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Reduction of Some Classical
Non-Holonomic Systems with Symmetry
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Communicated by R. MCGEHEE

Abstract

Two types of nonholonomic systems with symmetry are treated: (i) the con-
figuration space is a total space of a G-principal bundle and the constraints
are given by a connection; (ii) the configuration space is G itself and the con-
straints are given by left-invariant forms. The proofs are based on the method
of quasicoordinates. In passing, a derivation of the Maurer-Cartan equations
for Lie groups is obtained. Simple examples are given to illustrate the
algorithmical character of the main results.
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One of the interesting ocurrences of symmetry in mechanics is the rolling of a solid body
without slipping along a two dimensional surface (possibly of a complex profile). The results of
this process are studied -by the mechanics of nonholonomic systems .... Recently, deep and
interesting connections -of this subject with Lie groups were discovered ... .
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1. Introduction

The question of reducing ordinary or partial differential equations which
are invariant under the action of a Lie group has attracted considerable atten-
tion in recent years. To reduce means to obtain equations with fewer coor-
dinates or, when possible, to obtain a globally defined differential operator on
a quotient manifold. For a comprehensive introduction to the subject, see the
book by Orver [O].

The concern here is the reduction of classical non-holonomic Lagrangian
systems with symmetry. Two cases, which form the core of the paper, are
treated in detail: (i) the configuration space is a Lie group G with left-invariant
metric and (non-holonomic rigid body) constraints; (ii) the configuration space
is a principal bundle G — P —M and the constraints distribution defines a con-
nection (non-Abelian Caplygin systems). The setting for more general situations
is given in the last sections (§§ 7, 8, 9).

The theory of non-holonomic systems has been much developed in the
Soviet Union: My basic sources are the book by NEmARK & Furaev [NF], and
the articles by VeErsmIK [V] and VErsmik & FADEEV [VF]. My basic motivation
was to generalize the theory to the case of a non-Abelian symmetry group.

Caplygin systems. (INE, Chapter III, § 3]). Consider the Lagrange-d’Alembert
equations of mixed type !

d oL 8L 4
S - =00, d) - ¥ mag, 1=k=n, .0
dt 0g,  Ogy 1231 T

E a(q) =0, 1=j=r
k=1

Suppose that the Lagrangian and external force do not depend on the coor-
dinates ¢,41,...5qy, and that the constraints can be written in the form

m
4x = E bgig, m+1=Kzn 1.2)

i=1

! Recent influential books on Analytical Mechanics (such as those of ABrRaHAM &
MARSDEN [aM] or ArnoLp [a]) focus their approach to the foundations on the passage
from Newton’s laws with potential forces to the Lagrangian and Hamiltonian for-
malisms. SOMMERFELD, however, considers d’Alembert’s Principle as more fundamental
[So, §§ 8, 10, 12]: ““the principle [of virtual work] was already sketched by GALLLEO ...
It achieved its dominating position ... with ‘*“Mécanique Analytique’> of LAGRANGE ...
We regard it practically as definition of a mechanical system”.

Or, in LacraNcE’s own words [L]: ““Si Pon imprime & plusieurs corps des
mouvements qu’ils soient forcés de changer 4 cause de leur action mutuelle, il est clair
qu’on peut regarder ces mouvements comme composés de ceux que les corps peudront
reélment, et d’autres mouvements qui sont détruits; d’ou il suit que ces derniers
doivrent étre tels, que les corps animés de ces seuls mouvements se fassent équilibre’’.
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where the functions bg; do not depend on the last » = n — m coordinates. We
interpret this as invariance under the Abelian group R"~™. CapLyciN showed
around 1895 that the system reduces to a second-order ordinary differential
equation for the variables ¢; (1 =i s m), with the multipliers eliminated

d oL*  OL* ILN* [ o [Obx; dbg\\ .
ey (V[ n (T - )y,
dt 9g; dq; Gllle ag; dq; (1.3)

K j=1

The symbol L* means that the gx are replaced by (1.2) in L before the Euler-
Lagrange differential is computed. On the other hand, in (dL/dqgx)* the
substitution is effected after the differentiation.

As an exercise, the reader may work out the reduced equations for an arrow
or javelin: they rotate about their centers of mass so that they always stay
tangent to the paths described by their centers of mass.

Non-Abelian Caplygin systems. The configuration space R” is replaced by a
manifold P" acted on by a Lie group G. Assume G ~P —M is a principal
bundle, M = P/G, dim G =r, dimM = m = n — r. The Lagrangian is supposed to
be G-equivariant. For natural systems L = T — V this means that T is a metric
on P on which G acts by isometries, and V is an equivariant potential which
can be considered a function on M. The constraints are defined by a smooth
distribution D, of m-dimensional subspaces of T,P which project isomor-
phically over T,,yM and such that D, , = gD, (i.e. the constraints define a
connection on the bundle; see § 2 for background). It is geometrically obvious
that the Lagrange-d’Alembert constrained system on 7P must project to a second-
order ordinary differential equation on M. I was able to find a local expression
in suitable coordinates, analogous to (1.3), and characterize it intrinsically.
These results were announced in [Ko]. M. pE LeoN & P. Robricues kindly in-
cluded the result in their book [LR]; a different proof is presented there.

Rigid body with constraints. Consider a Lie group G together with a left-
invariant Riemannian metric. The Euler equations [A, AM] for this generalized
rigid body give a vector field in the Lie algebra g. Left-invariant constraints
on TP are defined by a subspace D of g. An educated and correct guess is
that the Lagrange-d’Alembert constrained system on G reduces to a vector field
on D which is just the orthogonal projection of the unconstrained Euler vector
field.

Outline. for the convenience of non-experts, I review in § 2 some basic results
about connections on a principal bundle, which will be used subsequently. The
main results are stated in § 3, in local as well as intrinsic versions. Some stan-
dard examples from the literature are revisited in § 4. The algorithmically
minded reader should compare them with the derivations of the equations of
motion in the references [H, NF].

Concerning the proofs, I use ‘‘quasicoordinates’’, a method strongly ad-
vocated by HaMEer [H], which is reviewed in §§ 5.1 and 5.2, and applied to un-
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constrained systems in § 5.3 and § 5.4. In the holonomic case, this approach
suffers from an inherent syndrome, its local character. A comparison is made
with the intrinsic method of MARSDEN & WEINSTEIN [MW]. Nonetheless, as a
surprising byproduct of HaMEL’s approach, when revisiting ARNOLD’S
generalized rigid bodies [A], I found another proof of the Maurer-Cartan
structure equations for a Lie group. (This is actually an ‘‘overkill’’: for two
standard proofs, as well as applications, of this basic fact in Lie group theory,
see the textbook by SATTINGER & WEAVER [SW].)

In § 6, I prove the theorems stated in § 2, and outline in § 7 the equations
for equivariant Lagrangians with constraints, these being group-invariant but
failing to define a connection. In contradistinction to Hamer’s approach for
nonholonomic systems, in the particular case of narural Lagrangians there is
a more ‘‘geometrical”’, or ‘“intrinsic’’ viewpoint, which can be traced back to
E. CartaN [Ca] and more recently revived by VersHIK [V]. The equations of
motion represent the geodesics of a non-Riemannian affine connection. In-
teresting enough, HAMEL’s method yields a different affine connection, with the
same geodesics. This is shown in § 8. In the final comments (§ 9) I also
describe some recent results of which I became aware after the paper was sub-
mitted.

Remarks. (i) 1 use the word reduction, but in the context of § 7 the word fac-
torization is perhaps more appropriate because the system does not need to
project completely into a quotient manifold. In fact, the word ‘‘reduction’ has
by now a standard meaning in Hamiltonian mechanics (namely the Marsden-
Weinstein method [MW]). - (ii) The methods of Hamer and of Mars-
DEN & WEINSTEIN have complementary drawbacks: the latter was not designed
to deal with non-holonomic constraints, but on the other hand, HAMEL’S ap-
proach does not easily recognize the integrals of motion for holonomic systems
with symmetry. (iii) One promising source of applications is robotics. For in-
stance, in Space Engineering one frequently encounters large coupled systems
of articulated rigid bodies (with or without constraints) which are invariant
under the group of rigid motions SO(3). Underwater systems may have the
symmetry group SO(3) ~ XR®. Furthermore, the non-Abelian éaplygin setting
can be thought of as a ‘‘toy model”’ (in harmony with HerTZ’s ideas [He] 2
of ‘“‘concealed forces’’) for a spinless particle on a Yang-Mills field [Ko, Bu].

2 Hertz [He] wanted to construct the Foundations of Mechanics disposing entire-
ly with the notion of force, replacing it by equivalent velocity constraints. His basic
principle, which vyields precisely the Lagrange-d’Alembert equations, states that the
geometric curvature of the path is always a minimum, subjected to the constraints. In
his review of HEerTZz’s book, PoINCARE [P] says: “‘Ah bien, d’aprés HEerTZ, toutes les
fois que nous imaginons une force, nous sommes dupes d’une illusion”. And he pro-
poses the following problem: ‘‘Peut-on imaginer un systéme articulé que imite un
systtme de forces, définie par une loi quelconque ol en approchant autant qu’on
voudra?”’. Next, PoiNcarE discusses attempts of Kervin and MaxXwELL to give a
material realization for the properties of the “‘ether”’. The following provocative state-
ment could perhaps be applied to the various theories being tried now in Particle
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2. Review of some facts about connections

Let g:Uy CM—P be a local  section of the principal G-bundle with
projection pr:P —>M", and f:U C R" - Uy a parametrization in M. Let

With. these .data one associates the gauge parameters (q,X) for P and
(9,4, X, X) for TP:

F:Uxg—P F(g,X)=exp(X)-s(q), s=0c°f,
DF:UxR"xgxg—T(pr 1 (Uy)), Q.1
(4,4, %, X) ~u, = (€X) +5'(q) ¢ + (5(q)) * Dxe*- X.

