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Some Modifications of Scott's 
Theorem on Injective Spaces 

Abstract, D. Scott in his paper [5] on the mathematical models for the Church- 
Curry 2-calculus proved the following theorem. 

A topological space X is an absolute extensor for the category of all topological 
spaces iff a contraction of X is a topological space of "Scott 's open sets" in a conti. 
nuous lattice. 

In this paper we prove a generalization of this theorem for the category of <a, ($>- 
closure spaces. The main theorem says that,  for some cardinal numbers a, ~, abso. 
lute extensors for the category of <a, (~>-closure spaces are exactly <a, c$>-closure 
spaces of <a, ~>-fflters in <a, (~>-semidistributive lattices (Theorem 3.5). 

If  a = co and (~ = oo we obtain Scott 's Theorem (Corollary 2.1). If  a = 0 and 
= co we obtain a characterization of closure spaces of filters in a complete Heyting 

lattice (Corollary 3.4). If  a = 0 and ~ = oo we obtain a characterization of closure 
space of all principial filters in a completely distributive complete lattice (Corollary 
3.3). 

1. Introduction 

l~ecall  t h a t  r o u g h l y  s p e a k i n g  a t t e y t i n g  l a t t i ce  Z is a l a t t i c e  of c lasses  
of p r o v a b l y  e q u i v a l e n t  f o r m u l a s  in  a c o n s t r u c t i v e  (in in tu i t i on i s t i c  sense)  
t h e o r y  T.  M o r e o v e r ,  t h e r e  is a n a t u r a l  c o r r e s p o n d e n c e  b e t w e e n  f i l te rs  
in t h e  H e y t i n g  l a t t i c e  Z a n d  in tu i t i on i s t i c  t heo r i e s  wh ich  a re  e x t e n s i o n s  
of  T.  P r o m  t h e  i n t u i t i v e  s t a n d p o i n t  a c losure  space  wh ich  s~tisfies t h e  
c o m p a c t n e s s  t h e o r e m  is n c o n s e q u e n c e  o p e r a t o r  fo r  a c e r t a i n  logic in 
w h i c h  we t h i n k  u s i n g  o n l y  f in i t e  d e d u c t i o n  ru les .  

I n  [2] we  c a n  f i n d  t h e  fo l lowing  t h e o r e m .  
A c o n t r a c t i o n  of  a c losure  s p a c e  X is ~ t t e y t i n g  l a t t i c e  i ff  X is a n  

a b s o l u t e  e x t e n s o r  fo r  t h e  c a t e g o r y  of all  c losure  spaces  wh ich  sat is f ies  
t h e  c o m p a c t n e s s  t h e o r e m .  

This  p a p e r  is a c o n t i n u a t i o n  of [5], [2]~ a n d  [1]. W e  g ive  a n  idea  of 
u n i f o r m  a p p r o a c h  to  t h e  p r o b l e m  of t h e  c h a r a c t e r i z a t i o n  of a b s o l u t e  
e x t e n s o r s  fo r  c a t ego r i e s  of  t opo log ica l  spaces  (Sco t t ' s  T h e o r e m )  a n d  
c losure  spaces  u s ing  d i s t r i b u t i v e  l aws  fo r  l a t t i ces .  T h e  p a p e r  uses  t h e  
n o t a t i o n  of [1]. 

2. <a, ~)-pseudolattices 

W e  shal l  s a y  t h a t  a p a r t i a l l y  o r d e r e d  se t  <_P, ~ )  is ~n <a, ~)-pseudo- 

lattice p r o v i d e d  t h a t  fo r  e v e r y  s u b s e t  D ~_ .P, if JO < a o r / 9  is a d o w n w a r d  
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~-directed set then  there  exists a greates t  lower bound of D in P.  ~ o t e  
that ,  i f / ~  is an (a, 0)-pseudolatt ice then  P has a largest  element.  

