Axprzes W. Some Modifications of Scott’s
JANKOWSKI . .
Theorem on Injective Spaces

Abstract. D. Scott in his paper [5] on the mathematical models for the Church-
Curry Z-calculus proved the following theorem.

A topological space X is an absolute extensor for the category of all topological
spaces iff a contraction of X is a topological space of “Scott’s open sets” in a eonti-
nuous lattice.

In this paper we prove a generalization of this theorem for the category of <a, 6>-
closure spaces. The main theorem says that, for some cardinal numbers a, 8, abso-
lute extensors for the category of {a, 8)>-closure spaces are exactly {a, d>-closure
spaces of {a, d)y-filters in (a, §>-semidistributive lattices (Theorem 3.5).

If « = @ and § = oo we obtain Scott’s Theorem (Corollary 2.1). If a = 0 and
d = w we obtain a characterization of closure spaces of filters in a complete Heyting
lattice (Corollary 3.4). If ¢ = 0 and 6 = o we obtain a characterization of closure
space of all principial filters in a completely distributive complete lattice (Corollary
3.3).

1. Introduction

Recall that roughly speaking a Heyting lattice L is a lattice of classes
of provably equivalent formulas in a constructive (in intuitionistic senge)
theory T. Moreover, there is a natural correspondence between filters
in the Heyting lattice L and intuitionistic theories which are extensions
of T. From the intuitive standpoint a closure space which satisfies the
compactness theorem is a consequence operator for a certain logic in
which we think using only finite deduction rules.

In [2] we can find the following theorem.

A contraction of a closure space X is a Heyting lattice iff X iz an
absolute extensor for the category of all closure spaces which satisfies
the eompactness theorem.

This paper is a continuation of [5], [2], and [1]. We give an idea of
uniform approach to the problem of the characterization of absolute
extensors for categories of topological spaces (Scott’s Theorem) and
closure spaces using distributive laws for lattices. The paper uses the
notation of [1].

2. {a, d)-pseudolattices

We shall say that a partially ordered set (P, <) is an {a, 8>-pseudo-
lattice provided that for every subset D < P, if D < a or D is a downward
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§-directed set then there exists a greatest lower bound of D in P. Note
that, if P is an {a, d)-pseudolattice then P has a largest element.

Let L be an {a, d)-pseudolattice and let W be a subset of L.

We shall say that W is an <a, 6)-pseudofilier in L, provided that:

M w=14w,
(ii) if Dc W and D < a then
infpD € W,
(iii) if D W is a downward J-directed set then
infpD e W.

Let V,,(L) be a family of all <{a, 6)-pseudofilters in L. Moreover,
let Va,d(L) = <Va,ﬁ(L)9 <>7 where:

W, < W, iff Wyc W,.

Notice that then (L, V, ;(L)} is a closure space and T}a,,, (L) is a ecomplete
lattice.

Let é’(L) = (#(L), <) be a lattice of all subsets of I equipped with
a dual order of <. It means that for Z,;, Z, < L we have

7, < Z, it Z,< Z,.

PROPOSITION 2.1. The inclusion in:V,4(L)<>P(L) is an <a, 8-
monotone map.

ProoF. Let {W,},; be an {a, 6)-set in 1A7a',,(L). We must show that

W =|J W, is an <{e, 6)-pseudofilter.
iel

Of course W = tW. If D < W and D < o then there exists an 4,1
such that D < W, . It means that infpD e W, = W.