Here the customary notations g:P =P, g(p) =g-p, p:G—P, p(g) =g-p,
L,: G =G, L,(h) = gh are used. With an element Y in the Lie algebra g, one
associates the vertical vector field V,(Y) = D,p- Y.

However, I find that it is more convenient to consider instead the gauge
quasicoordinates (q,q, g, ) on TP:

TF: UXR"X Gxg - T(pr " (Uy)), 2.2
(9,9,8 %) 2w, =g*[s'(q) ¢ + Viyy 7]

where the dot over the symbol 7 €g is used only for ‘‘historical reasons”,
to indicate that 7 is an ingredient of a velocity vector. The quasicoordinate
7 has for us a “metaphysical character’, that is, it will never appear in our
formulas. We do not define it as a mathematical object.

A connection on P is a distribution {D, C T,P} of m-dimensional
““horizontal”” subspaces which project isomorphically over T,,,M and are
also invariant under the G-action: gD, = D,. Thus any vector v, decom-
poses into its horizontal, Hor (v,), and vertical, Vert (v,), components. The
connection 1-form ¢ is the Lie algebra-valued 1-form in P such that

Vert (v,) = ¥, (9(5,)). 2.3)

The connection can also be thought of in terms of horizontal lift operators
hy: Ty yM = D,. Along the section s, the connection is represented by a func-
tion b from U to Hom (R™, g) such that hy,g =D,s- g+ Vyyb(q)-4 is a
horizontal vector. The following result is elementary.

Proposition 2.1 (Connection 1-form).

. d
o g V,(Y) = Vg,[Ad, (V)] (Ade= 7 geth—l) (2.42)

t=0

Physics: ‘‘Les savants anglais ... ne sont pas effrayés par la complication de ces
modeles .ol 'on a multiplié des triangles, des bielles, des coulisses, comme dans un
atelier de mécanicien’”.
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(ii) For p = g- s(q) the vertical component of u, is V, ((o( )) where

o(u,) = Ad, (7 — b(g) 4). (2.4b)

(iii) The pull-back of ¢ to Uxg via F is given by

s d _
(F*) g0 (4:X) = a K&, =X _ — Adexpx 0(9) 4. (2.40)
=0

In Yang-Mills theory the components of ¢ are called gauge potentials.

The curvature of the connection is a 2-form 2 on P with values on the
Lie algebra, given by Q = dp oHor. It is horizontal (i.e., it vanishes when at
least one of the vectors is vertical) and it is Lie-algebra equivariant:

(Lg Q) (uy, v,) = Ady Q(uy,v,) 2.5

The local curvature on the gauge o is the pull-back 2° = d*Q to M™
Physically its components form the gauge field strengths. Their explicit expres-
sions are well known (see, e.g., [CMD, page 375]):

Proposition 2.2 (Local curvatures).

(i) Let b be represented by its matrix (bg;) with respect to a basis eg, 1 =K sr
of the Lie algebra. Then

. ” b ab .
2(9) (4, 0) = 2 Y (" — - ”‘) G0 — () 4, b(q) 0. (2.62)
J

L=1 jk=1 gy
(ii) If T is another gauge with tramsition function t(m) = h(m) 6(m), then

= Adymy 2°  (h:Uy —~G). 2.6b)

3. Main results

To begin, a brief summary of some basic concepts from the *‘geometry and
physics”” of the second tangent bundle is given. For details, see [VF] or [G].

Let Q be a manifold, and let 7' :TQ — Q and =?: T(TQ) — TQ respective-
ly be the first and second tangent bundles. A vector field X on TQ is called
special if danq,,, = v,. Given a Lagrangian L: TQ — R, the Euler-Lagrange dif-
Jerential is a mapping EL from special fields to 1-forms on @, which in coor-
dinates has the familiar expression (see [SM] for a direct proof of its
covariance under change of coordinates)

... 0 d oL oL
EL(q,4,4) —— = — —— — —. 3.1
dq; dt dq; 9g;
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Thus EL(X,,;L) €T, q*Q is an intrinsic object. Instrumental for several con-
structions is the fiber derivative or Legendre transformation

FL, = Leg, = d(L|T,0) : T,0 -~ T:Q. 3.2)

A force field is a mapping F:TQ — T*Q which commutes with the projec-
tions (but it can be nonlinear on the fibers). The reason why the target space
is T*Q is that, physically, the force is an agent which does ‘‘work’’ on ‘‘virtual
displacements’ v€ TQ. When F = dV, V being a function on Q, we say that
it derives from the potential V. In this case the domain can be considered Q
instead of TQ.

For unconstrained, force-free systems, the Euler-Lagrange differential
vanishes along the special field which gives the equations of motion:
EL(X,,;L) = 0. If there are external forces, d’Alembert’s Principle states that
on the special vector field which gives the actual motion, the Euler-Lagrange dif-
ferential equals the external force. If in addition there are constraints, the
restricted Euler-Lagrange differential Restr (EL)equals the restricted external force
Restr (F) along the constrained special field. In other words, the constraint
distribution D, C T,M imposes the conditions:

@) dnX,, = v €D, (constrained special field), 3.3)
(ii) Restr(EL) = j*¥ cEL, Restr(F) = j*¥ oF (restricted 1-forms),

where j; : T/M —Dj is the dual of j,:D, > T M.

3.1. Non-Abelian Caplygin systems

Let 7#:P"—>M™ be a principal G-bundle and consider a G-invariant
Lagrangian L on P, subjected to a G-invariant external force F: TP — T*P. This
means that for the associated actions of G in TP and T*P, we have F,,,) =
8F (p,v)- These actions are defined by g(p,v) = (gp,g*v) for v,€ T,P and
g (p,w) = (gp, (g71)*w,) € T,P, for w,€e TP Recall that the momentum
mapping is given by J:T*P —g* J¥(w,) = w, (V,(X)).

It is assumed that the classical linear constraints are given by a connection
D on P so that only horizontal paths are allowed.

First, I shall state the result in local form for arbitrary Lagrangians, and
then immediately give the intrinsic interpretation of its ingredients. Finally, the
global version for natural Lagrangians will be explicitly given, in order to com-
pare it with another approach in § 8.

Consider gauge coordinates as in § 2, and recall that the constraints are
represented by 7 = b(q) - ¢, where b(q) is a rXm matrix relative to the stan-
dard basis in R™ and a basis {exlx—1.. , of g [ex, el = Zcke.

Theorem 3.1 (Local expression for the projected equations).
() Relative to these ‘‘quasicoordinates’, (see (2.2))

L=L%q,q,7) =L(s(q) g+ Vigp), F=F =X04(q,¢,%)dg. (3.42)
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(ii) The equations. of motion: are explicitly given by
dor o

dr 3q, aql

'.' oL \ * m abl b r ‘ .
L <_) L (_IS SRy bUiijclgV) g+ 0f(g,4). (3.4b)

K1 anK =1 aq] 3q, V=1

Here the symbol * means that 7t is replaced by b(q) ¢ wherever it occurs. (This
formula generalizes Caplygin’s [NF] by the appearance of terms involving the
structure constants of the Lie algebra.)

(iii) If a solution q(t) is known, the full dynamics in P is recovered by integrating
a linear ordinary differential equation with time-dependent coefficients:
dg

i (Ly*-b(g(1) ¢ (.40

Remarks. a) It is easy to see that (3.4b) is the coordinate expression of a
globally defined second-order equation on M. Indeed, the left side is the Euler-
Lagrange differential of L*(u,,) = L(v,) where u, is any horizontal lift of u,,.
Analogously Qf are the covariant components of F*(u,) = F(v,). The
“nonholonomic force’’ components, in the basis dg; (1 =i = m), correspond
to the components of the 1-form on U C R”

AL\ *
<( L ) ,Qs(~,q)> 3.5)
on

where (0L°/d7)* € g* and 2°(-,q) €g.
If another section 7 is considered, with transition function k: Uy — G,
7(m) = h(m) o(m), then by a direct calculation one can check that

oL\ * AL\ *
(ah) = Adj(s(q) (g) s Q7= Adjye)2° (3.6)

where s = ¢ if t = 7 of and one concludes that (3.4b) is indeed the coordinate
expression of a globally defined ordinary differential equation on M.

