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O. Introduction 

The theory of isoperimetric inequalities in mathematical physics goes back to 
Lord RAYLEIGH'S paper (1877) (cf. [1, 2]) in which he conjectured three inequalities 
between physical and geometrical quantities of plane domains. Namely, he conjec- 
tured that: 

(1) Of all fixed membranes with a given area, the circle has the minimal 
principal frequency. 

(2) Of all clamped plates with a given area, the circle has the minimal principal 
frequency. 

(3) Of all conducting plates with a given area, the circle has the minimal 
electrostatic capacity. 

FABZl~ [3] and KgAmq [4] found essentially the same proof for the first of 
Rayleigh's conjectures. The third of Rayleigh's conjectures was proved by POLYA 
& SZZG6 [5]. The second Rayleigh conjecture remained open up to now. Partial 
results were obtained by POLYA & SZEG6 [2] who proved that the conjecture is true 
provided that a corresponding ground-state eigenfunction is of constant sign. Unfortu- 
nately, in general the ground state of a clamped plate can change its sign. This was 
observed, e.g., for a suitable annular plate by DUFFIN & SHAFFER [6], for a semi-infinite 
strip, by DUFFIN [7] and for a polygonal domain by KONDRATIEV, KOZLOV & MAZ'YA 
[8]. Recently TALENTI proved in [9] that the conjecture (2) is true up to a factor of 0.98. 

The aim of this paper is to prove the second Rayleigh conjecture. A sketch of 
this proof was given in the announcements [10, 11]. In our proof we use a de- 
composition introduced by TALENTI [9]. 

1. Statement of  the result 

Let O c IR 2 be a bounded domain. Let us consider in the domain f2 the 
Dirichlet spectral problem for the biharmonic operator: 

(1.1) Aaui = •ilAi in f2, ui = IVui[ = 0 on 0s 
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Here the 2i are the eigenvalues (arranged in increasing order) and the ul are the 
corresponding eigenfunctions of the positive self-adjoint operator H defined in 
L2 (f2) by 

(Hq~,(p)-- f IA~012dx, (peCk(f2). 
Q 

If ~(2 is smooth, then the ui are classical solutions of (1.1). Let us denote 

, ~ ( ~ )  : = 2 1 .  

Theorem.  Let f2* c 11t 2 be a disk having the same area as the domain f2. Then 

,~(~) >_ ,~(~* ), 

and furthermore, equality holds only when the domain ~2 is a disk. 

2. Nota t ion  

We denote by Br c IR 2 the open disk of radius r with center at 0, S t :=  OBr, 
B : =  B1, S : =  $1. 

If G c IR z is a bounded domain a n d f e  L2(G), we denote by f *  ~ LZ(G *) the 
decreasing circular rearrangement of the function f (see, e.g., [-9]). 

For the problem 

A u = f  inG,  u = 0  onSG, 

we denote ~ f :  = u (so that @ is the inverse Dirichlet Laplacian). 
By O/On we denote the inner normal derivative. 

3. P r o o f  of  the theorem 

Consider the 

3.1. Variational  Problem.  For  r, R > 0, r 2 + R 2 = 1, minimize the functional 

I~, f 2  dx + Iu. f 2  dx 
I(f~,f2) = 

~B, (~f l )  2 dx + IB. (972) 2 dx 

under the constraints: f l  and f2 belong to LZ(Br), are functions of Ix[ only 
and obey 

I f l a x  = I f2dx. 
B, BR 

We denote by Ir the infimum of I ( f b f2 )  under the given constraints. 
If we set ~f~ = vi, then Problem 3.1 is equivalent to 
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3.2. Variational Problem. Minimize the functional 

~B, (Avl) 2 dx + ~B, (AVE) 2 dx 

under the constraints: vl ~ W2'2(Br) and v2 ~ W2'2(BR) are functions of [xl only, 
vl = 0 on St, vz = 0 on SR and 

ds = ~n as >= O" 

s, SR 

Let us denote by G(p, a) the Green function of the Dirichlet problem for the 
biharmonic operator in the disk BR,  where the singularity is at the point a. Then 
(cf. [2, p. 141]) 

1 R R 2 (3.3) G ( p , a ) = l z - a l 2 1 n  - ~ ( 1  ( z - a ) ]  2 - ]  - 8 z [  2) 

where z and a are the complex numbers representing the points p and a. This 
representation formula implies that G(p, a) > 0 for p, a ~ B u. 

