8. N. Furs  Computation of Aristotle’s and
Gergonne’s Syllogisms

Abstraet, A connection between Aristotle’s syllogistic and the caleulus of rela-
tions is investigated. Aristotle’s and Gergonne’s syllogistics are considered as some
algebraic structures. It is proved that Gergonne’s syllogistic is isomorphic to closed
elements algebra of a proper approximation relation algebra. This isomorphism per-
mits to evaluate Gergonne’s syllogisms and also Aristotle’s syllogisms, laws of conver-
sion and relations in the “square of oppositions” by means of regular computations
with Boolean matrices.

Introduction

The aim of the present article is to establish a connection between
Aristotle’s syllogistic and the caleculus of relations.

For this purpose I define a new algebraic structure called & proper
approximation relation algebra (PARA) that is a combination of the
proper relation algebra (see [2, p. 345]) and the approximation space (see
[8]). PARA may be considered as a generalization of the classical caleulus
of relations proposed by Tarski (see [10], the bibliography of subsequent
works see in [6]).

To determine the connection between PARA and Aristotle’s syllo-
gistic I consider the later as an algebraic structure. Such a treatment
of Aristotle’s syllogistic goes back to Lorenzen [5]. Then I introduce cne
more algebraic structure called Gergonne’s syllogistic and shew that Ari-
stotle’s syllogistic is in a sense a substructure of the Gergonne’s syllogistic.
Finally I point out a PARA, closed elements algebra of which is isomorphic
to Gergonne’s syllogistic. This isomorphism permits to evaluate Gergonne’s
syllogisms and also Aristotle’s syllogisms, laws of conversion and rela-
tions in the “square of oppositions” by means of regular computations
with Boolean matrices.

The algebraic model of Aristotle’s syllogistic preposed in this article
seems to be more satisfactory in comparison with Lorenzen’s model that
he built in [5] using the classical relation algebra. The distinguishing fea-
ture of my model is the introduction of approximation operators into the
classical relation algebra. This permits to formalize Avistotle’s syliogistic
by using mood “Barbara” as the sole axiom (Lorenzen used 6 axioms
in his model) and to compute effectively Aristotie’s and Gergonne’s syllo-
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gisms. Moreover, by distinguishing actual and potential syllogisms (see
the end of §4 of this article) it seems to be possible to model Aristotelian
“ecthesis™ algebraically.

§1. Aristotle’s syllogisiic as an algebraic structure
Let us consider the algebraic structure
AT e <aAR’ ) —1, <, G.R, O_D, SO>,

where a,p = {A,ﬁ,0,0, I,H,1}; « is the binary operaticn on ayg
presented in Table 1.1 (empty squares correspond to the case r-s = 1
for some 7, se€ayp); ~!' is such a wunary operation on a,p that
A=A, 47" =4,07'=0,01'=0,I"'=1,F*' = E, 17" = 1; and
finally <, CR, 0D, 8C are the binary relations on a,p presented by the
graph in Figure 1.1. This graph shows that CR, 0D, 8C are symmetric
relations. It should be noted that Table 1.1 for the operation - was for the
first time proposed by Lorenzen in [5] (He used the symbol O instead of
the symbol 1). Then arbitrary elements of Ar will be designated as 7, s, t.

Being intuitively interpreted the elements of the structure Ar cor-
respond to the Aristotle’s functors:

A All —— are ——,

A —— belongs to all ——,

0O Some —— is not ——,

O —— does not belong to some — —,
I Some —— is ——,

'E No —— is ——;

unequalities r-s<{t for r 1, s ¥+ 1, ¢ # 1 correspond to the syllo-
gisms #(x,2), s(2, ¥)  t{z, y); equalities r-s =1 for rs£1, s#1
mean that the premisses r(z, 2), (2, ¥) do not entail necessarily some
categorical proposition; unequalities » < =1 for r % 1, s s 1 correspond
to the laws of conversion r(x,y) - s(y, x); and finally relations r»<s,
CR(r,s), CD(r,s), S8C(r,s) for r %1, s # 1 correspend accordingly
to the superaltern relation, contrary relation, contradictory relation
and subeontrary relation between the functors  and s. It is easy to verify
that the algebraic structure Ar contains full infermation about all Aristot-
le’s syllogisms, laws of conversion and relations in the “square of opposi-
tions”. Then in this article Aristotle’s syllogistic will be meant as the alge-
braic structure Ar.

