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On the Initial-Boundary-Value Problem for 
u t -  div( Vu] p- 2Vu) = 0 

XIANGSHENG XU 

Communicated by P. RABINOWlTZ 

1. Introduction 

Let ~2 be a bounded domain in IR u, N > 2, with Lipschitz boundary ~2, and let 
T e (0, c~). In this paper we consider the problem 

~u 
& - div(IVulP-2Vu) = 0 in Qr ~ ~2 x (0, T), (1.1a) 

u = 0  onSr-=Of2x(O,T) ,  (1.1b) 

u(x, O) = Uo(X) on ~2, (1.1c) 

in the case where Uo lies in LI(f2) and 1 < p < 2. We establish the following 
theorem. 

Theorem A. Let f2, T, Uo, and p be 9iven as above. Then there exists a unique 
renormalized solution to (1.I). 

In the generality considered in Theorem A, an estimate of the type 

IVuleLq(QT), q > 1, 

is no longer possible. This suggests that solutions of (1.1) display new phenomena 
that cannot be incorporated into the classical weak formulation. To define a suit- 
able notion of a weak solution, we employ the idea of renormalization, first 
introduced by DIPERNA & LIONS [DL].  We see from Theorem A that our notion of 
a renormalized solution does encompass the new phenomena here. Also, the 
uniqueness in Theorem A implies that this notion of a solution is the "physically" 
correct one for (1.1). 

If Uo > 0, then Theorem A can be inferred from [DH] .  However, the argument 
presented in [DH]  relies on the nonnegativeness of u0 in an essential way. In fact, 
our problem here was proposed as an open problem in [DH];  also see [Dl  where 
a comprehensive account of problems of the type (1.1) is presented. Thus Theorem A 
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gives a positive answer to this open problem. We remark that the nonlinear 
semigroup theory can also be employed to establish an existence assertion for (1.1). 
However, in this existence assertion the sense in which the partial differential 
equation (1.1a) is satisfied is unclear. 

The main gap between the case uo > 0 and the case where uo may change sign is 
that in the latter case an estimate of the type 

T 

"'~o~( u2 dxdt<oo, e > 0 ,  se(O,T), 
1 + lu]) ~ +~ 

s f~  

is no longer available. To overcome this difficulty, we develop an analysis that is 
based upon suitable versions of the chain rule and the comparison principle. 

This work is organized as follows. In Section 2, we introduce the notion of 
a renormalized solution for (1.1). Then we proceed to prove the uniqueness of such 
a solution. The existence of a renormalized solution is established in Section 3. 

We conclude this section by making some remarks on notation. We use l[ " [[, to 
denote the norm in L p. For  s e N ,  s + = max{s, 0} and s -  = m a x { - s ,  0}. If f is 
a measurable function on Qr, for each M e N ,  we denote by { f >  M} the set 
{(x, t)eQr:f(x, t) > M}. 

2.  U n i q u e n e s s  

In this section, the notion of a renormalized solution is introduced for (I.1). 
Then we establish the uniqueness of such a solution. 

Before we give our definition of a renormalized solution, we need to introduce 
some notations and function spaces. For  each M > 0 define 

Pu(s) = min{[sl, M} sign(s). (2.1) 

Assume that u is a measurable function in QT with 

PM(u)eLP(O, T; WI'v(f2)) for each M > 0. 

Then we can construct a function g: QT ~/RN so that 

g = VPM(U) almost everywhere on {lul < M} for all M > 0. (2.2) 

Clearly, g, as is determined by (2.2), is measurable and is unique up to a set of 
measure 0. In this case, we call g the spatial gradient of u in the almost everywhere 
sense. If, in addition, u lies in L 1 (0, T;  W 1' a (f2)), then g = Vu almost everywhere 
on Qr. In general, we also denote g by Vu. 

Recall that a function t/(s) on IR is said to be piecewise continuous if there exist 
- oo < ao < al  < " �9 �9 < aj < oe such that v/is continuous on ( -  o% ao) ~ (ao, a , )  
u. �9 .~(aj, oo) and tl(ai+-) exist for i = 0, 1 . . . . .  j. Define d = {0e C(IR): 0 is a 
Lipschitz function whose derivative O' is piecewise continuous and the set {s e 1R: 
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O'(s) ~ 0 or O'(s) does not exist} is bounded}. It is easy to see that 

sJ ~ WI'~(IR). (2.3) 

Define 

~r = {0~sr the support of 0 is compact}. 