Let  J5 be an (a, 0)-pseudolatt ice and  let  W be u subset of Z. 
We sh~ll say t h a t  W is an (a~ O)-pseudofilter in L, provided t ha t :  

( i )  W = 

(ii) if D_~ W and D < a  then  
infvD e W, 

(iii) if D _~ W is a downward O-directed set then  
infeD e W. 

Let  V,,~(Z) be a ~amily of all (a, O)-pseudofilters in L. )[oreover,  

let  V~,0(Z) = (Va,~(L), <), where:  

W ~ W ,  iff W,_~ W1. 

~o t ice  tha t  then  ( / i ,  V~,~(Z)) is a closure space and V~,~(Z) is ~ complete  
lattice. 

Let  ~ ( Z )  = ( ~ ( L ) ,  ~<) be a latt ice of all subsets of fJ equipped with 
a dual  order  of _~. I t  means tha t  for Z~, Z~ _ / ~  we have  

Z I < Z 2  iff Z ~ _ Z 1 .  

PROPOSITION 2.1. The inclusion in:fra,o(35)c~#(]5) is an (a, O)- 
monotone map. 

PXOOF. Let  {W,)~, be an (a ,  0)-set in ~r,,~(Z). We mus t  show tha t  
W = U wi  is an (a ,  0)-pseudoffltcr. 

i s l  

O2 course W ---- ~W. I f / )  _~ W and D < a then  there  exists an i o e  I 
such tha t  39_  Wi0. I t  means  tha t  infpD ~ W~o ~_ W. 

_Now let D _~ W be a downward  0-directed set. If  there  is an io such 
t h a t / )  _~ :Wi0, then  infpD e W. Assume tha t  for every  i e I there  exists 
a d~ e D - - W , .  _Note tha t  

and D is a downward 0-directed set. 
Thus there  is a lower bound, d e D of {di}~ z. Le t  d ~ Wq. Hence  d~o e 

e Wq and 

I ) -  W,o. [] 

~oreover ,  notice tha t  the  inclusion Va,~(JS) c ~ ( Z ) p r e s e r v e s  all 

joins ~rom Va,~- :By Freyd ' s  Adjoint  ~'unctor Theorem (see [4] pp. 116) 
there  exists a r ight  adjoint  funetor  
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preserving all meets  in ~(JS). In  part icular ,  [ ] : ~ ( Z ) - ~  V~.~ (L) is an (a ,  8)- 
monotone  map. Note t ha t  for Z c L 

[z] 

is an (a, 0}-pseudofilter in J5 genera ted  by  Z. Of course 

I t  means  tha t  ~'~.~(/~) is a re t rac t ion  of the  lat t ice of all subsets in the  
ca tegory  of all (a ,  8}-semil~ttices and  (a ,  8)-monotone maps.  

Thus by  Theorem 4.2 in [1] we have:  

LE~t~.  2.1. Assume that the monomorphism 

is an (a, O}-monotone map and there exists an (a, O)-monotone retraetion 

r :  

Then K is a~v absolute extensor for the category of all (a, 6}-semigattiees 

and (a, ~}-monotone maps. Moreover, i f - P ( a ,  O , L ) = 1  then P..~(K) 
is an absogute extensor for the category of all (a, 8}-closure spaces. [] 

We shall say tha t  a subset  G __q Z is an (a, ~)-directed set in Z, provided 
t h a t :  

(i) if K _ G and  K < a then  there  exists a lower bound  of K in G, 
(ii) if K is u downward  0-directed set in L and  K _~ ~G then  there  exists 

a lower bound of K in G. 

Note  t ha t :  

R E ~ K  2.1. 

(i) G is an (a ,  oo}-directed set in Z iff G is ~ downward  a-directed set, 

(ii) if G < a then  G is an (a ,  ~}-directed set iff infLG e G, 
(iii) if a > 1 0 t h e n  a subset G of ~5 is an (a ,  0}-direeted set in L iff 

infLG e G. 