§2. Gergonne’s syllogistic

In this paragraph I define an algebraic structure called Gergonne’s
syllogistic which may be considered as an algebraic model of the se-called
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. Alo |G| I1|E|1
A 0
Al Ao Ilo
0 0
0| 0
I | I 0
E | G| E 0
1

Tablevl.l.

Gergonne’s relations (see [8]). Moreover, here I propose a general method
for building “the syllogistic of a theory over given situations system?”.
The core of this notion is in the following. Let T be a first-order theory
containing a finite set ¢ of binary predicate symbols. If the definite con-
ditions are hold then ¢ is called a situations system of the theory 7. It is
designated in short as 7'(c). In the theory T'(c) some set of its formulas

Figure 1.1.

called categorical propesitions of the theory T'(¢) and some set of its theo-
rems called syllogistic theses of the theory T'(c) are selected in accordance
with the definite rules. Morecver, the syllogistic theses are considered
as some operations and relations on the set of categorical propositions.
So, some algebraic structure called the syllogistic of the theory T over
the situations system o may be uniquely put into accordance with the
theory T'(c). Gergonne’s syllogistic is one of the syllogistics of the transi-
tive relation theory. Another interesting syllogistics of this theory and
others were built by me in [4].
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Then speaking about first-order theories I will follow Mendelson’s

textbook [7]. The designation ¢ = 1, » will mean that ¢ is changed from
1 to m.

DrriNiTION 2.1. Let ¢ = {m4,...,7®,} be a set of binary predicate
symbols of & theory 7. o is called a situations system of the theory 7' iff

the following axioms are hold (here ¢,j = 1, n):

(1) Fra @, YV . Ve, Y),
(2) o (s, y) & m(z, y)] iff ¢ # j,
(3) for any ¢ there exists j such that
w2, y) = m(y, ). D

Then I shall make use of =, n;, ... as designations for situations from o.
The expression T'(¢) or T(mq, ..., m,) Will designate the abbreviation for
the phrase “a theory 7' containing a situations system o = {7;, ..., @,}".

Let us consider the transitive relation theory 74 containing the single
binary predicate symbol A and the single axiom A(z,z) & A(z,y)=
=4 (2, y). Let us define the additional binary predicate symbols ~, <, o,
N, o, | in the theory T, as follows:

1) z~y=A(@,9) &Ay,2),

(2) wcy=A4A(z,y) & 4A(y, 2),

8) woy=yca,

(4) N(x,y) = _IA(myy) & h]A(y)m)’

(8) aoy =Nz &I(z>2) &<y,
6) wly=DN@y & PFeflz>2) &2yl

THEOREM 2.1.  The set of predicate symbols { ~, c, >, o, |} is a situations
system of the theory T 4.

PrOOF. By the axioms of Definition 2.1. [

Let us consider the structure py = <0, 1,2, 3, 4, 5>, where O is the
set of all circles on the Euclide plane and 1,...,5 are binary relations
on O that is called Gergonne’s relations (see [3]) and is defined in the
following way:

xy y X y x y
1 2 3 4 5

X=zy xcy XDy xXmy x|y
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The structure ug is 2 model of the theory T, if the predicate symbols
~, <, D, ®, | are interpreted by the relations 1, ..., b as it is shown in the
FRigure.

To simplify the next discussion it is convenient to enrich first-crder
theories by the special binary predicate symbol @ in the following way:
-7 O(2,y) = F(»,y) iff -, 7F(%,y), where F is an arbitrary formula
of a theory T that contains exactly two free variables z# and y.

DrrFINITION 2.2. C(ategorical propositions of a theory T(=y,..., =,)
are formulas of this theory of the kind =,(®,y)v ... va,(,y), where

m = 1, n, m; % m; for i # j; and also the formula G(«, y). The categori-
cal propositions =, (@, y)v ... va,(x,y) and G(x, y) are called the unity
proposition and the null proposition respectively. O

For example the following formulas are categorical propositions of
the theory T, (~, <, 2, 0, [): (w cy), (@0 y)Vv (z]y), (@~ y)v(®cy)v
v (# > y). Then I shall refer to categorical prepositions simply as to
“propositions” and use %, », w only for designation arbitrary propositions
of a theory T'(o¢). The expression «(z, y) will mean that « contains exactly
two free variables # and y; « is the first variable and % is the second va-
riable.

