
Arch. Rational Mech. Anal. 118 (1992) 113-148. �9 Springer-Verlag 1992 

Reduction of Some Classical 
Non-Holonomic Systems with Symmetry 

J A m  KOILLER 

Communicated by R. MCGEHEE 

Abstract 

Two types of  n o n h o l o n o m i c  systems with symmetry  are t reated:  (i) the con- 
f igurat ion space is a total  space of  a G-principal  bund le  and  the constraints  
are given by a connec t ion ;  (ii) the conf igura t ion  space is G itself and  the con- 
straints are given by lef t- invariant  forms. The proofs are based on  the method  
of  quasicoordinates.  In  passing, a derivat ion of  the Maure r -Car t an  equat ions  
for Lie groups is obtained.  Simple examples are given to illustrate the 
a lgori thmical  character of  the m a i n  results. 
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1. Introduction 

The question of  reducing ordinary or partial differential equations which 
are invariant under the action of  a Lie group has attracted considerable atten- 
tion in recent years. To reduce means to obtain equations with fewer coor- 
dinates or, when possible, to obtain a globally defined differential operator on 
a quotient manifold. For a comprehensive introduction to the subject, see the 
book  by OLVER [O]. 

The concern here is the reduction of  classical non-holonomic Lagrangian 
systems with symmetry. Two cases, which form the core of  the paper, are 
treated in detail: (i) the configuration space is a Lie group G with left-invariant 
metric and (non-holonomic rigid body) constraints; (ii) the configuration space 
is a principal bundle G ~ P  ~ M  and the constraints distribution defines a con- 
nection (non-Abelian Caplygin systems). The setting for more general situations 
is given in the last sections (w167 7, 8, 9). 

The theory of  non-holonomic systems has been much developed in the 
Soviet Union:  My basic sources are the book  by NE~J.ARK & FUrAEV [NF], and 
the articles by VERSHIK [V] and VERSHIK • FADEEV [VF]. My basic motivation 
was to generalize the theory to the case of  a non-Abelian symmetry group. 

Caplygin systems. ([NF, Chapter  III ,  w 3]). Consider the Lagrange-d'Alembert  
equations of  mixed type 1 

d OL OL 
= Qk(q, el) - ~ luja#, 1 <_ k <_ n, (1.1) 

dt O?lk Oqk j = l  

~ a#(q) ~lk = O, 1 <=j <= r. 
k = l  

Suppose that  the Lagrangian and external force do not depend on the coor- 
dinates qm+l . . . . .  qn, and that  the constraints can be written in the form 

(~K = ~ bK, it~i, m + 1 < K <_ n (1.2) 
i=1 

1 Recent influential books on Analytical Mechanics (such as those of ABgna~w & 
MARSDEN [AM] or ARNOLD [A]) fOCUS their approach to the foundations on the passage 
from Newton's laws with potential forces to the Lagrangian and Hamiltonian for- 
malisms. SOU-Xa~RFELD, however, considers d'Alembert's Principle as more fundamental 
[So, w167 8, 10, 12]: "the principle [of virtual work] was already sketched by GALILEO .. .  
It achieved its dominating position . . .  with "M6canique Analytique" of LA6RANOE .. .  
We regard it practically as definition of a mechanical system". 

Or, in LAORA_~OE'S own words [L]: "Si l'on imprime h plusieurs corps des 
mouvements qu'ils soient forc6s de changer h cause de leur action mutuelle, il est clair 
qu'on pent regarder ces mouvements comme compos6s de ceux que les corps peudront 
re61ment, et d'antres mouvements qui sont d6truits; d'ou il suit que ces derniers 
doivrent ~tre tels, que les corps anim6s de ces seuls mouvements se fassent 6quilibre". 
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where the functions bK, i do not depend on the last r = n - m coordinates. We 
interpret this as invariance under the Abelian group R n-re. CAPLYGIN showed 
around 1895 that  the system reduces to a second-order ordinary differential 
equation for the variables qi (1 __< i < m),  with the multipliers eliminated 

dt 0{li Oqi \O~lg] \ Oqj Oqi ] (lj �9 (1.3) 
K j = l  

The symbol L* means that  the OK are replaced by (1.2) in L before the Euler- 
Lagrange differential is computed. On the other hand, in (aL/0qK)* the 
substitution is effected after the differentiation. 

As an exercise, the reader may work out the reduced equations for an arrow 
or javelin: they rotate about  their centers of  mass so that they always stay 
tangent to the paths described by their centers of  mass. 

Non-Abelian Caplygin systems. The configuration space R n is replaced by a 
manifold Pn acted on by a Lie group G. Assume G ~ P  ~ M  is a principal 
bundle, M = P/G, dim G = r, d i m M  = m = n - r. The Lagrangian is supposed to 
be G-equivariant. For natural systems L = T -  V this means that T is a metric 
on P on which G acts by isometries, and V is an equivariant potential which 
can be considered a function on M. T h e  constraints are defined by a smooth 
distribution Dp of  m-dimensional subspaces of  TpP which project isomor- 
phically over T,(p~M and such that  Dg.p = gDp (i.e. the constraints define a 
connection on the bundle; see w 2 for background). It is geometrically obvious 
that the Lagrange-d'Alembert  constrained system on TP must project to a second- 
order ordinary differential equation on M. I was able to find a local expression 
in suitable coordinates, analogous to (1.3), and characterize it intrinsically. 
These results were announced in [Ko]. M. DE LEON & P. RODRmUES kindly in- 
cluded the result in their book  [LR]; a different proof  is presented there. 

Rigid body with constraints. Consider a L ie  group G together with a left- 
invariant Riemannian metric. The Euler equations [A, AM] for this generalized 
rigid body give a vector field in the Lie algebra g. Left-invariant constraints 
on TP are defined by a subspace D of  g. An educated and correct guess is 
that  the Lagrange-d'Alembert  constrained system on G reduces to a vector field 
on D which is just the orthogonal  projection of the unconstrained Euler vector 
field. 

Outline. for the convenience of  non-experts, I review in w 2 some basic results 
about  connections on a principal bundle, which will be used subsequently. The 
main results are stated in w 3, in local as well as intrinsic versions. Some stan- 
dard examples from the literature are revisited in w 4. The algorithmically 
minded reader should compare them with the derivations of  the equations of  
mot ion in the references [H, NF]. 

Concerning the proofs, I use "quasicoordinates",  a method strongly ad- 
vocated by H A m ~  [H], which is reviewed in w 5.1 and 5.2, and applied to un- 
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constrained systems in w 5.3 and w 5.4. In the holonomic case, this approach 
suffers from an inherent syndrome, its local character. A comparison is made 
with the intrinsic method of  MARSDE~ & WEn,~STEIN [MW]. Nonetheless, as a 
surprising byproduct of  H~vmL's approach, when revisiting ARnOlD'S 
generalized rigid bodies [A], I found another proof  of  the Maurer-Cartan 
structure equations for a Lie group. (This is actually an "overkil l" :  for two 
standard proofs, as well as applications, of  this basic fact in Lie group theory, 
see the textbook by SATTINGER t~r WEAVER [SW].) 

In w 6, I prove the theorems stated in w 2, and outline in w 7 the equations 
for equivariant Lagrangians with constraints, these being group-invariant but 
failing to define a connection. In contradistinction to HAMEt'S approach for 
nonholonomic systems, in the particular case of  natural Lagrangians there is 
a more "geometrical",  or "intrinsic" viewpoint, which can be traced back to 
E. CARTAN [Ca] and more recently revived by VERSHIK [V]. The equations of 
motion represent the geodesics of  a non-Riemannian affine connection. In- 
teresting enough, HAMEL'S method yields a different affine connection, with the 
same geodesics. This is shown in w 8. In the final comments (w 9) I also 
describe some recent results of  which I became aware after the paper was sub- 
mitted. 

Remarks. (i) I use the word reduction, but in the context of  w 7 the word fac- 
torization is perhaps more appropriate because the system does not need to 
project completely into a quotient manifold. In fact, the word "reduct ion"  has 
by now a standard meaning in Hamiltonian mechanics (namely the Marsden- 
Weinstein method [MW]). (ii) The methods of  H ~ E L  and of  MARS- 
DEN & WEINSTEIN have complementary drawbacks: the latter was not designed 
to deal with non-holonomic constraints, but on the other hand, H~'vmL's ap- 
proach does not easily recognize the integrals of  motion for holonomic systems 
with symmetry. (iii) One promising source of applications is robotics. For in- 
stance, in Space Engineering one frequently encounters large coupled systems 
of  articulated rigid bodies (with or without constraints) which are invariant 
under the group of  rigid motions SO(3). Underwater systems may have the 
symmetry group SO(3) - •  3. Furthermore,  the non-Abelian Caplygin setting 
can be thought of  as a " toy  model"  (in harmony with HERTZ'S ideas [He] 2 
of  "concealed forces") for a spinless particle on a Yang-Mills field [Ko, Bu]. 

2 HERTZ [He] wanted to construct the Foundations of Mechanics disposing entire- 
ly with the notion of force, replacing it by equivalent velocity constraints. His basic 
principle, which yields precisely the Lagrange-d'Alembert equations, states that the 
geometric curvature of the path is always a minimum, subjected to the constraints. In 
his review of HERTZ'S book, POINCARt~ [P] says: "Ah bien, d'apr~s HERTZ, toutes les 
fois que nous imaginons une force, nous Sommes dupes d'une illusion". And he pro- 
poses the following problem: "Pent-on imaginer un syst~me articul6 que imite un 
syst6me de forces, d6finie par une loi quelconque off en approchant autant qu'on 
voudra?". Next, POINCAR~ discusses attempts of KELVIN and MAXWELL to give a 
material realization for the properties of the "ether". The following provocative state- 
ment could perhaps be applied to the various theories being tried now in Particle 
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2, Review of some facts about connections 

Let a :  Uu C M - ~ P  be a local  section of  the principal G-bundle with 
projection p r : P  ~ M  m, and f :  U C R m -~UM a parametrization in M. Let 
{eK}K=I ..... r be a basis of  the  Lie algebra g, exp :g  ~ G  the exponential map-  
ping, and e x = exp (ExKeK). 