The Krein-Rutman theorem implies 

3.4. Lemma. The principal eigenvalue of problem (1.1) in a disk B R is simple; 
the corresponding eigenfunction is positive and hence is a function of the radius 
only. 

Reference [-12] proves 

3.5. Lemma. I f  A 2u = 0 in B, u = 0 on S, and Ou/On > 0 on S, then u > 0 in B. 

Consider the problem 

0u 
(3.6) A2U = cu in B, u = 0 on S, ~nn = 1 on S. 

If c < 2(B), this problem has a unique solution u(c, x) which depends smoothly on 
the parameter c. 

From (3.3) it follows that 

(3.7) u(0, x) > 0. 

3.8. Lemma. Let fi := 8u/8c. Then 

(3.8') f i ( c , x ) > 0  for allO__<c<A(B), x ~ B .  

Proof. If we assume the contrary, then there exists Co e [0, 2(B)), Xo e B with 

~(Co, Xo) = 0 
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such that for all c e [0, Co), x e B 

zi(c, x) > 0. 

Then from the last inequality and from (3.7) it follows that 

U(Co, x) > O. 

From (3.6) we derive 

A2fi(Co, x) = CoO(Co, x) + U(Co, x) in B, fi = IVfi[ = 0 on S. 

Since by our assumption fi(Co, x) > 0 and U(Co, x) > 0, from (3.3) it follows that 

fi(Co, X ) > 0  inB.  

This contradiction proves the assertion. 

Let v be a minimizer of the functional ~B (Av) z dx under the constraints: 
v e  W2'2(B) is radial, v = 0  on S, c~v/On=a on S, ~Bv2dx > b, where a,b  >O 
are given constants. By the multiplier rule there is a number 0{ such that the 
Euler-Lagrange equation for this problem is 

(3.9) AZv = 0{v in B. 

Let u(c, x) be a solution of boundary-value problem (3.6). Then u minimizes the 
integral 

(3.1o)  ~ ((Au) 2 - cu ~) ax 
B 

u n d e r  t h e  c o n s t r a i n t s :  u e W e ' 2 ( B ) ,  u = 0 o n  S, Ou/On = a o n  S. H e n c e  i f c  < 0, t h e n  

u2(c, x)ax ___< ~ u2(0, x)ax. 
B B 

From the last inequality it follows that constant 0{ of (3.9) is non-negative. 
Let (Vx, v2) be a minimizer of Problem 3.2. Then each of the functions vt, v2 is 

a minimizer of the problem leading to (3.9) in the disks Br, BR, respectively. Hence 

(3.11) Azvl = 0{lv1 in Br, A2v2 = 0{2/) 2 in BR, 

with 0{1,0{2 > 0. 

Let @1, v2) be a minimizer of Problem 3.2. We prove that vl, v2 > 0: 
Let us define a function v in Br which is radial and satisfies Or~& < O, 
-- ~v/Or = [Ovl/Or[ in Br. Then 

I (l~1)) 2MX = I ( /~l) l)2dX'  
B, B, 

(3.12) 
I v2a~ => I d dx, 
Br B, 

and the second inequality is strict if v is not identically equal to Vx. Hence, since 
(v,, v2) is a minimizer, v = v, and so Vx > 0. A similar proof shows that v2 > 0. 

3.13. Lemma. Let  r, R =t = O, av, /ar < o on S,. Then cq < 2(Br), 0{2 < 2(BR). 
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Proof. Let "~1 '~--- 2(Br), and let ul > 0 be the principal eigenfunction of problem 
(1.1) in Br. Then 

(3.14) fUlVldx=~fvlA2uldx 
e r Br 

= 2~ Ol u l  dx + 1 Aul ds. 