Now we are ready to present the definition of a renormalized solution. 

Definition. A measurable function u o n  ~ T  is said to be a renormalized solution of 
(1.1) if 

(i) ue  C([0, T];  LI(~?)). 
(ii) For each 0 ~ 4 ,  O(u)~LP(O, T; WI'P(g?)) and V0(u) = O'(u)Vu almost every- 

where on QT, where O'(u) is understood to be 0 if u E Bo - {s ~ IR: O'(s) does not 
exist} and Vu is taken in the almost everywhere sense. If, in addition, 0(0) = 0, 
then O(u)eLP(O, T; W~'P(Y2)). 

(iii) ]Vu] p-1 eLI(QT) and 

- ~ i O(s)dscptdxdt + ~ ]Vulv-2Vu(VO(u)qo + O(u)V~o)dxdt 
Or o Qr 

,o(x) 
= S q)(x,O) S O(s)dsdx for all 0 ~ d  and all ~o~WI'~(Q.T) 

0 

such that q0(x, T) = 0 and q)O(u)eLP(O, T; Wol'P(f2)). 

(2.4) 

Let us make a few remarks about the definition. For each M > 0, P~t ~ d ,  and 
thus Vu can be calculated in the almost everywhere sense. Fix 0 ~ d .  Then 
So O(s) ds ~ C([O, T ]; L 1 (f2)), because So O(z) d'c is Lipschitz continuous on IR. Now, 
let M > 0 be so large that supp 0' ~ [ - M ,  M]. Then 

i Vul p-2 Vu V0(u) = IVPM(U) I pO'(u) almost everywhere on QT. 

Thus, the second integral in (2.4) makes sense because Pu(u)e L~(0, T; Wol'P((2)). 
Similarly, if 0~dc ,  then div(O(u)lVulp-2Vu)eLP'(O, T; W-~'P'((2)) and 
O(u)IVu[PeLI(QT). We can conclude that our renormalized solution is well- 
defined. It is easy to see that if, in addition, usLP(O, T; W~'P(f2)), then u is 
a classical weak solution. 

In the following lemma we state a version of the chain rule [ET, p. 27] that is 
suitable for our purpose. 

Lemma 2.1. Let ~(s) be a Lipschitz function on IR with 4(0) = O. Assume that 

ue  V(0, T) -= {u~LP(0, T; W~'P(f2))c~ L~176 T; L ~(f2)): 

ut~ r =- LP'(O, T; W -  I'P'(f2)) + El(0, T; L1(~2))}. 
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_ f fu(x,o ~(s)dsdx is absolutely continuous on [0, T ]  and Then the function tl(t) = Ja ~o 

d 
~ t l  = (u, ~(u)) almost everywhere on (0, T), (2.5) 

where ( . , . )  denotes the duality pairing between W-I'P'(~2)+LI((2) and 
WI'p(f2) c~ L ~ (f2). 

Proof. A result in [B] shows that 

L~(QT) = L~ T; L~176 LI(QT) = L~(0, T; L~(f2)). 

We easily see that (ut, ~(u))~Ll(0, T). To obtain (2.5), it is enough to show that 

u(x,t) T 

- ~ tp'(t) ~ O(s)dsdxdt = I (ut, ~(u))O(t)dt for all 0eC~~ T). 
QT 0 0 

For this purpose, let p be the C~ function defined by 

1 if Is] < 1, ceXPs2 - 1 
p ( s )  = 

0 if Is[ > 1. 

Here, c > 0 is such that ~_~176 p(s)ds = 1. Next, set 

pk(S) = kp(ks) for each ke{1, 2 , . . . } .  

Now fix 0 e C~ ~ (0, T). Then we can select 0 < a < b < T so that 

Supp 0 ~ (a, b). 

For each t e [a ,b] ,  and each k such that ~ < m i n { a ,  T - b } ,  define ukeC ~176 
([a, b]; W~"((2) c~ L ~176 by 

T 
uk(x, t) = ~ pk(t - ~)u(x, ~)d~. 