Wi th  these d a t a  one associates the gauge parameters (q ,X)  for P and 
( q , q , X , X )  for TP: 

F: U x g  -~P, F (q ,X )  = exp (X).  s (q ) ,  s = a of, 

DF : U•215 g • g--* T(pr-X ( Um) ) , (2.1) 

(q, (I ,X,X) ~Up = (e x) * s ' (q)  4 + ( s ( q ) )  * Dx ex. X. 

Here the customary notations g :P ~P,  g(p)  = g .p ,  p : G --,P, p (g )  = g .p ,  
Lg : G ~ G ,  Lg(h)  = gh are used. With an element Y in the Lie algebra g, one 
associates the vertical vector field Vp (Y) = Dep" Y. 

However, I find that it is more convenient to consider ins tead  the gauge 
quasicoordinates (q, (t, g, ic) on TP: 

TF: U x R  m X G X g --* T(p r  -1 (UM)), (2.2) 

(q, q, g,/r)  --r Up : g * [s '(q) q + Vs(q) ~]. 

where the dot over the symbol / rEg  is used only for "historical reasons", 
to indicate that  /r is an ingredient of  a velocity vector. The quasicoordinate 
n has for us a "metaphysical  character",  that is, it will never appear  in our 
formulas.  We do not define it as a mathematical  object. 

A connection on P is a distribution {Dp C TpP} of  m-dimensional 
"hor izon ta l "  subspaces which project isomorphically over Tn(p)M and are 
also invariant under the G-action: g . D  e = Dgp. Thus any vector vp decom- 
poses into its horizontal, Hor  (vp), and vertical, Vert (vp), components.  The 
connection 1-form ~o is the Lie algebra-valued 1-form in P such that 

Vert ( Vp) = Vp ( ~O( Vp) ) . (2.3) 

The connection can also be  thought of  in terms of  horizontal lift operators 
hp : T~(p)M ~-. Dp. Along the section s, the connection is represented by a func- 
tion b from U to H o m  (R m, g) such that hs(q)(l = Dqs. ~1 + Vs(q) b ( q ) .  Cl is a 
horizontal vector. The following result is elementary. 

Proposition 2.1 (Coimection 1-form). 

( ) (i) g* Vp(Y) = Vgp[Adg(Y)] A d g Y =  t=ogetYg -1 (2.4a) 

Physics: "Les savants anglais . . .  ne sont pas effray6s par la complication de ces 
modules off l'on a multipli6 des triangles, des bielles, des coulisses, comme dans un 
atelier de m6canicien". 
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(ii) For p = g. s(q) the vertical component of Up is Vp(~(Up)), where 

~o(up) = Adg(~r - b(q) il). 

(iii) The pull-back of ~o to U x g  via F is given by 

(2.4b) 

d [ e:t+tXe-X - Adexp(x) b(q) (l. (2.4c) 
(F*)(q'X) ((I'X) = dtt t=o 

In Yang-Mills theory the components of r are called gauge potentials. 

The curvature of the connection is a 2-form f2 on P with values on the 
Lie algebra, given by f2 = dr o Hot. It is horizontal (i.e., it vanishes when at 
least one of the vectors is vertical) and it is Lie-algebra equivariant: 

(L~I2) (Up, vp) = Adg O(up, vp) (2.5) 

The local curvature on the gauge tr is the pull-back 12a= a*O to M m. 
Physically its components form the gauge field strengths. Their explicit expres- 
sions are well known (see, e.g., [CMD, page 375]): 

P r o p o s i t i o n  2 . 2  ( L o c a l  c u r v a t u r e s ) .  

O) Let b be represented by its matrix (bKj) with respect to a basis e K, 1 <_ K <_ r 
of the Lie algebra. Then 

12S(q,(q, 0 , :  ~ ~ (ObLj Obzk_~ 
L:I j,k=l ~ q k  ~qj ) iljOke L -- [b(q) q,b(q) 0].  (2.6a) 

(ii) If  z is another gauge with transition function r(m) = h(m) tr(m), then 

O r = mdh(m) ~'2 a (h : UM ~ G). (2.6b) 

3 .  M a i n  r e s u l t s  

To begin, a brief summary of some basic concepts from the "geometry and 
physics" of the second tangent bundle is given. For details, see [VF] or [G]. 

Let Q be a manifold, and let n l :TQ- - ,Q  and n2: T(TQ) ~ T Q  respective- 
ly be the first and second tangent bundles. A vector field X on TQ is called 
special if dnl Xq, v = Vq. Given a Lagrangian L : TQ -~ R, the Euler-Lagrange dif- 
ferential is a mapping EL from special fields to 1-forms on Q, which in coor- 
dinates has the familiar expression (see [SM] for a direct proof of its 
covariance under change of  coordinates) 

0 d 0 L  0L 
- -  - . (3 .1 )  

EL(q, q, 4) Oq i dt 0(l i Oqi 
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Thus EL(Xq, v;L) E T~Q is an intrinsic object. Instrumental for several con- 
structions is the fiber derivative or Legendre transformation 

Ftq  : Legq = d(L/TqQ) : TqQ --~ T~Q. (3.2) 

A force field is a mapping F:  TQ ~ T*Q which commutes with the projec- 
tions (but it can be nonlinear on the fibers). The reason why the target space 
is T*Q is that, physically, the force is an agent which does "work"  on "virtual 
displacements" v 6 TQ. When F = dV, V being a function on Q, we say that 
it derives from the potential E In this case the domain can be considered Q 
instead of TQ. 

For unconstrained, force-free systems, the Euler-Lagrange differential 
vanishes along the special field which gives the equations of motion: 
EL(Xq, v;L) = 0. If  there are external forces, d'Alembert's Principle states that 
on the special vector field which gives the actual motion, the Euler-Lagrange dif- 
ferential equals the external force. If  in addition there are constraints, the 
restricted Euler-Lagrange differential Restr (EL)equals the restricted external force 
Restr(F) along the constrained special field. In other words, the constraint 
distribution Dq Q TqM imposes the conditions: 

(i) dT~ Xq, v : Vq E Dq (constrained special field), (3.3) 

(ii) Restr(EL) = j *  oEL, Restr(F) = j *  oF (restricted 1-forms), 

"* T~M ~D~ is the dual of  Jq :Oq---~ZqM. where jq : 

3.1. Non-Abelian Caplygin systems 

Let n : P  n --rMm be a principal G-bundle and consider a G-invariant 
Lagrangian L on P, subjected to a G-invariant external force F :  TP -~ T*P. This 
means that for the associated actions of G in TP and T'P, we have Fg~o,v) = 
gF(p,v). These actions are defined by g (p , v )=  (gp, g . v )  for VpETpP and 

~g 
g. (p ,w)= (gp, (g-1)*wp)ETgpP, for wp~Tp*P. Recall that the momentum 
mapping is given by J : T*P ~ g*, jX(wp) = Wp ( Vp (X)). 

It is assumed that the classical linear constraints are given by a connection 
D on P so that only horizontal paths are allowed. 

First, I shall state the result in local form for arbitrary Lagrangians, and 
then immediately give the intrinsic interpretation of its ingredients. Finally, the 
global version for natural Lagrangians will be explicitly given, in order to com- 
pare it with another approach in w 8. 

Consider gauge coordinates as in w 2, and recall that the constraints are 
represented by iz = b(q) �9 (t, where b(q) is a r x m  matrix relative to the stan- 
dard basis in R m and a basis {eK}K= 1 ..... r of g, [eK, eL] = Zc~Let. 

Theorem 3.1 (Local expression for the projected equations). 

(i) Relative to these "quasicoordinates'" (see (2.2)) 

L : L S ( q , q ,  iz) =L(s ' (q ) ( t  + Vs(q)iZ), F :  FS : ~,Qi(q,(t, iz)dqi . (3.4a) 
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(ii) The equations of motion: are explicitly given by 

d OL* OL* 

dt 0~1i Oqi 

K:I  j=l \ Oqj Oqi ~ 
dlj + Q* ( q, o ) . (3.4b) 

U, V=I 

Here the symbol * means that i~ is replaced by b(q) (1 wherever it occurs, (This 
formula generalizes Caplygin's [NF] by the appearance of terms involving the 
structure constants of the Lie algebra. ) 

(iii) If  a solution q(t) is known, the full dynamics in P is recovered by integrating 
a linear ordinary differential equation with time-dependent coefficients: 

dg = (Lg)*. b (q(t)) O. (3.4c) 
dt 

Remarks. a) It is easy to see that (3.4b) is the coordinate expression of  a 
globally defined second-order equation on M. Indeed, the left side is the Euler- 
Lagrange differential of  L*(Um) = L(Vp) where up is any horizontal lift o f  urn. 
Analogously Q* are the covariant components of  F*(u m) =F(vp). The 
"nonholonomic  force" components, in the basis dqi (1 _< i __. m), correspond 
to the components of  the 1-form on U C R m 

\ 0 . )  
where (OLS/Oir) * eg* and t2s( . ,q)  eg. 

I f  another section T is considered, with transition function h:UM--* G, 
r(m) = h (m)a (m) ,  then by a direct calculation one can check that 

(~L~ '~* * s r 0 .6)  h ] = Adh(s(q)) ~kOh ] ' = Adh(s(q))f2s 

where s = a if t = z of  and one concludes that (3.4b) is indeed the coordinate 
expression of  a globally defined ordinary differential equation on M. 
(b) A bit of  invariant formulation can help one to grasp the geometric mean- 
ing of  (3.5). Define L # by 

L#(q,(1,/r) =LS(q,(1, ir + b(q) (1) = L(hs(q)(1+ Vs(q)~) (3.4a)' 

so that L*(q, (1) = L#(q, (t, O) = L(hs(q)O) makes explicit, in coordinates, the 
projected Lagrangian in TM, via the connection. Moreover, (OLS/Oir) * =  

OL# and then 
0~ ~=0 

\ 0 ~  ] = dtt L(hs(q)((1) + tVs(q) [g"2S(q")]) 

=FZs(q) (hs(q)(q))" Vs(q) [ ~ s ( 0 , ' ) ] "  (3.5)' 



Non-Holonomic Systems 121 

where FL is the fiber derivative. This can be further interpreted as follows, 
Consider the sequence of  mappings 

rmM h Dp ~ TpP IZ rye J, - g * ,  

TraM ~" g @  (TraM)*, (2(Vm) = QP (hp(vm),hp(')) (3.6)' 

where n (p)  = m. The first sequence is Ad*-ambiguous, while the second is 
Ad-ambiguous, where Ad and Ad* are the adjoint and coadjoint actions of  
G in g and g* These ambiguities cancel out when the pairing (3.5) is taken. 
This is instrinsically given by  bracketing the two sequences (3.6)'. 
c) The nonholonomic force is the first term in the right-hand side of  (3.4b). 
I f  there is no external force F, the reduced nonholonomic system has a com-  
mon feature with the constrained Lagrangian L* on TM: both preserve the total 
energy H = gt(OL*/O(I) - L*, In other words, the nonholonomic force does  no 
work along actual trajectories, so it has a gyroscopic character. 