Br ST 

Note that 

0 = ~ u l A 2 ( r  2 - I x l Z ) d x  = ,~1 ~ Ul( r2 --]x12) dx -- 2r ~ AUldS 
B~ B~ & 

and therefore diUl > 0 on St. Hence 

5 ulvlclx > 5 ulvlclx; 
B, ~ l  B, 

consequently from (3.12) it follows that 

cq < 21. 

A similar proof shows that cq < 2(BR). 

3.15. Lemma. Let a, b, c, d > 0 and either ? > 1, a/b > c/d or 0 < ? < 1, a/b < c/d. 
Then 

(31o)'~.~'" P'7" : - t )  ?a + c a + c 
7 b + d  b + d "  

Proof. 
c3p ad - bc 

8? (Tb + d) 2 

and so the inequality evidently follows. 

3.17. Lemma. Let (vl, v2) be a 

& , / &  < 0 on &. Then 
minimizer of Problem 3.2. Let 0 < r < R and 

~X 1 ~_~ O~ 2 . 

Proof. Let us denote 

Av, =f i ,  i =  1,2, (R/r) 2 = k > 1, S f i 2 d x  = a,, 5v2dx = b,, v2( , fkx)  = u(x), 

A u = o ,  v l ( x / , , ~ ) = w ( x ) ,  A w = h .  

Then 

j u 2 d x = b 2 / k ,  j g 2 d x = k a 2 ,  j w 2 d x = k b l ,  j h 2 d x = a l / k .  
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For  contradiction, let us assume that cq > k2~2 . Since 

f ~U ds f a/)~. = J as' 
s, s, 

the pair (u, v2) satisfies the constraints of Problem 3.2. We have 

A2u : k2~2 u. 

From Lemma 3.8, identity (3.14) and our assumption that ~1 > k20~2, we conclude 
that 

b2 
bl > - - .  

k 

Since the pair (/)1,/)2) is a minimizer, we have 

al + a2 ka2 + a2 _ _ <  
bl + b2 = b2/k + b2" 

Now (3.16) implies that 

ka2 + a 2 
b2/k + b2 

with ~ = kbl/b2 > 1. So al < yka2, or 

?ka2 q- a2 < 
bl + b2 

Since 

the pair (vl, w) satisfies 
we have 

al kza2 - - <  
bl b2" 

f aWds (a/)~. 
S~ S~ 

the constraints of Problem 3.2. By inequality (3.16), 

a l + a l / k  a l + x a l / k  < 
bl + kbl bl + b2 

with ~c = b2/kba < 1. Since we proved that 

/cal b2 a l  
k k2bl 

we conclude that  

- -  < a 2 ,  

a l + a l / k  a l + a 2  < - -  
bl + kbl bl + b2" 

But this inequality contradicts the assumption that (vl, I)2) is a minimizer. 
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Inequalities (3.17) and (3.8') imply that 

(3.18) ~B. Vl dx < ~B, v2 dx 
r 2 = R 2 

3.19. Main Lemma. 

8 
~rl~>O f o r O < R .  

Proofi Let (fl  ,f2) be a minimizer of Problem 3.1. Recall that r 2 + R 2 = 1, and let 
0 < p < r. Let g~(P, x) be the restriction of the function fx to the disk B o. We 
assume that p2  + p ,2  = 1. Let gz(P, X) be an extension df the functionf2 onto the 
disk B o, such that gz(P, x) is a function of p and Ixl only, monotonically nonde- 
creasing for Ixl e (R, p') and such that for all a e IR, 

meas{x ~ Bo,\BR, g2(P, x) > a} = meas{x ~ B, kBp, --fx(x) > a}. 

Then for all a < p < r, 

f = I ax, I ax + d ax _= c,  
B e B e , B e B e , 

where C is independent of p. Let us denote 

Then 

and hence 

gi(P, x ) :=  ~gi(P, x). 

