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Frege, as is well known, opposed the view that just as genuine proper 
names have definite objects as their meanings, the variables used in 
mathematics have variable or indefinite objects as their meanings. In a 
typical passage, Frege puts the matter this way: 

'n '  is not the proper name of any number, definite or indef in i te . . .  We write the letter 
'n '  in order to achieve genera l i ty . . .  Of course we may speak of indefiniteness here; but 
here the word 'indefinite' is not an adjective of 'number', but ['indefinitely'] is an adverb, 
e.g. of the verb 'to indicate'. We cannot say that 'n '  designates an indefinite number, but 
we can say that it indicates numbers indefinitely.l 

In opposing the view that variables name indefinite numbers, we can 
see Frege as providing an alternative explanation as to how sentences in 
mathematics containing variables express general claims. Indefinite 
number theorists hold that a statement like '(a + b) + c -- a + (b + c)' 
expresses a universal claim, whereas '(2 + 3) + 4 --- 2 + (3 + 4)' 
doesn't, simply because of the kind of objects that 'a', 'b', and 'c', as 
opposed to '2', '3', and '4', name. The semantic relation between '2' and 
2 is the same as the semantic relation between 'a' and (the indefinite 
number) a: each expression names the corresponding object. It is the 
indefiniteness of the objects named by variables that endows sentences 
containing variables with generality. Frege thought that he had a better 
explanation of the generality of sentences containing variables and 
other expressions of generality. Instead of locating the source of 
generality in the kind of objects named by an expression of generality, 
Frege sought to explain the generality as resulting from a difference in 
the semantics of such expressions and genuine proper names (note the 
contrast drawn between designating and indefinitely indicating in the 
above quotation). 

A principal virtue of the Fregean account of expressions of gener- 
ality is that it highlights the notions that are not needed for a semantics 
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of proper names but are crucial to the development of a systematic 
account of the truth conditions of sentences containing multiple expres- 
sions of generality: the notions of scope and ranging over a domain of 
individuals. 2 By contrast, an account of expressions of generality 
according to which they refer to indefinite objects, even if it gets 
the truth conditions to come out right, assimilates such expressions 
to proper names and so obscures the distinctive features of such 
expressions. 

In recent work, Kit Fine has sought to resurrect the view that 
variables in mathematics refer to indefinite or, as he calls them, 
arbitrary objects. 3 Indeed Fine holds that instantial terms figuring in 
universal generalization and existential instantiation in systems of 
natural deduction, and some anaphoric pronouns in natural languages, 
refer to arbitrary objects as well. As against this, I intend to argue that 
the arbitrary objects account, like the theories of indefinite numbers 
that preceded it, obscures rather than highlights the distinctive features 
of the various expressions it claims to handle; and that there is another 
view of the semantics of these expressions which is preferable to the 
arbitrary objects account. 4 

The plan of the present essay is first, to sketch Fine's theory of 
arbitrary objects; second, to sketch an alternative to Fine's account; 
third, to argue that Fine's arguments in support of arbitrary object 
theory also support the alternative; and finally, to argue that this 
alternative is preferable to arbitrary object theory. 

Because my arguments against Fine will not concern the more 
technical features of his theory, I shall sketch the theory informally. The 
easiest way to introduce the theory is to look at some of the data to 
which the theory is primarily applied, and consider (in rough form) the 
account the theory gives of the data. Hence, we shall begin by looking 
at instantial terms in natural deduction and English arguments. Let us 
suppose that we are using a system whose formulations of UG and EI 
are as follows: 

UG P(u) EI (Ex)P(x) 
(x)e(x) e(u) 

('P(u)' is obtained by replacing all free occurrences of 'x' in 'P(x)' by 
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occurrences of 'u '  --  in actual applications of UG and E1 when a 
variable plays the role played by 'u '  in the above formulations we shall 
call it the instantial variable~term.) The necessary restrictions are 
simpler to state if, following Kalish and Fine, we define a relation of 
dependence between the variables occurring in a derivation. A variable 
x depends (in a given derivation) on a variable y if x is the instantial 
variable of a formula at a line resulting from the application of EI and y 
is free in that formula or x depends on some variable that depends on 
y. The restrictions now are: EI: 'u'  must have no prior occurrrences in 
the derivation; UG: no instantial term in an application of EI is also an 
instantial term in an application of UG, and 'u '  and any variable 
depending on 'u '  must not occur flee in '(x)P(x)' or any supposition 
governing '(x)P(x)'. 5 

Suppose that in a derivation in our system we infer 'Hu' from 
'(Ex)Hx' by EI. What semantic account are we to give of the instantial 
term 'u'  here? Fine answers that 'u '  refers to an arbitrary object (an 
arbitrary /4, in this case). In general, arbitrary objects are associated 
with ranges of individuals (the value range of the object). In this case, 
for example, the object referred to by 'u '  (in a given model) is asso- 
ciated with the set of individuals (if there are any) assigned to 'H '  (by 
the model). If we infer '(x)Fx' from 'Fv' by UG, 'v' refers to the 
"completely arbitrary" object (i.e. the object 'v' refers to is associated 
with the set of all individuals). It is by associating arbitrary objects with 
ranges of individuals that statements containing expressions referring to 
arbitrary objects express general claims. As Fine puts it, " . . .  a state- 
ment concerning A-objects is true just in case it is true for all their 
values.", the admissible values for an arbitrary object being the individ- 
uals in the set associated with the object. 6 