I proceed to give a geometric characterization of  the nonholonomic force 
(3.5) in the case of  natural systems: 

Natural Caplygin systems 

The Lagrangian on  TP is of  the form L = T -  V where (i) V(gp) = V(p) 
for all g E G, p ~ P and (ii) T is the quadratic form of  a Riemannian metric 
on P, for which G acts by isometrics. To this kinetic energy T o n e  may add 
a term linear on the velocities, in other words, a G-invariant 1-form p on P 
(for instance, if the configuration space is not inertial). A non-Abelian natural 
Caplygin system consists therefore of  the quadruple 

( G ~ P - - r M ,  L = T + p - V ,  19, F). 

Local data. Given gauge parameters F(q,X)  = eXs(q), X = EX~;eK, the metric 
coefficients of  T are given by 

, thesedonotde0endonX, 
Oqi 

gi~ = g ~ ( q , X )  = OX K, (these depend on X),  (3.7) 

giK=giK(q'X) = ( ~ q ' i  O~K) (these depend on X). 

Here O/Oqi = (eX), Os/Oqi, O/OXK = Vexp(X).sCq) [(Re• (DoeX) �9 ex], 
where the indices i , j  . . . .  range over 1, . . . , m  and the K,L . . . .  over 1 . . . . .  r. 
Thus in spite of  G-invariance, when G is non-Abelian, gr~ and giK depend ex- 
plicitly on the position X along the fiber. 
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This is why it is really more convenient to use the gauge quasicoordinates 
(q ,q ,g ,  n) ,  /~ = E/rKeK, introduced in the previous section. Now the metric 
is given by equivariant local data (in an abuse of notation): 

(oo)  o,q, ( o )  gij( q) 
o K' ' 

where O / Oqi = g ,  Os / Oqi, O / an~: = g ,  gs(q) ( eK). 
would be called quasivelocities. 

O O ) (3.8) 
giK(q) = --,--aq i an K 

In old language, the values /~K 

In summary, the kinetic energy may be written as T = T(q, 0,/~) and the 
potential energy depends only on q, so that V =  V(q). 

Furthermore,  I must also put into play the connection, defined by the 
distribution of  horizontal subspaces {Dp}p~e. A vector up at p = s(q) with 
quasicoordinates (q, 4, g = e,/r) decomposes into its horizontal and vertical 
components:  

Hor  (Up) -~ Dqs. 4 + Des(q) b(q) . 4, Vert (Up) ~--- Vs(q)[~  --  b(q) . 4]. (3.9) 

It follows that T(up) = T(q, 4, iz) may be expressed alternatively as 

T(q, 4, it) = T~(4) + T~q)(iz - b ( q ) 4 )  + (Hor(up),Vert(up)).  (3.10) 

Some globally defined geometric objects. The projected metric T* is the metric 
on the base manifold M given by T*(vm) = T(hp(vm)) where p is a point on 
the fiber over m and hp is the horizontal lift operator. Its expression in coor- 
dinates is 

2Tq*(q) = ~,g~j(q) qiqj, g~ = ,h . (3.11) 

Fix a point p ~ P. The p-associated metric in G is the left-invariant metric 
whose quadratic form on the Lie algebra is given by 

r (r) = T[Vp(Y)]. (3.12) 

Caveat. Although the fiber G . p  has, via restriction, a natural left-invariant 
Riemannian metric, there is no naturally associated metric on G. The metric 
T a depends inherently on the choice of  the base point p. The ambiguity is 
given by the adjoint representation of  G on the quadratic forms. 

There is one more projected object, when the Lagrangian contains a linear 
term. The projected 1-form is the 1-form on the base manifold defined by 

ltm(Vm) = lUp (hp(vm) ) . (3.13) 

The geometric content of  Theorem 3.1' below is that a force-free, con- 
strained natural Caplygin system on P projects to an unconstrained system on 
M, but with an interesting external force. To describe this external force intrin- 
sically, we use the following definitions: 

The metric-connection tensor is the real-valued, (3,0)-horizontal tensor field 
K on P given by 

Kp(ue, ve, we) = (Hore(u) ,  Vp[,Qp(U, W)]) (3.14a) 
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where f2 is the curvature of the connection. The/~-connection tensor is the real- 
valued, (2,0)-horizontal tensor field J on P given by 

Jp(Vp, Wp) = ~lp{Vp[~'~p(V, w)]}. (3.14b) 

It readily follows from the Lie algebra equivariance of the connection and 
curvature forms ((2.4) and (2.5)), that K and J are antisymmetric in v, w and 
are equivariant over the reals: 

Kgp(g . up, g . vp, g * Wp) ~- Kp(up, Vp, Wp) , (3.15a) 

Jge(g* vp, g * wp) = Je(Vp, Wp). (3.15b) 

Consequently K and J can be considered as tensors on the base M: 

Xm(Um, Vm, Wm) = gp (hp(um), hp(vm),hp(wm)) , (3.15a)' 

Jm(vm, win) = Jp (hp(vm) , hp(wm) ) (3.15b)' 

where p is any point of the fiber over m. 

Reduction of natural Caplygin systems: invariant formulation 

Theorem 3.1'. The equations of motion for a non-Abelian natural Caplygin system 
project to a special second-order vector field X on the base manifold M satisfying 

EL(Xm,v;L*) + Km(vm, Vm,') + Jm(vm,') = Fm*,v('), 

where the projected external force is defined as 

F*m,v(" ) = Fp,h(v) (hp(" )). 

Remarks. (i) I f  the vertical subspace Vp[g2] corresponding to the span of the 
curvature is orthogonal to the horizontal subspace Dp, then the tensor Kp 
vanishes. In particular, this occurs when the connection fiat is (holonomic con- 
straints) or when Dp is orthogonal to Vp[g]. 
(ii) A geometric interpretation of the left-hand side of the first equation of 
Theorem 3.1' in terms of the concept of an affine connection will be given in 
w 

3.2. Rigid body with constraints 

To begin, I review ARNOLD'S generalization [A, Appendix 2] of the classical 
Euler equations for rigid bodies, in the setting of a left-invariant metric on 
a Lie group G. The procedure can be interpreted in terms of Poisson geometry 
[W], and holds for any G-invariant Hamiltonian on T*G. Recall that G acts 
on T*G via g.ph = (Lg) - l*ph.  Pulling back the canonical 2-form 09 in T*G 
to G x g *  via left translations pg ~ (g,L~pg) one gets 

09(g,u)((Xl,Zl), (X2, z2)) =Zl (Lg -1) *X2 - z2 (Lg 1) *X1 - ~ ( L g  -1) * IX1, X2]. (3.16) 
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The following well-known result then follows immediately [A, AM]: 

Lemma.  The Hamiltonian vector field associated with a G.invariant function 
H: T*G ~ R ,  written in coordinates G• is given by 

dgdt = Lg .OHolt, dPdt = ( OH PI  " (3.17) 

Here OH/Op is the Lie algebra gradient dH(p) . = (.,OH/Op) and 
[ ,  } : g xg* ~ g *  denotes the bilinear operation {X,/~} Y=  p[X, Y]. 

Example (Arnold's generalized rigid body). Suppose that the Lagrangian L is 
defined by anon-degenerate quadratic form (not necessarily positive-definite) 
on the Lie algebra g, given by 2 T =  tOQf2. Here Q is a n•  matrix 
( n = d i m G )  and g2 is a column vector o f  components relative to a basis 
{ e l  . . . . .  en} of  g. 

Let e ~ , . . . ,  e n * be  the dual  basis. The Legendre transformation is 

]~ Qie i  --* • Id ie~ , p = Qf2 = 

and the Hamil tonian is given by 

T = H =  1 t p Q - l p .  

OT 
(3.18) 

0 0 '  

(3.19) 

The Euler vector f ield vn:dPldt  ={OT/0p, p} in g*, written explicitly in 
coordinates, is 

d P k _  
- ~ c~k Qjm ~m ~'~l (3.20) 

dt 
j,l,m 

where CJk are the structure constants [et, ek] = Ej CJlkej. 
Equations (3.20) will be used for a "dynamic proof"  of the Maurer-Cartan 

Theorem for Lie groups. See w 5. 
A generalized rigid body with constraints consists of a pair (T, D) where T 

is a positive-definite inner product on g and D is a subspace of g: 

2 T =  tl2Qf2, D = kere~" c~ . . .  n kere*. (3.21) 

By left translation, these objects define a metric and a distribution in G. 

Theorem 3.2. The constrained Euler vector field on g is given by the T-orthogonal 
projection over D o f  the unconstrained Euler vector field, 

dO _ ProjD (Leg -x vii), dg .... (Lg) * I2(t). (3.22a) 
dt dt 

More explicitly, there i s n o  loss in generality in assuming that er+ 1 . . . . .  e n 
are orthogonal with respect to T. Then ~2 l = 0  (1 _< l _< r) and 

~-21 = Ciklai jQj~'2 QIT 1, r + 1 _< 1 _< n. (3.22b) 
i=1 ;Tk +1 



Non-Holonomic Systems 125 

The next  section is devoted to simple illustrative examples. The proofs Of 
Theorem I a n d  2 will be given in w 6, after preparation in w 5. 