DrrinmrIoN 2.3. Syllogistic theses of a theory T'(o) are its theorems
of the following kind:

(1) ( ,y)vv(w,y) = (m7y)?

2) ulz,y&o(z,y) = w, y),

(3)  u(z,y) = o=, y),

4)  u(w 7?/)=>®(w y)

(6)  u(w,y) = oy, ),

(6) wu(x,2) &v(z,y)=>w(x,y)and if for some proposition Wy l—pu (2, 2)

&v(z, y) >wi(®, ), then |-y w(@,y)=w.(w,y).

If the syllogistic thesis (6) takes place for some propesitions #,v,w then
the triplet (w, v, w) is said to form an (actual) syllogism of the theory

T(o).

For example the following formulas of the theory T (~, <, o, @, |)
are syllogistic theses of this theory: (zo0y) = (yoa), [(zcy)v(z o y)]&
Sllesy)v@oy)] = (@oy), (22 &@Fcy) > (@~y)v@cyy
V(2 > y)v (z ®y). Indeed, it is easy to show that the first two formulas
are theorems of T',, the latter formula forms a syllogism of 7, (~, <, o, ®,
[) as it is proved in the Appendix.

DrrINITION 2.4. An algebraic structure

Y[T(e)] = <a, U, N, —, <, @, 1, -1,
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where a = 2% U, N, - are binary and —, ~! are unary operations on a;
< is a binary relation on a; @, 1 are designated elements of a, is called the
(actual) syllogistic of the theory T'(¢) over the situations system ¢ iff the
operations, the relations and the designated elements are defined as fol-
lows:

(1)  w'vv’ =w it - pu(z,y)voe(e,y) =w,y),
(2)  w'ne’ =w it pgu(e,y) &olz,y) =w,y),
(3) o = (v)iff {pulw,y) = 0@, 9),
) ' <0 i pu(e, y)=o(e, y),

)W = ()it pu(w,y) = o(y, @),
(6) o =w' iff (u,v,w) forms a syllogism,

) @ is the empty set and 1 is the set o.

In this Definition #’ designates the set of all predicate symbols contained
in the propogition . [

THEOREM 2.2. Let ¥*[T(0)] = {a, U, N, —, <, O, 1> be the reduct
of Y[T(0)], and |o|= n. Then P*[T(0)] is a finite n-atomic Boolean algebra,
where U, N, —, < are the usual sel-theoretical operations and the relation
on a = 2° ’

Proor. By the axioms of Definition 2.1. O

The symbols #, s, t will be used only for designation arbitrary elements
of a gsyllogistic T'(s).

THEOREM 2.3. The following identities take place in every syllogistic
(LT

(1)  (rus)t = (r-t)v(s-1),
(2) r-(sul) = (r-s)ufr-i),
3) (rus)t =yr-tusi,

4) r0=0r=0,

5)  (r-s)"! = g1l

6y ()t =1, (r) = (r)"

Proor. By the definition of the corresponding syllogistic opera-
tions. ]

Let Y[T(ny, ..., w,)] be a syllogistic. The reduct <{a, -> of ¥[T(xy, ...
.., @,)1 will be called the groupoid of this syllogistic and the sets {m}, ...
eery {m,} will be called atoms of this syllogistie.

Gergonne’s syllogistic denoted then by @ is the syllogistic [T ,(~, <,
>, o, |)]. Let us agree upon the representation of G. It is not necessary
to represent specially Boolean operations of G because they are usual
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set-theoretical operations on 2t~ <20 Ag it follows from identities
(1) — (3) of Theorem 2.3, to determine values of the operations - and -1
it is sufficient to point out its values on the atoms. Values of the operation
—! on the atoms are: ~ ! = ~,c !l =0, 1l =c,0l=0,|1=]|
Table 2.1 is the multiplication table of the smallest subgroupoid of the
@’s groupoid that contains the atoms. The following agreements are made
in this Table:

(1) If the equality #-s = 1 is true for some elements 7, s of G then
the corresponding square of the Table is empty.

(2) The multiplications by 1 and by =~ are not included in the Table
because for any element rof G, r*1 =1r =1, r'as = ~r = 1.

Table 2.1 is given without proof. But using Theorem 6.1. the reader
may easily control any syllogism of this Table.

