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Abstract 

We prove results on the asymptotic behavior of solutions to discrete-velocity 
models of the Boltzmann equation in the one-dimensional slab 0 < x < 1 with 
general stochastic boundary conditions at x = 0 and x = 1. Assuming that there is 
a constant "wall" Maxwellian M = (Mi) compatible with the boundary  conditions, 
and under a technical assumption meaning "strong thermalization" at the bound- 
aries, we prove three types of results: 
I. If  no velocity has x-component  0, there are real-valued functions fl~(t) and fl2(t) 
such that in a measure-theoretic sense 

f(O, t )~ f l~ ( t )Mi ,  J~(1, t)--->fl2(t)Mi 

as t ~ oc. /3~ and /~z are closely related and satisfy functional equations which 
suggest that i l l(t)  ---> 1 and fiE(t) --* 1 as t ~ oo. 
II. Under  the additional assumption that there is at least one non-trivial collision 
term containing a product  fkf~ with Vk =- VZ, where Vk denotes the x-component  of 
the velocity associated withfk, we show that in a measure-theoretic sense  fll (t) and 
flz(t) converge to 1 as t--,  oe. This entails L~-convergence of the solution to the 
unique wall Maxwellian. For  this result, Vk = V~ = 0 is admissible. 
III.  In the absence of any collision terms, but under the assumption that there is an 
irrational quotient (vi + [vj[)/(vl + Ivkl) (here v~, vl > 0 and vj, vk < 0), renewal 
theory entails that the solution converges to the unique wall Maxwellian in L ~176 

1. Introduction 

We are concerned with the long-time behavior of global solutions to initial- 
boundary-value problems for discrete-velocity models of the Boltzmann equation 
in the one-dimensional "slab" 0 < x < 1, with stochastic boundary  conditions 
compatible with a steady Maxwellian. As in [8], we consider a discrete-velocity gas 
of particles moving with a finite number  of velocities v i e ~tl 3, i ~ A = {1, . . . .  m}. 
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Byf~(', t) we denote the density distribution function of the particles moving with 
the i-th velocity. We assume that there is homogeneity in the y- and z-spatial 
directions, so that all f depend only on x and t and satisfy the equations 

Otf~ + v, Oxf = Q d f  f ) ,  (1.1) 

i z A. Here, v~ is the x-component of v~, and 

Q i ( f f )  = ~ (A~fkf~ -- kt 
j k t  

AkltAiJ'~ are nonnegative constants, which we assume to i r A. The transition rates .l~jt~.kt j 
satisfy 

A~ = A~ = A,J~ (1.2) 

(indistinguishability of the particles), 

ij Akz(Vj + vi -- vl -- Vg) = 0 (1.3) 

(momentum conservation) and 

A~ = A~ k) (1.4) 

(microreversibility or detailed balance). 
The equations (1.1) are complemented by general stochastic boundary condi- 

tions at x = 0 and x = 1. We use KAWASHIMA'S notation [8]. 
Let A+ = { i~A;  v~ > 0}, A_ = {i~A;v~ < 0}. At x = 0, the boundary condi- 

tions are 

and at x = 1, 

f/(0, t ) =  ~, B~ i~A+,  (1.5) 
j eA_  

fd l ,  t) = ~ B~flj(1, t), i e A_. (1.6) 
j '~A.  

The transition coefficients Bi~j, v = 0, 1, are nonnegative constants. We use the 
abbreviations E ]  and E f  for Ej~A and ~j~A+, respectively. In order to guarantee 
mass conservation, we impose the following conditions on the B~j: 

+ 

~ B ~  j e A _ ,  
i (1.7) 

~ B ~ v i + v j = O ,  j 6 A + .  
i 

The conditions (1.7) not only imply mass conservation, but also allow the proof of 
an entropy theorem (see Section 2), as demonstrated for the discrete case in [8] and, 
for the full Boltzmann equation, in [2]. 
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Our next restriction on the boundary conditions is that there exist constant 
Maxwellian equilibria M = (Mi)r such that 

M i = ~ B ~  i e A + ,  

J (1.8) 
+ 

Mi = Bb Mj ,  l e A _ .  
J 

A vector M is called Maxwellian in this context if all the M~ are positive and if 

A~(M~M~ - MkM~) -- 0 (1.9) 

for any i , j ,  k, l e A .  
We mention that (1.5)-(1.9) are modelled after the corresponding boundary 

conditions for the full Boltzmann equation (see [2]). The discrete analogue con- 
sidered here is discussed in detail in [8]. A general introduction to discrete-velocity 
models of the Boltzmann equation is given in [7]. 

Clearly, the Maxwellians satisfying (1.8) form a cone in a subspace of 9t m. 
In addition to these boundary conditions, we supplement equations (1.1) by 

initial conditions 

A(x,O)=Ji, o(X), ie_a, (1.10) 

where Ji, o e C~+ [0, 1]. To guarantee classical solvability of the initial-boundary- 
value problem, we require that the initial data satisfy the compatibility conditions 

f ,0(0) = F /3 ~ fj,0(0), 
J 

We further assume the normalization 

1 

~, ~fi, o(x)dx = 1. 
t e A  0 

+ 

J~,o(1) = ~ B~fj, o(1). (1.11) 
J 

(1.12) 

The conditions and assumptions made so far are physically natural. In addi- 
tion, we make the following more technical assumptions, which are used in our 
present proofs, but can certainly be relaxed. 

A1. No vi is zero. 
A2. All the B ~ B~lj are positive. 
A3. There are indices i, j, k, l such that vi > O, vj < O, Vk = v~ and Ai~ > 0. 

Assumption A1 ensures that every particle eventually meets the boundary and 
assumption A2 implies that there is "good mixing" at the boundary (as is true for 
real wall Maxwellians). A3 is a more technical assumption which we need to apply 
a specific method. We point out that A2 implies, by the Perron-Frobenius The- 
orem, uniqueness of the wall Maxwellian given by (1.8) modulo a factor. We 
henceforth always assume that this wall Maxwellian is normalized such that 

M~ = 1. (1.13) 
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If some of the v~ are zero, our methods still apply if the collision terms are such 
that the corresponding Mi are uniquely determined from the Mk with Vk �9 0 and 
the conditions (1.9) and (1.13). The Broadwell model (see (1.14), (1.15) below) is the 
standard example for this situation. In Section 3, where we treat the full problem, 
we can relax condition A1 if the Maxwellian remains unique. In Section 4, where 
we treat the collisionless case, we have to insist on condition A1. 

