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Let Z be a complete minimal surface in R a. Z is said to be stable if2: minimizes 
area up to second order on each compact set. If  K is the Gauss curvature, then the 
condition that Z be stable is expressed analytically by the requirement that on 
any relatively compact domain D of Z, the first eigenvalue of the Jacobi operator 
L ---- A -- 2K be positive. Here L is defined in the space Fo(N(Z)) of all smooth 
compactly supported normal vector fields on Z vanishing on OD. For a relatively 
compact domain D of Z, the index of D is defined by the number of negative 
eigenvalues of the operator A -- 2K. Z is said to have finite index if the index 
of every relatively compact domain has a uniform upper bound. Denote the least 
upper bound by Ind (Z). If2J is stable then Ind (Z) = 0 and vice versa. Recently 
FISCHER-COLBRIE [17] showed that oriented Z has finite index if and only if 2J 
has finite total curvature. If  Z has finite total curvature, it was shown by OSSER- 

MAN [O] that Z is conformally a compact Riemann surface Ewi th  finite punctures. 
In this paper we compute a lower bound for Ind (Z) in terms of a new geome- 

tric quantity, the vision number of Z. The key idea is to apply the generalized Morse 
index theorem of S. SMALE [Sin] to a bounded Jacobi field on Z constructed from 
a suitable Killing vector field in the ambient space. As a result, we show that 

i) the index of JORGE & MEEKS' minimal surface with k ends [JM] is at least 
2k -- 3, 

ii) the index of HOFFMAN 8r MEEKS' minimal surface of genus g [ttM] is at 
least 2g -t- 1, 

iii) the index of LAWSON'S minimal surface ~m,k of genus mk in S a [L1] is at 

least max (2m + 1, 2k + 1), ( V P - - ~ - q ) ( V ~ q )  
iv) the index of the minimal hypersurface S p • S ~ in 

S p+~ is at least 3, 
v) the index of any complete immersed nonorientable minimal surface in R 3 

of finite total curvature which is conformally equivalent to a projective plane 
with finite punctures is at least 2, 
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vi) the plane, Enneper's surface, and the catenoid are the only three complete 
immersed orientable minimal surfaces of genus zero and index less than 
three in R 3. 

Here we should mention that TYSI< [T] showed Ind (S) is bounded above by 
a constant ( =  7.68183) multiple of the degree of the Gauss map (see also [CT]). 

By employing the vision number argument, we give a new proof of  the theorem 
by DO CARGO & PENa [CP] and FISCrIER-CoLBRIE & SCHO~ [FS] that any com- 
plete stable oriented minimal surface in R 3 is a plane. But we solve the same 
problem for nonorientable minimal surfaces in the negative: we show that any 
complete nonorientable minimal surface in R 3 of total curvature --2ze (e.g. 
Henneberg's minimal surface) is stable. We also prove that there is no 
complete immersed stable nonorientable minimal surface in R 3 of finite total 
curvature which is conformally equivalent to a Klein bottle with finite punctures. 
Very recently LIMA 8r DA SILVEIRA [LS] showed that any complete immersed non- 
orientable minimal surface in R a which is either conformally equivalent to a 
projective plane with finite punctures, or is finitely connected and of infinite total 
curvature, is not stable. 

Finally, motivated by the above lower bounds for Ind (X), we conjecture that 
for any complete minimal surface X in R 3, orientable or nonorientable, 

1 
Ind (Z") ~ --1 - - ~ - ~ f  K. 

More open problems are given at the end of this paper. 

I thank R. SCHOEN for fruitful discussions and R. HARm', J. POLKING, and N. SMALE 
for relevant conversations. 

1. Visible sets and stability 

First let us introduce new geometric terminology. 

Definition. Let N be a smooth submanifold of arbitrary codimension in a Rieman- 
nian manifold M, and q~ a smooth vector field on M. The horizon of Nwi th  respect 
to q5, denoted by H(N; ~), is the set of all points of N at which q5 is a tangent 
vector of N. We say that a connected subset D of N is visible with respect to q~ if 
D is disjoint from H(N; oh). The number of components of N N  H(N; dp) is 
called the vision number of N with respect to qb and is denoted by v(N; 4~). For 
example, let S be a unit sphere in R 3 and ~ a nonvanishing vertical vector field in 
R 3. Then the equator of S is the horizon of S with respect to q~ ,each open hemi- 
sphere (northern and southern) is a visible set with respect to 4~, and v(S; oh) = 2. 

The following lemma is the higher-dimensional analogue of the usual theorem 
for geodesics. 