. c D im I lcomiomcom||Dm|lzcom
c c col| | |cmi cm|
D RCOM D |Dm DM COM DOm Dm| xcom
M [Cm |IDm] Dm
I Jcwl| | jcwm) cm||cm]| c m|
cmiCm om|
D™ rCOm Dml Dm|
cmljcm]
Dmli 2w}
zc::m[:cam Dm)|
Table 2.1.

The G’s operation - is interpreted in the model ug as follows. For example,
<o = {=, o, |} (see Table 2.1). It means that for all circles , 2, y, if
circles # and # are in the relation < and circles z and y are in the relation
®, then circles # and y may be either in the relation < or in the relation

® or in the relation | and may be neither in the relation a nor in the
relation o,

DErFINTTION 2.5. A syllogistic ¥[T ()] is a proper syllogistic of the

theory T'(o) iff each axiom of the theory 7 is derived from syllogistic theses
of this theory. O

Evidently, G is a proper syllogistic of the theory 7', ( A, @, D, ®, |).
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§3. Commection between Aristotle’s and Gergonne’s syllogistics

Arigtotle’s syllogistic Ar is in a sense a substructure of Gergonne’s
syllogistic @.

THEOREM 3.1. If ¢: Ar—G is the map

~ ~

r A A 0 0 I E 1
Qi) {=.c}{=>} {P.m,1} {C,m,l} {:,C,D,m} {1} 1

then for all elements r,s of Av,
(1) olr-s) = o(r)-es),
(2) o) = [p(r)],
) r<s iff o(r) < @(s),
(4)  OR(r,s) iff e(r)ng(s) = 0 and p(r)Up(s) #* 1,
) 0D7‘8)’£ff¢?‘)“¢()~0w%d¢() ()=1
)y 8C(r,s) iff p(r)Ne(s) # 0 and ¢(r)Ve(s) =1 and v # 1, s # 1,

Proop. Immedlately by Table 1.1 and Table 2.1. [J

§4. PARA and its closed elements algebra

The aim of this paragraph is to point out a PARA closed elements
algebra of which is isomorphic to Gergonne’s syllogistic G. Potential
syllogisms are cursorily discussed in the end of the paragraph.

DEFINITION 4.1. A proper approximation relation algebra (PARA)
is an algebraic structure

I'y(e*) = (B, v, n, ,<, 3,1, 0, ™, ),

where B = 2™ is the set of all binary relations on a set M; U, n, —
are Boolean operations over relations; < is Boolean inclusion of relations;
@ is the zero relation and 1 = M? is the unit relation on M; - is the con-
version of relations; © is the composition or the relative product of rela-
tions; and finally ¢* is a system of relations on M which is a partition of
the set M? into equivalence classes. [

Then r*, s*, t* will be used for designation of arbitrary relations on M
and m; — for designation of the relations belonging to o*.

DEFINITION 4.2. Approximation operators in I (c*) are operators
O+ BB and [O:B->B defined as follows. Let o* = {n}, ..., @,}. Then

n n
3 *
= U [71:2,7‘*], DT* = U ”731'77'*”7
=1 i=1
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where
# . *
i, %) = 7 }f :rzinr* # 0,
vl g, if ajnrt = G

* s *
”ﬂ* || = 7y 1L 7 <_7'*7
vl g, it not ] <. [0

For a given relation 7*, the relation r* is called the closure or the
upper approximation of r*, and the relation [Or* is calied the interior or
the lower approximation of *. If for some #*, Qr* = r* then * is called
a closed relation. The following figure explains the sense of the operators
O and [.

o* ]rz* ]71* ]72* E ]72*
/ V. 1,
7 / < g A
20 Z
or* ‘ r* ‘ ar*

Here the checked squares picture a set M2 with a partition o* = {n], n,, ...
..., .} and the hatched domains represent accordingly the relations
Or¥, r* and [r*.

It is evident, that PARA is 2 combination of the proper relation al-
gebra (see [2, p. 345]) and the approximation space (see [8]). The choice
of the symbols { and [ for designation of the approximation operators
was motivated by the close connection between the approximation spaces
and the propositional modal calculus 85 (this connection will not be
discussed here).