0 

An elementary calculation indicates that 

Uk --* U strongly in LV(a, b; Wol'P(f2)), 

Uk -"+ U almost everywhere on QT and weak* in L~176 b; L~176 

Ouk ~u 
strongly in L P" (a, b; W -  l'v' (f2)) + L l(a, b; L l(f2)). . - - > - -  

& & 

Keeping these limits in mind, we compute that 
u Uk 

- f l p ' ( t ) f ~ ( s ) d s d x d t : - l i m  f lp ' ( t )  

Qr o QT 0 



The Equation u~ - div(IVu I p- 2 Vb/)  = 0 323 

b 

= lira ~(Ug Ukdxdt 
k ~ ce 

aQ 

T T 

k-*o~ -~ k, ~(Uk) O dt = ~t ' ~(u)O dt. 

0 0 

This completes the proof. 

Remark. Note that the dual space of LP(O, T; W~'P(Y2)) c~ L oo (Q~T) is much larger 
than Y. Our proof relies upon the assumption that ut ~ Y in an essential way. 

Lemma 2.2. Let u be a renormalized solution of(1.1). Then for each e > O, 

lim ~ [Vu[ v dx dt = O. 
M-~{M<IuI<M+~} 

Proof. For  each M > 0, and each e > 0, define 

1 if 0 < _ s < M ,  

- 1 - ( s - M - e )  if M < s < M + ~ ,  
J u , ~ ( s )  = ~ (2.6) 

0 if s > M + e ,  

JM, e(--S) if s < 0. 

For  simplicity, we write J for JM,~ in this proof. Now, select a sequence of functions 
{~k} from WI'~ T)  so that 

~k(0) = 1, {k(T) = 0, 

~(t) _--< 0 almost everywhere on [0, T ] ,  (2.7) 

lira ~k(t) = 1 for each t in [0, T). (2.8) 
k-~ao 

Set 0 = J(s +) - 1, and ~0 = ~g in (2.4) to obtain 

- S i (J (s+)  - 1)dsr163 + ~ Igu[p-2VuVJ(u+){kdxdt  
Or o Or 

UO 

= f f (J( s + ) -  1)dsdx. (2.9) 
f20 

Note that 

J ( s + ) -  1 = 0  on ( -  o% M].  

This, together with (2.7), shows that the first term in (2.9) is nonpositive. By virtue 
of (ii), 

VJ(u +) = J'(u+)sign+(u)Vu = 0 almost everywhere on {u < M} u {u > M + e}. 
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We conclude f rom (2.9) that  

1 
- I 
g {M<u<M+z} 

U0 

IVuf~kdxdt  < ~ ~ (1 -- J(s+))dsdx < ~ (Uo -- M)  + dx. 
oo  (2 

This, in conjunct ion with (2.8), implies that  

1 
lira - 

M-,oo 8 {m <u<M +z} 

Similarly, we can establish tha t  

l im 
M~oe { -M-e<u<-M}  

This completes  the proof.  

[Vuf  dxdt  = O. 

[VulP dxdt  = O. 

Theorem 2.3. Let f g be two functions in L I(O). Assume that u is a renormalized 
solution of(1.1) correspondin9 to f and v a renormalized solution of(1.1) correspond- 
in9 to 9. l f  f < g, then u < v. 

Proof.  F o r  each M > 0, let J g  = JM. 1. Then  set 

AM = i JM(s)ds-- i dM(s)ds. 
o o 

F o r  each 0 ~ dc  and each renormal ized  solut ion w, we infer f rom (iii) that  

0 w 
O(s)ds div(O(w)fVwf-2Vw) + O'(w)]Vw[ p 0 in ~ ' ( Q r ) .  

~t o 

This implies that  

(-~ AM, (p) + ~ (JM(U)IVu[p-2V U - JM(v)[Vv[p- 2v v)Vqodx 
Q 

+ ~ (d'M(u)lVul" - Y~(v)]VvlP)(pdx = 0 
Q 

for all (p ~ W~'P(O) c~ L ~ (f2) and a lmost  every t e (0, r ) .  