Let  us assume t h a t  for a,  b e L 

a ~ b ,  

provided tha t  for every  (a, 0}-directed set G in J5 i if infzG ~ a then  there  
exists an e lement  g e G such tha t  

g ~ b .  
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An (a,  8)-pseudolat t ice Z is an (a,  5)-contin,to,ts lattice, provided 
th'~t ~ is a complete  lat t ice and for every  1 e / )  

1 = inf{x  e / ) l  l ~  x}. 

For  example the  lat t ice of all subsets  ( ~ ( X ) ,  ~_) is an ( a ,  6)-conti- 
nuous lattice. Moreover,  b y  :Remark 2.1 we have :  

R E ~ R K  2.2. Let  L be  a complete  lattice, 

(i) if for every  l e Z we have 1 ~ 1 then Z is an (a,  0)-continuous lattice, 

(ii) if for every  l e Z  ~{l} < a, then 2~ is an (a ,  8)-continueus lat t ice 

and in part icular,  if / ) <  a then L is an (a,  O)-continuous lattice, 
(iii) if a ~  O, then Z is an (a,  ~)-continuous lattice, 
(iv) a lat t ice Z is an (ca, c~)-continuous latt ice iff the  dual lat t ice Z ~ 

is a cont inuous lat t ice (see [5], [3]). [] 

I f / )  is u complete  lattice, then for W e P-o.t(/J) let  H W  ~- infr.W. ~o t i ce  

tha t  II:  Vo.~(L)-->Z is a r ight adjoint  to the  functor  ~: L-,iT~,~(j5) 
(where ~(l) ---- ~{1}). 

For  l e / )  le t :  

(l) = {x e L I x}.  

I>aoPosrrmN 2.2. ~or  every (a,  5)-pseudolattice .L the functiott ~ i~ 

a f, anctor fl'om Z to V~.~ (L). Moreover, i f  .L is a complete lattice then ~ has 
a left adjoint iff.L is a~ (a,  6)-continuous lattice. I f .L  is an (a,  8)-contin,wus 

lattice then a left adjoint to ~ is the fu, nctor II:  V..,(/i)-->Z. 

P~ooF.  F i r s t  we prove  tha t  ~ (l) is an (a,  6)-pseudofil ter  in /). 

I t  is sufficient to show tha t  for every D _ ~ (1), if D < a or D is a down- 
ward 8-directed set in L then for every  (a ,  8)-directed set G in / ,  such 
tha t  i~fLG ~ 1 there  exists an e lement  g of G such tha t  g ~ infLD. 

If D < a then for every  d e 2) there  exists a ga e G such tha t  

g ~ 4  d 

and {g~}a~D ~ a. Thus there exists an element g of G which is a lower 
bound  of D. I t  means tha~ g ~ i~fz, D. Hence,  infLD e t (1). 

If D is a downward  &directed set i n / )  then D ___ ~G and there exists 
a lower bound  of D in G. I t  means tha t  infLD e ~ (l). 

This proves tha t  f (1) is an (a ,  5}-pseudofilter in L. 
R-ow let us assume tha t  1 ~ Z  and W is an (a ,  5}-pseudofilter in /). 

_Notice that ,  if I I W ~  l and x e ~ (t) then there exists an clement  w of 
W such tha t  

w ~ x .  
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Hence,  if YIW ~< ~ then  t (1) _~ W (i.e. W ~< t (I)). 
I f  t (1) _~ W and L is an (a ,  ~}-continuous lat t ice then  

nW~< n ? (0 = l .  

Thus, if JL is an (a ,  O}-eontinuous latt ice then  t has a left  adjoint .  
:Now let us assume tha t  t has a left  adjoint  then  for every  l e L 

? (t) ~< t (~) 
and  by  the  adjunet ion we have  

n t (~) < i. 