(b) A bit of invariant formulation can help one to grasp the geometric mean-
ing of (3.5). Define L* by

L*(g,¢,7) =L°(g,¢, 7 + b(q) §) = Lhy(p)q + Vi) (3.4a)y
so that L*(q,q) = L*¥(q, ¢,0) = L(hs(5q) makes explicit, in coordinates, the
projected Lagrangian in TM, via the connection. Moreover, (dL*/d7t)* =
ar*
an

and then
=0

o\ o\ d
((an> s‘Q (%’)) —dl'

= s(q) (hs(q)(Q)) * Vs(q) [Qs(q, : )] (3.5)'

L(hyq)(§) + tVy(q) [2°(4,-)]1)
t=0
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where FL is the fiber derivative. This can be further interpreted as follows:
Consider the sequence of mappings

TmM_i)Dp_i)]}’P_E)TP*P_J)g*,
2
TnM — g @ (T,M)*,  Q(v,) = 2 (hy(vs), By(-)) 3.6y

where m(p) = m. The first sequence is Ad*-ambiguous, while the second is
Ad-ambiguous, where Ad and Ad* are the adjoint and coadjoint actions of
G in g and g* These ambiguities cancel out when the pairing (3.5) is taken.
This is instrinsically given by bracketing the two sequences (3.6)".

¢) The nonholonomic force is the first term in the right-hand side of (3.4b).
If there is no external force F, the reduced nonholonomic system has a com-
mon feature with the constrained Lagrangian L* on TM: both preserve the total
energy H = ¢(dL*[d4) — L* In other words, the nonholonomic force does no
work along actual trajectories, so it has a gyroscopic character.

I proceed to give a geometric characterization of the nonholonomic force
(3.5) in the case of natural systems:

Natural Caplygin systems

The Lagrangian on 7P is of the form L = T — V where (@) V(gp) = V(p)
for all g€G, peP and (ii) T is the quadratic form of a Riemannian metric
on P, for which G acts by isometries. To this kinetic energy T one may add
a term linear on the velocities, in other words, a G-invariant 1{-form 4 on P
(for instance, if the configuration space is not inertial). A non-Abelian natural
Caplygin system consists therefore of the quadruple

(G=»P—->M, L=T+u-V, D, F).

Local data. Given gauge parameters F(g, X) = e*s (q), X = X Xgeg, the metric
coefficients of T are given by

a a
g =g;(q) = <—,—-> (these do not depend on X),
dg; aqj
= (g, X) = —a— 9 (these depend on X) 3.7
8kL = 8kL\YGs GXK’GXL p > .
a 9

gix =8ik (g, X) =< > (these depend on X).

3q;” 9Xg
Here 0/dg; = (€),85/q;, 8/0Xx =Vepy-s [(Rexp(-x)s (Do) egl,
where the indices i,j,... range over 1,...,m and the K,L,... over 1,...,r.
Thus in spite of G-invariance, when G is non-Abelian, gz; and g depend ex-
plicitly on the position X along the fiber.
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This is why it is really more convenient to use the gauge quasicoordinates
(¢9,4,8 %), T = X7geg, introduced in the previous section. Now the metric
is given by equivariant local data (in an abuse of notation):

3 9 a a 9 9
i =\ o) = PN £ 2 = P 38
8ii(q) <aq,- aqj> gxr(q) < o anL> gix(q) ( ” aﬂ{{) (3.8)

where 3/0g; = g, 0s/0q;, 8/0mg = g, V(4 (ex). In old language, the values 7g
would be called quasivelocities.

In summary, the kinetic energy may be written as 7= T(q, ¢, 77) and the
potential energy depends only on g, so that V = V(q).

Furthermore, I must also put into play the connection, defined by the
distribution of horizontal subspaces {D,},.p. A vector u, at p =s(q) with
quasicoordinates (g, q,g = e, 7) decomposes into its horizontal and vertical
components:

Hor (u,) = Dgs- ¢+ D.s(q) b(q)-q, Vert(w,) =Vyylt —b(q)-41. (3.9
It follows that T(u,) = T(q, ¢, ) may be expressed alternatively as
T(q,q,7) =T} (q) + TsG(q) (7 — b(q) ¢) + (Hor(u,), Vert(w,)). (3.10)

Some globally defined geometric objects. The projected metric T* is the metric
on the base manifold M given by T*(v,) = T(hp(vm)) where p is a point on
the fiber over m and A, is the horizontal lift operator. Its expression in coor-

q Y [ 1 R4 i a ; ’ : ]

Fix a point p € P The p-associated metric in G is the left-invariant metric
whose quadratic form on the Lie algebra is given by

THY) = T[V,(1)]. (3.12)

Caveat. Although the fiber G-p has, via restriction, a natural left-invariant
Riemannian metric, there is no naturally associated metric on G. The metric
TC depends inherently on the choice of the base point p. The ambiguity is
given by the adjoint representation of G on the quadratic forms.

There is one more projected object, when the Lagrangian contains a linear
term. The projected 1-form is the 1-form on the base manifold defined by

P (V) = iy (B (v,)) . (3.13)

The geometric content of Theorem 3.1’ below is that a force-free, con-
strained natural Caplygin system on P projects to an unconstrained system on
M, but with an interesting external force. To describe this external force intrin-
sically, we use the following definitions:

The metric-connection tensor is the real-valued, (3,0)-horizontal tensor field
K on P given by

K, (4, 0, wp) = CHoT, (1), V,[2, (v, w)1) (3.142)
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where € is the curvature of the connection. The u-connection tensor is the real-
valued, (2,0)-horizontal tensor field J on P given by

Ty (2 Wp) = 1oVl 2y (5 )1}, (3.14b)

It readily follows from the Lie algebra equivariance of the connection and
curvature forms ((2.4) and (2.5)), that K and J are antisymmetric in v, w and
are equivariant over the reals:

Kop (g uy, 8% Uy, g x W) = Ky (U, 1y, W) s (3.152)
Jop (8 %0y, g 2 Wp) = Jp (0, W,). (3.15Db)
Consequently K and J can be considered as tensors on the base M:
Ky (U Oy W) = K (B (1) 5 By (0 By (W) (3.15a)
T Vs W) =T, (1, (0), By (W) (3.15by

where p is any point of the fiber over m.

Reduction of natural Caplygin systems: invariant formulation

Theorem 3.1, The equations of motion for a non-Abelian natural (:‘aplygin system
project to a special second-order vector field X on the base manifold M satisfying

EL(Xm,v;L*) + Km(vms Ums ) + Jm(vms ) = Frﬁ,v(' ) )
where the projected external force is defined as

F,’I;,,U(-) = Fp,h(v) (hp())

Remarks. (i) If the vertical subspace V,[2] corresponding to the span of the
curvature is orthogonal to the horizontal subspace D,, then the tensor K,
vanishes. In particular, this occurs when the connection flat is (holonomic con-
straints) or when D, is orthogonal to V,[g].

(ii) A geometric interpretation of the left-hand side of the first equation of
Theorem 3.1" in terms of the concept of an affine connection will be given in

§ 8.

3.2. Rigid body with constraints

To begin, I review ARNOLD’s generalization [A, Appendix 2] of the classical
Euler equations for rigid bodies, in the setting of a left-invariant metric on
a Lie group G. The procedure can be interpreted in terms of Poisson geometry
[W], and holds for any G-invariant Hamiltonian on 7#G. Recall that G acts
on T*G via g-p, = (L,) ~l%p,. Pulling back the canonical 2-form w in T*G
to Gxg* via left translations p, = (g, L¥p,) one gets

@ (X1,21), (X2, 22)) =21 (L) X5 — 25 (LY «X) — u(Lgh) * [X),X5]. (3.16)
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The following well-known result then follows immediately [A, AM]:

Lemma. The Hamiltonian vector field associated with a G-invariant function
H:T*G —R, written in coordinates GXg¥*, is given by

dg OH du oH
= Lg *——, R BT
dt du dt ou
Here OH|ou is the Lie algebra gradient dH(u) - =<{-,0H[du) and
{,}:gxg* >g* denotes the bilinear operation {X, u}Y = ufX, Y].

(3.17)

Example (Arnold’s generalized rigid body). Suppose that the Lagrangian L is
defined by a non-degenerate quadratic form (not necessarily positive-definite)
on the Lie algebra g, given by 27 ='Q0Q. Here Q is a nxn matrix
(n=dimG) and @ is a column vector .of components relative to a basis
fer,...,e,} of g
Let €f,...,ef be the dual basis. The Legendre transformation is
N aT
Qe - Xuef, n=00=_—, (3.18)
a0
and the Hamiltonian is given by
T=H=1w0 'u. (3.19)

The Euler vector field vg:du/dt ={JT/du,u} in g* written explicitly in
coordinates, is
d )
=L ch0n 20 (3.20)
J.lm
where cj; are the structure constants [e;, ] = % cfl'kej.
Equations . (3.20) will be used for a ‘‘dynamic proof”’ of the Maurer-Cartan
Theorem for Lie groups. See § 3.
A generalized rigid body with constraints consists of a pair (7, D) where T
is a :positive-definite -inner product on g and D is a subspace of g:

2T='Q0Q, D=kerefn...nkerek. (3.21)
By left translation, these objects define a metric and a distribution in G.

Theorem 3.2. ‘The constrained Euler vector field on g is given by the T-orthogonal
projection -over D of the unconstrained Euler vector field,

o d
— = Projp (Leg o), d—‘j = (L) * Q(1). (3.222)

More explicitly, there is no loss in generality in assuming that e,.(,...,¢€,
are orthogonal with respect to 7. Then £,=0 (1 =l =r) and

Ql = E ( Z c;;lQiij Qk) Qlfl, r+1 = ) =n. (322b)

i=1 Jk=r+1
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The next section is devoted to simple illustrative examples. The proofs of
Theorem 1 and 2 will be given in § 6, after preparation in ‘§ 5.