Our objective in this paper is to prove that under conditions A1-A3, every 
global solution of (1.1), (1.5), (1.6) and (1.10) must, eventually get arbitrarily close 
in L 1, to the Maxwellian defined by (1.8). A slightly weaker result is obtained 
without A3. 

This result generalizes a recent convergence result for the Broadwell model in 
a box (see [1]), and our research was indeed motivated by the result and the 
methods from [1]. For  the Broadwell model 

(~t + ~x)v = z 2 - vw, 

( t~ t - -  t ~ x ) W  = Z 2 - -  I ) W ,  (1.14) 

~tz = �89 (vw - z2), 

with reflecting boundary conditions 

v(O,t) = w(O,t) ,  v(1,t) -= w(1, t) (1.15) 

the Maxwellian cone consists of the constant vectors (a, a, a) (a > 0), and conver- 
gence of the global solution to (1.14), (1.15) to the unique Maxwellian follows from 
the observation that as a consequence of the H-Theorem, v, w and z eventually vary 
very slowly along their characteristics, while z 2 ~ vw with the exception of sets of 
small measure. Note that A1 is not satisfied for the Broadwell model. 

The generalization of the convergence theorem for (1.14) which we present 
here needs improvements of the methods developed in [1], which we present in 
Section 3. 

In the course of this research, we naturally encountered the question of to what 
extent the boundary conditions enforce convergence to equilibrium. To this end, 
we consider in Section 4 the collisionless (or free-flow) problem, i.e., the case where 
Q i ( f f )  is replaced by 0 for all i ~ A, and A3 is replaced with 

A4. If F = {7i~; there is an i ~ A + and a j ~ A_ such that 7ij = I vd + l v j I}, then there 
is at least one irrational quotient 7~j/Vk~ �9 

A4 implies that the mixing guaranteed by conditions A1 and A2 is eventually 
"spread out" in time. 

We demonstrate in Section 4 that under assumption A4, the free-flow problem 
can be recast as a Markov renewal process (see C, INLAR [3]) with non-arithmetic 
probability distribution, and a generalization of the rather profound renewal 
theorem (see [4]) to this situation implies that the solutions of the free-flow 
equations with the boundary conditions (1.5), (1.6) converge in L ~ to a constant 
vector. 
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In Section 2 we review the basic properties of the system, mainly the mass 
conservation law and the entropy theorem, and we formulate the necessary global 
existence and uniqueness result as proved in [8]. In Section 3 we generalize the 
estimates from [1], based on the entropy theorem, to the present case, and prove 
our main theorem. 

We remark that the main obstacle towards a generalization of our main result 
to two or more dimensions is the lack of a satisfactory global existence and 
uniqueness theory in this situation. 

2. Global Solutions, Mass  Conservation and the Entropy Theorem 

The following theorem is proved in [8]. The proof is based on an adaptation of 
known techniques for the pure initial-value problem to the present case. 

Theorem 2.1. The initial-boundary-value problem (1.1), (1.5), (1.6), (1.10) subject to 
all the constraints (1.2)-(1.4), (1.7), (1.8) has a global nonnegative classical solution. 

Remark. The results in [83 contain no information about uniform bounds on the 
solution, although such bounds are certainly to be expected. 

Theorem 2.2. The global solution given by Theorem 2.1 satisfies 

d 1 
d--t ,~A y~ !~(x, t)dx = o 

(mass conservation) and for each constant Maxwellian M satisfying (1.8), 

1 

0 

(2.1) 

t 1 

+ ~ Aij (Jifj --fkfl)lnf-~l dxdz 

t t 

+ ~-~ (vlfi(1, z)ln f/(l 'z) d z -  2 fvlf~(0, z)ln d'c 

0 0 

1 

0 

Remark. The boundary terms in (2.2) are the difference with respect to the case of 
the pure initial-value problem. 

Proof. The proofs of (2.1), (2.2) are also given in [8]. Equation (2.1) is an easy 
exercise; we include the proof of (2.2) here because of the central importance of (2.2) 
for our result. 
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Multiply (1.1) by 1 + lnf~ and sum over i ~ A. Standard manipulations based 
on (1.2), (1.4) yield 

. .  

OtZflnf~ + 3~ ~ v,f~lnf~ = - ~  ~ A~ (f~fj --fkf~) In f~fj (2.3) 
i i ijkI fkft " 

Similarly, let M = (Mi)~A be the constant Maxwellian satisfying (1.8) and (1.13). 
Multiplying (1.1) by In M~, summing over i and using (1.9), we find 

9, ~ ( f / l n M i ) +  Ox Z vifilnM, 
i i 

= - 1  X 'J Akl (fifj --fkfl)(lnMi + lnMj - lnMk -- lnMl) 
ijkl 

= 0 (2.4) 

by (1.9). Substracting (2.4) from (2.3), we get 

O, 2 f~  In ~ + O- Z v,f~ M, = 4,jkAk'(f~fJ--JkJOmf--~ " 

Integrating this from 0 to l with respect to x, and from 0 to t with respect to time, 
we arrive at (2.2). q.e.d. 

Theorem 2.3. The boundary terms in (2.2) satisfy the inequalities 

t) In f (o, t) < o, (2.5) 
Mi = 

v, f~(1, t) In f~ (1, t) > 0. (2.6) 
Mi - 

U n d e r  assumptions A. 1 and A.2, equality in (2.5) holds exactly if there is a factor fil (t) 
such that f j(O, t) = fll (t) M j for aIl j ~ A_, and equality in (2.6) holds exactly if there is 
a fl2(t) such thatfj(1, t) = fi2(t)Mifor allj E A+. 