Above, in formulating restrictions on UG and EI, we defined a rela- 
tion of dependence between the variables in a given derivation of the 
system. Corresponding to this, Fine defines a relation of dependence 
between arbitrary objects. This idea can be illustrated intuitively by 
considering an arbitrary natural number n. The individual natural 
numbers are the object n's values, n 2 is an arbitrary object that depends 
on n. This dependence between the objects is reflected in the fact that 
the assignment of a value to n 2 requires a prior assignment of a value to 
n. Now consider the following, rather trivial, derivations: 
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(A) 1. (x) OEy)Fxy (B) 1. (Ey) (x)Fxy 
2. (Ey)Fzy 2. (x)Fxw 
3. Fzw 3. Fzw 
4. (Ew)Fzw 4. (z)Fzw 
5. (z) (Ew)Fzw 5. (Ew) (z)Fzw 

By the definition of dependence between variables given above, the 
variable 'w' depends on the variable 'z' in (A), whereas neither variable 
depends on the other in (B), (the restrictions on UG thus prevent 
applying UG to line 3 in (A) and hence reattaching the quantifiers in 
the wrong order). And the object referred to by 'w' in (A), on Fine's 
definition of the relation of dependence between objects, depends on 
the object referred to by 'z' in (A), whereas neither of the objects 
referred to by 'z' and 'w' in (B) depends on the other. As before, this is 
reflected in the fact that assigning a value to 'w' in (A) intuitively 
requires the prior assignment of a value to 'z'. In general, when a 
variable 'x' depends on a variable 'y' in a derivation, the arbitrary 
object referred to by 'x' will depend on the arbitrary object referred to 
by 'y'. That the object 'w' refers to in (A) depends on that referred to 
by 'z' in (A) and not so in (B) entails that 'w' refers to a different object 
in (A) than it does in (B). This explains why (e.g.) the inference from 
'Fzw' to '(z)Fzw' is valid (with respect to Fine's semantics) in (B) but 
would not be in (A). 

Fine applies his arbitrary object semantics to various systems of 
natural deduction. Different restrictions on UG and EI in the different 
systems, according to Fine, reflect the fact that the instantial terms used 
in UG and E1 in the different systems refer to different arbitrary objects 
(we shall return to this point). Fine then proves that all rules of 
inference of the systems he treats, including UG and EI, are truth- 
preserving with respect to the semantics he provides (of course, if one 
treats the instantial term 'u' in UG (F(u)/(x)F(x)) as the name of an 
individual, the rule is not truth-preserving; Fine's proofs show that 
construing 'u' as the name of an arbitrary object results in UG being 
truth-preserving -- similar remarks apply to El). 7 

I wish to stress again that Fine also wants to apply the theory of 
arbitrary objects to instantial terms in English "UG and El", certain 
anaphoric pronouns (and perhaps definite descriptions) in natural 
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language (see (F2) below), and to variables in mathematics. These 
expressions too are to be construed as referring to arbitrary objects. 

The view that I shall champion over the theory of arbitrary objects 
has grown out of consideration of the semantics of certain anaphoric 
pronouns/definite descriptions, and instantial terms in natural deduc- 
tion and informal arguments in English. 8 We shall begin to explain this 
view by contrasting its account of instantial terms in UG and EI in 
systems of natural deduction with that of Fine. The view is perhaps best 
explained by considering a system of natural deduction in which scope 
lines are used to indicate which suppositions a given formula depends 
on, and scope lines flagged by variables are used in applications of UG 
and EI. In particular, suppose that UG and E1 are formulated roughly 
as follows ('P(x)' differs from 'P(y)' only in that 'P(x)' contains free 'x' 
where and only where 'P(y)' contains free 'y' and A contains no 
occurrences of free 'y' -- for a more detailed statement of these rules 
see the Appendix): 

EI OEx)P(x ) UG Yl. 