~l(p, x) = ~1(0, x)lB~ - ~1(0, x)lse 

• ~ 1 8gl (0, x) ~ vl (0, x) dx. 
~(p,x)dx, ,=o-nr 8n B, 

By similar reasoning we obtain 

Since 

__8 ~ v2-2 (p, x)dx o=o _ ~-/~-1 0g2(0,~n x) BRI g2(O,x)dx. 
8p Bp, 

we have by (3.18) that 

f ~1(o, x) ~" a~2 (o, x ) .  ~ d x = j  ~n as, 

S ,  SR 

8 

R a ~B, gl (0, X) dx 
<1.  

r 2 ~u. v2 (0, x) dx - 
p=O 
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Thus we conclude that  

a ~(p, x) dx~ ap(~ ~(p,x)dx + .~,J / . : o  __< 0, 

as required. 

3.20. Lemma.  
lim I~ > 2(B). 
r--+ 0 

Proof.  By the variat ional  principle, 

(3.21) 2(9)  = inf 5o (Au) 2 dx 
IQ bl 2 dx 

under  the constraints  u ~ W2'2(~),  u = IVul = 0 on 0f2. Let  

(3.22) inffl~;iAuU);dx - fl 
r 4  ~ 

where the infimum is subject to the constraints  u e W2'ZK(Br),  u = 0 on St. Since 
the opera tor  N is bounded  in L2(Br), it follows that  fl > 0. 

Let  0 < r < R and let ( f l (r ,  x),f2(r, x)) be a minimizer of Problem 3.1. Wi thout  
loss of generality we may  assume that  

5 f l  (r, x) dx = 1 
B, 

for 0 < r < R. F r o m  (3.22) it follows that  

~B~ f ?  (r, x) clx > s  

5t3, (~ f , ( r ,  x)) 2 dx = r '"  

Since 

1 
2 r 

B~ 7~r 2 

and Ir < const  for all 0 < r, it follows that  

2 r S A ( ,  x) dx-+ oo 
Be 

as r ---, 0, and hence 

(~fz( r ,  x) )2dx  ~ oo 
Be 

as r --+ 0. Therefore  

(3.23) 
J'13e ]~f2  (r, x)[ dx 

SBR (~f2(r ,  x)) 2 dx 
--+0 as r -*O.  
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Let us denote h(r, x) =f2(r,  x) - 1. Then 

hdx=O, 
Be 

and hence 

f O ( ~ d s  = O. 

SR 

Since ~ h  is a radial function, we conclude that 

By (3.21), we have 

@ h = l V ~ h [ = 0  OnSR. 

YBR h Z d x  
>= .~4BR) .  

tB. ( ~h)2 d x  

Furthermore h 2 = f ]  - 2f2 + 1 and so taking into account (3.23) we get 

(3.24) lira i n f  5BR f2  dx -~ 2(B). 
~ o  5Be ( Nfa)2dx 

This inequality and (3.22) complete the proof of the lemma. 
L e t f e  L2(G), G c IR 2 be a bounded domain. Let us assume that ~ f >  0 in G. 

Then 

(3.25) ~ (~f)2dx < ~ (~f*)2dx, 
G G* 

with equality only in the case w h e n f = f  * (cf. [9, 13, 141). 
Let ul be a ground state of problem (1.1), and assume that measO = ~z. Let 

(3.26) O + :=  {x e 0, Ux(X) > 0}, f2 :=  {x e 0, ul(x) < 0}, kUl :=f .  

Let f+ be the restriction o f f  to 0 + and f_  be the restriction of ( - f )  to ~2-. From 
(3.11) it follows that 

f~ dx + _ dx 
,~ ( o ) = - -  = > 

S u~ dx I ( ~ f , ) 2  dx + i (~f_,)2 dx 

with equality only in the cases when either O is a disk or O is a union of two disjoint 
disks. Without loss of generality we may exclude the case of two disks from our 
consideration. Since 8u1/Sn = 0 on 80, Green's formula implies 

fdx  = 0 
o 

and hence 

f + d x =  ~ f_dx,  
fa + f2 

f *  dx = ~ f-* dx. 
B, B R 
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Thus by Lemmas 3.19 and 3.20 we have 

,~(~2) => 2(B) 

with equal i ty only in the case when • is a disk. The  theo rem is proved.  
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