Lemma 1. Let {ft} be a variation of  an m-dimensional minimal submanifold N m in 

M R. Let ~7 = f t ,  - ~  be the variation vector yield of {f~} and @ the projection of 



Index, Vision Number, and Stability of Minimal Surfaces 197 

onto the normal bundle of  N. Suppose each ft(N) is a minimal submanifold. Then 
7 • is a Jaeobifield on N, i.e., ~l satisfies 

A~• + ~(~)  + R@ ) = O, 

where ~ and R are as defined in [L2, p. 48]. 

Proof. Let {el . . . .  , era} be local orthonormat vector fields on ~J f t (N) such that 
t 

{e,, . . . ,  era} are tangent to ft(N) for each t. Then the mean curvature vector H 
o f f ( N )  is 

H = ~ V~ie i =  O. 
i = I  

Therefore 

0 =  

(VeiVnLei)$ dr- ~ (R(r] j-, ei) ei) j- (R: curvature of M) 
i = l  i = 1  

: i  VeiV,#)" + e,)e,)• 
i = 1  i= I  

121 i = 1  i = 1  

= ~ l  + ~(~• + _~(~• 

where _[_ and -]- mean the projections onto the normal and the tangent bundles 
of N, respectively. 

Corollary 1. Let ~ be a Killing vector field on M and N a minimal submanifold 
o f  M. Then ~(N• the projeetion of  ~ onto the normal bundle of  N, is a Jaeobi field 
on N. 

Let ep,, epl ' and ~bp, respectively, be the variation vector fields in R 3 associated 
with a 1-parameter family of translations ~'7 in the direction of a unit vector n, 
a 1-parameter family of rotations e[ around a straight line l, and a 1-parameter 
family of homothetic expansions #P with center at p. 

Corollary 2. Let ~ be a minimal surface in R 3. Then c#~(Z• cbl(Z• and ?pp(~;) 
(the projections of  r dpl, and 4~p onto N(~), respectively) are Jaeobi fields on Z. 

Corollary 3. i) Let ~ be a Killing vector field on M and N a minb~al hypersurface 
in M. Then every connected set D ~ N which is visible with respect to ~ is 
stable, ii) Let  4p be the position vector field in R n from a point p E R ~, (i.e., 
ch~(x) = x -  p) and S a minimal hypersurfaee in R' .  Then every connected set 
D Q S visible with respect to cbp is stable. 
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Proof. In either case one can construct near D a foliation by minimal hypersur- 
faces. The visibility of D implies that the foliation is not singular. Hence the classi- 
cal argument JilL] shows that any variation of D with ~D fixed increases the 
volume. 

In [C] we showed that for any compact minimal submanifold M of  R n and any 
point p in R n, the volume of M is less than or equal to the volume of  p 4~ 8M, 
the cone from p over 8M. In the following proposition we see when these volumes 
are equal. 

Proposition 1. Let D be a relatively compact domain in a k-dimensional minimal 
submanifold M o f  R ~ and p a point in R ~ such that 

~D ~ H(M;  Cp). 

Let ~ be the outward unit conormal to ~D on D and define 

1"1 = {q E ~D : q~p(q)" ~(q) >= 0}, 1'2 = {q E 8 0  : ~p(q) " ~(q) < 0}. 

Then we have 

Volume (D) = Volume (p @ 1"1) -- Volume (p @ 1"2). 

Proof. Let r ( x ) =  [4)p(x)[, x E M. That  M: is minimal in R ~ implies 

Ar 2 = 2k. 

Integrating this over D, we get 

1 1 
1 f ~r 1 f 4 . ~ =  T f r 1 6 2  Volume (D) = --ff 0 r ~ -  = --ff ~D rj. 

Since Cp(x)is tangent to M at xE  OD, we can easily see that 

1 
__1 f 4)p �9 v = Volume (p # 1"1), ~ f 6~ �9 v = - Volume (p @ 1":) . 
k ] ' t  '~ / 'z  

This completes the proof. 

2. Morse index theorem and vision number 

The original Morse index theorem is a formula which relates the index of  a 
geodesic segment to its conjugate points relative to one end point. In 1965, SMAL~ 
[Sin] substantially genera!ized this result to a theorem which, in a similar way, 
evaluates the index of any strongly elliptic self-adjoint differential operator oa 
the cross-sections of a Riemannian vector bundle. The theorem applies perfectly 
to the case of minimal submanifolds, and gives a natural generalization of the index 
theorem for geodesics, as was observed by SIMONS [Si, L2], The following is an 
exposition of SMALE'S result in the framework of minimal submanifolds. 