Proof. Let h(t/) = 1/In ~ (for t />  0), h(0) = 0. h is a convex continuous function, and 

we can write the entropy flux 21 v i f l n - ~  as •i viMih . For i t  A+ and 

x = 0, it follows from Jensen's inequality and (1.8) that (we suppress the arguments 
0 and t) 

h(f~ ~ = h  ~(Bg.  MJ~.-~j j 
\ M , /  j \ " M J  : i \ j /  

and therefore, by (1.7), that 

fi i v i M i h ( f f )  ~i viMihdfi  ~ 2 v i f / l n ~ =  i ~ + �9 \ M j  

- M J h ( f J ' ~ -  ( ~  ) 
<= ~' viMi 2 B~ \ M j / t  + ~ viMih . 

i j 
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: ~ ( ~ v i B ~  

= 0 .  

This inequality was first obtained by GATIGNOL I-6]. It follows that 

- ~ v~f~(0, t ) l n ~  > 0, (2.7) 
i ~ A  1Vi i  

and equality holds exactly if the values f~(0, O/M s are all equal for each j E A_. 

At the other end (x = 1), we use the same estimates. As above, for i ~ A_, 

h(Ji(l' t)'~ < ~ B~S M~ hCfs(l't)~ 
\ M~)=s M~ \ Mr/'  

and as v~ < 0 for l e A _ ,  
+ 

iv iMih(f i( l ' t )~ > ~v,Mi~. Bil MSh(fs(l't)~ 
\ Mi } =  , x Mi \ M r ]" 

By repeating the estimates preceding (2.7) we obtain 

vifi(l, t)ln ~(1' t) ->_ O. 
Mi 

q.e.d. 

We now draw information from the entropy equality (2.2). Recall that the 
Maxwellian M in (2.2) has been normalized such that ~i S~)~, o(X)dx = ~ M~ = 1. 
We rewrite (2.2) as 

t t t 

H~,[fi(t) + �88 S e(~)d~ = H ~ [ f 3 ( 0 )  + Sg~,(0,~)d~ - S ~ ( 1 , ~ ) d %  (2.8t 
0 0 0 

where HM[f](t) = ~i~A S~ofi In ~ (x, t)dx is the H-functional relative to M, 

1 

e(z) = ~ ~ A k~s(fifj-fkfi)ln~'(x,v)dx 
ijkl JkJl 

0 

is the (nonnegative) entropy production due to particle interactions in the interval 
at time z, and 

WM(0, z ) =  ~ v~f~ln ~ (0, z), gM(1, ~)= ~ v~fi in (1, T) 
l e a  l v l  i" i e A  1vii 

are the (negatives of the) entropy production terms at the boundaries at time z. 
From Theorems 2.2 and 2.3 we read off the following facts: 

Theorem 2.4. o I-I M is decreasing (and by Jensen's inequality, > 0). 
o Sto e(z) dz is uniformly bounded. 

t o S*o gM(O,z)dz and So NM(1,~)d~ are uniformly bounded. 
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Proof. It is enough to show the first statement; the rest then follows from identity 
(2.8) and Theorem 2.3. Let h(x) = x In x; then the strict convexity of h and Jensen's 
inequality imply 

1 1 

! ~ h ( - ~ j ) ( M j d x ) > _ > _ h ( ~ ! f j d x ) = O .  

Equality applies exactly if f1 = M s a.e. q.e.d. 

The powerful information which the last theorem gives us is that the entropy 
relative to M and the integrals 

t 1 

ff A,k)(f~fj-  fkf~) in dxdz (2.9) 
i jk l  

0 0 

as well as the integrals over the boundary terms in (2.2) are uniformly bounded. 

3. The Main Theorem 

For later reference, we formulate a lemma about the compactness properties of the 
solution family { f ( . ,  t)}i~A in L 1. The proof is a straightforward generalization of that 
given in [1] for the Broadwell model. We denote the Lebesgue measure on [0, 1] by 2. 

Lemma 3.1. For every E > O, there is a ~ > 0 such that for all t > 0 and all 
Z ~ [0, 1] with 2(~) < ~, 

F~ ~S(t, x) dx < ~. 

i~A Z 

Remark. This is a consequence of the entropy theorem (Theorem 2.2) and the facts 
stated in Theorem 2.4. 

From Lemma 1, together with the mass conservation law, it follows that every 
family {fi(., t)}~__> o, i E A, forms a weakly relatively Compact set in L ~. 

Next we recall the concept of a "renormalized solution", which for our problem 
is equivalent to the concept of a classical solution. The advantage which we gain is 
that, as a consequence of Theorem 2.2, the effect of the renormalized collision terms 
can be shown to become weaker and weaker for large times. This is the assertion of 
Lemma 3.2 below. 

Definition. {j~(t, x )} i~  is called a renormalized solution of (1.1), (1.5), (1.6) and (1.10) if 

Q~( f, f ) 
(03 + v~0x)[ln(1 +J~)] - - -  (3.1) 

l+f~ 
and if the initial and boundary conditions are satisfied. 
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N o w  let tN ~ oo and let CN > 0 be a given sequence. Define rectangles 
BN = [tN, tN + CNJ X [0, 1], and let 

aN=- f ~ AikJ(fifj--fkfz)ln~dxdt. 
ijk 1 

By Theorem 2.4, aN .-~ 0 as N ~ oo (formally, we can even set CN = oe). 
Our  next  objective is to use the en t ropy bounds  given by Theorem 2.4 to 

estimate the absolute values of the various terms whose sum is Qi(f f). To simplify 
our  notat ion,  let 

LQ,[ ( f , f )  = Z kl Aijl f k f t  - - f i f j [ .  
jkl 

L e m m a  3.2. If CrvaN ~ O, then there exists a sequence eN "~ 0 such that for all i 

f IQil(f,f) dxdt < gN" 1 + ~  = 
Bu 

Proofi For  every 5 > 0, there are constants M0, No < 0% such that if s > - 1, then 

1) Is[ -<__ M0sln(1  + s )  f o r l s l > 6 ,  
(3.2) 

2) Is] 2 < N 0 s l n ( l + s )  f o r l s ] < 6  

(s ln(1 + s) is superlinear away from the origin, and quadrat ic  in small neighbor-  
hoods). N o w  fix a 5. Then  we can write 

1 dx dt. 
1 + f i  . 1 +3~ f~j 

B N B~ 

jkl BIt ijk B~, 

{ fkfl 1 >(~} 'andB~=BN-B~'wesuppressthedepen- where B~ = (x, t); f f j  -- = 

dence of B~ on the indices i, j, k, I. 