(2.10) 

Fix ~ > 0, and  let 0, be the funct ion defined by 

1 

0o(s )  = 

- -1  

if s = > e, 

if Isl < e, 

if s <  --~.  
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No te  that  AM e V(0, T). Set q~ = 0 + (AM) in (2.10), apply L e m m a  2.1, and integrate 
the resulting equat ion with respect to t over (0, r), ~ > 0, to get 

A~t(x, z) 

S S 
f2 0 

0 + (s) ds dx + ~ (JM (U)[ Vu[ p - 2 Vu -- JM (v) l Vvl p - 2 Vv) V 0 + (AM) dx dt 
Q, 

Au(x, O) 

+ j (J'u(u)lVul p -  J'u(v)lVvlP)O~+(AM)dxdt = j J O~+(s)dsdx, 
Q+ f2 o 

where Q~ = f2 x (0, r). A result in [O, p. 145] shows that  

LVu - Vv[ 2 
([VuV-ZVu - IVvl~-ZVv)(Vu - VO >= (p - 1)(iVu I + IVvl)2-~" 

The second integral in (2.11), denoted by 1, can be estimated as follows: 

I = 

> 

{lul < M} c~ {Iv[ < M} c~Q~ 

+ ~ (O?)'(AM)((JM(U))21Vu[ p -I- (JM(V))2IVvl p 
Q~\{[u[ < M} n {Iv I < M} 

- JM(u)JM(v)IVvlp-2VvVu -- JM(u)JM(v)IVulp-2VuVv)dxdt 

(2.11) 

(2.12a) 

([Vul p - 2 Vu - ]Vv I p - 2 Vv) (0 + )' (AM) (Vu -- Vv) dx dt 

(0 +)'(AM)JM(v)(- IVy[ p-  2Vv Vu 
{lu[ < M} c~ {[v k > M} c~ Q~ 

- I V u l P - 2 V u V v ) d x d t  

(<+)'(AM)JM(u)(--IVvl p-2vuvv + 

- - [Vv lp-2VvVu)dxd t  

+ j (0 + ) ' ( A M ) J M ( u ) J M ( v ) ( - I v v l ' - 2 v v  Vu 
{1< > M} ~ {h~i >= M} n Q~ 

- -]Vu[P-ZVuVv)dxdt  

= - I 1 + 1 2 + I 3 .  

We wish to show that  

(2.12b) 

lim I ~ = 0  for i = l, 2, 3. (2.12c) 
M~oo 

To this end, observe from the definition of Vv that  Vv = 0 almost  everywhere on 
any set where v is a constant.  Hence, the integrand in I1 may  not  be zero only when 
the following all hold: 

M < Iv] < M + 1, (2.13) 



326 XIANGSHENG XU 

u 

0 < AM = ~ JM(S)ds - Ju(s)ds < e, (2.14) 
0 0 

luf < M .  

Combining (2.14) and (2.15) yields 

(2.15) 

i Ju(s)ds < u < ~ + j du(s)ds. (2.16) 
0 0 

Note that yo M JM(S)ds = M, So u Ju(s)ds = - M, and Yo JM(r)dr is nondecreasing 
on IR. We conclude from (2.13) and (2.16) that 

{ M < v < M + l } c ~  J M ( s ) d s < u < e +  Ju(s)ds c ~ { [ u l < M } = O ,  

{ - M  - 1 < v < - M }  c~ JM(S)ds < u < ~ + JM(s)ds c~ {lul < M} 

c { - - M - 1  < v < - M }  c ~ { - M  < u < - M  + e}. 

Keeping these in mind, we calculate that 

1 
I l l l  = < -  

g { - M < u < - M + e } c ~ { - M - I < v < - M } c ~ Q ~  

< - ]Vv[ pdxdt  S 
g { - - M - I < v < - - M }  { - M < u < - M + a }  

+ S [Vu[ pdxdt  f 
{--M < u < - - M  +~} { - - M - - I  < v < - - M  

By Lemma 2.2, 

S (IVv[V-1]Vu[ + [Vulp-l[vv[) dxdt  

x~ I/P 

]VulP dxd t )  

[VvlPdxdt)l/P 1. 

lim 11 = O. 
M--+ ao 

Similarly, we can show that 

lim I j = 0 ,  j = 2 , 3 .  
M--* Go 

It follows from (2.12b) and (2.12c) that 

lim inf I _>_ 0. 
M ~ m  

(2.17) 

Taking M ~ oo in (2.11), and keeping in mind (2.17) and Lemma 2.2, we get 

u-v f -g 
f o3 (s) d~ dx <_ ~ ~ O: (s) d~ a:,,. 