DrriNiTION 4.3. The (actual) closed elements algebra of a PARA
Iy (o*) is an algebraie structure

leol(o'*) =<{D,vu,n, 7, <,0,1,-, 1,

where D is the set of all closed relations on M; U, N, 7, <, ~! are the
reducts of the corresponding operations of I (o*); @,1 are the same
relations as in I, (0*); the operation - is defined for all relations 7*, s* € D
ag rég* = O (rFOs*). O

Let us start building a PARA, closed elements algebra of which is
isomorphie to the syllogistic G. For this purpose let us consider the structure
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fy = {(My, A*>, where M, = {1, 2, ..., 8} and A* is the following relation
on M,:

7

Figure 4.1.

If the predicate symbol 4 is interpreted by the relation A* then u,
is a model of the theory 7',. Let us define additional relations on M,
as follows:

At = A*N(A%)1,  N* = AN (4%,

F = A*m(A*)—l ¥ = N*n(:*@ C*),

% = (=97 * = N*n(=*0 <.

The relations system o, = {=~* c* 5% o* |*} is evidently a partition
of M;. Let us define a map f: G—I"y, (o) as follows. For all 7, 5,1 e,
(1) if r is an atom, then f({~}) = ~* f({<}) = =* and s0 on;

(2) if f(r) and f(s) are already known and ¢ = r U ¢ then f(t) = f(r)v
Uf(s).

THEOREM 4.1. f 48 an isomorphism between G and Fl?lo (a3).
Proor., It follows from Theorem 6.2 of the Appendix. [J

So, the evaluation of Gergonne’s syllogistic theses is reduced to compu-
tations in the algebraic structure I‘Mo(aff ). From ecomputational point
of view it is convenient to represent the elements of FMo(o-ff ) (i.e. the binary
relations on M,) by means of Boolean matrices. I hope that the reader
knows the way of the binary relations representation (else see for exam-
ple [1, Ch. XTIV, §§ 13-14]). The relation A* under these conditions may
be represented as follows: (empty squares denote zeros)

Let us consider as an example a computation of Gergonne’s syllogism
0| = {:’7(”7 l}
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1
211
301
4 1
5
611111
701 11101 |1
8 1
_A*
1 111 1 1 TIRE
111 11 111 101 111
111111 1 10 1111
1 1 1 1 1011y _ 1 1 |1
11111 © 1 1 - 1 1 |1
111111
1 11 |1
1111101 11111
ot l# m*@l*

Let us designate t* = o*Q |*. In accordance with Definition 4.2, it may
be computed that ~*Ni* = <*Ni* =@, >*0t* %= G, o*NF # O,
*Ni* £ @, So, oF* = O(0FQ[*) = D*rUaRU X

By the use of Theorem 3.1, the method deseribed above may be adopted
to the evaluation of arbitrary Aristotle’s syllogisms, laws of conversion
and relations in the “square of oppositions”.

Potential syllogisms may be defined in any theory 7'(¢) dually in com-
parison with the actual syllogisms. Namely, some propositions (u, v, w)
of a theory 7(s) will be said to form a potential syllogism of 7T'(c)
iff —pw(@,y)=>Ie[u(x,2) &o(z,y)] and for any proposition w,, if
- 03 (w, y) = Te[u(, 2) & 0(2, )], then |-, wy(w,y)=w(w, ). By means
of a suitable set of the potential syllogisms it seems to be possible to model
Aristotelian “ecthesis”. (See about this [9], [11]).

§5. Evaluation of n-premissed theses

The method considered in §4 allows to evaluate Gergonne’s and Aristo-
tle’s binary syllogisms. In this paragraph I extend the received results
to arbitrary #s-premissed Gergonne’s and Aristotle’s theses. It will be
supposed in this paragraph that variables of the theory I', are numbers
1,2,3,... and metavariables cver the variables are the symbols 4, j.
I remind also that «' means the set of all predicate symbols containing
in a proposition u.
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DeriniTION 5.1. A n-premissed Gergonne’s wif is a 7', ’s formula
of the kind %, &... & %, =v in which there are no propositions of the

type u(¢,4). [J

Gergonne’s wifs will be called simply as “wifs”. Arbitrary wifs will
be denoted by @. The wiifs containing exactly m different variables will
be denoted as @™, It always will be supposed (it does not lead to decreas-
ing of generality) that the set of all variables contained in some wif @™ ig
{1,2,...,m}.

The following 7 ,’s formula denoted then as @, is a 4-premissed wif
containing four different variables 1,2, 3, 4.

[(2>1)] &[(4 < 1)v (40 1)] &[(203)] (5.1)
& [(4 = 3)v (4 @ 3)]=>[(2m 4)].