N o w  use the estimates 1) and 2) in (3.2), with s =fkfi_fz _ 1, to obtain 
f,L 

f ModH, )" �9 " < ~ A , ~ j l + f  \ f ~ j - 1  m--axdt.f~fj 
B; B; 

M 5  a N . 
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For the second integral, we use the Cauchy-Schwarz inequality and estimate 

l f/f~ fkfz 1 

13~ 13j 

(;)(; , 2 ), 
k, f, �89 f~fj fkfz dxdt 2 

<= j l jkl B N B~ 

jkl " j / B 

We have also used the mass conservation law. The assertion of the lemma now 

follows by taking ~N = Moan + x/NaCNas and eN = sup,>__NkN, q.e.d. 

Lemma 3.2 is a generalization, and the proof is a simplification, of Lemma 
3 from [1] and its proof. 

We discuss what happens if CN = 1 for all N and if tN = N. In this case, the entropy 
theorems from the previous section imply that ~NaN < oo. Lemma 3.2 then says that 

f lQ, I ( f f )dxd t  < Moan + x / N ~ .  (3.3) 
l+f  = Bu 

Unfortunately, because we do not know whether ~ ~ < 0% we cannot 

conclude directly from Lemma 3.2 that ~ 7 1 i IQil ( f f )  dxdt < or. 
oo 1+3~ 

In the sequel we always assume that tee = N. This is not essential, but it 
simplifies the discussion. From the Cebyshev inequality we get the following useful 
consequence of Lemma 3.2. 

Corollary 3.3. 22 {(x,t)~ BN; 'Q~'(f'f) x/-~N} l +f ,  > <--'figs 

Pr~176176 ~ 2 {  (X't) EBN;l~i[(f~f)l ~ - ~  > %~N} ~ f f [Qi[(f'f!dxdt<gN'l + f /  __ q.e.d. 

B 

Let P = (x, t) be a point in B> By LI(P) we denote the characteristic associated 
with the velocity vi passing through P, extended forward and backward until it 
reaches the boundaries. It follows from (3.3) that there is a sequence eN converging 
to zero (we use again the symbol eN to denote this sequence) such that 

1 

l + f ~  = 

0 L(X, tN) 
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and because there are only finitely many velocities, the sequence eN can be chosen 
independently of i. By using the Cebyshev inequality again, we then have 

C~176 ~) ]Qil(f'f!dSl +f i  > x/-~N} <: x/--~. 

Lemma 3.5. There is a constant C1 > 0 such that for all t > O, all i ~ A and all 
m > 2 ,  

2{x;f/(x, t) > mMi} < C1/(mln m). 

Proof. This follows from the boundedness of the functional H M and the estimates 

Mim'2{~(x ' t )>Mim}<-<-l lnm f filnMf--~ii 
{x; f i (x, t) >= Mira} 

1 
< -  (HM(0) + c), 
-- lnm 

where in the last step we have used that x In ~x is bounded below, q.e.d. 
Mi 

Corollary 3.6. The sets of x where fi > e~ p (p > O) are of measure o(1) as N ~ oo. 
(See Lemma 6 in [1].) 

Corollary 3.7. Except on a set of points x of measure < x/-~N, 

varL~(x,t~)ln(1 +f/) < ~-NN. 
There is a constant C > 0 such that if P 1 and P2 are two points on Li(x, tN), then 
except for x ~ [0, 1] in a set of measure o(1) 

I J~(P1) -f~(P2)[ =< Ca~/4. 

Proof. The first assertion follows from Corollary 3.4 by noting that 

I Q i l ( f f )  
I((~, + @~)ln(1 +f~)[ < 

l+ f~  

From this inequality, 

=(1 +f/)(P1) < ~ N  
In(/ §  = ' 

with the exception of points (x, tN) of measure o(1). By applying elementary 
manipulations to this inequality and using the fact that by Corollary 3.6 the set 
wherej~(x, tN) > ~1/4 is of measure o(1), the second assertion follows, q.e.d. 

Remark. The above discussion shows that we can actually control ~L~(x,t~)IQil 
(f, f )  ds except for points x of small measure. It follows that we have control of 
varf  along most characteristics, 
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We now abbreviate IN = IN, N + 11. Then, by the proof of Lemma 3.2, we 
obtain 

Corollary 3.8. Let 0 < p < 1. Then, for q < 1 P, Z kl -- A i j fA f  - f j f i[  < e~ on 
IN X [0, 1], with the exception of a set of two-dimensional Lebesgue measure o(1). 

Proof. First note that if 2{x;f~(x,t)>e~ p} =o(1) for t e lu ,  then 22{(x,t)~ 
IN X [0, 1]; f (x ,  t) > e~ p} = 0(1). Therefore, 

22 {(x, t) e Bs; IQi l ( f f )  > e~} 

= 22 (x,t) EBN; [Qil( f , f ) i - -~i  > 

{ } = 22 (x, t) E BN; IQil(f,f) ~ > s~ and j5 > effP 

+ 22 (X, t) ~ BN;lQi l ( f f )  ~ > e~ and f / <  eft p 

<o(1) + 22 {(x,t)~ BN; [Qil(f f )  1 + -  ~'~p > e ~ }  
= l + j 5  = 

=<~ ( x ' t ) ~ B N ; ' Q d ( f ' f ) > l  +f~ =2 e~+p 

= < ~  2 e ~ ' - q l + f ~  
BN 

< o(1) + 2elN -p-q. 

This estimate completes the proof. 