[2 0 f2 0 



The Equation ut - div(IVul p- 2 VU)  = 0 327 

Letting e ~ 0 gives 

(u --  v) + dx  < 5 ( f  - g)+ dx. 
g2 fJ 

This implies the desired result. 

(2.18) 

An easy consequence of this theorem is that there exists at most one renor- 
malized solution to (1.1). If we use 0~ instead of 0~ in our proof, we can obtain 

(2.19) max .[ ]u(x, t) - v(x, t)[ dx < ~ I f -  gl dx. 
O <_ t <_ T -~ f2 

3. Existence 

The main result of this section is 

Theorem 3.1. Assume that uo~L  l(f2), and 1 < p < 2. Then (1.1) has a renormalized 
solution. 

Proof. For ke  {1, 2 . . . .  }, setfk = min{uo, k}, 9k = min{uo, k}. Clearly, we have 

0 <--_fk <fk+l  < Ug for all k, (3.1) 

0 ~= Ok ~= g k + l  ~= UO for all k, (3.2) 

fk ~ U~- strongly in L 1 (f2), (3.3) 

gk ~ UO strongly in L1((2). (3.4) 

Consider the regularized problems 

- - u  - div([Vulp-2Vu) = 0 in QT, (3.5a) & 

u = 0 on St ,  (3.5b) 

U ( x , O ) = U o k = f k - - g k  onf2, ( k = l ,  2 , . . . ) .  (3.5c) 

According to a result in [DH], for each k there exists a unique Uk such that 

Uk ~ C([O, T 3; L 2(0)) c~ LP(0, T ; Wo~'P(O)), 

a 
~Uk -- div(hVuk[P-eVuk) = 0 in W-I'P'(Y2) 

uk(x, O) = 

p, 
~ t u k e L  (0, T;  W-I"P'(f2)), 

for almost every t~(0, T), (3.6) 

in L2(~?). (3.7) 
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The remaining proof is divided into several assertions. 

Assertion 1. For each M > O, ~ > O, k ~ {1, 2 , . . .  }, 

max �89 .[ [PM(Uk(X, t))12dx + ~ IVPM(Uk)[Pdxdt ~ 2rluoll~M, (3.8) 
O<_t<_ T Yd Qr 

f 1 1 
(lUkl + 1) ~ +~ ]VuklPdx dt <- II Uo II1 ~. (3.9) 

QT 

Proof. By the proof of Lemma 2.1, we see that for each locally Lipschitz function 
on IR with 4(0) = 0, the function t ~ So [~o k(x' t) ~(s)ds dx is absolutely continuous 

on [0, T ], and 

u~(x,t) (C~u ) 
d [. f ~(s)dsdx = ~ ~, ~(Uk) a lmosteverywhereon(0 ,  T), (3.10a) 
dt Q o 

where ( . , . )  denotes the duality pairing between W-I 'P '(O) and WI'p(O). We use 
PM(Uk) as a test function in (3.6), and keep (3.10a) in mind to obtain 

udx, t) 
d ~ ~ PM(s)dsdx + ~ P~(Uk)rVuk]Pdx 0 almost everywhere on (0, T). 
dt ~ o 

(3.10b) 

Note that ~o PM(Z) dr >= �89 2 for all s e 1R. Integration of(3.10b) with respect to 
t gives (3.8). To obtain (3.9), define 

t: 1 = (1  s 

G(-s) 

if s=>0, 

if s < 0 .  

Use r as a test function in (3.6) to get 

u~(x, 0 

ddt r + (1 + [Uk[) ~+1 

0 0 Q 

This implies (3.9). The proof is complete. 

almost everywhere on (0, T). 