Y lP(Y) 1. 
[. I. 
I. I P(y) 
I. (x)P(x) 
[A 

A 

Now consider the following derivation: 

[ (Ex) (y)Fxy hypothesis 
[ . - -  

]z [ (Ex)  (y)Fxy reiteration 
] [ w[ (y)Fwy EI 

I 1 I fwz  UI 
[ [ I (Ex)Fxz EG 
I I (Ex) Fxz E discharge 
[ (y) (Ex) Fxy UG 

(Ex) (y)Fxy ~ (y) (Ex)Fxy ~ intro 

As already indicated, Fine would construe free occurrences of 'z' and 
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'w' in such a derivation as referring to arbitrary objects; and it is in 
virtue of referring to such objects that formulas containing free occur- 
rences of these variables express general claims such that (e.g.) 
'(Ex)Fxz' at line 6 entails '(y) (Ex)Fxy' at line 7. The present view holds 
that free occurrences of 'z' and 'w' in this derivation are quantifier-like 
expressions of generality. Standard quantifiers in first order formal 
languages have their forces (universal or existential) and their scopes 
marked syntactically in the formulas in which they occur. By contrast, 
nothing in the formula 'Fwz' at line 4 above tells us whether 'w' and 'z' 
should be understood as having universal or existential force, and what 
the relative scopes of these two expressions of generality are. 9 Intui- 
tively, it is the structure of the derivation that determines these features 
of the semantic significance of free occurrences of 'z' and 'w' in the 
above derivation. In particular, the fact that 'w' flags an application of 
E1 and 'z' flags an application of UG determines that 'w' and 'z' have 
existential and universal force respectively. And that the scope line 'w' 
flags is subordinate to the scope line 'z' flags determines the relative 
scopes of free occurrences of 'z '  and 'w' at line 4. 

On the present view, then, instantial terms in UG and EI such as free 
occurrences of 'z' and 'w' in the above derivation are quantifier-like 
expressions of generality such that various features of their semantic 
significance are determined by the structure of the derivations they 
occur in. Instead of having their scopes and forces marked by syntac- 
tical features of the sentences in which they occur, features of the 
derivational setting (e.g. order of subordination of scope lines, etc.) of 
these expressions keep track of these things. We shall put this point by 
referring to these instantial terms as context dependent quantifiers, thus 
emphasizing the role linguistic context (derivational setting) plays in 
determining their semantic significance and that they are expressions of 
generality; and we shall call the view of these terms presently being 
sketched CDQ. 

The fOrmal semantics provided by CDQ for instantial terms in UG 
and EI comprises two components. First there is a definition of the 
context of  an occurrence of a formula at a line in a derivation. This 
context encodes all information about the structure of the derivation 
that the occurrence of the formula occurs in relevant to the semantic 
significance of any instantial terms occurring in the formula. Next, there 
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is a definition of truth in a context under an interpretation. Together, 
these definitions assign truth conditions to lines of derivations of the 
system in such a way that for any inference in a derivation (including 
UG and EI) if the premises of the inference are true in their contexts 
under an interpretation, the conclusion to the inference is true in its 
context under the interpretation. In the appendix just such a semantics 
is formulated for a system with UG and EI formulated as above. 

Given what has been said, it should be clear that in a given deriva- 
tion, the contexts of some lines will need to encode more information 
than those of other lines. For if more context dependent quantifiers 
occur in a formula at one line than in a formula at another, more 
information about discourse structure will have to be encoded in the 
context of the first line than in that of the second. We shall express this 
state of affairs by saying that the context of the first line is more 

complex than that of the second line. Just as clearly, the application of 
some rules of inference will yield conclusions whose contexts are more 
complex than those of the premises, whereas some will yield conclu- 
sions whose contexts are less complex. For example, in applying EI, a 
new context dependent quantifier is introduced. Hence the context of 
the line in which it is introduced must encode new information that was 
not encoded in the context of the previous line, viz. information about 
derivational structure relevant to properly interpreting the new context 
dependent quantifier. We might, then, think of EI as a context changing 

rule which increases context complexity. By contrast, in applying UG a 
context dependent quantifier is eliminated. Hence, the context of the 
conclusion of an application of UG need not encode information about 
derivational structure relevant to properly interpreting the eliminated 
term, though the context of the premise to the inference had to encode 
this information. Hence, we might think of UG as a context changing 
rule which decreases context complexity. 

Thus far, we have discussed a system of natural deduction whose 
formulations of UG and EI involve flagged scope lines because in such 
a system features of the derivational setting necessary to properly 
interpret the context dependent quantifiers are perspicuously displayed 
(e.g. one can see the order of subordination of the scope lines which 
determines the relative scopes of the context dependent quantifiers). 
But CDQ applies to any system of natural deduction; it is just that the 
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features of derivational structure that must be encoded in the context of 
a line in the derivation are more subtle. 

Some readers will have been asking about the point of applying the 
semantics of CDQ (or arbitrary object semantics) to instantial terms in 
derivations. Given soundness and completeness results for such systems, 
what is the semantics for? The benefits of such an application will be 
discussed in the sequel. For a moment I want to dwell on the way CDQ 
increases our understanding of natural language. For whether instantial 
terms in natural deduction are understood along the lines suggested by 
CDQ or not, a variety of expressions of natural language appear to 
behave in the way that CDQ holds that instantial terms do. First, 
consider "instantial terms" in English "UG" and "EI" such as those 
underlined in the following argument: 

(F1) premise 1) Every professor has a bad student. 
premise 2) Every bad student hates each of his/her professors. 

3) Consider an arbitrary professor. 
4) By 1), the professor has a bad student. 
5) Consider the professor's bad student. 
6) By 2), the student hates the professor. 
7) So every professor is hated by some student. 