Let N be a compact connected minimal submanifold with nonempty boundary 
in a Riemannian manifold M. Let c t be a contraction of N into itself. In partic- 
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ular, assume 6, t >= O, is a smooth family of diffeomorphisms of N into N such 
that 

(i) Co -= identity, 

(ii) cAN) C c,(N) for t > s, 

(iii) lim Volume (ct(N')) ----- O. 
t --> OO 

Theorem (SMALE). 

Ind ( N ) =  E Nullity (ct(N)), 
t > 0  

where Nullity (ct(N)) is the dimension of  the space of Jacobi fields on ct(N ) 
vanishing on the boundary of G(N). 

Choosing a suitable contraction ct which is determined by the visible com- 
ponents of a minimal surface, and compactifying the minimal surface, we obtain 
the following theorem. 

Theorem 1. For any unit vector n in R 3 and any minimal surface X in R 3 of finite 
total curvature, orientable or nonorientable, we have 

Ind (2) ~ v(X; ~bn) -- 1. (1) 

Proof. By hypothesis X is conformally equivalent to a Riemann surface X with 

punctures {p~ . . . .  , p~}. Let ds 2 be the metric on X and d52 a smooth metric on 
such that 

Then 

ds 2 = / z d ~  2, # > 0  o n X .  

L = A -- 2K ----- 1 (z] -- 2beK) ---- (2) 
be be 

where AT is the Laplacian in the normal bundle of X with the metric dj 2, It is 
shown in IF] that 

Ind (X) = Indz(~'), (3) 

where Ind z (X-) is the index of (X, dg z) with respect to / , .  Even though the orient- 

ability of X is assumed in [F], one can easily see that the arguments of Theorem 2 
and Corollary 2 of IF] are also valid for nonorientable X. Hence (3) holds for non- 
orientable X as well. Therefore we will show 

Note that 

Ind Z _--> v(X; en) - -  1.  

r • = (n" v)v, v a unit normal of X, 
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and that v extends smoothly across (Pl, . . . ,  Pk)- Hence 4,~(Z• is a smooth bounded 
section of the "normal bundle" of (Z, dg 2) (i.e., the vector bundle of (Z, dJ 2) 
associated with the normal bundle of Z). From (2) we see that 

= 0 on  { p l , . . . , p k } .  

Then by HARVEY & POLKING'S removable singularity theory [liP, P], we have 

Z r  = o o n  

Now let us apply the generalized Morse index theorem to (Z, d~2). Set k 
v(Z; (k,) and let V~ . . . .  , V k Q Z be the open visible components with respect to 
~, such that 

k /  Vi = Z ~ H(Z; +3. 
1 g igk  

Let V1, . . . ,  Vk Q Z be the open subsets of Z corresponding to V~ . . . .  , Vk C Z' 

under the conformal equivalence between Z a n d  f Then we can exhaust 1~, . . . ,  ~ ,  
one by one, by a 1-parameter family of the complements of shrinking domains 

in ~ More precisely, we can find a 1,parameter family of domains Dt of Z with 
nonempty piecewise smooth boundary 0--< t <_ k, such that, after suitably 

renumbering V1 . . . .  , Vk, 

i) Z ~ D o <  V1 and D k < ~ , ,  
ii) Dt is properly contained in D, if t > s, 

iii) the function f ( t )  -~ Area (Dt) is continuous in t, 

iv) for every integer l ~ j ~ k - - 1 ,  k J V,.Q-~"~Dj and k j V/QDj, 
l ~ i ~ j  j+l  ~_i~k 

v) the area of Dx is less than e ,with e as in [Sm]. 
Obviously ~. is a self-adjoint strongly elliptic operator and has uniqueness in 

the Cauchy problem; that is, if u is smooth, Lu ---- 0, and u 1 D -- 0 for some 
open set D, then u ---- 0 everywhere. Let ~(t) be the dimension of the space of all 

sections u of the normal bundle of Z restricted on D t such that Lu = 0 on D t 
and u [~Dt ---- 0. SMALE proved that if 69D t iS smooth for all t then 

Ind z(Do) ~ ~ ~(t), (4) 
O<t~k 

and the equality holds in (4) if ~D t depends in a smooth manner on t. However, 
Lemma 1 (discreteness of eigenvalues) and Lemma 2 (2 k ~ 2~ if D 3 D') of 
[Sin] (except for the continuity of eigenvahies in t) are valid even for domains 
with piecewise smooth boundaries. Therefore (4) holds also in our setting. Since 
$.(Z i) vanishes on H(Z; cb,), and for t---- 1, . . . ,  k -  1, OD t corresponds to a 
subset of  H(Z; @~) under the conformal equivalence, we have 

~n(Z j') I ~Dt -~ 0 for t -- 1 . . . .  , k -- 1, 

where qb,(Z • is viewed as a section of the normal bundle of Z. Thus 

~ ( t ) ~ 0  for t = t , . . . , k - - 1 .  