In light of (3.10a), we have that 

T Uk 

0 Qr 0 

for all 0 e d  and all (peLP(O, T; WI'v(Y2))c~L~(QT) such that ~ot~L2(Qr), 
(p(x, 0 ) =  ~o(x, T ) -  0, and O(Uk)CpeLP(O, T; Wlo'P(O)). Thus for each k, Uk is a 
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renormalized solution of (3.5). We infer from (2.19) that 

max ~ [u,,(x, t) - Uk(X, t) ldx < ~ lUo,, - Uokldx. 
O<-t<- T f2 

By (3.3) and (3.4), there exists a function ue  C([0, T] ;  L1(~2)) such that 

U k --~ U strongly in C([0, T] ;  Ll(f2)). (3.10d) 

This, in conjunction with (3.8), shows that 

O(Uk)~O(u) w e a k l y i n L P ( O , T ; W l ' P ( f 2 ) )  f o r e a c h 0 ~ s r  (3.11) 

If 0 e s r  is such that 0 (0 )=0 ,  then O(uk)eLP(O,T;W~'P(f2)),  and thus 
O(u) E LP(O, T ; W~'P(f2)). Now we can calculate Vu in the almost everywhere sense. 

Assertion 2. Let E c QT be measurable. Assume that there exists an M > 0 such that 

]Ukl < M almost everywhere on E for each k. 

IVu.. - Vukl p 
iVukl)((2-,)~)/2(IVu,.I + IVukl)(2-~)p/2dxdt  <= 

(IVum~ + 

Then 

VUk --* Vu strongly in (LP(E)) N. 

Proof. We infer from (3.6) that 
~1 urn(x, t) - u~(x, t) 
~ ! o ~ P2M(s) ds dx 

+ S P'2~(u., - U~)(IVumI~-~Vum -- IVuk I~ -WuD(Vu , .  - Vuk )dx  = 0 
Q 

almost everywhere on (0, T). 

We deduce from (3.12) and (2.12a) that 

f l V u , , - V u ~ }  2 , . 
(p - 1) P'2u(um -- uk) (]V~-T~I ~ 2 (V-~kl)2_paxdt 

QT 
UOm - -  uOk 

<=ffp2 ,(s)asax<=aMf,uoo-uok,ax. 
g? 0 f2 

With the aid of (3.8) we estimate that 

f lVu,, - VuklP dx dt = ~ ]VP2M(U,, -- uk)lp dx dt 
E 

E 

= f P i i ( U m  -- Uk)IVum -- VuklPdxdt 

E 

= fP' u(uo- 
E 

(3.12) 

(3.13) 

(3.14) 
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, fVu,~ - Vuk[ a _pdxdt 
< Piza(u,. - uk)(lVum[ + rVUk]) 2 

E 

+ 

E 

=< lUom - uokl dx (2 2 +p II Uo ]I1M) <2 -p)/2. 

Q 

We conclude that  {VPg(Uk)} is a Cauchy sequence in (LP(E)) N. This, together  with 
(3.11), implies the desired result. 

Assertion 3. The sequence (IVukl} is bounded in Lq(QT) for each 0 < q < p/2. 

Proof.  Fix qe(0 ,  p/2). Then we can find eo > 0 so that  q = 1/(2 + eo)p, We deduce 
from (3.9) and (3.10d) that  

f lvuklqdxdt= f 1 ([Uk[ + 1) (1 +~o)q/P [Vug]q([Uk[ + 1)(1+ ~~ 

Qr Qr 

< VUk[ p dx dt 
= ( lukf  + 

Q~ 

Qr 

< ([ukl + 1)dxdt <= C(go). (3.15) 

Q~ 

Assertion 4. For each 0 ~ d ,  O(u)~LP(O, T; W I'P(Y2)) and VO(u) = O'(u)Vu almost 
everywhere on Qr. 

The  p roo f  is a slight modificat ion of that  of Claim 4 in [X] .  We omit  it here. 

Assertion 5. Let fE L 1(0) be such that f does not change sign. Then there exists 
a unique renormalized solution u to the problem 

~U 
& div(lVulP-eVu) = 0 in Qr, (3.16a) 

u = 0 on ST, (3.16b) 

u(x, O) = f on f2. (3.16c) 

Furthermore, the following conditions hold: 
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(a) ~O~ IVP~t(u)LPdxdt < 211fll lMfor each M > O. 
(b) For each st(O, T)  and each O ~ d ,  (O/&) O(u) e L 2(f2 x (s, T ) ), and thus Ou/Ot can 

be taken in the almost everywhere sense on QT. If, in addition, O e C I(IR), then 
O/& O(u) = O'(u) Ou/& almost everywhere on QT. 