Whatever our views on lines in derivations, surely we want to say that 
as we read through (or hear) such an argument we understand each line 
and the claim it makes. Hence, to the extent that we believe that 
understanding each line consists in grasping its truth conditions, we are 
forced to assign truth conditions to the lines in this argument, and 
assign them in such a way that the inferences made are truth-preserving 
(e.g. if the truth conditions assigned to line 6 obtain, those assigned to 
line 7 obtain). According to CDQ, the underlined descriptions are, 
once again, context dependent quantifiers. As before, their forces, and 
their scopes relative to one another are fixed by features of their 
linguistic environments (in this case, the domains over which they range 
are determined by such features as well -- e.g. the 'Consider . . . '  clause 
at line 5 determines the domain over which subsequent occurrences of 
'the student' ranges). And once again we define the context of a 
sentence in a discourse/argument such that it encodes all the informa- 
tion about the linguistic environment relevant to the significance of the 
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context dependent quantifiers in the sentence. Again, the semantics is 
completed by a definition of truth in a context. 

Finally, consider the underlined anaphoric pronouns/descriptions in 
the following discourse: 

(F2) 1) Every professor at the University of San Clementel 
teaches a large lecture class2. 

2) The professor 1 does all the grading for the classy. 
3) The class  2 has a final exam 3. 
4) The final3 is comprehensive. 
5) It 3 need not be long, however. 1~ 

Sentences containing underlined pronouns/descriptions express general 
claims as they occur in this discourse: 2), for example, expresses the 
claim that every professor at the University of San Clemente teaches a 
large lecture class for which he/she does all the grading. And it seems 
clear that these sentences express general claims in virtue of containing 
the underlined pronouns/descriptions. Hence, these terms are function- 
ing as expressions of generality. Further, as in the other cases we have 
considered, these expressions of generality are sensitive to linguistic 
context. For if we immerse one of the sentences of (F2) (e.g. sentence 
2)) in an appropriately different linguistic context 

(F3) 1) Some professor in Western Australia1 teaches a class on 
sur f - sk i ing  2. 

2) The professor1 does all the grading for the class 2. 

it expresses a quite different claim. CDQ again holds that these 
pronouns and descriptions are context dependent quantifiers. Again, 
these context dependent quantifiers have their scopes relative to other 
context dependent quantifiers, the domains over which they range, and 
their forces determined by characteristics of the discourses they occur 
in.l~ The semantic theory for these anaphoric pronouns/descriptions 
again is constituted by definitions of the context of an occurrence of a 
sentence in a discourse, and of truth in a context. This semantic theory, 
I claim, assigns intuitively plausible truth conditions to sentences such 
as those in (F2)--(F3) as they occur in those discourses. 12 The 
sentences can contain any number of pronouns/descriptions anaphorie 
to quantifiers which may occur in a number of different sentences 
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which themselves may contain an arbitrary number of pronouns/ 
descriptions anaphoric to quantifiers in other sentences. 

Now that we are familiar with the theory of arbitrary objects and its 
competitor (at least in broad outline), let us consider Fine's arguments 
in favor of his theory and see how the competition fares with respect to 
these arguments. Here we must distinguish Fine's arguments in favor of 
adopting arbitrary object semantics for instantial terms in UG and EI in 
systems of natural deduction (and for the instantial terms in "ordinary 
language" UG and EI) from his arguments in favor of what we might 
call the general theory of arbitrary objects. Let us first consider Fine's 
arguments for applying arbitrary object theory to instantial terms in UG 
and EI. 

Fine lists three benefits to be gained from adopting arbitrary object 
semantics for natural deduction. 13 The first concerns formulating 
proper restrictions (i.e. those that result in a sound system) on UG and 
EI. Finding proper restrictions is by no means a trivial matter, as 
witnessed by the fact that a number of incorrect formulations have 
appeared in print. 14 Arbitrary object semantics, however, provides a 
method for discovering a variety of correct restrictions. If we decide to 
interpret 'u' in (Ex)A(x)/A(u) as referring to the arbitrary A, if 
anything A's (i.e. associate the range of individuals that A, if any does, 
with the arbitrary object 'u' refers to) and interpret 'w' in A(w)/ 
(x)A(x) as referring to the arbitrary non-A, if anything is non-A, the 
restrictions on UG and EI formulated by Quine result. 15 If we interpret 
the instantial term in EI as above, and interpret 'u' in A(u)/(x)A(x) 
as the "completely" arbitrary object (i.e. associate the range of all 
individuals with the arbitrary object referred to by 'u'), the Copi-- 
Kalish restrictions result) 6 In general, then, different correct restrictions 
on UG and EI issue from different decisions as to what arbitrary 
objects the instantial terms refer to. 