Hence Z is an (a,  ~-con t inuous  lattice. [] 

I t  is interest ing tha t  if / i  is an (a, a}-continuous latt ice and a ~ b 
in J5 then  there  exists a c e Z  such tha t  a ~ e  ~ b  (ff a =co,  ~---- c~ 
the  proof can be found in [5] and [3] p. 288). 

We now know tha t  if Z is an (a,  a~-continuous latt ice then  the  funetor  

II: P~,~(~)-+L 

has r ight  adjoint  ~ ~nd left  adjoint  t .  :RecM1 tha t  if a functor  is a r ight  
(resp. lef t)  adjoint  then  i t  preserves all the  limits (resp. colimits) which 
exist in its domain.  Hence and by  Lemma  2.1 we obtain.  

T~Ol~E~ 2.1. I f  K is an (a,  ~-continuous lattice then: 

(i) K is an absolute extensor for the category of all (a,  8}-semilattices 
and (a,  8}-monotone maps, 

(ii) i f  P (a ,  ~, K) = 1 then the closure space ~%.t(K) is an absolute ex- 
tensor for the category of all (a,  O}-closure spaces. [ ]  

;Notice tha t  if 8 -- co or a ~ ~ then  eve ry  (a ,  ~ - m o n o t o n e  re t ract ion 
of the  latt ice of all subsets is an (a ,  8~-continuous lattice. 

Thus by  Theorem 4.1 in [1], L e m m a  2.1 in [1] and by  Theorem 2.1 
we have:  

THEORE~ 2.2. I f  ~ ---- 0o or a ~ ~ then a closure space X is an absolute 
extensor for the category of all (a~ 8>-closure spaces if.# a contraction of X 
is the closure space of al~ (a, 8}-filters in an (a,  8~-continuous lattice. [] 

By Theorem 2.2 and by  :Remark 2.2 we have:  

COt~OT.LA~u 2.1 (D. Scott  [5], a -----o), ~ = ~) .  A topological space 
X is an absolute extensor for the category of all topological spaces i f f  a con- 
traction of X is the topological space of all "Scott's open sets" in a continuous 
lattice. [] 

CoroLLArY 2.2. I f  a ~ ~ then a closure space X is an absolute extensor 
for the category ~.~ i f f  a contraction of X is a closure space of all upper 
sets in a complete lattice. [] 
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Co~oLL~Y 2.3. A partially ordered set P is an absolute extensor 
for the category of all I~artially ordered sets and monotone maps i f f  P is 
a complete lattice. [] 

3. Distributive laws for absolute extensors 

Note  tha t  if J5 is a complete  lat t ice then  for every  family {at,8}t~r,8~ s 
of elements of Z we have :  

sup i n f  a,.1(t) ~ i n f  sup a,, s, 
$~sT teT ~eT S~S 

sup i n f  at. 8 ~ i n f  sup at.s(,). 
teT s~S feST t~T 

T~EO~E~ 3.1. A n  <a, ~>-pse~dolattice L is an <a, (}>-eontinuous 
lattice i f f  the inequality 

(i) i n f  sup bk.f(k) ~ sup i n f  bk,~ 
t epK  keK keK ~aeP 

holds for every fami ly  {bk,~}keK,~ P of elements of s such that for every k e K 
the set 

is an <a, ~>-direeted set in  ~. 

PI~ooP. Assume thut  s is an  <a, $>-continuous lutt iee and {bk,~}ke~,~ P 
is a family of elements of Z such tha t  for every  /~ e K the  set {bk,~)~ P 
is an <a, @-directed set in JS. Le t  

l = i n f  sup bkj(k ), 
f epK k~K 

r = sup i n f  bk, ~. 
keK pep 

:By the  assumpt ion we hsve  

r =inf{yeLlr ~ y } .  

I t  is sufficient to show tha t  for every  

x e { y e L I r  ~ y }  

we have  l ~ x .  So assume tha t  

r ~ x .  