This completes the proof. 
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3. Lower bound for index 

Corollary 4. Let  Z k be the JORGE-M~EKS' immersed minimal surface which is con- 
formally equivalent to the sphere minus k points [JM]. Then 

Ind (27k) ~ 2k - -  3. 

Proof. 27k is the image of  an immersion fk f rom S 2 N {z~-a(0) : 0 E C, O k = 1}, 
where ~ : S 2 --> R 2 is the stereographic projection, into R a which is defined by 
the Weierstrass representation with f ( z )  = (z k - -  1) -2 and g(z) --  z k-1.  f~ is 
well-defined at ~-a(oo). We know that 

g = :r o N o  f~ o ~ -1,  

where N:  Xg ---> S z denotes the Gauss map [L2]. Choose a unit horizontal vector 
n in R a. The normal vectors of  S at the two points fg(~-l(0))  and fk(er*(o~)) in 
Zg are vertical and thus these points are contained in H(Z'k; +n)- We claim that 
fs +n)) is the union of k - -  1 great circles in S = meeting at north and south 

zc 
poles at equal angles k - -  1 " Let C be the great circle on S 2 Q R 3 passing 

through the two poles ~ is the intersection of  S 2 with the plane orthogonal 
to n. Then 

f s  d&)) = f z l ( N - ' ( C ) )  = (Nfl,) - I  (C) = ( ~ - I g s t ) - '  (C). 

Hence the claim follows from the fact that az -x gst is a holomorphic branched 
covering map from S = onto itself of  degree k - -  1 with branch points at north and 
south poles. Furthermore, it follows that the total curvature of 27k is --4az(k - -  1). 
Since f [ l ( H ( X k ;  q~n)) divides S 2 into 2k - -  2 components and fx is a homeo- 
morphism, we have 

v ( & ;  = 2 k  - 2 .  

Thus Corollary 4 follows f rom Theorem I. 

Theorem 2. Let  27 be a complete minimal surface in R s o f  finite total curvature. 
I f  each end o f  27 is embedded (see [Se] for  the definition o f  the end o f  27) and 
the normal vectors at the points o f  Z at infinity are all parallel to a line l, then 

I n d  (Z)  > v(27; - 1. 

Proof. By Proposition 1 of [Sc], S is regular at infinity and hence there is a com- 
pact subset K Q  R s such that  2J~-~K consists of r components 271 . . . .  ,27 r 
such that each S i is the graph of a function u/with bounded slope over the exterior 
of  a bounded region in some plane/ / /which  is perpendicular to the line I. Moreover, 
if  x~, x2 are coordinates in H i with the origin at H i / 5  l, the u/has the following 
asymptotic behavior for ]x I large: 

ClX1 e2x2 
u,(x) = a l o g  Ixi § b § §247 O(IxI- ), (5 )  
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where constants a, b, c~, c2 depend on i, and O([x[ -2) indicates a term which is 
bounded in absolute value by a constant times Ix I -z for I xl large. By Corollary 2 
Ct(Z i) is a Jacobi field on Z, and one can easily see that up to a constant multiple 

,~(zi) = B" (r x O] ~, 

where 2 is a unit vector on l, r is the position vector from the origin, and ~ is a 
unit normal vector of Z. Hence 

[v~,l < Ixl ' lVu, l < a .  I@t(Z i)  (x, ui(x)) ] ~ ]xl-  l/1 + IVuel 2 = 

However the first two terms in the right-hand side of (5) are rotationally invariant 
and thus they do not contribute to $t(Zi). Hence 

e 

Now, as in Theorem 1, we have 

Z~(z~) = o on 2~(p,...,p~). 

(6) 

From (6) one can see that Ct(Z i)  is continuous a tp l ,  . . . ,  Pr ,and thereforepl . . . .  , pr 
are removable singularities for L, (see [P]). Thus Theorem 2 follows from the same 
arguments as does Theorem 1. 

Corollary 5. I f  Zg is the complete embedded minimal surface of genus g constructed 
by HOFFMAN & MEnKS [HM], then 

Ind (Zg) ~ 2g + 1. 