Now let D € W be a downward J-directed set. If there is an 4, such
that D < ‘W, , then infpD € W. Assume that for every ¢ € I there exists
a d,e D—-W;. Note that

Uha<I<b

and D is a downward d-directed set.
Thus there is a lower bound.d € D of {d;};;. Let d ¢ W, . Hence d;
e W;, and

d. eD—-W. . ]

Moreover, notice that the inclusion Va +(I) C>9?’(L) preserves all

joins from V 4+ By Freyd’s Adjoint Functor Theorem (see [4] pp. 116)
there exists a right adjoint functor

[ 1: P(L)>V,,(L)
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preserving all meets in 97(]1). In particular, { ]:QQ(L)—> T}a’a(L) is an {a, 6>-
monotone map. Note that for Z < L

[4]
is an {a, d)-pseudofilter in L generated by Z. Of course
(P(L), =) = P (L),

It means that ff,,,',(L) i8 a retraction of the lattice of all subsets in the
category of all <a, d)-semilattices and <, é)-monotone maps.
Thus by Theorem 4.2 in [1] we have:

LeMwmA 2.1. Assume that the monomorphism
E<V,,(I)
is an {a, 6)-monotone map and there exists an {a, 8>-monotone reiraction
r: Voo(D)—~K.

Then K is an absolute extensor for the category of all {a, 6>-semilattices

and {a, 8)-monotone maps. Moreover, if P(a, 6,L—) =1 then F,,(K)
is an absolute extensor for the category of all {a, 8)-closure spaces. [

We shall say that a subset ¢ < L is an {a, 8)-directed set in L, provided
that:

(i) if X< @ and E < a then there exists a lower bound of K in @,
(i) if K is a downward d-directed set in L and K < 1@ then there exists
a lower bound of K in G.

Note that:

REMARK 2.1.
(i) G is an {a, oo)-directed set in L iff @ is a downward a-directed set,

(ii) if G < a then @ is an {a, 6)-directed set iff inf,@ €@,
(iii) if a> 6 then a subset @ of L is an {a, 8)-directed set in L iff
infLG eq.

Let us assume that for a,b e L
a <b,

provided that for every <a, 8)-directed set @ in L, if inf; G < a then there
exists an element g e @ such that

g<b.
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An <{a, d)-pseundolattice L is an d{a, d>-continuous lattice, provided
that L is a complete lattice and for every le L

l=inflrel|l<gua}.

For example the lattice of all subsets <(Z(X), <> is an <{a, é)-conti-
nuous lattice. Moreover, by Remark 2.1 we have:

REMARK 2.2. Let L be a complete lattice,
(i) ifforeveryle.L wehavel< ! then .L isan {a, d)-continuous lattice,
(ii) if for every le L {{i} < a, then L is an {a, 6)-continuous lattice
and in particular, if L < a then L is an {a, §)-continuous lattice,
(iii) if a> 6, then L is an {a, 6)-continuous lattice,
(iv) a lattice L is an {e, oo)-continuous lattice iff the dual lattice L°?
is a continuous lattice (see [5], [3]). O

If L is a complete lattice, then for W e f’,‘d(l}) let IIW = inf,W. Notice
that II: V,s(L)—>L is a right adjoint to the functor 4: L—V, (L)
(where 1(1) = 1{1}).
For l e L let:
() ={wel|l<uay.

PROPOSITION 2.2. For every {a, 8)-pseudolattice L the funmction T is
a functor from L to f’a’,,(L). Moreover, if L is a complete lattice then T has
a left adjoint iff L is an {a, 6)-continuous lattice. If L is an {a, &)-continuous
lattice then a left adjoint to T is the functor I: 1A7a',,(L)—>L.

Proor. First we prove that 1 (I) is an {a, 8)>-pseudofilter in L.

It is sufficient to show that for every D < 1 (1), if D< aor D is a down-
ward ¢-directed set in L then for every ({a, é)-directed sct @& in L such
that ¢nf, G <1 there exists an element g of G such that g < inf, D.

If D < a then for every d € D there exists a g; € @ such that

gas d

and {gs}sep < @. Thus there exists an element g of G which is a lower
bound of D. It means that g < inf,D. Hence, inf, D e 1 (1).

If D is a downward ¢-directed set in L then D < 1G and there exists
a lower bound of D in G. It means that inf,D e % (1).

This proves that 1 (I) is an {a, 6)-pseudofilter in L.