CDQ yields the same benefit, though it views the restrictions in a 
quite different light. From the standpoint of CDQ, in attempting to 
formulate proper restrictions on, for example, UG, one is attempting to 
characterize conditions such that if the derivational setting of an 
occurrence of a formula A and the derivational setting of an occurrence 
of A's universal generalization (with respect to a particular variable) 
satisfy the conditions, then if A is true in that context under an 
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interpretation, the universal generalization of A (with respect to a 
particular variable) will be true in its context under the interpretation. 
And in general, different sets of proper restrictions on UG will result 
from noting that in the semantics provided by CDQ there are a variety 
of conditions that A, its context and the universal generalization of A 
and its context may satisfy, any of which insure that if A is true under 
an interpretation in the context, its universal generalization will be true 
under that interpretation in its context. 17 Distinct sets of proper 
restrictions on UG and EI thus turn out to be distinct sets of 
constraints on formulas and their contexts which result in the truth of a 
formula in a context insuring the truth of another formula in a related 
context, when UG or EI licenses the inference from the former to the 
latter. Thus, on the question of providing a method of discovering 
different restrictions on UG and EI, CDQ seems at least on par with 
arbitrary object semantics. 

Fine's second argument for doing arbitrary object semantics for 
instantial terms in natural deduction is that it renders syntactic features 
of derivations, and the derivations themselves, meaningful in a way that 
"classical" semantics for first order logic doesn't. In the first place, as 
we have seen, arbitrary object semantics provides an explanation and 
justification of particular restrictions on UG and El. In the absence of 
arbitrary object semantics, the only explanation and justification that 
can be given for such restrictions, Fine says, is that they work. Perhaps 
most importantly, derivations themselves can be viewed as meaningful. 
Through arbitrary object semantics, lines in derivations are endowed 
with truth conditions such that all rules of inference are truth-preserv- 
ing. Thus we need not take an instrumentalist view of natural deduction 
rules (particularly, E1 and UG) according to which the steps in a 
derivation are simply meaningless transformations which are only a 
means to confirm some result. 

Once again, CDQ fares as well as arbitrary object semantics. We 
have already seen how the theory explains and justifies different 
restrictions on UG and EI. And the theory allows derivations to be 
viewed as meaningful, just as does the arbitrary objects approach, by 
assigning truth conditions to lines in derivations such that the rules of 
inference of the system are truth-preserving with respect to the seman- 
tics (see appendix). Indeed, CDQ emphasizes the meaningfulness of 
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derivations by holding that the structure of the derivation stores infor- 
mation concerning the proper interpretation of the context dependent 
quantifiers in it. 

The final argument Fine gives in favor of arbitrary object semantics 
for natural deduction is that it allows for simple and direct proofs of the 
classical soundness of the systems in question (i.e. proofs that if neither 
the last formula of a derivation, nor any formula it depends on, contains 
instantial terms, the latter formulas together entail the former formula). 
As before, CDQ yields the same benefit. I refer the reader to the 
appendix, where it is shown how classical soundness for a system of 
natural deduction (theorem 2) follows straightforwardly from the proof 
that all rules of inference in the system are truth-preserving with respect 
to the semantics (theorem 1). 

It seems, then, that the arguments that Fine gives for applying the 
theory of arbitrary objects to natural deduction equally support apply- 
ing CDQ to this range of data. 

This brings us to the arguments Fine offers in favor of the general 
theory of arbitrary objects. Interestingly, Fine admits that approaches 
other than arbitrary object semantics (though he doesn't discuss CDQ) 
reap all the benefits in application to natural deduction that arbitrary 
object semantics does. is Given that other theories perform as well as 
arbitrary object semantics in application to natural deduction, one 
cannot argue for the general theory simply on the basis of the fruitful- 
ness of the application to natural deduction. As Fine puts the point: 

The decisive reason [in favor of the theory of arbitrary objects] lies not in instantial 
reasoning itself but in its relation to the general use of variables in mathematics or of 
pronouns in ordinary language... When one looks at these other uses, it becomes clear 
that variables and pronouns alike are used to signify arbitrary objects. Considerations 
of uniformity then force one to adopt the same view of instamial reasoning.~ 9 

So Fine claims that it is the fruitfulness of these other applications of 
the theory of arbitrary objects, as compared with its competitors, that 
provides an argument for the theory in general and, indirectly, for the 
application of the theory to natural deduction. I wish to argue that, 
on the contrary, CDQ works as well in application to pronouns in 
ordinary language and variables in mathematics as does arbitrary object 
semantics. 



I N S T A N T I A L  T E R M S  2 5 1  

Taking pronouns in ordinary language first, the only example I have 
found in Fine's writings on arbitrary objects of natural language 
pronouns to which he thinks arbitrary object semantics will apply is the 
following: 

Every man owns a donkey. He beats it. He  feeds it rarely. . .20 

But this is just the sort of anaphora that CDQ was designed to handle 
(as suggested above, it can handle much more complex examples as 
well)! Hence, if anything, it must be shown that arbitrary object 
semantics can match the performance of CDQ: it has already been 
successfully applied to this type of data, whereas arbitrary object 
semantics has not. 