Proof. Z'g has total curvature --4~z(g -]- 2) and of course each end of Z'g is em- 
bedded. Moreover, Zg is symmetric with respect to g q- 1 planes/I5 . . . .  ,/7=+1 

which meet each other at equal angles ~ along the line l = I'~ Hi. 
l ~ i < g +  l 

Therefore the normal vectors of Z ,  at the points at infinity are parallel to the line L 
Then by the previous theorem we have 

Ind (Se) >= v(S=; ~t) --  1. (7) 

Since X= is orthogonal to each// / ,  three vectors 2, r(x), and r(x) all lie i n / / / f o r  
every x E Zg f~ Hi, and thus we have 

~i(S~)  = [ z .  (r • ~)] ~ = 0 on  z= A ~r,. 

It follows that 

H(Zg; @l) = {x 6 Zg : 4~t(Z~ ) (x) = O} ~ Xg A (l ~_iV, + x H , ) .  
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Since ~v/ Hi divides Zg into 2g q- 2 nonempty components none of which is 
1 < i ~ g +  1 

a subset of H(Zg; $l), we get 

v(Zg; ~bl) ~ 2g q- 2. (8) 

(7) and (8) give the desired result. 

The following proposition gives a relationship between the vision number 
and the total curvature of a complete minimal surface. 

Proposition 2. i) I f  Z is a complete minimal surface in R 3 of  finite total curvature 
then for any unit vector n in R3,. 

1 
v(z; = f X. 

ii) I f  Z is a complete minimal surface in R 3 of  finite total curvature, each end of  
Z is embedded, and the normal vectors at the points o f  Z at infinity are parallel to 
a line l, then 

1 - f  v(Z; q'l) <= -- 2~ K. 

ProoL As we have seen in Theorems 1 and 2, (h,(Z i) and ~l(Z i)  can extend to 

smooth bounded vector fields on Z satisfying Lu = 0. Let D be a component of 
Z ~.~ H(Z;  4~,) or Z ~-~ H(Z;  ~bt). Suppose f - -K < 2z~. Then there exists a 

D 
connected domain D' C Z such that D Q D', Area (D' ~-~ D) > 0, and 

f - - K <  2m Let /~and D' be the subsets of Y. corresponding to D and D' under 
D'  

the conformal equivalence of Z into Z. Then 

2~(D') < 2~(D-) ---- 0, 

where 21 denotes the first eigenvalue of the operator L on (Z, d~). However, 
by the theorem of BA~OSA & DO CARMO [BC], D' is stable and hence 

,h(D') => 0, 

which is a contradiction. Therefore 

f - -K => 27e 
D 

and this gives the desired results. 

Now it is not difficult to extend the above arguments to more general case; 
minimal submanifolds in space forms. We state the following theorem and corol- 
lary without proof. 
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Theorem 3. Let N be a complete minimal submanifold in a space form M and 4 
a Killing vector field on M. I f  N is compact, then 

Ind ( ~  > v(N;  4) - -  1, 

and otherwise, 

Ind (N) > ~(N; 4), 

where v(N; 4) is the number of bounded components of N ~.~ H(N; 4). 

Corollary 6. Let 4p be the position vector field in R ~ from a point p E R ~. I f  
S is a complete minimal submanifold in R n, then 

Ind (S) >= ~(S; 4p). 

Corollary 7. Let ~m,k be the embedded minimal surface of  genus mk in S 3 
which is constructed by LAWSON ILl]. Then 

Ind (~m,k) ~ max (2m + 1, 2k + 1). 

Proof. LAWSON constructed ~m,k in the following way. Let Ct and C2 be the great 
circles in S a ~ R 4 = (7 2 defined by 

c~ = {(o, ~ ) ~  c2:Io~1 = l), c2 = {(z, o )c  c~ :  Izl = 1}. 

Let P1, .--, P2k+2 and Q1, .. . ,  Q2,n+: be equally spaced points on Cl and C2 
respectively. Then there exists a geodesic polygon P~Q~P2Q2 which consists of 

the geodesic segments P~Q1, Q~P2, P2Q2, and QzPI. The polygon P~QaP2Q2 
spans a minimal surface which is the Morrey's solution to the Plateau problem 
for P1Q~P2Q2. Extending this surface by reflection across its geodesic boundary 
arcs, one can get ~m,k. 

Let us assume without loss of generality that 

m>=k.  

Let 9t be the one-parameter family of rotations in S s around Ct by angle t. 
Then the variation vector field 4 of 9t is a Killing vector field vanishing on C~. 
It follows from Theorem 3 that 

Ind (~m,k) ~ V(~m,k; 4) - -  1. 

Let $I, ..., Sm+l be the unit spheres in S 3 containing C1 and bisecting the geo- 

desic segments QIQ2, Q2Q3 . . . . .  O2m+lQ2m+2, mad Q2,~+aQJ. Clearly ~m,k is sym- 
metric with respect to each Si and hence ~m,k is perpendicular to each S i. Since ~b 
is orthogonal to Si, we have 

4(x) E T ~ , k  for all x C ~m,k #~ S~. 