Now let us assume that 1 e L and W is an {a, é)-pseudofilter in L.
Notice that, if IIW <1 and « € 1(l) then there exists an element w of
W such that

w< T,
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Hence, if TW<1 then (1) c W (e. W< ().
If 1()c W and L is an {a, 6>-continuous Iattice then

W<t =1.

Thus, if L is an {a, 6>-continuous lattice then 1 has a left adjoint.
Now let us assume that % has a left adjoint then for every l e L

to<to
and by the adjunction we have

nt @<t
Hence I is an {a, 8)-continuous lattice. ]

It is interesting that if L is an {a, §)-continuous lattice and o < b
in L then there exists a ceL such that a <¢ <b (if a =0, § = o0
the proof can be found in [5] and [3] p. 288).

We now know that if L is an {a, é)-continuous lattice then the funetor

II: Va,a(L)~>L

has right adjoint 1 and left adjoint %. Recall that if a functor is a right
(resp. left) adjoint then it preserves all the limits (resp. colimits) which
exist in its domain. Hence and by Lemma 2.1 we obtain.

TaeorEM 2.1. If K is an {a, 8>-continuous lattice then:

(i) K 4s an absolute extensor for the category of all {a, 0)>-semilattices
and {a, 6>-monotone maps,

(i) if P{a, 6,?) == 1 then the closure space I, ,(K) is an absoluie ex-
tensor for the category of all {a, 6)>-closure spaces. [J-

Notice that if § = oo or a > ¢ then every {a, §>-monotone retraction
of the lattice of all subsets is an {a, 6)-continuous lattice.

Thus by Theorem 4.1 in [1], Lemma_2.1 in [1] and by Theorem 2.1
we have:

THEOREM 2.2. If 6 = oo or a > 6 then a closure space X is an absolute
extensor for the category of all {a, 8>-closure spaces iff a contraction of X
is the closure space of all {a, 6>-filters in an {a, 8>-continuous lattice. (]

By Theorem 2.2 and by Remark 2.2 we have:

CoroLLARY 2.1 (D. Scott [5], a = o, § = o). A topological space
X is an absolute extensor for the category of all topological spaces iff a con-
traction of X s the topological space of all “Scott’s open sets” in a continuous
lattice. |

COROLLARY 2.2. If a = 8 then a closure space X is an absolute extensor
for the category 8, iff a contraction of X is a closure space of all upper
sets in a complete lattice. ]



160 A. W. Jankowski

COROLLARY 2.3. A partially ordered set P is an absolute extemsor
for the category of all partially ordered sets and monotone maps iff P is
a complete lattice. [

3. Distributive laws for absolute extensors

Note that if I is a complete lattice then for every family {a; Jicp seq
of elements of L we have:

sup Inf 0y zq) < O0f SUP @y 4,
fesT teT teT' seS

sup inf a; o < inf sup a, gy .
tel' seS fesT tel’

THEOREM 3.1. An <{a, 8)-pseudolattice L is an <{a, 8)-continuous
lattice iff the inequality

(i) inf sup by rpy < sup inf by,
fePK keK keK peP

holds for every family {b, phrex pep Of elements of L such that for every k e K
the set

{bk,p}peP
48 an {a, 8)-directed set in L.

ProOF. Assume that L is an <{a, §)-continuocus lattice and {by ,}rcx per
is a family of elements of L such that for every k e K the set {b, ,},-p
is an {a, 6)-directed set in L. Let

Z = 'b.’n/f Sup bk,f(k)7
fepPK K

r = sup inf by ,.
keK peP

By the assumption we have
r =1inf{y e Llr <y}.
It is gufficient to show that for every
wel{yeLlr <y}
we have I<<@. So assume that
F €.