Turning now to variables in mathematics, it would appear that these 
behave just like the pronouns/descriptions in (F1), and thus pose 
no difficulty for CDQ. Consider, for example, the following bit of 
reasoning: 

(F4) Let n be a composite positive integer. Then there is an 
integer less than n and greater than 0 that divides n. Let m 
be such an integer. Then m must be prime or composite. If 
m is the smallest number between 1 and n that divides n, m 
is p r ime . . .  

Occurrences of 'n' and 'm' function in (F4) in just the way that 
occurrences of 'the professor' and 'the student' function in (F1) (this is 
more clear if we reformulate (F4) to more closely resemble (F1): "1) 
Every composite integer is divisible by an integer less than it and 
greater than 0. 2) Let n be a composite integer. Then by 1), some 
integer less than n and greater than 0 . . . "  -- the only difference is the 
use of the (syntactically) name-like terms 'n' and 'm' (and the "let" 
clauses that introduce them) in (F4) instead of the definite desriptions 
employed in (F1)). Since CDQ is capable of handling the instantial 
terms in (F1), it can do the same for (F4) and it would appear that 
variables pose no difficulties. 

Yet Fine has argued that certain uses of variables in mathematics 
cannot be handled without arbitrary object semantics. It behooves us to 
consider such uses and determine whether they pose difficulties for 
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CDQ. Fine considers the following example, taken from a mathematics 

text: 

Let y = f(x) be a continuous function. Take any real h. 
Then for some k, f (x  + h) = y + k. Now since f is 
continuous, k --' 0 as h --" 0. So. . .21 

Fine claims that the statement 'k --" 0 as h --" 0', though understand- 
able on the arbitrary objects account, is impossible to make sense of on 
an account without arbitrary objects. Before explaining how CDQ does 
make sense of this example, I wish to note that arbitrary object 
semantics as Fine has formulated it is not capable of handling the 
problematic statement 'k --" 0 as h --' 0'! For  if we construe 'k'  and 'h'  
in Fine's example as names of (the appropriate) arbitrary objects, Fine's 
definition of truth tells us (roughly) that 'k --' 0 as h --' 0' is true if the 
statement is true of all pairs of values (i.e. pairs of individual numbers) 
that the arbitrary objects k and h can jointly assume. So in order  to 
determine the truth of 'k -* 0 as h ~ 0', Fine's theory requires us to 
evaluate the truth of nonsensical things like '4 -" 0 as 2 --" 0'. In 
fairness, Fine says that the statement 'k --" 0 as h --' 0' "attributes a 
certain property to the set of all pairs of values assumed by the A- 
objects k and h" (NDAO p. 106, my emphasis). This suggests that the 
definition of truth he provides should not be applied to the statement, 
since that definition is intuitively for statements attributing properties to 
arbitrary objects (or their values) themselves. Still, this is just to say that 
the only explicitly formulated semantics provided by Fine won't handle 
the example. I find it surprising that Fine invokes an example that his 
theory as formulated doesn't handle in defense of the theory. 

Turning now to CDQ's ability to handle Fine's example, neither 
CDQ nor any semantic theory needs to handle the example as it stands. 
For  the passage is highly elliptical in two respects and needs to be 
unpacked before being treated by a semantic theory. 22 First, there is the 
'--" notation. This notation is an abbreviation of talk about limits, with 
the notion of a limit being defined by means of a so-called "epsilon/ 
delta" formulation of which the following is an example: 23 Let  al, a2, 
. . .  be a sequence of reals. A is the limit of the sequence if for each 
e > O t h e r e i s a d  > O s u c h t h a t l a  d - A [ , l a d +  1 -AI , ]ad+2  - A I ,  
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. . .  are all less than e. Using ' ~ '  notation, we express the claim that A 
is the limit of our sequence al, a 2 . . . .  as follows: a n ~ A as n -~ o0. It 
is worth stressing that this is the way virtually all contemporary mathe- 
maticians understand '--" notation, and not simply the view of mathe- 
maticians and philosophers concerned with the foundations of mathe- 
matics. When the notation is used at all in mathematics texts, it is 
explicitly introduced as an abbreviation for talk about limits, with limits 
being defined by means of epsilon/delta formulations of the sort just 
mentioned. 24 Hence before providing a semantic treatment for the 

passage Fine cites, we need to replace the ' ~ '  notation with what it 

abbreviates. 
If we now try to rePlace the ' ~ '  notation in Fine's example with the 

talk about limits it abbreviates, we see that there is a second respect in 
which the passage is elliptical. For  it isn't clear what limit the author is 
considering in saying 'k -" 0 as h --" 0'. Intuitively, the author seems to 
be imagining choosing a real (i.e. h) and then choosing other reals thus 
generating an infinite sequence of reals ho, hi . . . . .  For  each hn in the 
sequence there will be a k n such that f ( x  + hn) ~ Y + kn. So each 
sequence hi, ~ ,  . .  �9 determines a sequence kl, k2, . . . .  Hence, it seems 
reasonable to suppose that when the author says 'k --, 0 as h ~ 0' he is 
saying that for any sequence hi, h 2 , . . ,  whose limit is 0, the limit of the 
corresponding sequence kl, ~ ,  �9 �9 is 0. If something like this is correct, 
then with all abbreviations and ellipses eliminated, the passage would 

read roughly as follows: Let  y = f ( x )  be continuous. Let  ho, hi . . . .  be 
any sequence of reals. Then there is a sequence of reals kx, k 2 , . . ,  such 
that f ( x  + h,~) -~ y + k,,. Since f is continuous, if for each e > 0 there 
is a d > 0 such that ]h,t - 0I, [ha+l - 01, [ h a + 2  - -  0 [ ,  . . .  are all less 
than e, then for each j > 0 there is a g > 0 such that [ kg - 0 [, [ kg+ ~ - 