4. Examples

Two basic examples in HAMEL’s treatise are revisited [H, p. 478ff.]. The
algorithmically oriented reader.should compare the derivation of the equations
of motion there with the systematic approach advocated here.

4.1 The sleigh of Caplygin and Carathéodory®

The idealized sleigh (Fig. 1a) is.a body having three points of contact with
the plane; two of them slide freely but:the third, ‘A, behaves as a knife edge
subjected to a constraining force R which does not allow transversal velocity.
(See also [NF, p. 71]; [So]). More precisely, let xoy be an inertial frame and
EAn a frame moving with the sleigh. Take as generalized coordinates the Carte-

v
a0 Ax
¥
///01(55)
Rati .
b 0 X
Fig. 1

3 According to NEMARK & Furagv, “CaprvaiN stated and solved in quadratures
the problem in 1911 ... CARATHEODORY published a :detailed investigation in 1933 of
a special case’. SOMMERFELD considers it the simplest nonholonomic system [So, Prob-
lem V-3]. Orsson [Ol] has. .considered the situation in which the constraint is
nonhomogeneous, i.e., when the lateral friction is not sufficient to make v = 0.



126 J. KonLer

sian coordinates of the center of mass C of the sleigh and the angle ¢ between
the x- and the &-axis. The configuration space is thus R*xS'. Let m be the
mass, J the moment of inertia about a vertical axis through C and a =|AC]|.
The reaction force R against the runners is exerted laterally at the point of
application A in such a way that the #-component of the velocity is zero.
Hence one has the constrained system

T=10G?+y%) +1Jp%, v=—ap+ycosp —ising=0.  (41)

Observe that the “‘javelin’® or ‘‘arrow’’ (see § 1) satisfies (4.1) with a = 0.
In this case the system is also an ‘‘ordinary Caplygin’’ system, because the
constraint can be written x = cotgg -y, L=T-V, V= gy.

The configuration space may be identified with the group G of Euclidian
motions of the plane. An element g€ G sending origins and coordinate axes
xoy to x;0,y, can be written as (r,s,0) (see Fig. 1b). The group multiplica-
tion is given by

(r,5,0) (x,5,9) = (r + xcosf —ysinf, s+xsinf+ycosf, 0+¢). (4.2)

It is readily seen that the Lagrangian and constraint are left-invariant. In
order to apply Theorem 3.2 one must prepare the following data:

Distribution: D = span (e,, e5) = keref,
L2
1 a(p’
cos 6 + sing 4
e = — —,
2 ¢ 4 ax 3y
sin 9 + cos ¢ 9 + 9
e3 = — — —+ - —,
3 Y ox 3y a 99
Matrix of T:
J 0 Jla
Q= 0 m 0
Jla 0 m+J|a®
Lie Algebra structure coefficients:
1 1 1
ley,e51 = ——es+— e, leel=e, e el=—e+—e.
a a a
Theorem 3.2 yields, after a short computation:
2
Q, =9%, Oy =B g Q,e, + 23e5€D. 4.3)

a } a-+ (J/ma)’
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Remark 1. These equations can be solved in terms of elementary functions since
they have the energy integral

2

7
2E = mQ3 + (m: ) 3. (4.4)

This can be verified also from the explicit formulas for the Q;:

(A.f, }}’ ¢)t = P(le ‘92’ 93)t3 (QI, QZ; Q?y)t = P_l (X, }3, (0)’[

sing/fa —cosgla 1 0 ijla 1
P l= cos ¢ sing 0}, P=| cosp —sing 0 |. (4.5)
—sing cosgp O sing cosg O

Using (4.5) one can find the motions (x(z),y(t), ¢(¢)) in terms of elliptic
functions. For details, see the original references.

Remark 2. Tt is perhaps instructive to rewrite (4.3) in terms of more easily
recognizable physical quantities. If (u,v) are the (&, n)-components of the
velocity at A4, then

(u,v) = e~ (& + iy — aipe %) = (cos px + sin ¢y, —a@ + cos gy — sin gx)
and a comparison with (4.5) yields u = £,, v = —aQ; =0, so w = ¢ = 23/a,

2 . —mauw

u=aw", = 4.6
J + ma® (4.6)

which are the equations found by Carryciv and CARATHEODORY.

4.2. The “‘two-wheeled carriage’”’

The system depicted in Fig. 2 has configuration space P = Gx T2 where
again G = {(x,y, @)} is the group of rigid motions in the plane and 72 is the
torus S'xS' ={(q;, ¢2)}. (See [NF, p. 103].) Let 2r be the lateral length, a the
radius of the wheels, C; the center of mass, situated at distance ! from point
(x,y). Imposing the constraints of no lateral sliding and no sliding on both
wheels, one gets the distribution of 2-dimensional subspaces

xsing —ycosg =0,
xcosp +ysing +rp +aq =0, 4.7
xcosg +ysing —rp +ag, =0.

It is a simple matter to verify that these constraints define a connection
on the bundle G > GxT? > T2
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Let my be the mass of the body without wheels and k, be the radius of
gyration about the vertical through (x,y). The kinetic energy of the body of
the carriage is given by

Ty = 1moli® + 2 + 209 (ycos g — ising) + k397

'z

Fig. 2
Let m; be the mass of a wheel, C its axial moments of inertia and A its
moment of inertia about a diameter. Then
Tright, et = 3 mali* + ¥ £ 2rp(kcosp + ysing) + r* 9’1 + 1 4p* + 5 C41n
so that the total energy is
T=1m@# +y%) + mlp(ecosg —ising) + 179> +1C(41 +43), (4.89)
m=my+2my, J=mkd+ 2mr*+ 24. 4.8b)

Equations (4.7), (4.8) define a non-Abelian Caplygin system. The relevant
data are as follows:

Connection: (%,%, 9)' = b(q1, ¢2) (41, G>)" (section s:x =y = ¢ = 0 for all q),

—al2 —al2
b(ql’ QZ) = 0 0 ’
—al2r al2r

Structure constants: Extend e; = (38/0x)iq, € = (8/3y)ia» €3 = (3/39)iq as
left-invariant vector fields. Then

i 1,2,3 _ 1,23 __
cll,2=03 C13 _0’ —1’ 03 &%) - 13030

The Lagrangian in quasicoordinates: Along the section s
T=4m(a} + #3) + molinis + 573 + 3 C(4% + ¢3)

and therefore, by group invariance, this holds everywhere.
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The projected metric is given by

2

Ja~ . ) . .
T* =} ma® (@ + @) +== (—g)* +1CG1+ ). 4.9

87 2
Applying Theorem 1 one gets, after a straightforward calculation, that

ma® Ja?
T(ql + ¢») +Z;5((71 — &) + C§ = Fy,

ma* Ja* (4.10a)
T(‘?l"“?z) —;ﬁ(él'l—fb) + Cg = F,

where the nonholonomic force is given by
Fy = (myla’l4r?) 434 — ¢1), Fo = —(mol@’l4r%) ¢1(4, — 41)- (4.10b)

As a check, one can verify that T* is a conserved quantity.

5. Hamel’s approach to mechanics
5.1. Quasicoordinates, transpositional coefficients

Let 4 = (a;(q)), B=A47" = (b;(q)) be nxn invertible matrices of func-

tions of g€ U in R". Consider a Cartan moving frame* on U:
=2 _ 1<j=n, (5.1)
] =J =
67:1 121
. ;] . .
LX; =X g; 2’ T A(q) 4. (5.2)

Following the classical terminology, the numbers 7; are called
quasivelocities. Recall that the symbols =#; are called quasicoordinates, but
unless the fields X; commute, they do not have a mathematical meaning. The
motivation for the notation d/dn; is as follows: If 7; were true coordinates,

4 Not surprisingly, CARTAN advocated the use of his ‘“‘moving-frame method’’ in
the study of nonholonomic systems [Ca]. For natural Lagrangians, he observes that
d’Alembert’s Principle expresses the following: ‘‘la différence géométrique entre 1’ac-
céleration du point et la force est un vecteur normal & I’élément plan a m dimensions
défini par les [contraintes]”’. When the constraints are nonholonomic, one is obliged
to make use of all phase space. However: ‘il est possible en général de modifier cet
espace sans que les propriétés mécaniques du systéme soient altérées’’. In Sections 4—6,
CaArTAN uses his Lie group methods to find canonical expressions for the differential
forms defining the constraints. In sections 7—10 he interprets the dynamics in terms
of two connections, one of which depends on the metric in the directions of the con-
straints, the other along the normal directions.
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then
Q_Eaﬁmzzaf
aq; anj aq;

~ Historically, the mathematlcal meaning of HAMEL’s transpositional symbols
Vii = —Vj, defined by

0 ad
E bkbl] < = - all) ’ 1 = iajsk =n, (53)
s,i=1 9gs

was the object of some controversy [NF, § III 5, 6]. The followmg simple fact,
which seems not to have been observed in the classical works, gives a standard
differential geometric interpretation to them. Let

=X(f).