4. Examples 

Two basic examples in HAMEL'S treatise are revisited [H, p.  478ff.]. The 
algorithmically oriented reader  should compare the derivation o f  the equations 
of  motion there with the systematic approach advocated here. 

4.L The sleigh of Caplygin and Carathdodory 3 

The idealized sleigh (Fig. 1 a) is a body having three points of  contact  with 
the plane; two of  them slide freely but the third, A, behaves as a knife edge 
subjected to a constraining force R which does n o t  allow transversal velocity. 
(See also [NF, p. 71]; [So]). More  precisely, let xoy be an inertial frame and 
~Ar/a frame moving with the sleigh. Take as generalized coordinates the Carte- 

y~ 

a �9 

\ .-" 

/ 
/ 

b 0 

///01(6S) 

Fig. 1 

3 According t o  NEIMARK ~r FUrAEV, "CAPLYGIN stated and :solved in quadratures 
the problem in I9~1 . . .  CARATrI~ODORY published a detailed investigation in 1:933 of 
a special case". SOMMERFELD considers it the simplest nonholonomic system [So, Prob- 
lem V-3]. OLSSON [O1] has considered the situation in which the constraint is 
nonhomogeneous, i.e., when the lateral friction is not sufficient to make v = 0. 
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sian coordinates of  the center of  mass C of  the sleigh and the angle (o between 
the x- and the l-axis. The configuration space is thus R 2 x Sk Let m be the 
mass, J the moment  of  inertia about  a vertical axis through C and a = I ACI. 
The reaction force R against the runners is exerted laterally at the point of  
application A in such a way that the ~/-component of  the velocity is zero. 
Hence one has the constrained system 

T =  1 (X2 -t- 3) 2) + I J ( o  2, v =  -a (0  + 3)cos (o - 2sin~o = 0. (4.I) 

Observe that  the " javel in"  or " a r row"  (see w 1) satisfies (4.1) with a = 0. 
In this case the system is also an "ordinary Caplygin" system, because the 
constraint can be written 2 = cotg ~o. 1~, L = T -  V, V = gy. 

The configuration space may be identified with the group G of  Euclidian 
motions of  the plane. An element g E G sending origins and coordinate axes 
xoy to XlOlyl can be written as (r,s, O) (see Fig. lb) .  The group multiplica- 
tion is given by 

(r,s,O) (x,y,(o) = (r + x c o s O -  ysinO, s + xsinO + ycosO, 0 +  (0). (4.2) 

It is readily seen that  the Lagrangian and constraint are left-invariant. In 
order to apply Theorem 3.2 one must  prepare the following data:  

Distribution: D = span (e2, e3) = ker e~, 

0 
e I ~ - -  

0 0 
e2 = cos ~00x + sin (o 7 ,  

oy 

Matrix of  T: 

0 0 1 0 
e3 = - sin ~o + cos ~o : -  + : - ,  

Ox oy a o~o 

a = 

J 0 J/a ) 

0 m 0 

J/a 0 m + J/a z 

Lie Algebra structure coefficients: 

1 1 
[e2 ,  e3] = - -  _ e 3 + e l ,  [e3 ,  e l ]  = e 2 ,  

a 

1 
[e2, ell = - e 3  + - -  el. 

a 

Theorem 3.2 yields, after a short computat ion:  

a a + (d/ma)' 
I2 = f22e2 + f23 e3 E D. (4.3) 
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Remark 1. These equat ions  can be solved in te rms o f  e lementary  funct ions since 
they have the energy integral 

( m  + J'~ 0 2  . 2 E = m O  2 +  ~, a2 ,] (4.4) 

This can be verified also f rom the explicit fo rmulas  for  the t2i: 

(.r,y,(o)t=p(Q1, Q2, Q3) t, (Q1, Q2,~23)t=p-l(~,~,O) t 

(sin /a cos /a 1 ) ( 0  lja 1) 
p - 1  = cos ~0 sin ~o 0 , P = cos ~0 - sin ~o 0 . (4.5) 

- sin fp cos r 0 sin (p cos (o 0 

Using (4.5) one can  find the  mot ions  ( x ( t ) , y ( t ) ,  ~o(t)) in terms o f  elliptic 
functions.  For details, see the original references. 

Remark 2. I t  is perhaps  instructive to rewrite (4.3) in terms of  more  easily 
recognizable physical  quantit ies.  I f  (u, v) are the ( ( ,  r / ) -components  o f  the 
velocity at A, then  

(u ,v )  = e -i~ (Yc + i~ - aifpe -ie) = (cos ~p:~ + sin (p3~, -a~b + cos (03~ - sin ~0~) 

and  a compar i son  with (4.5) yields u = s v = -as  = 0, so o2 = 0 = s 

- - m a r  (.o 
/~ = a(.o 2 , f.b - - - -  (4.6) 

J + m a  2 '  

which are the equat ions  found  by CAPLY~m and CARATI~ODORY. 

4.2. The "two-wheeled carriage" 

The  system depicted in Fig. 2 has conf igura t ion  space P = G •  T 2 where 
again  G = {(x,y, (o)} is the group of  rigid mot ions  in the plane and  T 2 is the 
torus  S 1 •  1 = { ( q l ,  q2)}- (See [NF, p. 103].) Let 2r  be the lateral length, a the 
radius o f  the wheels, Co the center o f  mass,  si tuated at distance I f rom point  
(x, y). Impos ing  the constraints  o f  no lateral sliding and no sliding on bo th  
wheels, one gets the dis t r ibut ion o f  2-dimensional  subspaces 

sin ~o -3~ cos ~o = 0, 

Acos~0 +3~sin~o +r~b + a q l  = 0 ,  

Acos~o +)~sin~o -r~b +aq2 = 0. 

(4.7) 

I t  is a s imple mat te r  to verify tha t  these constraints  define a connect ion 
on the bundle  G ~ G • T 2 ~ T 2. 
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Let m0 be the mass of  the body without wheels and k0 be the radius of 
gyration about the vertical through (x,y). The kinetic energy of  the body of 
the carriage is given by 

Tb = l "2 ~mo[2 +3~ 2 + 2l(o(3~cos~o -2s in~o)  + k2(o2]. 

q2 ~ x,y) 

/ / - q l  
7 

Fig. 2 

Let m I be the mass of  a wheel, C its axial moments of inertia and A its 
moment  of  inertia about a diameter. Then 

i "2 3)2 1 "2 "2 Tright, left = ~ m i [ x  q- 4- 2r(b (~ cos (0 +3~sin~0 ) -t-r2(0 2] -1- ~A(,o -t-I Cql,2 

so that the total energy is 

1 �9 2 1 C ( . ~ 2  T = l m ( 2 2 + 3 ~  2) +mol(o(pcosr +2J~0 + 2  u l+q22) ,  (4.8a) 

m = m o + 2ml, J = mo k2 + 2ml r 2 + 2A. (4.8b) 

Equations (4.7), (4.8) define a non-Abelian Caplygin system. The relevant 
data are as follows: 

Connection: (2,3~, ~b) t = b(ql ,  q2) (41, qe) t (section s :x = y = ~o = 0 for all q), 

( -a/2 - a / 2 )  

b(ql ,  q2) = 0 0 , 

-a/2r a/2r 

Structure constants: Extend el = (O/OX)id, e2 = (O/Oy)id, e3 = (0/0(P)id as 
left-invariant vector fields. Then 

s __ 0,  C1~ 2'3 ---- 0, - -1 ,  0,  CL3 2"3 ---- 1 , 0 , 0  

The Lagrangian in quasicoordinates: Along the section s 

T =  ~ m ( n  2 + n22) + mo/nzn3 + � 8 9  2 + 1 C(02 + 02) 

and therefore, by group invariance, this holds everywhere. 
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The projected metric is given by 

T* = ~ ma2(q21 + gl 2) + Ja~ (q2 - ql) 2 + ~ C(4~ + q~). (4.9) 
8r 2 

Applying  Theorem t one gets, after a s traightforward calculation, that  

ma 2 Ja 2 
~ -  (01 + 02) + 4r--5 (01 -- 02) + C01 = F1, 

ma 2 ja  2 (4.10a) 
T (ql + 02) -- 4 F  2 (ql -- 02) + Ca2 : F 2  

where the n o n h o l o n o m i c  force is given by 

F1 = (mola314r 2) q2(02 - q l ) ,  F2 = - (mola314r 2) q1(02 - ql) .  (4.10b) 

As a check, one can verify that  T* is a conserved quantity. 

5. Hamel's approach to mechanics 

5.1. Quasicoordinates, transpositional coefficients 

Let A = (aij(q)),  B = A - I =  (bij(q)) be n x n  invertible matrices o f  func- 
t ions o f  q E U in R n. Consider  a Cartan moving frame 4 on  U." 