:Note tha t  if k e K then  

i n f  bk, ~ ~ r ,  
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and since {bk.~}p~e is an <a, ~>-directed set then there  exists f(/c) e P such 
tha t  bk2(k ) <~ x. Hence  

l ~ sup bk,?(k) ~< X. 
k~K 

Thus we get  (i). 
Now let  us assume (i). We mus t  show tha t  for every  z e 15 

z = i~f{x e L l z  ~ x}. 

Let  us pu t  

= {G _=/SIG is an <a, O>-directed set  in Z such tha t  inf G ~ z } .  

We can assume tha t  

By (i) 

in f  sup bad(k ) ~ sup in f  bk,1, , 
fcpK k~K kcK ~o~P 

and since {~} e ~ we obta in  tha t  

sup in f  bk.~, 
kcK peP 

:Now we will p rove  tha t  

{sup bkz(k) If e pK} ~ {x [z ~ x}. 
keK 

For  this purpose  let  f :  K->_P and let G ~ ~ .  Hence  

I t  means tha t  there  exists a g e G such tha t  

g ~ 8r bk,f(k). 
keK 

Thus we have p roved  tha t  

in f {x Iz  ~ x} <~ inf  sup bkd(k ) <~ z, 
SepK ktK 

which combined with inequal i ty  

z < inf{x [z ~ x} 

completes  the  proof  of the  theorem. [] 

We shall say t ha t  a complete  lat t ice /5 is an <a, ~>-semidistributive 
~attiee provided  t ha t  the  inequal i ty  

in f  sup a~,, < sup in f  a~,1( 0 
tcT s~S f~S T t~T 
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holds for every family  {at,8}t~,se s of e lements  of ~ fulfilling the  following 
three  condi t ions:  

(a) T < ~, 
(b) the  fami ly  {~{at,~}~s}t~ T is a downward  a-directed set in ( ~ ( L ) ,  ___), 
(c) for every  f :  T - ~ S  there  exists a g: /~-~S such t h a t :  

(cl) {at,g(t)}t~ r is a downward  a-directed set in E, 
(c=) {at.~,(~)}t~.--- t{a~.1(&~T. 

~:~. :RK 3.1. 

(i) A complete  lat t ice L is a ~0, 8)-semidis t r ibut ive  lat t ice iff the  in- 
equal i ty  

in f  sup a~,~ <~ sup in f  at,I( o 
t~T S~S I r  ~eT 

holds for every  family {at,s}ter, se ~ of e lements  of Z such t h a t  

T <  6~ 
(it) a lat t ice J5 is ~ <0, co>-semidistributive lat t ice iff J5 is a comple te ly  

dis t r ibut ive  complete  latt ice,  
(iii) a lat t ice Z is a <0, r lat t ice iff J5 is ~ comple te  

t t e y t i n g  lattice. [] 

By  L e m m a  4.2 in [1] we have :  

COrOLLArY 3.1. Assume that ,L is a 19oset such that the inclusion 

in: L c~.(~,(n), c }  

is an (a,  8}-monotone map and there exists aq~ (a~ 6}-monotone retractior~ 

r: (~(n), =_>~L. 

Then L is an (a~ 6}-semidistributiv e lattice. [] 

Thus~ by  Theorem 2.1~ we ob ta in :  

]~I~O1)OSITION 3.1. I f  L is an (a~ 6)-continuous lattice then .L is an 
(a~ 8)-semidistributive lattice. [] 

Moreover~ we can show t h a t :  

T t t E o m ~  3.2. A lattice is an (a~ oo}-continuous lattice i f f  it is an 
(a~ ~)-semidistributive lattice. 

I)1mo~. By  Propos i t ion  3.1 we have  t h a t  every  (a,  c~)-cont inuous 
lat t ice is an  ( a ,  co)-semidis t r ibut ive lattice. 

~ o w  let  us assume t h a t  Z is an (a~ c~)-semidistr ibut ive lat t ice a n 4  
let  

{b~,~}~,~ 
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be a family  of elements of L such tha t  for every  k e K ~he set {bk,~)p~ P 
is a downward  a-directed set in ~ (Remark  2.1 (i)). 