Therefore 
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Since ~J Si divides ~m,k into 2m + 2 nonempty components, none of these 
1 ~_i~_mq-1 

being a subset of H(~,.,~; 4~), we have 

V(~m,k; @) ~ 2m -k 2, 

which completes the proof. 

Corollary7. For all minimal submanifolds N in S n+~-I of  the form N =  

S pl X . . .  X S pk , Pl -k ... -k Pk = n, 

Ind (U) > 3. 

Proof. Let (x~ . . . . .  X.+k) be the Euclidean coordinate of a point q in S "+k-1. 
Then at qE N every normal vector r of N in TqS "+~-1 is of the form 

= ( / 1 X I , . . . ,  t lXpl+l,  t2Xpl+2, . . . ,  t2Xpl+p2+2, t3Xpl+p2+3," ' ,  tkXn+k), 

where 

The vector field 

k 

Z tiPi ~- O. 
i = 1  

= (x,+~, 0, . . . ,  0, - x , )  

is a Killing vector field on S n+k-1 associated with the rotation in XlXn+~-plane. 
Then 

~ " ~ = (q - tD xlx.+~.  

Since t~ --  t~ can be arbitrary, it follows that 

H(N; 4~) ----- {(xl . . . . .  x.+k) E N; xl  = 0 or x.+ k = 0}. 

Therefore v(N; r = 4, and the corollary follows from Theorem 3. 

4. Instability and counterexample 

In this section we use Theorem 1 to give a new proof  of the following theorem. 

Theorem 4. (DO CARMO & PENO, FISCm~R-COLBRIE & SCHOEN). The only complete 
stable oriented minimal surface 27 in R 3 is the plane. 

Proof. Since 27 is stable, Ind (27) = 0 and so by IF] Z has finite total curvature. 
Suppose 27 is not a plane. Then the normals to 27cover S z except for a finite num- 
ber of  points. Hence for any unit vector n in R 3 we have 

v(S; 4,) ~ 2. (9) 

Then by Theorem 1 Ind (27) ~ 1 and thus S is not stable. 
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In showing (9), we have used the orientabitity of  X. If  X is nonorientable we 
get only v(S; ~b) => 1 and Ind (S) ~ 0, and thereby gaining nothing toward 
the instability of Z'. On the other hand, every section E of  the normal bundle 
of  2J gives rise to a piecewise smooth function f on N such that E = f~, ~ a unit 
normal of X. But not  every funct ionfgives rise to a section E of the normal bundle 
of  X if Z' is nonorientable (e.g. constant function on Z). This is the main reason 
why the proofs of DO CARMO & PENG and FISCHER-COLBRIE, & SCHOEN do not 
work for nonorientable Z'. As a matter of fact, this very reason will lead us to 
a counterexample; a complete stable nonorientable minimal surface in R a. The 
following lemma is an extension of BAR~OSA & DO CARGO'S result [BC] to non- 
orientable minimal surfaces. 

Lemma 2. Let D Q N be a bounded nonorientable domain with piecewise smooth 
boundary on a nonorientable minimal surface N in R 3. l f  the image of the oriented 
double cover of D under the Gauss map has area less than 4z~, then D is stable. 

Proof. Let ~b be a section of the normal bundle of D vanishing on ~D. Then there 
must exist a nonempty subset C of D on which, and nowhere else, 4~ vanishes since 
otherwise D would be orientable with q5 as a nonvanishing normal vector field 
o n  it. Denote D'  = D N C. Then ~ gives an orientation to D'. The image of 
D'  under the Gauss map has area less than 2~ and so, by BARBOSA & DO CARMO'S 
result, D' is stable. Hence the second variation of the area of D with respect to 4~ 
is nonnegative. Since 4, is arbitrary, D is stable. 

The lemma above gives the following as an immediate consequence. 

Theorem 5. Any complete nonorientable minimal surface in R 3 of total curvature 
--2z~ is stable. 

MSEKS [M] proved that the total curvature of evera complete immersed non- 
orientable minimal surface in R 3 is at most --6x.  Therefore any complete non- 
orientable minimal surface in R a of  total curvature --2zc has at least one branch 
point. In fact, Henneberg's minimal surface [Sp, p. 405] has total curvature --2z~ 
and has two branch points. But we do not know whether or not Henneberg's 
surface is the only complete nonorientable minimal surface in R 3 of total curva- 
ture --2o,. 