(c) For each s~(O, T), and each ~ > O, there exists a positive number c(s, e) with 

T 

f f l u 2 d x d t < c ( s , ~ ) .  (1 + [ul) 1+~ t = 
s Q 

(3.17) 

The proof of this assertion is essentially contained in [-DH]. Later, we shall 
indicate a different proof based upon our development here. 

To continue our proof of Theorem 3.1, denote by u+ the renormalized solution 
of (3.16) with f =  + uo, and u_ the renormalized solution of (3.16) with f =  - u o .  
Then we can conclude from (3.1), (3.2), and Theorem 2.3 that 

u_ <= Uk <- U+ almost everywhere o n  QT for all k. 

Now, we are ready to prove (iii), in the case 0~4c.  For this 
r/(s) e dc~C 1 (IR) be such that 

t/(s) = 1 on [1, oo), 

~(s) = 0 on ( -  0% 0], 

t / ' > 0  on (0, 1). 

For each i e { 1, 2 . . . .  } define 

1 if s ~ I ~  , r l ,  

~l(s) = i ~ s - T ]  if 
\ 7 7 /  

(3.18) 

purpose, let 

(3.19) 

(3,20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

It is easy to verify that 

O~LP(O, T; WI'P(Q))c3L~176 , Ot~L2(QT). 

Let 0 ~ de, q0 E C~(IRN x ( - 0% T)) be such that O(uk)cp ~ L p (0, T; W~'V(f2)). Now 
for M > 0, set 
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Keeping  (3.10c) in mind,  we use O(Uk)4/ as a test funct ion in (3.6) to obta in  

Uk 

-- [. ~ O(s)ds~tdxdt + ~ IVUklP-2VukVO(uk)Odxdt 
QT 0 Or 

+ ~ ]VukIP-zVukO(Uk)VOdxdt = 0. (3.25) 
QT 

Deno te  by 12 the second integral  in (3.25). Set EM = {u+ < M} c~ {u_ > -- M}. 
Observe  f rom (3.18) that  

]Uk[ < M a lmost  everywhere  on EM for all k. 

We m a y  apply  Assert ion 2 to obta in  

[VblklP- ZVuk ~ ]VbllP- ZVu strongly in (L P' (EM)) N. 

Note  tha t  

O = 0 on QT\EM. 

We conclude f rom (3.11) tha t  

l im 12 = lim ~ IVUkl'-2VUkVO(Uk)t~dxdt = ~ IVulp-2VuVO(u)~tdxdt. 
k~o~ k~co E~ Qr 

We can take k ~ oo in (3.25) to get 

- i O(s)asO, dxdt + fVuf'-2VuVO(ulOdxdt 
Qr 0 Qr 

+ ~ IVu[p-2VuO(u)V~dxdt = 0. (3.26) 
QT 

Let  v e {u_, -- u_ }. With  the aid of  (a) we est imate tha t  

QT 

f iVvlPdxd t 

{Ivj~M} 

= Mp IVPM(v)I pdxdt 

Qr 
C 

< - - ~ 0  a s M ~ o o .  
= M p - 1  

Consequently, we have that 

(3.27) 
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st o.g y i n ,  Ox(   )a d.x We 
derive from (3.17) that 

fl~(l~ - ,  ( v ) )  2 ~  dxdt< 'ltl']'2M2 f vfdxdt 
O~ O,~{Ivl <=M} 

< - - -  I + M ) I + ~ 0  a s M ~ o o .  (3.28) 

This implies that 8/& 0 ~ 8/&((o~) strongly in L2(Qr) as M ~ oo. Take M --* oo in 
(3.26) to obtain 