DerINITION 5.2. A wif 4, &... &u,=>v is a n-premissed Gergon-
ne’s thesis iff

(1) o #1,

@2 o 0 &.. &u,=0,

(3) if v contains variables 4, j then the formula u, &... & u,= (¢, j)
is not derived in the theory T,. O

DEFINITION 5.3. The matrix of a wiff

" uy &... &u,=v is a m Xm matrix D(P™),

elements of which are elements of Gergonne’s syllogistic G. These elements
of the matrix D(®™) are defined as follows:

{~}, if i =],
d.. — () wi(i,j), if 4 is not empty,
i T ) kedij

1, in all other cases.

Here ke 4;;iff ke{l, ..., n} and there exists a proposition u; € {uy, ..., #,}
such that u, = u,(4, j), i.e. u, containg exactly two free variables ¢ and j
and moreover ¢ is the first variable and j is the second variable (see §2, Def.
2.2 and below). O

The matrix of the wif @, designated as D, is represented in Figure 5.1a.

DEFINITION 5.4. The symmetrization of a matrix D(9P) is a matrix
D(9®) defined in the following way: d; = d;nd;'. Here N and ! are
the operations of the syllogistic @. ]
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The symmetrization of the matrix D, is presented in Figure 5.1b.

211111 =|lc|1!|3R =|lc] |l |m

D= | |1 Sl=]| 1|1 Dz |} |m™

111~ ]1 111 |= & I 1= |

sl11sl=] (§]1]S]=| |o|m|m]=

T .0 b5, TSATAE
| Figure 5.1.

A matrix multiplication is defined as D" (@™) = D'(9™)-D(P™) iff
dij = (m\ i, &y where (1), - are the operations of G. The r-power of
a matrki;L D(D) for r >1 is defined as

D) = D(®),
DN D) = D'(D)-D'(D).

DEFINITION 5.5. D7(®) is the saturation of a matrix D(@) iff D"(P) =
= D). [

The saturation of the matrix Dy is presented in Figure 5.1ec.

THEOREM 5.1. Let @:u, & ... &u,=v be some Gergonne’s wff and

v" 5= 1. Let also [D(D)]" be the saturation of the matriz D(D). Then the
following two assertions A and B are equivalent:

(A) uy &...&u,=>v is n-premissed Gergonne’s Thesis;
(B) if v contains variables ¢,j then

1) dG<v'(6,5),

(2) 4y # 0.

This theorem will be strictly proved in my another article. []

The element d3, of the matrix (-170)3 pictured in Figure 5.1¢ is equal to o.
In aceordance with Theorem 5.1 it means that the wif @, is a 4-premissed
Gergonne’s thesis. 8o, Theorem 5.1 provides a method for evaluation of
arbitrary n-premissed Gergonne’s theses. By using Theorem 3.1 it is easy
to adopt this method to evaluation of arbitrary m-premissed Aristotle’s
theses.
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§6. Appendix

The Appendix consists of two parts. The deduction syllogisms Theorem
and an example of its utilization are considered in Part 1. The syllogistics
representation Theorem is proved in Part 2. This Theorem asserts that
PARA, closed elements algebra of which is isomorphiec to a syllogistic
Y[T(o)] may be made from “a sufficienfly rich model” of the theory
T (o).

Part 1. The deduction (actual) syllogisms Theorem

THEOREM 6.1. Let WY[T(0)] be the proper syllogistic of a theory T (o).
For all propositions u, v, w of the theory T(o) the following assertions A
and B are equivalent:

(A)  (u, v, w) forms a syllogism of T(o);
(B)Y (1) for any predicate symbol 7 contained in the proposition w there
exists a model u, of the theory T such that

P = dz 3:’/ Hz[u(m7 2) & v(2,Y) & n(x, ’!/)],
(2) for any predicate symbol = € o which is not conlained in the
proposition w,
- (%, 2) &0(2, y) = Ta(z, y).
The Theorem was proved in [4]. O
To illustrate the utilization of Theorem 6.1 let us consider a proof
of the G’s syllogism o-c = {~, <, o, ®}. In accordance with item (1)
of Theorem 6.1, for each predicate symbol = contained in the proposition

(x ~y)v(zcy)v(z>y)v(zoy) we should point out a model p, of
the theory T, such that

py = ey Te[(v 2 2) & (2 < ) & (way)]. (6.1)

The following structures are for example the suitable models:
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Indeed, these structures are frangitive relations, hence they are models
of the theory T',. Condition (6.1) is also satisfied. This condition is sati-
sfied for example for u_ if we set 2w, 1->2, 3—y.