0 
- i j U - ,  l < j < _ n ,  X j -  Onj oqi 

i=1 
(5.1) 

0 
Z/cjXj = Zqi  7 - ,  /r = A ( q )  q. (5.2) 

oqi 

Following the classical terminology,  the numbers  /~j are called 
quasivelocities. Recall that  the symbols nj are called quasicoordinates, but  
unless the fields Xj commute ,  they do not  have a mathemat ica l  meaning.  The 
mot iva t ion  for the nota t ion  O/anj is as follows: I f  nj were true coordinates,  

4 Not surprisingly, CARTAN advocated the use of his "moving-frame method" in 
the study of  nonholonomic systems [Ca]. For natural Lagrangians, he observes that 
d'Alembert's Principle expresses the following: "la diff6rence g6om6trique entre l'ac- 
c61eration du point et la force est un vecteur normal ~t l'616ment plan ~t m dimensions 
d6fini par les [contraintes]". When the constraints are nonholonomic, one is obliged 
to make use of all phase space. However: "il est possible en g~n6rai de modifier cet 
espace sans que les propri6t6s m6caniques du syst~me soient alt6r6es". In Sections 4 - 6 ,  
CAa~T~ uses his Lie group methods to find canonical expressions for the differential 
forms defining the constraints. In sections 7 - 1 0  he interprets the dynamics in terms 
of two connections, one of which depends on the metric in the directions of  the con- 
straints, the other along the normal directions. 
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then 

Historically, the mathematical meaning of H h ~ ' s  transpositional symbols 
~ j  = -Y~k, defined by 

= E , 1 <= i,j, k <= n, (5.3) ~ZkJ bskblj \ Oqz Oqs,/ 
s,l=l 

was the object of some controversy [NF, w III 5, 6]. The following simple fact, 
which seems not to have been observed in the classical works, gives a standard 
differential geometric interpretation to them. Let 

Oi ' ,dT~i,, = = aij dqj (5.4) 
j = l  

be the dual 1-forms of the moving frame. (The quotation marks are intended 
to remind us that in general they are not closed.) A straighforward calculation 
(see, e.g., [Sp, vol. 2, p. 7 -9] )  yields: 

Proposition 5.1. (i) The transpositional symbols are precisely the structure coeffi- 
cients for the moving frame, i.e., 

dOi = ok oj. (5.5) 
j<k  

(ii) I f  

then 

a~j = 1 ()Pjk + Yii k = ajkOk, --  ~)ij),  09ij E i 

k 

(5.6 a) 

O)iJ = --OgJ i' dOi = E O)kiOk" (5.6b) 
k 

(iii) The above equations uniquely define the connection forms a~ik for the moving 
frame. I f  this frame is declared to be an orthonormal basis for a Riemannian 
metric, then the associated Levi-Civita connection is 

V . Xj = ]~ o)ij (.) Xi, (5.7 a) 
i 

whose curvature is given by 

R(Xk, XI) Xj = E g2ij(Xk, Xl) Xi, f2ij = do)ij + E OOik A COkj. (5.75) 
i k 

5.2. Hamel's equations 

Recall, from the introduction, that as the fundamental law of mechanics 
we take equations (1.1) in the form of d'Alembert's Principle: 

E ( L f f t  OL O L Q k ) ~ q k = O .  (5.8) 
k Oqk Oqk 
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Here L(q ,  (l, t) is the Lagrangian (which can be an arbitrary function, not 
necessarily representing a natural mechanical system), Qk the covariant com- 
ponents of  the generalized external force, and Oqk the admissible variations, 
compatible with the constraints. After some tricky manipulations (see [NF, 
w III.5]) the transformation to quasicoordinates 

yields 

L*(q,  n, t) = L ( q , B ( q )  iz, t)  (5.9) 

Proposition 5.2. D~41embert's Principle, written in Hamel 's  quasicoordinates, 
yields the equations 

0/ok 0nk + ~'~J - nk oh 
k = l  i , j = l  07Ci J 

= 0  (5.10) 

where R k = ZsQsbsk and O/Onk denotes the directional derivative along X k. 

Corollary 5.3. Suppose that r constraints are present. Let the moving frame {Xi} 
be chosen so that the first m vectors satisfy the constraints. In other words, the 
last r quasivelocities vanish: i~K = 0 (m + 1 <_ K <_ n, r = n - m) .  Then (5.10) 
implies that 

O L *  rt , 
d OL* OL* ~- ~ ?~kj i~j = Rk, 1 < k < m,  (5.11 a) 
dt Oir k Onk ~ni - - 

i=1 j = l  

which are supplemented with 

(41 . . . .  , G)  t = B(nl  . . . . .  ~m) t- (5.11b) 

These m + n equations for the unknowns q~ . . . .  , qn, ~1 . . . . .  ~m 
automatically dispense with the constraint reactions. 

5.3. Reduction o f  unconstrained Lagrangians with group symmetry 

Let G r ~ p n  ~ M  m be a principal bundle, and ( a , f )  a gauge coordinate 
system. Introduce the quasivelocities (/r, q) on P via 

~, = (Lg) �9 i~. (5.12a) 

Recall that equations (3.8) describe the case of  G-invariant natural systems. 
More generally, a G-invariant Lagrangian L on TP satisfies aL/On = O, or in 
gauge quasicoordinates (q, 4 ,g ,  iz), one has (cf. (3.4a)) 

L = LS(q, q, iz). (5.12b) 
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Proposition 5.4. Hamel's equations for G-invariant unconstrained Lagrangians are 
given by 

d OL ~ i 3L 
Oir~ + "-' YkJ ~i~i irj = O' (5.13a) 

i,j=l 

d O L  3L 
= 0 (5.13b) 

dt Oq Oq 

where y~j = cikj are the structure constants of  the group, [ek, ejl = Eic~j el. 

Proof. Consider the exponential mapping exp :g ~ G ,  X =  Exie i ~ e x. Thus 
(X, q) are true coordinates via equations (2.1), F(X, q) = eXs(q),  and (5.12a) 
yields 

= (Lexp(_X)) * (Dx ex) X =:  T(X) .  X. (5.14a) 

The operator A in (5.1) is given here by (n ,q)  t = A ( X , q )  t, 

A= ( T(X, 0 ) ,  B = A  -1 = ( T(X)-I 0 ) .  (5.14b) 
0 I 0 I 

Geometrically, this corresponds to the moving frame obtained by left 
translating the vectors a/Oqi and V(eK) at s(q).  With regard to the transposi- 
tional symbols for this frame, it is readily seen from (5.3) that 

(i) the sums run only for l, s = 1 . . . . .  r; 
(ii) the nontrivial )Pjk are those with i,j, k = 1 . . . . .  r (the others vanish): 

y~j = ~ T(X) ~' T(X) ~ I 0 Ti s _ Ox~ Ti . (5.15) 
s,l=l 

Since the left-invariant vector fields eK on G are being identified with the 
vertical fields g .  Vs(q)(eK), it is clear that these agree with the structure coef- 
ficients of the frame {eK} on G. The Maurer-Cartan equations [SW] for Lie 
groups, for which we shall give an independent proof shortly (Proposition 5.6), 
can be written 

yikj(X) = c~:. (5.16) 

The result now follows immediately from Proposition 5.2. 

Remarks. O) If G is Abelian, then nk = Xk are bona fide "cyclic" coordinates. 
Here the c ~ j =0 ,  and equations (5.13a) give the well-known conserved 
momenta Ik =OL/O~k. Solving for the r in terms of the lk and inserting the 
result into (5.13b), after the Euler-Lagrange differentiation, one gets reduced 
equations in the base manifold. These are second-order ordinary differential 
equations for q and depend on l as parameters. However, these equations do 
not appear with a nice structure and seem to have only a local character. The 
Hamiltonian formalism appears more convenient. The local expression 
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H = H(q ,p ,  l) does not depend on the choice of section, so H becomes a 
global Hamiltonian on T*M depending on the momenta lk. The only possible 
complication appears if the bundle is non-trivial. 
(ii) If G is non-Abelian, equations (5.13a) also represent conserved quantities, 
as we show next. Although (5.13b) is unavoidably of local character, these 
equations retain the familiar flavor of an Euler-Lagrange differential with 
respect to q, and (5.13a) resembles the equations of a generalized rigid body. 

Proposition 5.5 (Noether's Theorem). Let exp ( X ( t ) ) = g ( t ) be the component of 
the flow along G, relative to the gauge coordinates ( a , f ) .  Then equations (5.13) 
admit the conserved quantities 

OL 
lK = ~ (idexp(-X(t))eK). (5.17) 

Proof. One may assume X(O) = 0 and 3~(0) =/~. Then 

d/K d t=00L OL d t=0 at - dt 0 ~  eK + ~ .  ~ Ad~,p(_x)- e~ 

= d r _  ~ OL OL 
- -  + [e~:,  n] 

d=oOLOZ(', ) = 5 + g = 0  

t,J 

(by (5.13 a)). 

Notice that the explicit presence of X(t)  in (5.17) renders it impossible to 
reduce Hamel's equations (5.13) further via the first integrals/t E g*, unless one 
assumes p to be fixed under the coadjoint action of G in g*. This will be 
discussed in the following section 5.4. 

I now show that the Maurer-Cartan equations (5.15), (5.16) can also be 
derived from "purely mechanical arguments". First recall 

Example: unconstrained rigid body. Consider the setting of w 3.2, but seen now 
from HA~mL's viewpoint. One has a trivial principal bundle P = G and M is 
a point. Equation (5.13b) disappears, and (5.13a) for a quadratic H =  T =  
1 (2 tQs becomes 

i , j  

where, for the moment, we pretend to be unaware of the Maurer-Cartan 
Theorem. However, since ~k = OT/Oi~x, one gets 

fi~ _ ~  i . .  
= ~k2 QimT~mT~j , 

i , j ,m 
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Comparing this equation with (3.20) and doing a simple relabelling of  in- 
dices, one indeed obtains a "symplectic" proof  of Maurer-Cartan equations: 
y~j(X) = c~j. Perhaps it is worth stating this result explicitly: 

Proposition5.6 (Maurer-Cartan Theorem). Let {Oi}i=l,..., n be lefl-invariant 
1-forms on a Lie group G such that 0i(id) = e* where {ei}i=l,..., n is a basis of 
g. Then 

dOi E i = r)k Ok Oj (5.18 a) 
j<k 

where the ?jk defined by 

. r (~Xl O l ) ~ j  = ~ r ( x )  21 r(x)~fx 0 ris _ ~sXs Ti , 
s,l=l 

T(X) = (Lexp(-x) ) * (Dx ex) (5.18 b) 

are actually constants, equal to the structure coefficients Cjk. In particular, 

(5.18c) 

5.4. Marsden-Weinstein reduction: Expression in coordinates 

In the more abstract context of  G-invariant Hamiltonian systems on a 
symplectic manifold X 2n, for which there is a G-action possessing a momen- 
tum mapping, there is a widely used reduction procedure known as the 
Marsden-Weinstein method ([MW], [A, Appendix 5]). 

The special case of  the Marsden-Weinstein reduction where X = T*M and 
M is a principal G-bundle with base N was analysed by KUMMER [Ku]. For 
completeness, I outline without proofs the main features, which use a connec- 
tion on M in order to obtain a globally defined Hamiltonian in T*N. 

Momentum mapping J:  T*M ~ g*, J (Pro) (") =Pm (Vm(")).  
(i) Jr  = J(" ) (Y)  is the Hamiltonian function of  the Hamiltonian vector field 

d t=0 v (m ,p )  = ~ etrpm~ T(m,p ) T*M. 