The previous lemmas and corollaries put us in a position to draw further 
conclusions from the Entropy Theorem 2.4. First, let C > 0 be an arbitrary but 
fixed constant. From Theorem 2.4 we know that 

N + I  

S NM(O, r) dz --* 0 
N 

as N ~ oo. Let Is(C) = {t ~ IN; Vif/(0, t) = C}. Because we know from Theorem 
2.4 that gM(O, r) does not change sign, it follows that 

g~(0,  ~) & --, 0. 
IN (C) 

Now note that h(y) = y lny is strictly convex on (0,C] (h"(y) = l/y), and use the 
definition of gM and the boundary conditions to get 

( eM(O,z)=~,viMih Z B~ Mj J h 
i \ j  i �9 'JMj  k, M j  / 
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These facts together imply 

Lemma 3.9. For all ~ > O, 

)~{ t ~ I N ( C ) ; ~ i ' j ~ A s u c h t h a t  fi(O'z) fj(O'z-) } M ~  Mj > ~ =o(1) 

as N--+ oo. 

Proof. By Cebyshev's inequality gM(0, z) = o(1) on IN, except on sets of measure 
o(1) as N --, oo. We are only concerned with times -c for which all J](0, T) < C. Since, 

by assumption, there is an i ~ A + with M~ > 0 such that Bg. M~ > 0 for allj  s A_, it 
~: Mj 

follows from the strict convexity of h on (0, C] and the lower bound 1/C on h" that 
&M(O, z) can only be small if all thefj(O, z)/Mj, j ~ A_, are close to each other (if there 

were one pair i, j such that Mi ~ were large, then &M would be large). By 

applying the boundary condition we get the assertion of the Lemma for all j ~ A. 
q.e.d. 

Corollary 3.10. For all ~ > 0 there is a sequence CN ~ oo such that 

{ f~(0, t) f~(0, t) } 
)~ tEIN(CN);3i, j e A s u c h t h a t  Mi Mj > e  =o(1). 

Proof. Choose e arbitrary but fixed and let 

:~N(C)=2 t~IN(C);3i, j e A s u c h t h a t  Mi Mj > ~ " 

By Lemma 3.9, aN(C)~0 for each C. Next choose a sequence CN ~ 0o and 
consider the family of sequences eN(CM), from which we choose an appropriate 
diagonal sequence. The assertion then follows. 

Corollary 3.11. For all ~ > 0, 

)c t ~ IN; 3i, j E A such that M~ 

as N ~oo .  

q.e.d. 

 &0,0 ) 
> e~ = o(1) 

Mj J 

Proof. By Corollary 3.10, we only need to show that 2(IN\IN(CN))= O(1) as 
N ~ 0% and this follows from Corollaries 3.5 and 3.7. q.e.d. 

In the sequel we use the symbol " ,~ " to denote equality up to order o(1) as 
N ~ 0% with the exception of sets of measure o(1) (in one or two dimensions, 
depending on the situation). So we have just proved that there is a function ill(t) 
such that in this sense on IN 

f(0, t) ~ ]31 (t) M 
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(if, e.g., vt > 0, we can take ill(t) =fl(0,  t)/M1; this shows that fll can be chosen to 
be continuous). Similarly, there is a function flz(t) (which can be chosen as 
fl(1, t)/M1) such that 

f (1,  t) ~ fl2(t)M. 

Remark. Note that so far we have not used any information supplied by the 
control of the collision terms. In fact, everything said so far applies to the free-flow 
problem, i.e., the case where the collision terms are replaced by zero in the 
equations, with the same boundary conditions. 

For the full problem we now use Corollary 3.8 to collect further information 
kl about the functions fll and f12. Recall that ~ Aq [fi fi - f i J ) [  = o(I) on BN, with the 

exception of sets of two-dimensional measure o(1). This implies that 
]tiff - f i f j ]  = o(1) whenever Ai~ > 0, except on sets of measure o(1) on BN. Since by 
Corollary 3.5, everyfi ( f j , f i , f i ,  respectively) varies slowly along most of its charac- 
teristics, and since fi g/3a (t)Mi on the left boundary with the exception of small 
sets, we get that 

o (1) = 1( J~fz - f i f j ) ( x ,  t)[ .~ [fil (Pi) fll (P j) MiMj  - fit (Pk) fll (Pz) MkMl] 

(see Fig. 1), where Pi = Pi(x, t), etc. 
Recalling that M is a Maxwellian, we have that MiMj = M~MI, and hence 

fl, (ei) fil (n j) ~ fll (Pk) fll (P,). (3.4) 

Notice that the location of the points Pi, P j, etc. depends on the particular part of 
the collision term under consideration. We assume for the rest of the discussion 
that vj < vl < 0 < vk < vi, as indicated in Fig. 1, but this assumption is just for 

P~ 

P~ 

Pi 

P= (x,t) 

Figure 1. 
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convenience. If the point P = (x, t) is moved along the characteristic associated 
with v~, then P~ remains fixed, but the other points move in such a way that 

Pk - Pi Pz - Pi 
and 

Pj  - Pi P j  - P~ 

remain fixed and depend only on the velocities. In fact, a short calculation shows 
that the first quotient is (vi - vk)/(vi + 1@), and the second is (vi + Ivll)/(v~ + Ivjl). 
We denote these quotients by a and b respectively; then our assumption on the 
velocities implies that 0 < a < b < 1. 

We can also move the point P vertically, i.e., we can keep x fixed and vary t; the 
points Pi, etc., then also move vertically, with the same speed. Let P~(x, t) = (0, z) 
and Pj(x, t) = (0,'c + s). Then we realize that (3.4) can be rewritten as 

f l t ( z ) f l l ( z  + s) = f l l (z  + as) f l l ( z  + bs) + o(1) (3.5) 

where s < vi + Ivjl, except on sets of measure o(1) in IN x [-0, vi + Ivjl] with respect 
to (t, s). We have therefore proved our first main result. 

Theorem 3.12. There  is a cont inuous func t ion  ill(t),  t > O, such that 

)~{t ~ IN; I ~(0, t) - f l l ( t )Mi l  > 5} ~ 0 (3.6) 

as N ~ o% and ill(t) satisfies the func t iona l  equat ion (3.5) in IN x {0, vi + I vjI], with 
the excep t ion  o f  sets o f  measure  o(1). E x c e p t  f o r  sets o f  measure  o(1) as N --* oo the 

func t ion  flz(t) is ju s t  a shift of ill(t). 