Then, in accordance with item (2) of Theorem 6.1, we should prove
the theorem (> 2) & (2 < y)= "1{x]y) in the theory T ,. The proof
of such theorems is very simple. Let us suppose that there are a, b, ¢ such
that (1) (a > b),

{2) (b<o), (3) (ale). Then we have:

(4) by (1) and (2), Je[(a > ) & (2 < 0)];

(5) by (3) and by the definition of the predicate symbol |, 713z[(a = 2) &
&(z = 0)],

but this contradicts to (4). So, the theorem is proved.

In practice it is advisable to use Theorem 6.1 only for deduction of
a “gufficient set” of syllogisms.

DeFINITION 6.1. A sufficient set of syllogisms of a theory T'(o¢) is
such set of its syllogisms that for any pair of elements of the syllogistic
Y[T(o)] the values of the operation - may be cbtained from this set by
means of the identities of Theorem 2.3. O

The following set is a sufficient set of syllogisms of the theory 7',(~,

<2, 0,|)

R =R, AN'C=C, AN'D =D, ANV =0, |=]|, =g,

co=1 cwo={c0ol, c|=]|, 2 c={~c,2,0), 20 =
o0} 5l = (5,0, 00 =1, 0 = {20, [}, [1] =1,

Part 2. (Actual) syllogistics representation Theorem

DerNITION 6.2. 4 is a sufficiently rich model of a theory 7(¢) iff
for any its syllogism (%, v, w) and for any predicate symbol =z contained in
the proposition w,

= FodyFe[u(@, 2) &o(z,y) & (w, y)] (6.2)
]

It is evident that verification of condition (6.2) may be restricted to
a sufficient set of syllogisms. Using Figure 4.1 and the sufficient set of
syllogisms of the theory 7, (~, <, >, ®,|) which was presented above
it is easy to see that u, considered in §4 is a sufficiently rich model of
this theory.

Let us take the following agreements up to the end of the article.
Let T'(o) be a fixed theory and ¥[T(o)] its proper syllogistic. Thén, let
u = (M, o*), where M is a non-empty set and o*, |6*| = |o], is & system
of binary relations on 2, be a fixed sufficiently rich model of T'(o). Let
I: 0—+0* be the corresponding interpretation map such that I(n) = a*,
where 7 € o, n* € o*.
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By axioms of Definition 2.1, o* is a partition of the set M. Hence,
we can determine the PARA I'(o*). Let us define the map f: W[T(o)]~
— 1"y (0*) as follows. For all »,s,t e P[T(0)],

(1) if » is an atom then f(r) = I(r);
(2) if f(r) and f(s) are already known and ¢ = ruUs, then f(1) = f(r)Uf(s).

THEOREM 6.2. f is an isomorphism between Y[T(c)] and I'$(c*).

Proor. fis evidently an injection and its image is the set of all closed
elements of the PARA I'y(o*). In another words, f is a bijection between
Y[T(0)] and I'§(c*). The proof of the theorem is trivial except the proof
of the equality f(r-s) = O[f(r) Of(s)] for all elements 7, s, ¢ of P[T(0)].
But the proof of this equality is evidently reduced to the proof of the
following theorem.

THEOREM 6.2.1. If propositions (u,v,w) form a syllogism of the
theory T (o), then
(1) for any predicate symbol = contained in the proposition w, (#OF)N
N7 %~ O
2) for any predicate symbol w € o which is not contained in the proposition w,
(n OF)N7T = . ‘

Here u designates the relation in I'y(o*), corresponding to a proposition w.
More correctly, if w' is the set of all predicate symbols contained in u, then
Jw') = .

Proor. (1) In accordance with the agreements above, u is a sufficien-
tly rich model of T'(0), i.e. condition (6.2) is satisfied. This implies item
(1) of the theorem.

(2) In accordance with Theorem 6.1, for any syllogism (u, v, w) and for
any predicate symbol 7 € ¢, which is not contained in the proposition w,

- u(®, 2) &o(2, ¥)=> TIn(w, ¥),
w = u(z, 2) &o(z,y) &a(z, y)].
This implies item (2) of the theorem. [J

i.e.
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