(ii) J is G-equivariant, J(g 'Pm)  = Ad~J(Pm). 
(iii) J is an integral of  motion for any G-invariant Hamiltonian on T*M. 

Reduced phase space and Hamiltonian [MW]. Given a G-invariant Hamiltonian 
H: T * M ~ R ,  and an element peg* ,  the standard symplectic form on T*M 
yields, by projection, a symplectic structure on the reduced phase space 
Fp =J-I ( [z ) /Gp,  where G u is the isotropy subgroup of  p in the coadjoint ac- 
tion. By restriction and G-invariance, H projects to a Hamiltonian function on 
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Kummer's model for the reduced phase space: F u -~ T*N. Assume that/X is G- 
equivariant, so that G u = G. (If it is not, replace the action of  G on M by 
the G~-action.) In other words, /x(Adg(.)) =/X(')  for all g E G. Observe that 
in terms of a basis [ei} of g with /X = e~*, this means that 

c~ = 0, for all i,j. 

( The p r~176  is immediate : 0 d ) ---- /x(Adexp(tX)(')) =/X[X,'] for all XEg. 
t = 0  

The idea is to use any connection D on the bundle n : M ~ N  to define a 
mapping iD,u:T*N-~F ~ as follows: Given pnET*N, the G-equivalence class 
iD, u(pn) is the set of all elements PInE T*M (m is any point in the fiber over 
n) 

Pro(') = p n ( d n ( ' ) )  +/x(q~('))  (5.19) 

where q~ is the connection 1-form. (That/X is fixed under the coadjoint action 
is crucial in order that PmEJ-I(/X).) KUMM~R showed that the symplectic 
form on F u pulls back to the standard symplectic form on T*N plus a 
"magnetic term'7 This magnetic term is the pull-back, via the natural projec- 
tion T*N -*N, of a connection-related 2-form on N, which is precisely the/x- 
component of its curvature. Again, the fact that/2 is fixed under the coadjoint 
action allows us to consider this /x-component as a 2-form on N. 

Expression in coordinates. Let (q,X) be gauge coordinates on M, (p, q) natural 
coordinates on T'N, and (q, X, P, H) natural coordinates on T*M. "Natura l"  
means that 

Pq(CJ~-q) = P ' q  

(Pq + FIx) ((e x) * s'(q) 4 + s(q)*.  DxeXX) = P. 4 + H.  f(. 

The element iD, u(pq) is represented at F ( q , X ) =  eXs(q) 
functional 

(q,X) ~P" (t +/x((Lexp(-X)) * Dx ex) f ~ -  b(q) (~ 

so that 

(5.20) 

by the linear 

P = p  - b(q)*/x, 

1-I = [ (DLexp(_x) ) (DxeX)]* /x = T(X)* /X (5.21) 

where * denotes the dual linear operators, 

(Lexp(-x))* :g* ~ Texp(x) *G, (DxeX) * : Texp(X) *G ~ g * .  

Given a G-invariant Hamiltonian H(q, X,P,H) in coordinates, the reduced 
Hamiltonian is given by 

Hred(P, q;/x) = H(q, O,p - b(q)* /x,/x) (5.22) 



136 J. KO~LER 

and the reduced symplectic form, which takes into account the magnetic term, 
is 

( Obnj Obni~ dqi ^ dqj. (5.23) dp dq A + 
- -  \ Oqi Oqj,] 
i<j  

Here {el} is used as a basis of g with/2 = e*, as indicated above. If a solu- 
tion p(t ) ,  q(t) of the reduced system is known, the coordinate P(t) is im- 
mediately given by (5.21), while to obtain the coordinate X(t)  it is necessary 
to integrate the following time-dependent ordinary differential equation in g 

OH. t = ~ ( q ( ) , X , P ( t ) ,  T(X)*/2). (5.24) 

Comparison with Hamel's approach. Let L : ~ ~ R  be a Lagrangian. Its Legen- 
dre transformation 

L e g : T M ~ T * M ,  Leg(vm) ( ')  =D(m,O (L[ TraM)(,) 

composed with the momentum mapping J :  T * M ~ g *  yields, as expected, 
Noether's integrals 

d t=oL(V m + tVm(Y)). I: TP -*g*, IY(vm) = dt 

Using gauge coordinates, one has L = LS(q, q, it) where 

m = g . s ( q ) ,  g = e  x, v m = g * [ s ' ( q )  q +  Vs(q)(ir)] 

Vm(" ) = g * V~(q)[Adexp(-x) (")] 
so that 

I r ( v m )  : OL~ 3L s 
3 ~ "  Adexp (-x) Y = Adexp( -x)* ~ (Y). 

If/2 E g* is fixed under the  coadjoint action, then the invariant set associated 
with p is given simply by 

OL ~ 
- -  (q, q,/r) =/2,  (5.25) 

which allows /~ to be solved for as a function of (q,q,/2); this solution can 
be inserted into (5.13b). One can prove, by brute force, that these "sharply 
local" reduced equations are equivalent to the globally defined reduced 
Hamiltonian in KUM~mR'S construction. 

6. Proofs  o f  T h e o r e m s  3.1 and 3.2 

6.1. Non-Abelian Caplygin systems 

Given the gauge coordinates ( a , f ) ,  define the quasivelocities (see (3.4a)') 

= (Lg) * (it + b(q) [1) (6.1 a) 
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so that a G-invariant Lagrangian L on TP can be written locally as 

L*(q, 4, it) = LS(q, (t, iz + b(q) 4). (6.1 b) 

The constraints are represented simply by # = 0. Th e  matrix A in (5.1) for 
which (4,/~)t = A (4, x ) t  is given by 

A =  ( I 0 ) ,  B A _ I =  ( I 0 ) .  (6.2) 

-b (q )  T(X) T(X)- ib(q)  T(X) -~ 

Proof of Theorem 3.1. By group invariance, the transpositional coefficients can 
be calculated at X = 0. One verifies readily that 7 i = 0 (1 < i _< m) and kJ 

F 

.m+l ab~j Oblk + ~ bskbLic~sL 
ykj - Oqk OqJ s,L=l 

where one uses the Maurer-Cartan formulas (5.18). The result now follows im- 
mediateIy from Proposition 5.2. 

Proof of Theorem 3.1'. It remains to  give an intrinsic characterization of  the 
nonholonomic terms when the Lagrangian is natural. For a quadratic form T, 
recall that 

r~(q,o, ir) = r~(q,o) + T ~ ( / ~  - b(q)q) + ~(q~.~o~,S(q), (i~ - b (q )q )  

so that 

or~ (.) = ~(q~ ~q,s(q)* . (6.3) 
Oi~ ~=O(q)o 

and this gives rise to the tensor K. Similarly, if L contains a linear term /t 
in the velocities, it yields the tensor J. 

6.2. Generalized rigid bodies with lefl-invariant constraints 

Identify T*G -~ G• by left transport, as in the Lemma from w 3.2. Given 
any 1-form ~u on G (not necessarily left-invariant), consider the vector field 
X~, on G• defined by 

n*gz = ~(. ,Xv/)  (6.4) 

where n :  Gxg* ~ G  is the projection on the first factor. 
It is readily seen that X~ = (0, -L~u(g) )  so that X is vertical (tangent to 

the fibers) and furthermore constant on each fiber. When ~u is left-invariant 
X~ = ( 0 , - ~ ' i a ) ,  it is also constant with respect to g E G, i.e., it is the same 
in all fibers. 

Given a left-invariant Hamiltonian H on T*G subjected to left-invariant 
constraints D : ~k = 0, 1 < k < r, consider the Lagrange-d'Alembert equations 
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in Hamil tonian form (see e.g., [We]) and pass subsequently to the coordinates 
G xg*. The result is (compare with Lemma 3.2): 

Lemma. The constrained vector field (in G •  is given by 

= (Lg) * ~ ,  fl = (,(~[,l .) k = l  
(6.5) 

Proof of Theorem 3.2. It remains only to eliminate the multipliers in the par- 
ticular case where 2H = tp Q-lp,  and Q is positive-definite. Observe that the 
inverse Legendre t ransformation Leg -1 :g* ~ g  maps the span of  the q/ikd into 
the T-orthogonal complement  of  D = Nkker q/ikd . Thus the constrained vector 
field is precisely the T-orthogonal projection of  Leg-a(Vn) over D. 

7. Factorization of more general classical nonholonomic systems 

Again, consider a G-equivariant Lagrangian in the total space P of  a prin- 
cipal bundle G r _~pn _.M m, subjected to classical constraints. It  is natural to 
ask what happens when the number  of  constraints is different from r = dim G. 
Let d be the dimension of  the subspaces Dp in TpP of  admissible velocities. 
We have worked out the case d =  m, Dp ~ Tn(p)M. In the case d <  m, 
Dp n Vp = {0}, one expects to obtain a reduced system in TM with m - d con- 
straints. When d > m, the system factorizes into two (coupled) components,  
one being a special field on TM, the other an operator on subspaces of  g. 

I outline the main features of  the latter. A pseudoconnection (lacking a bet- 
ter name) is a distribution {Dp} of  d-dimensional subspaces of  TpP such that  
O) g * Dp = Dgp; (ii) Kp = Dp ~ Vp has the same dimension d - m for all p ~ P. 

Assume that  the Lagrangian L on TP is natural, L = T -  V. Using the 
metric one can define the decomposit ion TP = N O K ~ S where Sp is the or- 
thogonal  complement  of  Kp in Vp and Np is the or thogonal  complement  of  
Kp in Dp. Since dimSp = r - (d - m),  it follows that  dimNp = m and hence 
that  N defines a true connection on the principal bundle. 

Fix a gauge system ( a , f ) .  At each qE U, the metric T[ Vs(q) is transferred 
to g, and there is an associated splitting Kq G Sq of  g, varying smoothly with 
q. Construct  a smooth family of  basis vectors ki(q), 1 <_ i <_ d - m, for Kq 
and sj(q), 1 <=j <= r -  ( d -  m), for Sq. 