-- ~ i O(s)dsq)~(idxdt- f i O(s)dscp~-i(t) dxdt 
QT o (2T 0 

+ ~ IVulP-ZVuVO(u)(p~idxdt + S ]Vu]p-2VuO(u)V(~ dxdt = 0. (3.29) 
Q~ Q~ 

In view of the definition of ~i, we have 

2/i 

f i O(s)ds~p(;(t)dxdt=i f f YO(s)ds(p(x,t) dxdt 
QT 0 1/i (2 0 

Uo(X) 
~tq)(x,O) f O(s)dsdx as i ~ o o ,  

~2 0 

because ~o O(s)dse C([0, T];  L~(O)). Taking i -~ oo in (3.29) yields 

- ~ i O(s)dscp, dxdt + f [Vu['-2Vu(VO(u)q~ + VcpO(u))dxdt 
Qr o QT 

gO 

= ~ ~ O(s)dse(x, O)dx (3.30/ 
o o  

for all q0 ~ C~(IRN x (-- 0% T)) and all 0~ ~r such that qoO(u)ELP(O, T; Wlo'P(y2)). 
In light of the proof of Lemma 2.2, we have that 

1 
IVukl pdxdt < ~ (fk -- M) + dx. (3.31) 

M {M < u~ < 2M} O 

By Assertion 2 and (3.18), we may assume that VUk ~ Vu almost everywhere on QT. 
Set 

BM "~ { (X' t)GQT: k--,oolim Uk(X' t) = M or 2M}. 

It is not difficult to see from a device in [X] that 

Vuk -* 0 almost everywhere o n  B M. 
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Hence, 

Z{M < uk < 2M} ]Vuk] p "+ ~{M < u < 2M}IVu] p a l m o s t  everywhere o n  Q T. 

Invoking Fatou's lemma, we derive from (3.31) that 

1 
- -  [ IVulPdxdt _ < ~ (Uo - M) + dx. 
M {U < u<2M} (2 

Consequently, 

1 
- -  ~ [VulPdxdt = O. 

li~mm M {M <u<2M} 

Similarly, we can show 

(3.32) 

1 
lim - -  ~ IVulPdxdt = 0. (3.33a) 

M-*oo M {_2M < u <_M} 

Next, we prove that (iii) follows (3.30), (3.32), and (3.33a). To see this, fix 0 E d .  
Then, by (3.30), we have 

-- ~ i O(s)Ju, M(S)ds~~ + ~ IVu['-2VuV(O(U)JM, M(u))q )dxdt  
QT 0 Qr 

U 0 

+ I [Vulp-2VuO(u)JM, M(U)VcP dxdt = ~ (p(x, O) ~ O(s)au, u(s)dsdx, (3.33b) 
QT 0 0 

where (p E C~ (IR N x ( -  0% T)  is such that O(u)q) ~ LP(O, T~ Wg'v(O)). By Asser- 
tion 3, IVu[ p-* ELI(Qr), and so 

lim 5 IVu[P- eVUO(U)JM,M(U) V(p d x d t  = ~ [Vu[p- 2VuO(u)Vq ~ dx dt" 
m~ oo Qr QT 

We estimate 

~ l V u f -  2 VuO (u) VJu, M (u) q) dx dt 

1 
II q~ll~o I1011oo~ ~ IVu[pdx-~O 

{M < ]u I < 2M} 

as M -+ oo. 

Taking M ~ oo in (3.33b) yields (iii). This completes the proof. 

Remark. We indicate here a proof of Assertion 5 which seems to be much simpler 
than that in [DH].  Without loss of generality, assume that f =  + u o . We assert that 
the limit u of the sequence {uk}, obtained by setting 9k - 0 in (3.5), is a renormalized 
solution of (3.16). First, according to Theorem 2.3, 

0 < uk < uk+ ~ < u almost everywhere o n  QT for all k. 
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Then, due to the nonnegativity offk, the estimate 

T 

(uk+ i) ~+i uk dxd t<c( s , e ) ,  T > s > O , e > O ,  

s i2 

holds, where c(s, e) is a positive constant depending on s, e (see [DH]) .  This implies 
that u satisfies items (b) and (c). I tem (a) is an easy consequence of (3.8). We can set 
u_ = 0 and u+ = u in our earlier argument  to conclude the proof. 

An interesting remaining question is: Is it possible to prove an existence and 
uniqueness theorem in the case where f2 = IR N and uoeLlloc(lRN)? I shall try to 
answer this question in a forthcoming paper. 
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