We show tha t :  

a) the  fami ly  

is a downward  a-directed set in (~(Z)~ _~)~ 

(b) for every  ~o: P = - + K  there  exists ~ ~o: .PK-->K such tha t :  

(b~) {bw(~),,(w(,))}z~e= is a downward  a-directed set in L~ 

l%r the  proof of (~) let  _~ _~/)K and ~ < a. :For every  k e K {b~,p}~ep is 
a downward a-directed set. ]~ence for every  lce K there  exists a f (k)  e 2 
such tha t  for every  f e 

Thus 

Wha t  means  tha t  (a) holds. 
For  the  proof of (b) first  notice tha t  for every  9: / )= -+K 

there  exists a ~ ~ K such ~h~t 

If  it is not  t rue  then  there  exists a ~: t ) K ~ K  such tha t  for every  k e K 
there  is ~ ~ = f ( k )  e P  such tha t  for every  f e_P= 

:But 

and if k = ~ ( ] )  then  

A contradict ion.  
b~m,7(~(f)) <~ b~,~. 

h-ow let ~: P = ~ K  be a funct ion such tha t  

~v(f) = ,~. 

Because {b~,j(~}m,~: = {b~,lo}~p is ~ downward a-directed set, by  (e) we 
get  (b~). Thus 

i n f  sup b~z(k ) = sup~ inf  b~(~)~r(~(~)). 
f~pK k~K ~K(p ~') fel~K 

Moreover, by  (e) 

sup in f  b~{~),~(~ff) ~ <~ s~p in f  bk, ~. 
q:~K(pK) f ~ K  keK p~P 
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()onsequently~ 

r sup bk,1(k) ~ sup i n f  bk, ~ . 
yepK keK keK lar 

B y  Theorem 3.1 it  means  t h a t  L is an  <a, ~}-con t i nuous  latt ice.  I-1 

Note  t h a t  for every  comple te  la t t ice  L the  func t ion  

(where ~ (1) = ~ {1}) preserves all meets  in J5. 
We shall say t h a t  a comple te  lat t ice ]5 is an <a~ ~}-pseudodistributive 

]attice prov ided  t h a t  the  inequal i ty  

i n f  sup at, s ~ sup in f  at,l( 0 
t~T s~S $~sT t~T 

holds for every  fami ly  {at,~}te~,~ s of e lements  of L fulfilling the  following 
two condi t ions:  

(a) T < ~, 
(b) the  family  {~{at,~}~s}t~ T is ~ downwnrd  a-dh'ected set in <~(L) ,  _>.  

I~E~A~K 3.2. 

(i) if ~ is an <a, 6}-pseudodistr ibut ive lat t ice t hen  J5 is an <a~ ~}-semi- 
d is t r ibut ive  lattice, 

(if) d5 is a <07 6}-pseudodis t r ibut ive lat t ice iff L is a <0~ 6}-semidistri- 
bu t ive  lattice~ 

(iii) Z is ~ <0~ c~}-pseudodistr ibutive lat t ice i f f / )  is ~ <0~ c~)-cont inuous 
lattice. [] 

Note  t h a t  for every  complete  lat t ice L the  func t ion :  

$: L-~<~(L) ,  _~> 

(where ~(~) = ~{/}) preserves all meets  in L. 

T~EOI~E~ 3.3. I f  L is an <a~ 6}-pseudodistributive ~attice theq~ the 
funct ion 

r: ~ ( L ) ~ L  

such that for Z ~_ )5 

r ( z )  = su~{~L ~(~) ~_ z }  

is an (a ,  6)-monotone map and for every ~ ~ _L 

r 4(~) = z. 