Proof. Only the last statement has not yet been proved, but is an immediate 
consequence of Corollary 3.5. q.e.d. 

It is completely trivial that f i t ( t)  = 1 satisfies (3.5). If we could show that this is 
the only solution of (3.5) as t --* o% it would easily follow, from the convergence in 
measure spelled out in (3.6) and from the slow variation of fi along most of its 
characteristics, that f~ ~ Mi in L 1 as t ~ oo. Unfortunately, we failed to find 
a rigorous proof that/?l(z) --* 1 as z ~ oo follows from (3.5). It is true that fll can be 
considered continuous and "almost periodic" (because of the slow variation of the 
f~ along their characteristics, the values of fl~ repeat, with small errors, after times 
1 1 
-vl + ~ '  where i e A§ k e A_), but problems arise from the error term in (3.5) and 

the fact that (3.5) applies only up to small sets. 
Under the additional assumption A3 from the Introduction, we can prove 

a stronger result. The method we employ is a generalization of the one used in [1]. 
Again, we use the symbol " ~ " to denote "approximate equality except on sets of 
measure o(1)". 

Suppose now that A3 applies and that vk = vz > 0, A~k) > 0. By Corollary 3.8, 
f k f l  ~ f i f j .  Consider next a point P ~ IN x [0, 1]. fi varies slowly along LI(P), so 
f i(  P)  ~ fll(~J)Mi (see Fig. 2). 



352 C. BOSE, P. GRZEGORCZYK 8r R. ILLNER 

R 

Qc J~ 

Figure 2. 

Let Q be a point on the characteristic Lj leaving the point Qo where L~(P) 
reaches the right boundary. Asj~ varies slowly along L j, and asfj(Qo) ~ ill(r) Mj, 
by the boundary condition and Theorem 3.12, it follows that 

f~(Q) ,~ fl~('c)Mj, fi(Q) ~ f l i (a )Mi ,  fj(P1) ~ fla(a)M: (3.7) 

and, as fk and f vary slowly along Lk = Ll, 

f k f ( P O  ~ fk f (Q) .  (3.8) 

Finally, f if j(Q)~fkfl(Q) and fJ ) (P1)~fkf t (Pa) .  It follows from the last three 
identities that 

J~fj(Q) ,~ f~f~(P ~). (3.9) 

Notice that we need, for this step, no information about fk and fl except (3.8). It is 
for this reason that we can also allow Vk = V~ = O. 

We now need a lemma which says that for large enough N, fll cannot be close 
to zero except on sets with asymptotically vanishing measure. Specifically, let 
C(N, 6) = 2{t ~ [ N , N  + 1]; ill(t) <-_ 6}. Then we have 

Lemma 3.13. For every e > 0 there are a b > 0 and an No such that C(N, 6) < e 
for all N >- No. 

We defer the proof of Lemma 3.13 until the end of this section. 
The identity (3.9) can be rewritten as 

and because by Lemma 3.13 ill(a) r 0 except on sets of arbitrarily small measure 
(explicitly ill(a) > 6 except for a in a set of measure e), 

f i(P1) ~ f l l (z)M,.  
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Now note that as Q varies along QoR (see Fig. 2), P1 varies along a line RS 
transversal to the vz-characteristics. Since J~ varies slowly along its characteristics, 
it follows that 

fd l ,  t) ~ fdP) ~ /31(z) Mi 

for t ~ J1, where J1 is the interval indicated in Fig. 2. But this implies that 132 is 
approximately constant on J1. 

By using simple overlap arguments and mass conservation, we readily see that 
in the sense of measure 

/31('L') ~ 1, /32("6") ~ 1 

as z ~ oo. This means that everyJ~ approaches M~ on IN in the sense of measure. 
But convergence in the sense of measure together with the weak compactness given 
by Lemma 3.1 imply L~-convergence, which is our main result. 

Theorem 3.14. Under conditions A1-A3, or under conditions A2, A3 / f  the Maxwel- 
lian M is unique, 

1 

lira ~ S ]fdx, t) - Mildx = O. 
t--*oo l e A  0 

Proof of Lemma 3.13. The proof is by contradiction. If the assertion of the lemma 
is false, there must be an ~ > 0 such that for all 6 > 0 and all No there is an N > No 
with C(N, b) > ~. In addition, mass conservation, the compactness property from 
Lemma 3.1 and Corollary 3.7 imply that there are constants C1 > 0 and C2 > 0 
such that 

,~{t~ [N,N + 13 ,/31(0 > C1} = C2 (3.10) 

(in other words,/31 cannot be close to zero almost everywhere, and the mass cannot 
concentrate on small sets by the entropy theorem; we omit a detailed verification of 
(3.10)). 

Let G be the set in IN, N + 1] where /31 > C1. A simple geometric argument 
shows that there is a constant K > 0 (depending only on the angle between the i-th 
andj-th characteristics) such that the two-dimensional measure of the set of points 
(x, t) ~ IN, N + 1] x [0, 1] for which both Ldx, t) and Lj(x, t) meet G is at least 
K(2(G)) a. In Fig. 3, for convenience and without any loss of generality, we have 
indicated G as a pair of intervals and (some of) the intersection set as the resultant 
parallelogram. Since fi and fj vary slowly along most of their characteristics, we 
have that f if j  > C~MiMj on most of the intersection set. Using again that 
fkfl ~ f i f j ,  it follows thatfgfl > C2MkMz on most of this set. The characteristics Lk 
and Lt are identical and form a strip S indicated in Fig. 3. Letfk andf~ denote the 
values offk and fz at a point R in the intersection set D of the strip S and the strip 
E formed by the characteristics Li emerging from the set where /31(0 < 3. By 
assumption, this set has macroscopic measure. Since f k f - - f k f l  = (fk--fk) ~ + fk 
( f  - f l )  and since [fk --fk[ < al/2 (except on a small set) a n d ~  < aS 1/4 except on 
a small set, it follows that f k f  > �89 on most of D. However, by the same 
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~1 > C l  

fll > C1 

S 
i - i 

I t 

I 

Figure 3. 

reasoning applied to the strip E,fifj  < const. ~ in D. As 6 can be arbitrarily small 
and D has macroscopic measure, we have a contradiction to Corollary 3.8, and the 
proof of Lemma 3.13 is complete. 