= “dn’ = E a;; dg; (5.4)

be the dual 1-forms of the moving frame. (The quotation marks are intended
to remind us that in general they are not closed.) A straighforward calculation
(see, e.g., [Sp, vol. 2, p. 7—9]) yields:

Proposition 5.1. (i) The transpositional symbols are precisely the structure coeffi-
cients for the moving frame, i.e.,

db; =Y 7k 66 (5.5)
j<k
@ Ir
ay; =+ vhi— v, w;= E aly Oy, (5.6a)
k
then
w; = —w;, db;= E i Oy (5.6b)

(iii) The above equations uniquely define the connection forms wy, for the moving
frame. If this frame is declared to be an orthonormal basis for a Riemannian
metric, then the associated Levi-Civita connection is

V‘Xj=z w; () X, (5.72)
i
whose curvature is given by
R(X, X)) X; = E QX X X;, ;= dwy + E Wi A . (5.7D)
i k
5.2. Hamel’s equations

Recall, from the introduction, that as the fundamental law of mechanics
we take equations (1.1) in the form of d’Alembert’s Principle:

_f___@@ﬁa 5.8)
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Here L(q, ¢4,t) is the Lagrangian (which can be an arbitrary function, not
necessarily representing a natural mechanical system), Q@ the covariant com-
ponents of the generalized external force, and Jg; the admissible variations,
compatible with the constraints. After some tricky manipulations (see [NF,
§ I11.5]) the transformation to quasicoordinates

L*(q, 7t,t) = L(q, B(q) 7t,1) (5.9)
yields

Proposition 5.2. DAlembert’s Principle, written in Hamel’s quasicoordinates,
yields the equations

" [d aL* oL* 5 oL
[—f——+ E V%jg”j—Rk] O =0 (5.10)

ij=1 i

where R, = X,Q.by. and 3/dn; denotes the directional derivative along Xj.

Corollary 5.3. Suppose that r constraints are present. Let the moving frame {X;}
be chosen so that the first m vectors satisfy the constraints. In other words, the
last r quasivelocities vanish: g =0 (m+ 1=K =n, r=n—m). Then (5.10)
implies that

d oL oL I, ol &,
z ___+2:“§: LT =R,, l=k=m, 5.1a
dr dm, amy imt ﬁi j=1 7T ¢ - ( )
which are supplemented with
(d1y--.,q,) = B(@y,. .., 7))t (5.11b)

These m+n equations for the unknowns ¢,...,q, 71y...,%,
automatically dispense with the constraint reactions.
5.3. Reduction of unconstrained Lagrangians with group symmetry

Let G" —=P" >M™ be a principal bundle, and (o,f) a gauge coordinate
system. Introduce the quasivelocities (7,4) on P via

g = (Lg) =7. (5.12a)
Recall that equations (3.8) describe the case of G-invariant natural systems.
More generally, a G-invariant Lagrangian L on TP satisfies dL/dn = 0, or in

gauge quasicoordinates (g, ¢, g, ), one has (cf. (3.4a))

L=L%(q,4, 7). (5.12b)
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Proposition 54. Hamel’s equations for G-invariant unconstrained Lagrangians are
given by

- — 4+ L —7.=0, 5.13
dt o7, ”{:l YK 33, T (5.132)
d 0L 4L
— = _-==90 (5.13b)
dt 3 dq

where yfcj = c};j are the structure constants of the group, ley,e)] = Zic};j e;.

Proof. Consider the exponential mapping exp:g =G, X = Zxe; —» ¢X. Thus
(X, q) are true coordinates via equations (2.1), F(X, q) = eXs(q), and (5.12a)
yields

= (Legp(-x)) * (Dxe) X =:T(X) - X. (5.142)
The operator A in (5.1) is given here by (7r,q)t =A(X,q)t,
-1
A= (T(X) 0), B=A4A"1= (T(X) 0). (5.14b)
0 1 0 I

Geometrically, this corresponds to the moving frame obtained by left
translating the vectors d/dq; and V(eg) at s(g). With regard to the transposi-
tional symbols for this frame, it is readily seen from (5.3) that

() the sums run only for /, s=1,...,r;
(ii) the nontrivial y} are those with i,j,k=1,...,r (the others vanish):

. il ] d
i _ -1 -1
Vij —Sgl T(X) g T(X)y (59;1 T — a—xsTil)- (5.15)

Since the left-invariant vector fields ey on G are being identified with the
vertical fields g =V, (ex), it is clear that these agree with the structure coef-
ficients of the frame {ex} on G. The Maurer-Cartan equations [SW] for Lie
groups, for which we shall give an independent proof shortly (Proposition 5.6),
can be written :

yﬁ;j(X) = c};j. (5.16)
The result now follows immediately from Proposition 5.2.

Remarks. (i) If G is Abelian, then w; = X are bona fide ‘‘cyclic’’ coordinates.
Here the c;;j =0, and equations (5.13a) give the well-known conserved
momenta ; =dL/d7w;. Solving for the 7; in terms of the /, and inserting the
result into (5.13b), afier the Euler-Lagrange differentiation, one gets reduced
equations in the base manifold. These are second-order ordinary differential
equations for ¢ and depend on [ as parameters. However, these equations do
not appear with a nice structure and seem to have only a local character. The
Hamiltonian formalism appears more convenient. The local expression
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H =H(q,p,l) does not depend on the choice of section, so H becomes a
global Hamiltonian on T*M depending on the momenta .. The only possible
complication appears if the bundle is non-trivial.

(ii) If G is non-Abelian, equations (5.13a) also represent conserved quantities,
as we show next. Although (5.13b) is unavoidably of local character, these
equations retain the familiar flavor of an Euler-Lagrange differential with
respect to- g, and (5.13a) resembles the equations of a generalized rigid body.

Proposition 5.5 (Noether’s Theorem). Let exp (X(t)) = g(t) be the component of
the flow along G, relative to the gauge. coordinates (a,f). Then equations (5.13)
admit the conserved quantities

dL
lg = 95 (Adexp(-x(n)) k) - (5.17)

Proof. One may assume X(0) =0 and X(0) = 7. Then

dg _d

_d| e, o d
dt dt

T € T Aexp(—x) - €x
im0 07 X 3 dt e (=)

t=0

— Lie) =0  (by (5.132)).
o 9k aﬁ(;jck]n]e) (by ( )

Notice that the explicit presence of X(r) in (5.17) renders it impossible to
reduce Hamel’s equations (5.13) further via the first integrals u € g* unless one
assumes u to be fixed under the coadjoint action of G in g* This will be
discussed in the following section 5.4.

I now show that the Maurer-Cartan equations (5.15), (5.16) can also be
derived from ‘‘purely mechanical arguments’’. First recall

Example: unconstrained rigid body. Consider the setting of § 3.2, but seen now
from HamEer’s viewpoint. One has a trivial principal bundle P = G and M is
a point. Equation (5.13b) disappears, and (5.13a) for a quadratic H=T =
19'00 becomes

4T g (T
dt or, Yi\oi, ) ™

where, for the moment, we pretend to be unaware of the Maurer-Cartan
Theorem. However, since y;, = 8T/37gx, one gets

b= — E Vij QimTim ;.

i,j,m
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Comparing this equation with (3.20) and doing a simple relabelling of in-
dices, one indeed obtains a ‘‘symplectic’” proof of Maurer-Cartan equations:
Vii(X) = cj;. Perhaps it is worth stating this result explicitly:

Proposition 5.6 (Maurer-Cartan Theorem). Let {0},  , be left-invariant
Iforms on a Lie group G such that 0;(id) = e where {¢};=1. ., is a basis of
g. Then '

d9;= Y Vi b; (5.182)
i<k
where the y}k defined by

; 4 _ /9 ]
V=Y, T TX) ! <‘ Tis —~Ti1> ;
§

! dx; ax

T(X) = (Lep(-x) * (Dxe”) (5.18b)

are actually constants, equal to the structure coefficients cJ’:k. In particular,
o[22 0]
J
aX; X,

5.4. Marsden-Weinstein reduction: Expression in coordinates

(5.18¢)

X=0

In the more abstract context of G-invariant Hamiltfonian systems on a
symplectic manifold X?*, for which there is a G-action possessing a momen-
tum mapping, there is a widely used reduction procedure known as the
Marsden-Weinstein method ([MW], [A, Appendix 5]).

The special case of the Marsden-Weinstein reduction where X =7*M and
M is a principal G-bundle with base N was analysed by KummEer [Ku]. For
completeness, I outline without proofs the main features, which use a connec-
tion on M in order to obtain a globally defined Hamiltonian in T*N.

Momentum mapping J : T*M = g*, J(p,) () =pp (VW (+)).
@) Jy =J(-) (Y) is the Hamiltonian function of the Hamiltonian vector field

d

v(m,p) =—| e¥pu€Timp T*M.
dt |1=0

(i) J is G-equivariant, J(g- p,) = Ad}J(p,)-

(iii) J is an integral of motion for any G-invariant Hamiltonian on T*M.

