) is the curvature of the level curve in the plane (Vu, V) 
multiplied by the square of the norm of V, where V is the velocity vector 
(vx(O), vy(O), 1 ). 

Proof .  Let u(x,y)  be the static picture, N a point of  the plane and w(x,y, O) 
this picture in movement. We have (0 0) 

w(x,y, O) = u - ~ vx(O),y - I v y ( O )  . 
Oo Oo 

Because of  the isometry invariance, we can take the axes (i,j, k) so that at 
the point N: (i, D u ) = O  and (j ,  Du)>_O. Then v l (O)=vx(O)  and 
D u =  (IVu],0,0).  We set v2(0) =vy(O). We have 

D w =  ( I V u l , O , - v l l V u l ) ,  D w  • = (O, lVul,O), 

Dw • = IVul ( -VllVUl,O,  - I V u l ) ,  

t Ux x IAzy --93 1 Nxx -- V2Uxy N~ 
Aw = Uxy Uyy -Vl Uxy -- t)2Uyy 0Vl ( 0 ) )  . 

--Vlb/xx -- V2U.vy --Vlb/xy -- V2Uyy V~U,~+ V~Uyy+ 2VaVzU ~ -- Iw, I ~ - !  
Thus, 

~,~=~,~, ~,2~=vzy~lVul, V3w-- IVu12v22y~ - IVul  5 ~176 
O0 

Therefore 

Ylw)'3w- r~,,_ Ovl(O) 
accel (w) - 

] Vu  15 y~,~ 00  

Let us now consider the velocity vector V =  (vl ,vz,1) .  We have 

Wo Y 2 ~  Then V = Vl = I ~ u l  and Y2w = VZYl]VUl �9 Therefore, V 2 --  ~lw[VU [ . 

( W o  72~ 1 ) ;  we remal.k that V =  1 ( D  Y~w ) 
I Vu 1' YlwlVU I' I Vu I~ w • --Yl - Dw • and 

that 

(AV,, v )  = - -  1 { y2w (ADw • Dw • ) - 2 Yzw (ADw • Dw • ) + (ADw ~=, Dw* ) ) .  
IVU] 4 k ~  '2 71 
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1( 
Hence, (AV, V) = ~ 4  Y3w - Y ~ ) -  Then accel(w) = (AV, V)/I Vu I = Ii VII 2curv2, 

where curv2 = '11 [Vul is the curvature of the level curve included 

in the plane (Vu, V). 
A picture is the projection of the three-dimentional space; we now want 

to prove that accel(u) is equal to 0 for every uniform translation of an object 
in the space. We prove the following lemma: 

1.emma. Consider an object at a distance r( O) from the retina. Then 

f2 
accel(u) = - r "  (0) 

( f  + r(O)) 3" 

Proof.  We must first define the vision system, in other terms, the projection 
of the three-dimensional space on the plane which defines the picture: 

. i f / ~  
i • j  j f  

l J  --7 
j 1 1 1 1 1 1 f / ~  X 
X 

r 

Thus, we obtain the formulae 

X -  fx  Y =  fy  
( f  + r) ' ( f  + r)" 

Thus, when the distance decreases, the picture grows, and we have a growth factor 
a = f / ( f +  r). 

Let u(x ,y)  be the picture of an static object, and w(x,y,  O) the movie of 
that object such that w(x , y ,O)=  u (a (O)x ,b (O ) y ) .  We choose the axes, in 
order to have (Vu,j) = 0, and (Vu, i) _ 0 at the point N(xo,Yo, 0). Then 

Z w  = 

O w =  (a (O)[Vu] ,O , -xa ' (O) lVu] ) ,  Dw • = (0 , a Ivu [ , 0 ) ,  

Dw • = a I Vu I (xa'(O) JVu [, O, - a (  O) lVu [) ,  

t 
a(O)2u~ a(O)b(O)U~y 

W~y b ( O ) ~ uyy 

WxO WyO 

xa(O) a'(O)u~x + ya(O)b'(O)uxy + a'(O)IVul "~  

) yb(O)b (O)uyy + xb(O)a'(O)u~ 

(xa'(O)ux~ + yb'(O)u~y)Xa'(O) + xa" (O) lVul " 

+ (xa'(O)uxy + yb'(O)uyy)yb'(O) 
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Thus, 
?lw = a ( O) 2b ( O) 21Vu [2Uyy, 

YZw = ya(O)3b(O)b'(O) [ Vu [ 3Uyy, 

V3w =- y2a(O)4b'2(O) [ Vul4Uyy + xl Vul3a(O)(a(O)a" (0) - 2a '2(0)) .  

We obtain 

Then 

b(O) 2 
~lw~13w- ~ 2  w - -  a(O) ~ IVulSyl(a(O)a " (0) - 2a ' (0)2) .  

accel(w) = [b(O)2/a(O) 21 (a(O)a" (0) - 2a ' (0)2) ,  

but a(O) =f/  (f  + r(O)). So 

f (_ 2fr'(O) 2 fr" (O) _~ 2fZr'(O) 
a(O)a"(O) - - 2 # ( 0 )  2 - f+r(O)  \ ( f + r ( O ) )  3 ( f+r(O))  2] ( f+r(O))  4 

f2r" 0 
( f  + r(O)) 3" 

Thus, with a(O) = b(O), we obtain accel(w) = - r "  (0) f 2 / ( f +  r(0))3;  thus 
accel(w) is proportional to the acceleration. Moreover, accel(w) = 0 if and on- 
ly if r" (0) = 0, i.e., if and only if r ' (0)  is constant. Then we obtain that 
accel(u) = 0, for all objects in uniform translation in the three-dimensional 
space. 

Addendum 

After this paper was accepted for publication, we noticed several works on 
image processing which confirm our conclusions. 

1) First of all, the newly introduced model 

Ou 1 
(34) - -  = [ Du I (curv(u))~ 

Ot 

has been independently discovered by SAPIRO 8r TANNENBAUM [SaTa 1,2] and 
ourselves [AGLM 1,2,3], in different contexts. 

SAPIRO~cTANNENBAUM consider smooth Jordan curves C(s) where s 

I , .Pc  o2c  denotes the affine parameter, defined by d e t e r - ,  0~2~2] = 1 [SAT@ Their 

approach, modelling curve evolution, yields the intrinsic equation 

OC (s, t) ~-- 02C (s, t) 
(351 0-2 0~ 2 
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This second equation describes the motion of  the level curves of a solution 
u of  (34); therefore both models are equivalent. 

Equation (35) has been solved, with existence, regularity and uniqueness 
results when the initial Jordan curve is smooth in [Gray, GaHa,  SaTa 1,2]. 

2) In image processing the combination of  both [Causality] and [Com- 
parison] principles is generally called causality [30, 61,  Kim, SaTa 1,2, KTZ]. 
Indeed, the causality assumption in image processing states that when the scale 
increases, no new structure appears in the image. HUMMEl, [Hum] noticed that 
the causality assumption can be reduced to a maximum principle plus a 
pyramidal structure. We preferred to divide the causality into two principles. 

3) The Alvarez-Lions-Morel model of  Section 4.5, when restricted to a 
single curve evolution, was mathematically introduced in [GaHa, Gray, Ang]. 
They proved existence, uniqueness, regularity of solutions in this context. 

This equation (the classical mean-curvature motion) was introduced in im- 
age processing in [Kim, KTZ, MaMo, AGLM 1,2,3, 62] in different contexts. 
However, an early version of an algorithm leading this models is proposed in 
[KoDo]; see also [BaGe, MBO]. 
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