Theorem 6. Let X be a complete immersed nonorientable minimal surface in R a 
of finite total curvature. [ f  Z is conformally equivalent to a projective plane 
punctured at a finite number of points, then 

Ind (Z) => 2. 

Proof. Since X is nonorientable, the Gauss map g : X--~ S 2 is not well defined. 
However the map gl = P ~ g : X--~ p2, for the covering map p : S ~ ~ p 2  is 
a well defined branched covering map. gl then extends to a holomorphic map 

from X onto p2. Let 2) (S', respectively) be the orientable double cover of  ~, 

(2J, respectively) and/3 (p' respectively) the projection map of 2) (X' respectively) 
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onto Z (22, respectively) (see Figure). Here we think of X' as X with multiplicity 

two in R 3. One can lift ~ (ga, respectively) to ~ : 2 - +  pZ(g, : X '  -+ p2, respectively) 
o o ! such that ~ ~ /3 (g' = gl P ,  respectively). By taking g to be the Gauss map 

on 27' which is obviously well-defined, one can again lift g' to g : 27' -+ S 2 and so 
that g' = p o g. Accordingly, one can lift ~ to ~ : ~ ' -+ S 2 such that ~ = p o ~. 

X ~ - ~  S 2 X' ~ S 2 

Figure 

Let/31 . . . . .  /3k E Z be the branch points of the map ~ and fii the branching 
order of  ~ at/3i. Then /3i -1- 1 is the local degree of ~ near/3i. First the Riemann- 
Hurwitz formula [GH], applied to ~ : X - +  S z, gives 

k 

2 ~]/3, = --Z(X) + deg (~)" z(S2),  
i = 1  

where Z(M) denotes the Euler characteristic of M. From this we obtain 

k 

~] fli = --X(Z) + deg (~). z(P2). (10) 
i = 1  

Secondly, by [M], the total curvature of Z' is at most - -6m Hence 

deg (4) = deg (g) ~ 3. (1 1) 

Thirdly, by hypothesis we have 

Z(2) = 1. (12) 

From (10), (11), and (12) it follows that 

k 

Z/3i=> 2. 
i = 1  

Therefore there are two possibilities: either (i) /31 = 1 and /~2 ~ 1, or (ii) 

/31 >= 2. Let pj, j = 1, 2, be the point of Z' corresponding to }j E Z under the 
conformal equivalence of Z into Z. Hence pj can even be a point at infinity. Let 
f1 be a unit normal vector of X at pj, that is, v j =  g(pj). Then there exists a unit 
vector n such that 

n . v j = 0 ,  j =  1,2 (or j =  1 only in case of (ii)). 

Thus pj C H(X; 4~,) and any sufficiently small neighborhood of pj is divided by 
H(Z'; 4',), like a pie, into 2flj + 2 regions. Similarly a small neighborhood of ffj 
is divided by H(27; 4,), the subset of Z corresponding to H(2J; 4~,) under the con- 
formal equivalence, into 2fij + 2 regions. 
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Let U1 . . . .  , U s be the connected components of U = ~ ~ H(Z; q~n). If  we 

denote b y / s  the Gauss curvature of (Z, dU), then the Gauss-Bonnet formula 
for the domain U gives 

d 

f K +  • ~l---- 2~ Z z(U~), (13) 
U 1 5=1 

where ocfs are the exterior angles ( =  ~r minus the interior angles) of vertices of 

Ui's. Here we dropped the geodesic curvature term because ~ is closed. Obviously, 
we have 

f if" = f ~" = 2~zz(z ) = 2~. (14) 
cr 

Moreover, one can easily see that the sum of exterior angles at p~ and p2 in case 
of (i) or at Pl only in case of (ii) is at least 4z~. Therefore 

er t ~ 4~z. (15) 
l 

It follows from (13), (14), and (15) that 

J 

6x ~ 2~ ~], z(Ui). 
i = l  

Since each U i is not closed we have 

Therefore 

z (v3  < 1. 

aT 

3 <= S. z(V,) <= J. 
i = 1  

(16) 

Thus v(L'; ~bn) ~ 3 and Ind (Z) => 2. 

Corollary 8. I f  Z is a complete immersed nonorientable minimal surface in 1{ 3 of 
finite total curvature which is conformally equivalent to a Klein bottle punctured 
at a finite number of  points, then Z is unstable. 

Proof. By hypothesis 

1 
z(Z) = ~ f ~ = 0. 07) 

(i0), (11), and (17) imply that 

k 

Z~i_->3.  
i = !  