P~oo~.  Le t  {Xt}t~ r be a n o n - e m p t y  <a~ 6>-set in <~(L) ,  ~ >. Moreover~ 
for t e T let  

{a,,~}sos = {~ e z I $ (~) -= x , } .  
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Of course the  fami ly  

is a downward  a-directed set in <~(Z)~ g>.  Hence  

r (N x,) = s vlll (1)_  Nx , }  
t~T t~T 

= s u p  {ll(Vt)  i (l) x,} 
= sup in f  at, ~q) 

q~esT teT 

= in f r (X , ) .  [] 
l e T  

By Theorem 3.3 and  Theorem 4.2 in [1] we have :  

T:~:EO~E~ 3.4. I f  K is an <a, (~}-pseudodistributive lattice then: 

(i) K is an absolute extensor for the category of all <a~ ~}-semilattices 
and <a, ~>-monotonc maps, 

(ii) i f  P ( a ,  0, K) = 1 then the closure space F~,~(K) is an absolute extensor 
for the category of all <a, ~>-e~osure spaces. [] 

B y  Corollary 3.1, Theorem 2.2, :Remark 3.2 (ii) and  Theorem 3.4 we 
have  

T~:no~E~ 3.5. I f  a = 0 or ~ = c~ or a >~ ~ then: 

(i) an <a, ~>-semilattice L is an absolute extensor for the category of all 
<a, ~>-semilattices and <a, ~>-monotone maps i f f  L is an <a~ ~>- 
semidistributive lattice, 

(ii) a closure space X is an absolute extensor for the category of all <a, O>- 
closure spaces i f f  a contraction of X is the closure space of all <a: ~>- 
filters in an <a, 8>-semidistributive lattice. [] 

By :Remark 3.1 we obta in  t h a t :  

C o n o L L ~ Y  3.2. [2]. A closure space X is an absolute exteq~sor for 
the category of all closure spaces which satisfy the 5-compactness theorem 
i f f  a contraction of X is a closure space of all ~-multiplicative filters iq, a comple- 

te lattice Z such that for every family  {a~,s}t~r,~ s _~ ~,  i f  T < ~ then 

in f  sup at, s = step in f  a t j ( t  ) . [] 
l~T s~S f~sT teT 

O01~OLLA]~Y 3.3 [2]. A closure space X is an absolute extensor for 
the category of all closure spaces i f f  a contraction of X is a closure space 
of all principial filters in a completely distributive complete lattice. [] 

Co]~oLL)a~Y 3.4 [2]. A closure space X is an absolute extensor for 
the category of all closure spaces which satisfy the compactness theorem i f f  
a contraction o f X i s  a closure space of all filters in  a complete Heyting lattice. [] 



166 A.  W. Jankowski 

References 

[1] A. W. JAN~OWS~I, tCetracts of the cZosure space of filters in ~he lattice of alt subsets, 
this volume. 

[2] A. W. JANKOWS~, Absolute retracts and absotute extensors in the category of clo. 
sure spaces, Proceedings  o[ a Conlerence held in  S e p t e m b e r  1981 at  Jadwi-  
s in,  near  W a r s a w  - -  Open Days in Model  Theory  and Se t  Theory ,  Edited 
by W. Guzieki, W. Marek, A. Pele and C. Rauszer, University of Leeds 1984, pp. 
135-143. 

[3] P. T. JOHNSTONE, Sto~e s~aces, C a m b r i d g e  S tud ies  in Advanced  M a t h e m a -  
t i c s  3 (1982). 

[4J S. hIACLANV., Categories [or the Work ing  Mathemat i c ian ,  Graduate Texts 
in ~athemat ies  5, Springer Verlag 1971. 

[5] D. S, Sco~T, Continuous TJattices, Lec ture  Notes  in M a t h e m a t i c s  247 
(1972), pp. 97-136. 

INSTITUTE OF ]~ATHE]~ATICS 
UNIVERSITY OF WARSAW 

l~eceived January 14, 1983 
Revised May 14, 1985 

Studio Zogica XLV, 2 