0[, I kg+2 - 01,. �9 �9 are all less than j. 
The reader may or may not agree with the details of my particular 

"reconstruction" of the passage. In either case, the point is that we must 

eliminate the ' ~ '  notation in favour of the limit talk (epsilon/delta 
formulation) it abbreviates prior to treating the passage semantically. In 
so doing, we must make explicit whatever it is we are considering the 
limit of. I claim that we will be left with a passage containing only 
standard quantifiers ('for each e > 0 . . . ' )  and context dependent 
quantifiers (introduced by 'Take any . . . '  clauses and 'Let' clauses) of 
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the sort that occur in (F4), which we have already argued CDQ can 
handle. Hence Fine's passage poses no difficulty for CDQ. 

It appears, then, that the arguments Fine offers in support of 
arbitrary object semantics fail to provide grounds for favoring that 
approach over CDQ. In application to instantial terms in natural 
deduction, CDQ yields the benefits Fine claims for the arbitrary object 
approach; and CDQ is capable of  handling variables in mathematics 
and the anaphoric pronouns of natural language mentioned by Fine. In 
spite of this apparent parity, I believe that CDQ is preferable to 
arbitrary object semantics and should be viewed as the standard 
account of these various phenomena. 25 To see why, suppose that 
someone were to formulate a semantics for (ordinary) quantifiers 
according to which quantifier phrases are referring terms which refer to 
objects like Fine's arbitrary objects. 26 Further suppose that this account 
was on par with the usual account of the semantics of quantifiers (e.g. 
the truth conditions for quantifier-containing sentences that this 
account delivers agree with those of the usual account, etc.). Which of 
the two accounts should we accept as the standard account of expres- 
sions of generality? It seems to me that we should prefer the usual 
account. After all, there are significant differences between expressions 
of generality and standard names. The notions of a domain of individ- 
uals over which an expression of generality ranges and the scope of 
such an expression need not be invoked for a semantics of standard 
referring terms and are required for a satisfactory semantics of quan- 
tifier expressions? 7 Conceptual clarity and perspicuity dictate that our 

semantics be formulated in such a way as to highlight these important 
differences between names and expressions of generality. 

In introducing new objects for quantifier expressions to refer to one 
assimilates the semantics of expressions of generality to that of standard 
names. Of course, if the account is adequate, as we have hypothesized it 
is, it must somehow capture the notions of scope and domain (with 
Fine's approach, these notions would be captured by the relation of 
dependence between arbitrary objects, and the value range of an 
arbitrary object respectively). But it can hardly be said that such an 
account highlights or clarifies these notions and hence the respects in 
which expressiohns of generality differ from names. Surely, if anything, 
the introduction of referents for quantifiers obscures the differences 
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between genuine names and expressions of generality by construing 
both sorts of expressions as referring terms. 

Much the same point can be made by considering two distinct ways 
to explain differences in the behavior of linguistic expressions. On the 
one hand, the fact that native speakers (whose idiolects include the 
names 'Woody Allen' and 'Los Angeles') would hold that the first, but 
not the second, of the following pair of sentences is somehow deviant is 
to be explained by differences in the objects named by 'Woody Allen' 
and 'Los Angeles' and not by differences in the semantics of the two 
expressions: 

Woody Allen has a population of three million. 
Los Angeles has a population of three million. 

By contrast, a number of differences in the behavior of T and 'Woody 
Allen' (e.g. the contextual sensitivity of 'F) seem naturally viewed as 
resulting from a semantic difference between the two expressions/a 
difference in the way the two expressions are "hooked up" to the world. 
Perhaps some object could be constructed for T to refer to such that 
the truth conditions for occurrences of sentences containing it come out 
right. But to do so is to represent the dissimilarities in the behavior of 
T and 'Woody Allen' as like the dissimilarities in the behavior of 'Los 
Angeles' and 'Woody Allen': both sets of dissimilarities resulting from 
differences in the objects the expressions refer to. It seems to me we 
should ask of such an account: why should we view dissimilarities in 
behavior that are naturally viewed as arising from different sources as 
though they all arise from the same source (differences in objects 
named)? In so doing we risk obscuring important distinctions between 
classes of expressions and hence failing to ask important theoretical 
questions. Similarly, dissimilarities in the behavior of expressions of 
generality and referring terms seem naturally viewed as resulting from 
differences in the semantics of the two terms. In inventing objects for 
expressions of generality to refer to we assimilate the differences in 
behavior between expressions of generality and standard names to 
those between names of different kinds of things. Yet the differences in 
the behavior of 'every man' and 'Woody Allen' seem so unlike differ- 
ences in behavior resulting from expressions naming different kinds of 
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objects (such as that exemplified in our pair of sentences above) that it 
is hard to see why we should go along with such an assimilation when it 
is unnecessary to do so. 2s 