Note that if k € K then

inf bk,p <7,
peP
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and since {b; ,},.p i an {a, 8)-directed set then there exists f(k) € P such
that 74 <. Hence

U< sup by < .
keK

Thus we get (i).
Now let us assume (i). We must show that for every ze L

2 =1inf{wv e L|z < x}.
Let us put
2 ={G < L|G is an {a, d)-directed set in L such that inf G < 2}.
We can assume that
D = {{by}per |k € K}.
By (i)

inf sup by, gy < Sup inf by,
fEPK keK keK peP

and since {#} € 2 we obtain that

sup inf by, = 2.
keK peP

Now we will prove that

{sup by If € P} < (]2 < ).

keK
For this purpose let f: K—P and let @ ¢ 2. Hence

Gl s }nex # 9.
It means that there exists a g € @ such that
g < sup bk’f(k) .
keK

Thus we have proved that

inf{le < o} < inf sup by g0y < 2,
fepK keK

which combined with inequality
e<inf{zlz <o}
completes the proof of the theorem. [J]

We shall say that a complete lattice L is an <a, 8)-semidistributive
lattice provided that the inequality

inf sup a, , < sup inf a, 44,
teT'" seS fesT tel’
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holds for every family {a;  }ep s Of elements of L fulfilling the following
three conditions:

(@) T<9,

(b) the family {|{a Jcs)ier is a downward o-directed set in <(#(L), <),

(¢) for every f: T— 8 there exists a g: T8 such that: '
(€)) {8 g@her is a downward o-directed set in I,

(€2) {@gmher € T 50 bter-
REMARK 3.1.

(i) A complete lattice L is a <0, 8)-semidistributive lattice iff the in-
equality

inf sup a; < sup inf %, 50)
teT 568 fesT tel

holds for every family {a; }er s ©Of elements of L such that
T < é,

(ii) a lattice L is a {0, co)-semidistributive lattice iff L is a completely
distributive complete lattice,

(iif) a lattice L is a {0, w)-semidistributive lattice iff I is a complete
Heyting lattice. O

By Lemma 4.2 in [1] we have:
CoROLLARY 3.1. Assume that L is a poset such that the inclusion
in: L(Pm), >
is an {a, 8)-monotone map and there ewisis an {a, 8)-monotone refraction
r: {P(n), =>—~L.
Then L is an {a, 8)-semidistributive lattice. D
Thus, by Theorem 2.1, we obtain:

PropostTioN 3.1. If L is an <{a, 0)-continuous lattice then L 4s an
{a, 8)-semidistributive lattice. O

Moreover, we can show that:

THEOREM 3.2. A lattice is an {a, co)-continuous lattice iff it is an
{a, co>-semidistributive lattice.

ProOF. By Proposition 3.1 we have that every {a, co)-continuous
lattice is an <a, oco)-semidistributive lattice.

Now let us assume that L is an <{a, co)-semidistributive lattice and
let

{bk,p}keK,peP
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be a family of elements of L such that for every k e K the set {by ,},cp
is a downward a-directed set in L (Remark 2.1 (i)).
We show that:

a) the family
{ v {bk,f(k)}keK}fePK
is a downward a-directed set in (#(L), &>,
(b) for every ¢: PX—K there exists a y: PX—K such that:

() {byig.swnlrepk 18 @ downward a-directed set in L,
(ba)  {bpis.rwentrerE S ot e brerk -

For the proof of (a) let F < PX and .F:< a. For every k € K {by, ,}pep 18
a downward a-directed set. Hence for every k € K there exists a f(k) e P
such that for every feF

br 7w < Bk piay -
Thus

Y 0gmteex = ) N{bk,f(k)} ife¥ } .

What means that (a) holds.
For the proof of (b) first notice that for every ¢: PX-K
there exists a k € K such that

(¢) {bl?.p}pEP = Mbﬂf):f(q?(f))}fePK‘
If it is not true then there exists a @: PX—K such that for every k e K
there is a = f(k) € P such that for every f e PX

b sty <K brp-
But

i by swn < Yo, 7w
and if ¥ = @(f) then

bt 7@ < bz
A contradiction.

Now let y: P> K be a function such that
p(f) = k.