Reduced phase space and Hamiltonian [MW]. Given a G-invariant Hamiltonian
H:T*M —R, and an element u € g* the standard symplectic form on T*M
yields, by projection, a symplectic structure on the reduced phase space
F,=J ) |G,, where G, is the isotropy subgroup of u in the coadjoint ac-
tion. By restriction and G-invariance, H projects to a Hamiltonian function on
F,.
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Kummer’s model for the reduced phase space: F, = T*N. Assume that u is G-
equivariant, so that G, = G. (If it is not, replace the action of G on M by
the G,-action.) In other words, u(Ad,(-)) = u(-) for all g€ G. Observe that
in terms of a basis {¢;} of g with u = ¢ this means that

c;=0, for all i,j.

d
(The proof is immediate: 0 = » #(Adepxy (+) ) = plX, -] for ail Xe g.)

=0

The idea is to use any connection D on the bundle 7:M —N to define a
mapping ip,:T*N =F, as follows: Given p,€ T*N, the G-equivalence class
ipu(ps) is the set of all elements P, € T*M (m is any point in the fiber over
n)

P,(-) =p,(dn(-)) +u(e(-)) (5.19)

where ¢ is the connection 1-form. (That u is fixed under the coadjoint action
is crucial in order that P,€J !(u).) KumMer showed that the symplectic
form on F, pulls back to the standard symplectic form on T*N plus a
“‘magnetic term’. This magnetic term is the pull-back, via the natural projec-
tion T*N —N, of a connection-related 2-form on N, which is precisely the u-
component of its curvature. Again, the fact that u is fixed under the coadjoint
action allows us to consider this u-component as a 2-form on N.

Expression in coordinates. Let (q,X) be gauge coordinates on M, (p, g) natural
coordinates on T*N, and (g, X, P, IT) natural coordinates on T*M. ““Natural’’

means that
A
Psl 4 3q b-q

(P, + ITy) ((e¥)*s'(q) g+ s(q)* - Dye*X) =P-g+M-X. (5.20)

The element ip,(p,) is represented at F(q,X) = eXs(g) by the linear
functional

(4,X) =p- ¢+ u((Lexp(—x)) *DxeX) X — b(q) ¢
so that
P=p—-b(g)*u,

IT = [(DLexp(—x)) (Dxe)]* 1 = T(X)* (5.21)
where * denotes the dual linear operators,
(Lexp(—X))* gt~ Texp(X) *G, (DXeX)* : Texp(X) *G —g*.

Given a G-invariant Hamiltonian H(q, X, P, IT) in coordinates, the reduced
Hamiltonian is given by

Hia(p,q; 1) = H(q,0,p — b(q)* u, u) (5.22)
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and the reduced symplectic form, which takes into account the magnetic term,
is

ob,;  0by,
dp A dg + 2 ( LA ’”) dg; A dg. (5.23)
i<j daq; 341'

Here {¢;} is used as a basis of g with u = e*, as indicated above. If a solu-
tion p(z),q(t) of the reduced system is known, the coordinate P(z) is im-
mediately given by (5.21), while to obtain the coordinate X(z) it is necessary
to integrate the following time-dependent ordinary differential equation in g

. O0H
X= E(Q(t),X,P(t),T(X)*ﬂ)- (5:24)

Comparison with Hamel’s approach. Let L:TM — R be a Lagrangian. Its Legen-
dre transformation

Leg:TM —T*M, Leg(v,) (-) =Dmy) (L | T,M) (-)

composed with the momentum mapping J:7*M —g* vyields, as expected,
Noether’s integrals

d
[:TP —»g*, IY(v,) =—| L(v,+ V(D).
dt ;=0

Using gauge coordinates, one has L = L*(q, g, 7) where
m=g-s(q), g=¢5 v,=g*[5(q) §+ Ve ()]

Vi (+) = g% V() [Adexp(—x) (+)]
so that
aL’® aL*®
Y — —
I'(vy) = e Adegp(—xY = Adep(—x0* o ().
If u€g* is fixed under the coadjoint action, then the invariant set associated
with @ is given simply by :

on

which allows # to be solved for as a function of (g, q,u); this solution can
be inserted into (5.13b). One can prove, by brute force, that these “‘sharply
local” reduced equations are equivalent to the globally defined reduced
Hamiltonian in KuMMER’s construction.

(9.9, %) =u, (5.25)

6. Proofs of Theorems 3.1 and 3.2
6.1. Non-Abelian é‘aplygin systems

Given the gauge coordinates (o,f), define the quasivelocities (see (3.4a))
§= (L) * (7 + b(q)q) (6.1a)
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so that a G-invariant Lagrangian L on TP can be written locally as
L¥(q,¢,7) =L*(q, ¢, 7 + b(q) ). (6.1b)

The constraints are represented simply by 7# = 0. The matrix 4 in (5.1) for
which (¢, 7)! = 4(4, X)! is given by

A=( I 0 ) B=‘A-1=( I 0 ) 6.2)
—b(q) T(X) T(X) 'b(q) T(X)™!

Proof of Theorem 3.1. By group invariance, the transpositional coefficients can
be calculated at X =0. One verifies readily that y;; =0 (1 si=m) and

ob; b ’

4y E bgbyich

dqr  dq;  (TI,

where one uses the Maurer-Cartan formulas (5.18). The result now follows im-
mediately from Proposition 5.2.

m+l _
g =

Proof of Theorem 3.1'. It remains to give an intrinsic characterization of the
nonholonomic terms when the Lagrangian is natural. For a quadratic form T,
recall that ~

3
T°(q,4, %) = Ti(q, §) + T (% — b(q) §) + (hs(q)_gg,s(q)* (7 —b(q) 4))

so that
ar*
an

i}
)= hyy —>5(q)*" (6.3
=b(g)g ( @ ag e ) )

and this gives rise to the tensor K. Similarly, if L contains a linear term u
in the velocities, it yields the tensor J.

6.2. Generalized rigid bodies with left-invariant constraints

Identify T*G = G x g* by left transport, as in the Lemma from § 3.2. Given
any 1-form w on G (not necessarily left-invariant), consider the vector field
X, on Gxg* defined by

Y = o (-, X,) ©.4)

where 7:GXg* — G is the projection on the first factor.

It is readily seen that X, = (0, —L;,“t//(g)) so that X is vertical (tangent to
the fibers) and furthermore constant on each fiber. When  is left-invariant
X, = (0, —yy), it is also constant with respect to g€ G, ie., it is the same
in all fibers.

Given a left-invariant Hamiltonian H on T*G subjected to left-invariant
constraints D:w* =0, 1 <k = r, consider the Lagrange-d’Alembert equations
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in Hamiltonian form (see e.g., [We]) and pass subsequently to the coordinates
Gxg* The result is (compare with Lemma 3.2):

Lemma. The constrained vector field (in GXxXg*) is given by

oH oH !
s = (L) % —, jgi=1)—, —Z:A k. 6.5
g (g)*du 7 {(w u} L e(1) Wig (6.5)

Proof of Theorem 3.2. It remains only to eliminate the multipliers in the par-
ticular case where 2H = ' Q~'u, and Q is positive-definite. Observe that the
inverse Legendre transformation Leg ~!:g* —g maps the span of the % into
the T-orthogonal complement of D = N ker w%. Thus the constrained vector

field is precisely the T-orthogonal projection of Leg ~'(wvy) over D.

7. Factorization of more general classical nonholonomic systems

Again, consider a G-equivariant Lagrangian in the total space P of a prin-
cipal bundle G" —P" —M™, subjected to classical constraints. It is natural to
ask what happens when the number of constraints is different from » = dim G.
Let d be the dimension of the subspaces D, in T,P of admissible velocities.
We have worked out the case d =m, D, = T;,)M. In the case d<m,
D, n V, = {0}, one expects to obtain a reduced system in TM with m — d con-
straints. When d > m, the system factorizes into two (coupled) components,
one being a special field on TM, the other an operator on subspaces of g.

I outline the main features of the latter. A pseudoconnection (lacking a bet-
ter name) is a distribution {D,} of d-dimensional subspaces of 7,P such that
(i) g *D, = Dg,; (ii) K, = D, n V, has the same dimension d —m for all pe P,

Assume that the Lagrangian L on TP is natural, L = T — V. Using the
metric one can define the decomposition 7P =N @ K @ § where S, is the or-
thogonal complement of K, in V, and N, is the orthogonal complement of
K, in D,. Since dim§, =r — (d — m), it follows that dimN, = m and hence
that N defines a true connection on the principal bundle.

Fix a gauge system (a,f). At each g€ U, the metric T | V(g 18 transferred
to g, and there is an associated splitting K, ® S, of g, varying smoothly with
g. Construct a smooth family of basis vectors k;(q), 1 si=<d—m, for K,
and 5;(q), 1=j=sr— (d—m), for §,.