Let X be coordinates relative to a fixed basis ek, 1 <_ k <_ r for the Lie 
algebra, and S(q) the matrix transforming the X-coordinates to the coordinates 
(/t, fl) on the basis (ki, sfl, 

]~ Zike ~ = vZ fiiki(q) + Z fljsj(q). (7.1) 

Thus the quasivelocities for this setting are 

(q,/),/0) t = A ( q , X ) .  (q,X)t ,  

o)(,  o) 
0 S(q) - b ( q )  T(X) 
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and explicit expressions 
using the defni t ion (5.3) 
tions is as follows: 

and the constraints are given by /~ = 0. The Lagrangian is of the form 

L(q, (t, lJ, fl) = LS( q, (t, ir(q, ft, l~) + b(q) ~t) (7.3) 

for the transpositional coefficients can be obtained, 
with A given by (7.3). The structure of Hamel's equa- 

dt O(lk Oq~ i=1 j = l  j=l 

d-m ~L @ 

i=1 

r-(d-m) 

+ E 
i=1 

d OL* 
O -  + 

dt Oilk 

< ~ d-m~'i+m . ~ 
~ikfm (~J "4- E gk'm+p'Up) 

j = l  p = l  

OL*(j~_ 1 d-m~d+i . ~  
~ii  ~)~j+i (]j + E gk, m+p"p) , 

- p = l  

~ OL. ( m Oqi "~ +d-m ) 
~m+k,jqj E ~m+k'm+p~lP i=X ~_. ~ ,  i �9 i �9 

j = l  p = l  

(7.4) 

d-m 
i ~ d-m OL* ~.i+m �9 ~.i+m �9 

"4" ~ ~ ;m+k,jqj + E Ym+k,m+pflp) 
i=1 j = l  p = l  

+ m) Ot*. ~ d+i ;. 
gm+k'jttj + E ~ d+i Ym+k,m+p ~p �9 

- j = l  p = l  

8. Natural (~aplygin systems: affine connections 

Riemannian Geometry and Mechanics meet in the study of natural un- 
constrained Lagrangians L = T -  V on a tangent bundle /Q. The following 
results, for instance, are well known: 

(i) The paths with total energy h agree (up to reparametrizations) with the 
geodesics of the Jacobi metric Tj = (h - V) T. In particular, if the energy sur- 
face is compact, and the sectional curvatures negative, the system is ergodic 
([A, Appendix 1]). 
(ii) The equations of motion can be put in the form 

V2 ~ = _ ~ gO(q) O V 0 (8.1a) 
i,j Oqj Oqi 

where the left-hand side is the acceleration according the Riemannian connection 
associated with the metric T, and the right-hand side is the contravariant ex- 
pression of the force due to the potential V. In view of (i), the trajectories 
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agree with the geodesics of Tj, given by 

V~.Y = O. (8.1 b) 

One can give a proof of (i) without using the Principle of Least Action, 
as usually done (e.g., in [A, w 45D]): In local coordinates 2T= dlG(q)(l,  
V = V(q). Equivalently, the Lagrangian L corresponds to the Hamiltonian on 
T 'Q:  

H(p, q) 1 t - lp = i p  G(q)  + V(q) ,  (8.2) 

and the Legendre transform of the Jacobi-metric is 

HJ(p, q) = l pt G(q)  -1 (h - V(q)) - lp .  (8.3) 

The result of JACOB1 follows from the simple observation, via a straightfor- 
ward calculation, that for solutions of (8.2) with H = h, 

grad H J = (h - V) -1 grad H. (8.4) 

Lagrangians which consist only of a kinetic energy term are called inertial. 
JACoBFs result means that by changing the metric to a conformal one, with 
conformality factor h - F, all natural systems may be assumed to be inertial. 
The Jacobi metric is useful for constrained systems as well, an observation 
which seems not to have been sufficiently explored in the theory of 
nonhotonomic systems: 

Proposition 8.1. The trajectories with energy h of the nonholonomic Lagrangian 
system L = T -  V with classical constraints given by the distribution Oq coincide 
with those of Tj with the same constraints. 

Proof. Write the d'Alembert-Lagrange equations in Hamiltonian form: 

OH OH OH 
L:  Clj = Opj ' ~6j = - -0  ~qj + ~'uiaij' ~aij --Opj = O, 

0 ~  OH J 0 #  
Tj : ilj - Opj ' ~j - Oq] + ~ Ai aij, ~, aij Opj = O. 

In view of (8.4) the vector fields are proportional: The uniquely defined 
mukipliers for the second set satisfy 2 = g ( h -  V). 

Concerning the nonholonomic counterpart of (ii), VERSmK & FADDEEV 
[VF] stressed the role Of projected affine connections, which are the analogues 
of Levi-Civita connections on linear tangent subbundles D of 7P. Define 

VxDY = prD VxY (8.5) 

where X, Y are vector fields satisfying the constraints, prD is the T-orthogonal 
projection over D, and VxY  the Riemannian connection of T. 
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Caveat: Strictly speaking, V D should not be called an affine connection, 
because unless it is integrable, D is not a full tangent bundle. 

Propos i t i on  8.2 ([VF]). For inertial constrained Lagrangians L = T, vp ~ Dp, the 
solutions y( t )  of the Lagrange-d~tlembert equations satisfy 

D V ~(t) ~' ( t )  = 0 .  (8.6)  

In view of  Proposition 8.1, the projected connection can be always used 
in studying natural nonholonomic systems: One can use T = Tj to assume, 
without loss of generality, that the system is inertial. Proposition 8.2 follows 
immediatly from the geometric interpretation of the Lagrange-d'Alembert equa- 
tions given by CARTAN ([Ca])4: 

Lemma. Consider a mechanical system with n-degress of freedom having kinetic 
energy T (in coordinates 2T = qtG(q) q),  subjected to r linear constraints D (in 
coordinates A ( q )  q = O, A an r x n  matrix of rank r) and an external force F 
(whose work Z Pidqi for admissible displacements is known). Then the Lagrange- 
d~tlembert equations express the fact that the difference between the acceleration 
(according to the metric T) and the external force, i.e., the reaction to the con- 
straints, at any point q of the configuration space, is normal to the plane Dq. 

Proof. The Lagrange-d'Alembert equations can be written vectorially as 

d OT 
-- G(q)  (l - - -  = e + tAbt. 
dt Oq 

Multiply this equality by G -1. In the old differential-geometric language, 
this means taking the contravariant components of  the acceleration and of  the 
forces (external and constraint reaction), in the right-hand side. The constraint- 
reaction force is therefore 

0 
= - - ,  (8.7) N E G-1Atlti Oqi 

and it is orthogonal to D: If  v = E(Ti(O/aqi) EDq, then Aq = 0 and 

(v,N) = tqG(G-1Atlt  ) = (Aq)t/.t = 0. 

Consider now the basic setting, a G-principal bundle n �9 P ~ M ,  with a con- 
nection D and G-invariant natural Lagrangian L = T -  V. In view of Proposi- 
tion 8.1, there is no loss in generality by assuming that L is purely inertial 
(replace T by Tj if there is a potential V). 

Theorem 8.3. The solutions of the reduced system on TM are the geodesics of the 
affine connection on M defined by 

Vff'z~ Y = :  re, (prD Vh(X)h(Y))  = zc,(V~(x) h ( Y ) )  (8.8) 

where h is the horizontal lift operator. 
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Proof. It is easily verified that V M'D is well defined (i.e., it does not depend 
on where the lifts are done in the fibers) and satisfies the axioms of  an affine 
connection. The result follows immediately from Proposition 8.2. 

Since V M'D is a true connection on the tangent bundle of M, it is possible 
to study its differential-geometric entities: torsion, curvature, holonomy 
groups, validity of a result of  t-IoPF & Rmow, and so on. These developments 
will not be pursued here, in part because of  the observation that H ~ ' s  ap- 
proach yields a different affine connection on TM (but with the same geodesics, 
of  course), as we now show. 

Recall a standard operation in differential geometry. If  Q is a Riemannian 
manifold with metric T, operators R r of  "rais ing" and L r of  " lowering" in- 
dices are defined as follows. If  X =  Eai(O/Oqi) is a vector field, then the 
associated 1-form Wx = Zaidq i is defined by lowering indices, ai = ZjgvaJ, 
and conversely, a i=  XjgiJaj. Intrinsically w x ( Y ) =  <X, Y>. This construction 
can be naturally extended to arbitrary tensor fields, transforming any con- 
travariant slot (vector field) into a covariant one (1-form), or vice-versa. Also 
recall that a covariant slot can be removed if one makes the tensor field be 
vector-valued: For instance, if B(X, Y,, w) is a (2,!)-tensor, then it is identified 
with a vector field-valued B(X, Y) via B(X, Y,, w) = w(B(X ,  Y)).  The latter 
operation does not depend on the metric. 

For instance, the (3,0)-tensor field K(X, Y, Z) defined in w 3 via the opera- 
tion of  raising the indices of  the last slot, becomes the (2,1)-tensor 

B(X, Y, w) = K(X, Y, RTW). (8.9) 

Proposition 8.4. Let ( G ~ P -~ M, L = T,, D) be a natural Caplygin system, with 
an inertial Lagrangian. Then the solutions of the reduced equations on M, obtained 
by Hamel's method, are the geodesics of both of the following affine connections: 

v~,Hxr= v}r+ B(X,Y), V2U, I~xr= V}Y+ B(Y,X) (8.10) 

where Vf;Y is the Riemannian connection of the projected metric T* and B(X, Y) 
is the (2,1)-tensor field corresponding to the tensor K on M, via RT.. 

Proof. Going back to Proposition 3.1, one writes the equations of  motion in 
terms of contravariant components. I f  p = E(ti(O/Oqi), then 

< ( V~(F + E g, ki hs(q )(q), V Os q, - -  = 0 
i,k Oqk 

so that in local coordinates, the second term is B(q ,q )  with 

( < ( B ~ , a i - - ,  = ~ g.kl h (a) ,  V g2 s b, - -  (8.11) 
Oqi k,l Oqk" 

This has a global meaning: it is the raising of  the third-slot of the tensor K. 
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Remark. I have used the fact that the set of  connections is an affine space, 
modelled over the infinite-dimensional vector space of  (2,1)-tensors. Clearly 
either one of  B I ( X , Y ) = B ( X , Y )  or B 2 ( X , Y ) = B ( Y , X )  can be used: V M'n 
and V~ a'H have the same geodesics, since B1 -B2 is an antisymmetric tensor 
(see Hicks [Hi] for these properties of  affine connections). 