4. T h e  C o l l i s i o n l e s s  C a s e  

The case where Q i ( f f )  is replaced by zero appears to be simpler at first glance, 
because the explicit solution of the initial-boundary-value problem is immediate: 
The f :s  are constant along their characteristics, and the boundary conditions 
redistribute incoming to outgoing densities at the boundaries. The entropy the- 
orem (Theorems 2.2 and 2.3) applies, but the term e l f  ](t) is replaced by zero. 
Entropy increase is entirely due to mixing at the boundary. 

In addition to the conditions which we have assumed so far, we now make the 
additional assumption: 

A4. Let F = { 7ij = [vii + [vj [; i ~ A +, j e A_ }. There are velocities such that at least 
one quotient 7iS/Vkl is irrational. 

Under assumptions A1, A2 made in Section 1 and the additional assumption 
A4, we shall prove 

T h e o r e m  4.1. Let fi.o e C+ [0, 13, i e A, be fixed initial data satisfyin9 (1.11), (1.12). 
Then, under the conditions A1-A3, the solution f ( x ,  t) to the coIlisionless initial- 
boundary-value problem 

(~ + v~O~)f~ = 0 
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with initial condition (1.10) and boundary conditions (1.5), (1.6) satisfies 

lira f/(x, t) = Mi (4.1) 
t-*CO 

where the Mj  > O form the (unique) Maxwellian equilibrium given by (1.8), (1.9) and 
where the convergence is uniform in x E [0, 1]. 

We remark that it is sufficient to establish (4.1) when x = 0 (or x = 1), for then 
the uniformity follows immediately by the constancy of thef~ along characteristic 
trajectories. 

The method we are going to use to prove Theorem 4.1 employs probabilistic 
techniques. In order to apply these, we first have to renormalize the Bi~ to obtain 
row stochastic matrices. The key for this is the condition (1.8). 

Let 

M + = (M,)i~A+, M -  -= (Mi)i~A_, 

B ~ (BO)I~A+,j~A_, B 1 B 1 = = ( , j ) , ~  , j~A+ .  

Equation (1.8) becomes 

M + = B ~  -,  M -  = B 1 M  +. (4.2) 

S p l i t t i n g  ~ A  = ~A+ X ~}~A-, we form the vector M = (M +, M - )  and the matrices 

0 B ~  
B =  B1 0 '  

If B = V -  1BV, then 

V = diag(Mj). 

1 
~,j = ~ Bi jMj  (4.3) 

and in particular,/~ has exactly the same block structure as B. Since M = BM, we 
have 

(4.4) 

i.e., /~ is row-stochastic. As /~ is irreducible (this follows easily from the block 
structure and assumptions A1, A2) and nonnegative, it follows from the Frobenius 
Theorem (see [5]) that (1 . . . . .  1) is the unique eigenvector associated with the 
eigenvalue 1. The left stationary vector for/~ is also easily found. 

Set v + = ( V i ) i e A +  , V -  = ( V i ) i e  A . Then v + B ~  - v -  and v -  B 1 = - - V  +, SO if 
V = (V +, -- V-)e 9t A, it follows that vB = v. We see that v = ([vi[Mi)i~A satisfies 

v/~ = v. (4.5) 

For each x, t set f + (x, t) = ((fi(x, t))i~A+, 0A-), f--  (x, t ) = (0 A+, ( fi(x, t) )i~A_) ~ 9t A, 
where 0" denotes the zero element in ~fl". The equations (1.5), (1.6) become 

f+(O,t)  = Bf-(O,t) ,  f - (1 ,  t) = Bf+(1,  t), (4.6) 
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which, in the new coordinate system 

q+(x , t )  = V - l f + ( x , t ) ,  q - ( x , t ) =  V - l f - ( x , t ) ,  (4.7) 

may be written as 

q+(O,t) = Bq-(O, t ) ,  q-(1, t) =/~q+(1, t). (4.8) 

In component form, the constancy of the solution along characteristic trajectories 
and (4.8) together yield 

qi(0,t)= ~ B i j q j ( l , t - ~ v j }  ) V i E A + ,  
j~A 

(4.9) 

qi(l,t)= 2 Bijqj(O,t--]~j]) Vi~A_. 
j~A+ 

We now turn to the Markov renewal version of our problem. The notation and 
motivation follow that of ~INLAR [-3]. 

For i, j ~ A and t _> 0, define the functions 

if t >  1 'Bij 
Q(i , j ,  t) = = Ivjl' (4.10) 

1 
0 i f O < t < ~ .  

We observe the properties 

Q(i,j,  t) ~ o, (4.11) 

Q(i, j ,  s) <= Q(i , j ,  t) for s < t, (4.12) 

Vie A, ~, lim Q(i,j,  t) = ~/3ij  = 1. (4.13) 
j t ~  j 

Let X.  and T., n -- 0, 1, 2 . . . . .  be random variables on a probability space 
(O, P) satisfying X. ~ A and T. e 9{ + = [0, 0o ] for all n, and 

0 = To < T1 < < Tn < 

Assume that the process (X., T.) evolves according to a rule 

P { X , +  I =j ,  T,+ a - Z ,  < t l S o  = io, S l  = il . . . . .  X ,  =- i,, To = to . . . .  , T ,  = t,} 

= P(Xn+l = j ,  T,+I  -- T, < t[ X, = i,} 

= Q(i,,  j, t). (4.14) 

In the terminology of CINLAR, (X,, T,) is a Markov renewal process (henceforth 
abbreviated as MRP) with semi-Markov kernel Q(i,j ,  t). Given the kernel Q(i, j ,  t) 
satisfying (4.11)-(4.13), it is easy to see that there exists a MRP evolving according 
to (4.14). 