Let X be coordinates relative to a fixed basis ¢, | =k < r for the Lie
algebra, and S(g) the matrix transforming the X-coordinates to the coordinates

(u,B) on the basis {k;, s;},
Yrive, = Liiki(q) + X Bisi(q). 7.1)
Thus the quasivelocities for this setting are
(G, i1, B)' = A(g, X) - (¢, X)',

m%m=(’ 0)( d 0>, 7.2)
0 () \ —b(q) T(X)
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and the constraints are given by § = 0. The Lagrangian is of the form

L(q, g, ti, B) = L*(q, 4, 7 (g, i, B) + b(q) §) (7.3)

and explicit expressions for the transpositional coefficients can be obtained,
using the definition (5.3) with 4 given by (7.3). The structure of Hamel’s equa-
tions is as follows:

_dar ax Joalr [ dm
- GG+ Y Vet
“d i g M ag < L T+ ) e ")

aL* [ &
E ( E J’qu] + E y;c+mm+p.up>
Hi

(7.4)

m m ' d—m .
0 =— — + E — ( E yin+k,]q] + E yin+k,m+P'dP>
dt ouy AN}

p=1

d—m ar* m ) d—m ]
+ T ( Z yrln_i-i-r%,]q] + E yrzn-‘-l—ﬂlé,m+pﬂp>
j=t p=1

m) aL* m d—m ]
+ aﬁ ( E ))r‘rfi;c]q] + Z ynzzi-l-i-llc,m+p 7.7:‘11) N
i=1 i j=1 p=1

8. Natural Caplygin systems: affine connections

Riemannian Geometry and Mechanics meet in the study of natural un-
constrained Lagrangians L=T—V on a tangent bundle 7Q. The following
results, for instance, are well known:

(i) The paths with total energy /2 agree (up to reparametrizations) with the
geodesics of the Jacobi metric Ty = (h — V) T. In particular, if the energy sur-
face is compact, and the sectional curvatures negative, the system is ergodic
([A, Appendix 1]).

(ii) The equations of motion can be put in the form

. av a
ViX= — gi(g) — — 8.1a
== Do o 6.1
where the left-hand side is the acceleration accordmg the Riemannian connection
associated with the metric 7, and the right-hand side is the contravariant ex-
pression of the force due to the potential ¥ In view of (i), the trajectories
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agree with the geodesics of 7, given by
ViX=0. 8.1b)

One can give a proof of (i) without using the Principle of Least Action,
as usually done (e.g., in [A, § 45D]): In local coordinates 27 = ¢ G(q) 4,
V = V(q). Equivalently, the Lagrangian L corresponds to the Hamiltonian on

T*Q:

H(p,q) =3p'G(q) "'p + V(q), (8.2)
and the Legendre transform of the Jacobi-metric is
H(p,q) =3p'G(q) ' (R =V(g)) 'p. (8.3)

The result of Jacoer follows from the simple observation, via a straightfor-
ward calculation, that for solutions of (8.2) with H = h,

grad H = (h — V) ! grad H. (8.4

Lagrangians which consist only of a kinetic energy term are called inertial.
Jacorr’s result means that by changing the metric to a conformal one, with
conformality factor z — ¥, all natural systems may be assumed to be inertial.
The Jacobi metric is useful for constrained systems as well, an observation
which seems not to have been sufficiently explored in the theory of
nonholonomic systems:

Proposition 8.1. The trajectories with energy h of the nonholonomic Lagrangian
system L =T — V with classical constraints given by the distribution D, coincide

with those of T; with the same constraints.

Proof. Write the d’Alembert-Lagrange equations in Hamiltonian form:

H oH oOH

p; ag; ap;

aHJ aHJ aHJ
TJ:q]=T’ P]=—a—+21,a,], EaUT=O'

/SN qj p;

In view of (8.4) the vector fields are proportional: The uniquely defined
multipliers for the second set satisfy A = u(h — V).

Concerning the nonholonomic counterpart of (ii), VERSHIK & FADDEEV
[VF] stressed the role of projected affine connections, which are the analogues
of Levi-Civita connections on linear tangent subbundles D of TP. Define

V2Y = prp VY (8.5

where X, Y are vector fields satisfying the constraints, prp is the T-orthogonal
projection over D, and VyY the Riemannian connection of T.
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Caveat: Strictly speaking, V? should not be called an affine connection,
because unless it is integrable, D is not a full tangent bundle.

Proposition 8.2 ([VF]). For inertial constrained Lagrangians L =T, v, €D, the
solutions y(t) of the Lagrange-dAlembert equations satisfy

VEs (1) =0. (8.6)

In view of Proposition 8.1, the projected connection can be always used
in studying natural nonholonomic systems: One can use 7 = 7; to assume,
without loss of generality, that the system is inertial. Proposition 8.2 follows
immediatly from the geometric interpretation of the Lagrange-d’Alembert equa-
tions given by CarTan ([Ca])*:

Lemma. Consider a mechanical system with n-degress of freedom having kinetic
energy T (in coordinates 2T = 4'G(q) ¢), subjected to r linear constraints D (in
coordinates A(q) g =0, A an rXn matrix of rank r) and an external force F
(whose work X P;dg; for admissible displacements is known). Then the Lagrange-
dAlembert equations express the fact that the difference between the acceleration
(according to the metric T) and the external force, i.e., the reaction to the con-
straints, at any point q of the configuration space, is normal to the plane D,.

Proof. The Lagrange-d’Alembert equations can be written vectorially as

d aT
—G(@)g— — =P + '4u.
7 (@) g o U

Multiply this equality by G~. In the old differential-geometric language,
this means taking the contravariant components of the acceleration and of the
forces (external and constraint reaction), in the right-hand side. The constraint-
reaction force is therefore

d
N=XG 4y, P 8.7
and it is orthogonal to D: If v =X¢;(d/dg;) €D,, then A¢ =0 and
(v,N) ='4G(G™'A'%) = (49)'u = 0.
Consider now the basic setting, a G-principal bundle n: P — M, with a con-
nection D and G-invariant natural Lagrangian L = 7 — V. In view of Proposi-

tion 8.1, there is no loss in generality by assuming that L is purely inertial
(replace T by T; if there is a potential V).

Theorem 8.3. The solutions of the reduced system on TM are the geodesics of the
affine connection on M defined by
VH#PY =: 7, (prp Vi M(Y)) = m(VEx B(Y)) (8.8)

where h is the horizontal lift operator.
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Proof. It is easily verified that V¥? is well defined (i.c., it does not depend
on where the lifts are done in the fibers) and satisfies the axioms of an affine
connection. The result follows immediately from Proposition 8.2.

Since V¥P is a true connection on the tangent bundle of M, it is possible
to study its differential-geometric entities: torsion, curvature, holonomy
groups, validity of a result of Horr & Rinow, and so on. These developments
will not be pursued here, in part because of the observation that HAMEL’s ap-
proach yields a different affine connection on 7M (but with the same geodesics,
of course), as we now show.

Recall a standard operation in differential geometry. If Q is a Riemannian
manifold with metric 7, operators Ry of ‘‘raising’’ and L; of ‘‘lowering’’ in-
dices are defined as follows. If X = zaf(a/aq,.) is a vector field, then the
associated 1-form wy = Xa;dg’ is defined by lowering indices, a; = X;g;a’,
and conversely, a' = X;g"q;. Intrinsically wx(Y) =<X, ¥). This construction
can be naturally extended to arbitrary tensor fields, transforming any con-
travariant slot (vector field) into a covariant one (1-form), or vice-versa. Also
recall that a covariant slot can be removed if one makes the tensor field be
vector-valued: For instance, if B(X, Y, w) is a (2,1)-tensor, then it is identified
with a vector field-valued B(X,Y) via B(X,Y,w) = w(B(X,Y)). The latter
operation does not depend on the metric.

For instance, the (3,0)-tensor field K(X, ¥, Z) defined in § 3 via the opera-
tion of raising the indices of the last slot, becomes the (2,1)-tensor

B(X,Y,w) = K(X, Y, Rrw). (8.9)
Proposition 84. Let (G—P —-M, L =T, D) be a natural Caplygin system, with
an inertial Lagrangian. Then the solutions of the reduced equations on M, obtained
by Hamel’s method, are the geodesics of both of the following affine connections:

VMH y= ViV + B(X,Y), VPE,Y=ViY+B(LX)  (3.10)

where V%Y is the Riemannian connection of the projected metric T* and B(X,Y)
is the (2,1)-tensor field corresponding to the tensor K on M, via Rp«.

Proof. Going back to Proposition 3.1, one writes the equations of motion in
terms of contravariant components. If 7 = X ¢;(8/dq;), then

. 0 d
V*y+ g*kl<hs( )(Q),V(QS (%‘))) — =0
! 12,; ! 9g; ag;

so that in local coordinates, the second term is B(g,q) with

9 d d d
B(Xag—,2b—) = *’d<h ),V(Qs <b,—)>>—. 8.11
( ¢ dg; 7’ og; g 8 (@ dq; gy )

This has a global meaning: it is the raising of the third-slot of the tensor K.
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Remark. 1 have used the fact that the set of connections is an affine space,
modelled over the infinite-dimensional vector space of (2,1)-tensors. Clearly
either one of By(X,Y) =B(X,Y) or By(X,Y) = B(Y,X) can be used: V{/¥#
and V¥ have the same geodesics, since B; — B, is an antisymmetric tensor
(see Hicks [Hi] for these properties of affine connections).

In view of this remark, one may pose a ‘‘philosophical’’ question: which
one of these connections has a better link with the dynamics of the
nonholonomic system? In doubt, one can average them, and an educated guess
is that this average would give V*?. It turns out that this guess is not quite
correct:

Proposition 8.5. The projected connection in M is explicitly given by
V¥PZ=ViZ+1[B(Y,Z) + B(Z, V)] + 1 C(%,2) (8.12)

where C(Y,Z) is the tensor obtained by raising the first slot of K(X,Y,Z).