Because {b; yitrepk = {b5p}pep 18 @ downward a-directed set, by (¢) we
get (b,). Thus

inf sup by, g = sup. inf btp(f)sf(q‘(f))
fepK keK (peK(P ) fePK

Moreover, by (c¢)

sup nf qu o)) sup inf by p-
¢eK(PK)fGP keK peP
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Jonsequently,

inf sup by ;o < SUp inf by, .
fePK keK keK peP

By Theorem 3.1 it means that L is an {a, co)-continuous lattice. [

Note that for every complete lattice L the function
vt L=<(P(L), <>

(where | (1) = | {I}) preserves all meets in L.
We shall say that a complete lattice L is an {a, 6>-pseudodistributive
lattice provided that the inequality

wnf sup a; o < sup inf a, 0
teT seS feST teT

holds for every family {a; };ep ses Of elements of L fulfilling the following
two conditions:

(8) T< 9,
(b) the family H,{at,s}ses},ﬂ is a downward a-directed set in (#(L), =>.

ReMARK 3.2.
(i) if L is an <{a, 6>-psendodistributive lattice then L is an {a, d>-semi-
distributive lattice,
(ii) L is a <0, é>-pseudodistributive lattice iff I is a <0, &)-semidistri-
butive lattice,
(iii) L is a <0, oo)-pseudodistributive lattice iff L is a {0, oo)-continuous
lattice. [

Note that for every complete lattice L the function:
Vi I=<{P (L), =>
(where |(I) = |{I}) preserves all meets in L.

TaEOREM 3.3. If L 48 an {a, 6>-pseudodistributive lattice then the
Junction

r: (L)L
such that for Z < L
r(Z) =sup{l| | (1) < 2}
is an {a, 6 >-monotone map and for every le L
() =1.

Proor. Let {X,},.; be a non-empty {a, é)-setin (#(L), <. Moreover,
for 1 e let

{th,s}ses = e L1} (D) = X3
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Of course the family
{{at,s}ses}teT

is a downward o-directed set in (#(L), =>. Hence
(N X) =sup{t1 () = N X}
teT tel
= sup {L|(Vt) | (1) € X}

= Sup inf a; o4
thST tel

=infr(X,). O
teT
By Theorem 3.3 and Theorem 4.2 in [1] we have:

THEOREM 3.4. If K s an {a, 8)>-pseudodistributive lattice then:

(i) K is an absolute extensor for the category of all (a, 8)-semilaitices
and {a, 6)-monotone maps,

(ii) ¢f Pla, &, 1:'() = 1 then the closure space F, 5(K) is an absolute extensor
for the category of all {a, 8>-closure spaces.  []

By Corollary 3.1, Theorem 2.2, Remark 3.2 (ii) and Theorem 3.4 we
have

THEOREM 3.5. If a =0 or 6 = oo or a> 0, then:

(i) an {a, 6)-semilattice L is an absolute extensor for the category of all
{a, 6)-semilattices and {a, 8)-monotone maps iff L is an {a, 6>~
semadistributive latiice,

(i) & closure space X is an absolute extensor for the category of all {a, 8>-
closure spaces iff a contraction of X is the closure space of all {a, 8)-
filters in an {a, 8)-semidisiributive lattice. [

By Remark 3.1 we obtain that:

COROLLARY 3.2. [2]. A dlosure space X is an absolute extensor for
the category of all closure spaces which satisfy the 8-compaciness theorem
iff & contraction of X is a closure space of all 8-multiplicative filters in a comple-

te lattice L such that for every family {& }ier s S Ly if T < 8 then

inf sup a, o = sup inf a; 5. 0O
tel' se8 fesT tel
COROLLARY 3.3 [2]. A closure space X is an absolute exiensor for
the category of all closure spaces iff a contraction of X is a closure space
of all principial filters in a completely distributive complete lattice. O

COROLLARY 3.4 [2]. A4 closure space X is an absolute extensor for
the category of all closure spaces which satisfy the compaciness theorem iff
a contraction of X is a closure space of all filters in a complete Heyting lattice. [
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