In view of  this remark,  one may pose a "phi losophical"  question: which 
one of  these connections has a better link with the dynamics of  the 
nonholonomic system? In doubt, one can average them, and an educated guess 
is that  this average would give V M'D. It  turns out that this guess is not quite 
correct: 

Proposition 8.5. The projected connection in M & explicitly given by 

vrm'oz = V~,Z + I[B(Y,Z) + B(Z,Y)I  + I C(Y,Z) (8.12) 

where C(Y, Z) is the tensor obtained by raising the first slot of K(X, Y, Z). 

Remark. Since C is an antisymmetric tensor, it does not enter in the differential 
equations for the geodesics of  the projected connection. 

Proof (by a direct computation). Given coordinates q on M, it is necessary to 
obtain the Christoffel symbols of  vM'D: 

VM D 0 i 0 (8.13) 
~ O-qj - ~ FJk Oq~i" 

i 

To make calculations simpler, one may consider a section s : R m ~ P such that 
the image of  s'(qo) is the horizontal subspace at qo (b(qo) = 0) and also 
that the vectors s'(qo)" OlOqg are orthonormal.  Thus, using the definition of 
the projected connection, we obtain 

FJk(qo) =IVh(O/Oqk)h ( ~ q j ) , h  (~qi ) (qo)) 

where ( , )  represents the metric of  P. 
One now needs a formula which comes from a well-known trick in dif- 

ferential geometry. Let X, Y, Z be vector fields on a Riemannian manifold, not 
necessarily commuting.  I f  V is the associated Riemannian connection, then 

2 ( VxY, Z) = 2,2(Y, Z) + Y(Z, X) - Z(X, Y) - ([Y, Z], X) - ([X, Z], Y) - ([Y, X], Z). 

(8.14) 

Let Xi = h(O/Oqi), and observe that the g~ = (Xi, Xj) give the coefficients of  
the projected metric. Now * go (q0) = ~o- For X = Xg, Y = Xj, Z = Xk, the first 
three terms of  (8.14) give the familiar expression 

0 0 0 . 

Oqi g~ + - -  g~ . . . .  " - -  Oqj Oqk g ' J  
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The last three terms can be identified (after a careful, but straightforward 
inspection) with the tensors B1, B2 and C computed at q0, by using 

([Xi, Xj,Xj) (qo) :  E g~j(qo) (ObLk ~ 
L \ c3qi Oqk/I q=qo 

(8.15) 

where g~j = <Xj, V~(q) eL). 
To prove (8.15), it is enough to show that 

[Xi, Xk] (s(qo))= E (ObLk 
L \ aqi 

Oqk] Iq=q0 Vs(qO eL, 

which follows from the explicit formula for the Lie-brackets in (q,X)-coor- 
dinates, taking advantage of the convenient assumption that b(qo) = O. 

9. Final comments  

9.1. Other types of constrained systems with symmetry 

In this paper I have treated only the standard situation of Lagrangians 
L: TP ~ R  with classical constraints, i.e., given by a distribution of linear 
subspaces Dp C TpP. Several authors have considered other types of 
mathematical problems involving linear or nonlinear constraints, such as: 

(i) Lagrangians with nonlinear constraints on P. Gauss' Principle of Least Con- 
straint can be invoked in order to derive the equations of motion. A physical 
example was given by HAMEL (see [NF, w IV.2]). NEIMARK & FtJFAEV notice that 
this example arises from another with standard constraints, taking limits for 
certain parameters. However, the limits of the solutions of the "standard" 
problem do not agree with the solutions of the limit problem. 
(ii) Lagrangians with linear constraints on ~ VERSmK & FADDEEV [VF] extend 
d'Alembert's Principle to include admissible codistributions represented in local 
coordinates by fl=[Ej(a~dqi+ b~dvi)}j=l ..... p with rank b =p. The con- 
straints are given by kerfl. 
(iii) Hamiltonians with constraints. WEBZR [We] considers a symplectic manifold 
(M2~,a~), a Hamiltonian H : M ~ R ,  and a linearly independent system 

[ / ~ i } i = 1  . . . . .  m ,  m < n, of differential forms on M, and extends d'Alembert's prin- 
ciple as 

og(X,.) =dH+ ~flifli, fli(X) = 0  (1 < i<_m). (9.1) 

(iv) Dirac theory of degenerate Lagrangians. In some circumstances, Dirac's 
theory of constraints has a link with reduction schemes. This is discussed in 
the paper by CANTRUN et al. [CCCI]. On the other hand, for degenerate 
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Lagrangians L : TP n ~ R ,  of rank n - m, it is frequently possible to define an 
equivalent Hamiltonian on T'P, satisfying m relations Gi(p, q) = 0. The dif- 
ferentials fli = dGi are called generalized holonomic constraints by WEs~R. It 
is asserted in [We, w 3] that Dirac's canonical equations coincide with (9.1), 
but it seems that this does not hold in general. 

(v) Carath~odory metrics and control problems. A distribution D on a manifold 
Q may be called fat if the algebra of commutators of a local basis of vector 
fields for the distribution span TqQ at any point q 6 Q. If  Q is given a metric 
g, the Carnot-Carath6odory distance d(ql, q2) is the infimum of the q- 
distances along horizontal curves joining these points. This is related to the 
Lagrange problem of Calculus of Variations and some variational problems in 
control theory (see BROCKETT [B]). PANStT [Pal and MITCrIEI.T. [Mi] have 
studied the Hausdorff  dimension of these singular metrics. 

In all these contexts the ingredients can be assumed equivariant under the 
action of a Lie group. A research program is to obtain reduction procedures, 
even in local form, for the above settings. 

9.2. Some recent results 

After the submission of this paper, the translation of a treatise by ARNOLD, 
KOZLOV & NEISHTAUr [AKN] and several interesting articles have appeared. I 
add some brief comments about these new developments. 

(i) Vakonomic Mechanics and Lagrange variational problems with symmetry. Un- 
fortunately, the same word "nonholonomic" has been used historically with 
two different mathematical meanings. Perhaps to remedy this, KozIx)v has in- 
troduced the term "vakonomic" [AKN, w 1.4], meaning mechanics of the 
variational axiomatic kind. The relationship with the Dirac formalism of con- 
straints is clarified in [AKN, w 1.5]. R. MONTGOMERY [Mo] has started a pro- 
gram to study shortest loops with a given holonomy. He shows that the solu- 
tions are trajectories in Yang-Mills potentials. Applications range from quan- 
tum mechanics to mechanical engineering. The old problem of physical 
realization of constraints was revisited by Koz~ov [AKN, w 1.6], [Koz]: a 
unified framework for the two different equations of motion is obtained. From 
the analytical viewpoint (topic (v) above) a very nice survey by GERSHKOVICH 8,; 
V~RSmK [GV] was published, with recent results included. See also [VG] and 
[BG] for interesting examples. 

(ii) The notion of integrability for nonholonomic systems. In a first version of this 
paper, the question whether there is a suitable generalization of the concept 
of Liouville integrability for classical nonholonomic systems of generalized 
Caplygin type was posed. The reduced system in TM (or T*M under the 
L*-Legendre transformation) is not Hamiltonian in general, but it can be con- 
jectured that there is an invariant measure. This is indeed the case in several 
examples: while preparing the revised version of this paper, the recent work 
by Vv.SEZOV & VESEZOVA [VV] was encountered. There, the authors show that 
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the rigid-body with left-invariant constraints, when written in a suitably ex- 
tended phase space (including the constraint reaction), has an invariant 
measure. In the case of G = SO (3) with one constraint, there is even a relation 
with the celebrated Neumann problem of  a point moving on the sphere with 
quadratic potential. A theory of  integrable nonholonomic systems is presented 
in [AKN, w IV.4]: the motion takes place along tori, along their Kronecker 
curves, but nonuniformly. A perturbation theory for systems with almost 
holonomic constraints is presented by TATARINOV [Ta]. 

(iii) Reduced nonholonomic systems. STANCI-mNKO [St] gives some further ex- 
amples of  invariant measures. That  paper studies the Abelian Caplygin 
nonholonomic systems, from the outset, in terms of  differential forms. The 
reduced equations are of  the form ~"2~apl(., Xred) = dHred, but the 2-form .f'2~apl 
need not be closed, so the system in general is not Hamiltonian. It would be 
interesting to generalize these results for the non-Abelian case. [AKN, w III.1.2] 
consider symmetries in nonholonomic mechanics, but in a different setting: 
they assume that the vertical fields satisfy the constraints. In their case the 
momentum is conserved, while it is not conserved in the setting considered 
here. 

(iv) Some applications to Mechanical Engineering. JANKOWSKI & MARYNIAK [JM] 
study the helicopter as a controlled system with nonholonomic constraints. 
The equations of  motion are of  d'Alembert type, but the constraints are not 
physically realized by friction forces as usual. Rather, they are consequences 
of  the control laws. This approach was first advocated by H. BEGHIN [Be, Ap]. 
Control laws superimposed on classical nonholonomic systems were considered 
by BLOCH& MCCLAMROCH [BM]. KANE [Ka] has developed the computer 
algebra program AUTOLEV to derive the equations of  motion, based directly 
on d'Alembert 's priciple. Fewer algebraic manipulations are done than in the 
Euler-Lagrange approach. The program can handle quasicoordinates as well, 
so it works also for nonholonomic systems. It would be interesting to extend 
it to systems with Lie group symmetries. 

(v) Quantum mechanical nonholonomic systems. R. J. EDEI~ [E] considered the 
modifications in the Heiseberg formalism necessary to take into account the 
classical nonholonomic constraints. Recently, P. PITAIqCA [Pi] revisited this 
issue, also presenting some concrete examples. Interestingly, the nonholonomic 
constraints are manifested as nonintegrable phase factors in the wavefunction. 
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