Remark. Since C is an antisymmetric tensor, it does not enter in the differential
equations for the geodesics of the projected connection.

Proof (by a direct computation). Given coordinates g on M, it is necessary to
obtain the Christoffel symbols of V*?2:

] .

Vé‘f’agka‘ =Y Th— (8.13)
g; ; i

To make calculations simpler, one may consider a section s : R™ — P such that

the image of s'(qo) is the horizontal subspace at g, (b(gy) =0) and also

that the vectors s'(qp) - 3/dq; are orthonormal. Thus, using the definition of

the projected connection, we obtain

i _ ad ]
I'ii(q0) = <vh(a/aqk)h <a_qj> > h (a_ql) (qo))

where (,) represents the metric of P

One now needs a formula which comes from a well-known trick in dif-
ferential geometry. Let X, ¥, Z be vector fields on a Riemannian manifold, not
necessarily commuting. If V is the associated Riemannian connection, then

UV Z) = XY, Z) + XZ,X) — X, Yy — ([}, Z], Xy ~ (X, Z1, Y) — ([, X], Z).
(8.14)

Let X; = h(d/dq;), and observe that the gk = {X;, X;) give the coefficients of
the projected metric. Now gf(go) = J;. For X=X, Y = X;, Z = X, the first
three terms of (8.14) give the familiar expression

3 3 9
— &k t+— &k

%
- 5 &
dg; dg; dq 7
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The last three terms can be identified (after a careful, but straightforward
inspection) with the tensors B;, B, and C computed at gy, by using

ab dby;
X, X, X, (q0) = Y, &Fi(q0) (—ﬁ - —i) : (8.13)
L aqi aqk q=qq
where gz] = ()(], Vs(q) eL>.

To prove (8.15), it is enough to show that
ab oby;

X, Xd (s(q0)) = ¥ (—L—’f - —L> Vi €L

L 6qi an q=q,

which follows from the explicit formula for the Lie-brackets in (g, X)-coor-
dinates, taking advantage of the convenient assumption that b(qy) = O.

9. Final comments

9.1. Other types of constrained systems with symmetry

In this paper I have treated only the standard situation of Lagrangians
L:TP - R with classical constraints, i.e., given by a distribution of linear
subspaces D, C T,P. Several authors have considered other types of
mathematical problems involving linear or nonlinear constraints, such as:

() Lagrangians with nonlinear constraints on P. Gauss’ Principle of Least Con-
straint can be invoked in order to derive the equations of motion. A physical
example was given by HaMmEL (see [NF, § IV.2]). NEmvarRK & FUFAEV notice that
this example arises from another with standard constraints, taking limits for
certain parameters. However, the limits of the solutions of the ‘‘standard’
problem do not agree with the solutions of the limit problem.

(ii) Lagrangians with linear constraints on TP. VERsHIK & FADDEEV [VF] extend
d’Alembert’s Principle to include admissible codistributions represented in local
coordinates by §={X;(a}dq’ + b}dv')},. . . , with rank b=p. The con-
straints are given by kerf.

(iii) Hamiltonians with constraints. WEBER [We] considers a symplectic manifold
(M?, w), a Hamiltonian H:M —R, and a linearly independent system
{Bidi=1....m» m < n, of differential forms on M, and extends d’Alembert’s prin-
ciple as

w(X,-) =dH+Xufi, B(X)=0 (A=i=zm). CRY)

(iv) Dirac theory of degenerate Lagrangians. In some circumstances, Dirac’s
theory of constraints has a link with reduction schemes. This is discussed in
the paper by CANTRUN et al. [CCCI]. On the other hand, for degenerate
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Lagrangians L: TP" =R, of rank n — m, it is frequently possible to define an
equivalent Hamiltonian on 7*P, satisfying m relations G;(p,q) = 0. The dif-
ferentials B; = dG; are called generalized holonomic constraints by WEBER. It
is asserted in [We, § 3] that Dirac’s canonical equations coincide with (9.1),
but it seems that this does not hold in general.

(v) Carathéodory metrics and control problems. A distribution D on a manifold
0O may be called far if the algebra of commutators of a local basis of vector
fields for the distribution span 7,Q at any point g€ Q. If Q is given a metric
g, the Carnot-Carathéodory distance d(q,¢,) is the infimum of the g-
distances along horizontal curves joining these points. This is related to the
Lagrange problem of Calculus of Variations and some variational problems in
control theory (see BROCKETT [B]). Pansu [Pa] and MrrcrHeLL [Mi] have
studied the Hausdorff dimension of these singular metrics.

In all these contexts the ingredients can be assumed equivariant under the
action of a Lie group. A research program is to obtain reduction procedures,
even in local form, for the above settings.

9.2. Some recent results

After the submission of this paper, the translation of a treatise by ARNOLD,
Koziov & NesHTADT [AKN] and several interesting articles have appeared. I
add some brief comments about these new developments.

(1) Vakonomic Mechanics and Lagrange variational problems with symmetry. Un-
fortunately, the same word ‘‘nonholonomic’ has been used historically with
two different mathematical meanings. Perhaps to remedy this, Koziov has in-
troduced the term ‘‘vakonomic’” [AKN, § I.4], meaning mechanics of the
variational axiomatic kind. The relationship with the Dirac formalism of con-
straints is clarified in [AKN, § 1.5]. R. MoNTGOMERY [Mo] has started a pro-
gram to study shortest loops with a given holonomy. He shows that the solu-
tions are trajectories in Yang-Mills potentials. Applications range from quan-
tum mechanics to mechanical engineering. The old problem of physical
realization of constraints was revisited by Koziov [AKN, § 1.6], [Koz]: a
unified framework for the two different equations of motion is obtained. From
the analytical viewpoint (topic (v) above) a very nice survey by GERSHKOVICH &
VersHIK [GV] was published, with recent results included. See also [VG] and
[BG] for interesting examples.

(i) The notion of integrability for nonholonomic systems. In a first version of this
paper, the question whether there is a suitable generalization of the concept
of Liouville integrability for classical nonholonomic systems of generalized
éaplygin type was posed. The reduced system in 7M (or T*M under the
L*-Legendre transformation) is not Hamiltonian in general, but it can be con-
jectured that there is an invariant measure. This is indeed the case in several
examples: while preparing the revised version of this paper, the recent work
by VEserov & VESELovA [VV] was encountered. There, the authors show that
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the rigid-body with left-invariant constraints, when written in a suitably ex-
tended phase space (including the constraint reaction), has an invariant
measure. In the case of G = SO(3) with one constraint, there is even a relation
with the celebrated Neumann problem of a point moving on the sphere with
quadratic potential. A theory of integrable nonholonomic systems is presented
in J[AKN, § IV.4]: the motion takes place along tori, along their Kronecker
curves, but nonuniformly. A perturbation theory for systems with almost
holonomic constraints is presented by TaTarmNov [Ta].

(iii) Reduced nonholonomic systems. STANCHENKO [St] gives some further ex-
amples of invariant measures. That paper studies the Abelian Caplygin
nonholonomic systems, from the outset, in terms of differential forms. The
reduced equations are of the form Qgap (-, Xreq) = dH,eq, but the 2-form Qg,y
need not be closed, so the system in general is not Hamiltonian. It would be
interesting to generalize these results for the non-Abelian case. [AKN, § II1.1.2]
consider symmetries in nonholonomic mechanics, but in a different setting:
they assume that the vertical fields satisfy the constraints. In their case the
momentum is conserved, while it is not conserved in the setting considered
here.

(iv) Some applications to Mechanical Engineering. JANKOWSKI & MARYNIAK [JM]
study the helicopter as a controlled system with nonholonomic constraints.
The equations of motion are of d’Alembert type, but the constraints are not
physically realized by friction forces as usual. Rather, they are consequences
of the control laws. This approach was first advocated by H. BEGHN [Be, Ap].
Control laws superimposed on classical nonholonomic systems were considered
by Brocu & McCramrocH [BM]. Kane [Ka] has developed the computer
algebra program AUTOLEYV to derive the equations of motion, based directly
on d’Alembert’s priciple. Fewer algebraic manipulations are done than in the
Euler-Lagrange approach. The program can handle quasicoordinates as well,
so it works also for nonholonomic systems. It would be interesting to extend
it to systems with Lie group symmetries.

(V) Quantum mechanical nonholonomic systems. R. J. EDEN [E] considered the
modifications in the Heiseberg formalism necessary to take into account the
classical nonholonomic constraints. Recently, P. Pitaxnca [Pi] revisited this
issue, also presenting some concrete examples. Interestingly, the nonholonomic
constraints are manifested as nonintegrable phase factors in the wavefunction.

Acknowledgements. 1 thank Prof. Aran WEINSTEIN for suggesting the interpretation of
nonholonomic constraints as a connection, back in 1982, when a draft of this paper
was made; Prof. VincENT MoNcRIEF for sponsoring a visit to Yale, 1986— 1987, when
I have resumed the work; Prof. T. KANE for interesting discussions during his visit to
Brazil, March 1991; my colleagues P. PrtanGa, P. Ropricues and M. pE Leon for shar-
ing common interests. P. Prranca called my attention for a nice poem of ANTONIO
MacHaDO, which captures the essence of nonholonomy:

Caminante, no hay camino.
Se hace camino al andar.
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