Since/~ is irreducible, the Markov process X, is irreducible. As Bjj = 0 and 
A 2 (B)~j > 0 for all j e A, each state recurs after exactly two steps in the process. The 
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sojourn time between two occurrences of statejo e A+ passing through state i e A_ 
1 1 

is ~ + ~ .  Thus the (cumulative) distribution function F(jo, jo, t) of these 

sojourn times between recurrence to state Jo may be computed explicitly. { ' }  Set Ct(jo) --- i e A_; ~ + < t ; then f ( jo ,Jo,  t) = ~ier~(jo)/~joi, so condi- 

tion A4 ensures that F is non-arithmetic (see ~INLAR [3]) .  A similar expression may 
be derived forjo e A_. Accordingly, the MRP (X,, T,) is said to be irreducible and 
aperiodic. 

Before we can state our main result, we need to establish some notation: For  
r > 0, define the hitting times to the interval (~, oo ) by 

N~ = sup{n; T,  < ~}. 

So TN~+ 1 is the first time that T,  > z. Given i,j e A, ~, ~ > 0, we also define hits to 
the interval (z, ~ + 4] starting at zero: 

H(i,j,'c, 4) = P { X ~ + I  =j ,  TN~+I E(z,v + 4]lXo = i}. 

For  i, j e A ,  t > O, and n = 0 , 1 , . . .  set 

r,(i,j, t) = P{Xn = j, T ,  <= tl Xo = i}. 

Define 

R(i,j ,  t) -- ~ r,(i,j, t). 
n ~ O  

R is the so-called Markov Renewal Function. 
v --= ( [ v j l M j ) j e  A is the left stationary vector for/~ (see (4.5)). Finally, we define 

the expected sojourn time during visits to j by 

m j =  ~ {1-ZQ(j,k,t)}dt. 
0 k 

Using (4.10), we easily see that 

Let m = ( m j ) j e  A. 

Lemma 4.2. For all i,j ~ A and all ~ > O, 

1 
lim H ( i , j , r , 4 ) =  ~ Vk J qor 
z~.oo ~J" m k e A  0 

where cpr s) =- Q(k, j ,s  + ~) - Q(k,j, s). 
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Proof. Let n __> 0 be fixed. Summing over k ~ A and integrating over x ~ [0, z], one 
obtains 

P{X,+I  =j,  T,+~ ~(r,r + 411Xo = i} 

= E i P { X , + I  =J, T,+l - T,  a t z - x , r  + r - x 3 1 X o  = i, 
k~A 0 

X ,  = k, T,  = x} dr,(i, k, x) 

= Z i P{X,+~ = j ,  T,+I  - T, ~ (r - x ,z  + ~ - x]l X,  = k}dr,(i,k,x), 
k~A 0 

where we have twice used (4.14). This may be written as 

Z i go~(k,j,'c - x)drn(i,k,x). 
k~A 0 

Summing now over N~ = n (disjoint events) and using the Monotone Convergence 
Theorem yield 

H(i,j,z,~) = P{XN~+I =j,  Ts~+I e(r ,r  + ~][Xo = i} 

= ~, i (pr - x)dR(i,k,x). 
k~A 0 

By the Markov Renewal Theorem (Prop. 4.9, p. 331 in ~INLAR [3]) this latter 
expression converges, as z ~ oe, to 

1 Z 
V ' m k e A  0 

q.e.d. 

As we know the form of Q, v and m explicitly, we obtain 

Corollary 4.3. 
I 1 1 

M/  for 0 < r  = = r v j ] '  

lira H(i,j, r, 3) Mr for ~ > --fvj]" 

It is now easy to see how this result determines the values q j(0, t), j ~ A _, and 
q~(1, t), j e A+, for large values of t. The equations (4.9) can be written in terms of 
integration with respect to point measures. For  z > 0, 

V i ~ A + ,  y qp(O,s)c~i,~(dp, ds) 
A x g t  

= ~ qp(1, s) ~ Bij6j,~-~(dp, ds), (4.15) 
Ax~R j ~ A -  
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1 

, =  ' 

g (s) . . . . . . . . . . . . . . .  " ~  . . . . . . . . . . . . .  -" 
i e  A + ~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  q~ (s) 
kC A 

1 

Figure 4. 

V i e A _ ,  ~ qp(1,s)ai,~(dp, ds) 
A x g l  

= ~ qv(O, s) ~ BubJ,~-+(dp, ds), 
A x ' N  j~A+ 

where 6~,t denotes the point mass at (i, t) ~ A x 9l. 

(4.16) 

The distribution of the measures on the right-hand sides of (4.15), (4.16) is 

Q(i,j,z - ~), 
j e A  

so if we iterate these expressions and stop the point masses when they first reach the 
set A x ( - oo,0), the distribution of these discrete measures is the same as the 
hitting distribution of (X,, T,) to (% oo ), namely H(i,j, z, 3). Since the H(i,j, ~, 4) 
converge pointwise as r -~ oo, the stopped discrete measures coverge weakly to 

1 

where 2(d~) denotes the one-dimensional Lebesgue measure on ( -  oo, 0). Note the 
independence of the right-hand side from i. We conclude that for all i ~ A, 

0 0 

!imq~(0,-c)-- ~ ~ Oj(s)mj(ds)+ ~ ~ Oj(s)mj(ds) (4.17) 
j~A+ --co j e A  - c o  

where the ~j are obtained by projecting the values of qj to the real axis along 
characteristic lines (see Fig. 4): 

$j(s) = qj( - slvj[) f o r j e  A+, 
(4.18) 

~ (s )=q j (1  +sh@) f o r j E A _ .  
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Finally, by a change of variables on each integral in (4.17) we may integrate over 
[0, 1] to obtain 

lira qi(O,z) = Mk ~ j" qs(x)Mjdx. (4.19) 
z->oo k ~ A  0 

But from (4.7) qsM i =f j ,  and we combine this with the normalization (1.12) to 
obtain (4.1). This completes the proof  of Theorem 4.1. 
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