Even though here we have a better estimate than in Theorem 6, we cannot im- 
prove (15) because in general no more than two points of S 2 can determine a 
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great circle on S 2. From (13), (15), (16), and (17) it follows that 

s 

2 <  ?g z(u3 < ~. 
i = 1  

Therefore v(2J; ~n) ~ 2 and Z is unstable. 

Very recently LoPEz & Ros [LR] proved that Enneper's surface and the ca- 
tenoid are the only complete immersed orientable minimal surfaces of index one 
in R 3. Using a different argument, CItiNG & TYSK [CT] obtained a similar result 
with an additional assumption that the minimal surface has embedded ends. Here 
we prove a stronger theorem in case the minimal surface has genus zero. 

Theorem 7. Let X be a complete immersed orientable nonplanar minimal surface of 
genus zero in R 3. I f  Z is neither Enneper's surface nor the catenoid, then 

Ind (2J) ~ 3. 

Proof. By ~]  it suffices to prove the theorem for minimal surfaces of finite total 
curvature. We use the arguments of the proof of Theorem 6. Since Enneper's 
surface and the catenoid are the only complete immersed orientable minimal 
surfaces in R 3 of total curvature --4n, we have for the Gauss map g of Z' 

deg (g) ~ 2. 

Hence, again by the Riemann-Hurwitz formula, 

and so (15) follows. By hypothesis, 

f E =  4=. 

Then from (13), (15), (16), and (18) it follows that 
g 

4 < Z z(G) < J. 
i = l  

Therefore 

Ind (Z') ~ 3. 

(18) 

Open problems. (i) Show that i f Z  is a complete minimal surface in R 3, orient- 
able or nonorientable, with Gauss curvature K, then 

1 
Ind (Z) ~< -- 1 -- ~ / K. 

In view of Corollary 4, Proposition 2, Theorem 5, Theorem 6, and BARBOSA & 
DO CARMO'S result [BC], this conjecture seems quite plausible. If true, this conjec- 
ture will give affirmative answers to the problems (ii) and (iv) below. 
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(ii) Prove that there is no complete immersed stable nonorientable minimal 
surface in R a. 

(iii) Show that for any immersed nonorientable surface S in R a without bound- 
ary there exists a unit vector n in R a such that  

v(S; r > 2. 

I f  this is true we can obtain the nonexistence of complete immersed stable non- 
orientable minimal surfaces in R 3 of finite total curvature. The following problem 
is in the same spirit as (i): Given a compact  smooth surface S Q R 3 without 
boundary, orientable or nonorientable, prove that there exists a unit vector n 
in R 3 such that 

v(S; r => 4 - -  z(S) .  

(iv) Is it true that a complete nonorientable minimal surface in R 3 has finite 
index if and only if it has finite total curvature ? 

(v) Prove that in R 3 there are no complete orientable minimal surfaces of  
index two and no complete nonorientable minimal surfaces of  index one. Prove 
also that no minimal surface in S a has index two. This may be related to the fact 
that  it is impossible to immerse minimally the real projective plane into S a. 

(vi) Show that  i f  27 is a complete minimal surface in H a with more than two 
ends, then 27 is unstable. In H 3 there exist an unstable catenoid and an area 
minimizing catenoid, both having the same boundary at infinity. 

(vii) Show that if 27 is a complete orientable minimal surface in H a of  genus 
g ~ 1, then N is unstable. 
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Note added in proof. Several people have informed me of their new relevant 
results as follows. 

(i) EJmI & MmALL~r showed that  if ~ ~ R" is a complete branched minimal 
surface of genus g with finite total curvature, then 

1 
Ind(X)  ~ g - -  1 - -  ~-~- f  K. 

This result and Corollary 4 imply that Ind (2Jk)= 2 k -  3. Moreover,  com- 
bined with Theorem 7, their result shows that if 27 ~ R 3 is a complete im- 
mersed oriented minimal surface of genus zero and total curvature --8~r, then 
Ind (27) = 3. 

(ii) Lt & TAM proved that if  ~' Q R 3 is a complete minimal surface whose 
Gauss mag g: Z ' -+  S z is a d-sheeted branched cover with branch points located 
on a great circle of  S 2, then 

Ind (~) ---- 2d - -  1. 
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(iii) LI, STENGER, TAM & TREIBERGS showed that the index of COSTA'S minimal 
surface, Z'I of Corollary 5, is either 4 or 5. 
(iv) M. Ross solved the open problem (ii) affirmatively with the additional as- 
sumption that the compactified double covering of the minimal surface is hyper- 
elliptic. 
(v) As for the open problems (vi) and (vii), G. DE OLIVEIRA constructed counter- 
examples in Ha: area minimizing surfaces with more than two ends, and area 
minimizing surfaces of genus g ~ 1. 