Returning to the question of whether arbitrary object semantics or 
CDQ ought to be the preferred theory for instantial terms in English 
and natural deduction, variables in mathematics, and (at least some) 
anaphoric pronouns, arguments in favor of CDQ analogous to those 
just given seem even more decisive. As before the notions of scope and 
domain are crucial to providing a semantics for the terms in question; 
and the introduction of complicated objects as references for these 
expressions assimilates such expressions to names and in so doing 
obscures rather than highlights these notions. Again, in viewing the 
differences in behavior between these expressions and standard names 
as arising from the same source as differences in the behavior of names 
referring to objects of different kinds, we seem to group together cases 
that are quite dissimilar. But here we can go even further. Ordinary 
quantifiers possess scopes, and range over domains. What is distinctive 
about the terms that we have been discussing? Surely it is the fact that 
the semantic significance of an occurrence of one of these expressions 
is largely determined by the structure of the discourse it occurs in 
(whether the discourse be an English argument, a derivation of natural 
deduction, or a non-argumentative English discourse). Information 
necessary for the proper interpretation of occurrences of these expres- 
sions is, in effect, stored in the structure of the discourse. Of course this 
point is central to CDQ's conception of these expressions, and so is 
strongly emphasized by CDQ. The arbitrary objects approach, by con- 
trast, obscures this point. Indeed, the only remarks one finds in RAO 
(Fine's most detailed work on the subject) that bear on the issue of 
sensitivity to context are that " . . .  the interpretation of A-letters 
[instantial terms] gets determined in the course of the derivation." and 
that "The derivation provides us, in effect, with a definition of the A- 
letters it u s e s .  ' '29 As in the previous case, arbitrary object semantics 
obscures the distinctive features of the expressions it claims to treat, 
while CDQ highlights these features. As a result, CDQ encourages us to 
ask important questions (such as: are there other expressions which 
exploit the information storage capacity of discourse structure in the 
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way that these terms do?), that aren't raised by arbitrary object 
semantics. For these reasons, CDQ is the preferable theory of this data. 

A P P E N D I X  

The formulations of UG and EI are as follows: 

EI(Ex)P(x) UG Y/. 

Y lP(Y) [. 
I. I. 
[. I P(y)  
I. (x)P(x) 
IA 

A 

Restricti~176 O) A and P(y) (in EI) and P(y) (in UG) occur imme- 
diately subordinate to the y-flagged scope lines (i.e. since suppositions 
are entered as follows [ P this means that A and P(y) are subordinate 

I- 
I 

to no temporary supposition or flagged scope line which is itself 
subordinate to the y-flagged scope line); (ii) P(y) and P(x) are formulas 
which differ only in that the latter contains occurrences of free x where 
and only where the former contains occurrences of free y; (iii) formulas 
containing free y cannot be reiterated across y-flagged scope lines; (iv) 
no formula may be entered by EI immediately subordinate to a flagged 
scope line which terminates in an application of UG (e.g. P(y) in the 
UG schema above cannot have been entered by El); (v) A (in the EI 
schema) must not contain occurrences of free y. We shall, in effect, 
suppose an EI strategy as schematized above to consist of two separate 
inferences: the inference of P(y) from (Ex)P(x) we shall call E1 and we 
shall say that y was introduced in P(y); the inference from A (contain- 
ing no free occurrences of y) subordinate to the y-flagged scope line to 
A outside the y-flagged scope line we shall call E discharge. To save 
space, we shall not bother to formulate the classically valid rules of 
inference for the system (universal instantiation, existential generaliza- 
tion, and the propositional rules), since our concern is to construct a 
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semantics for instantial terms that results in U G  and EI being truth 
preserving with respect to the semantics. 

Contexts 

The context of a formula at a line in a derivation is to encode informa- 
tion about derivational structure affecting the semantic significance of 
the formula as it occurs in the derivation. Intuitively, the things that 
affect the semantic significance of an occurrence of a formula are the 
suppositions and flagged scope lines to which it is subordinate, and the 
order of subordination of the suppositions and flagged scope lines with 
respect to each other. Hence, we take the context of a formula A at a 
line in a derivation to be a sequence whose elements are the temporary 
suppositions and flags heading scope lines to which the formula is 
subordinate, in the order in which they occur in the derivation. To 
illustrate, the context of A at line i in the following derivation schema is 
(P, y, Q, x)  ( 'P'  and 'Q'  stand for temporary suppositions; lower case 
letters are variables flagging scope lines): P 

y [ ] Q  

I l x l .  
II I. 

i) [] ]A 

Interpretations 

( U, f )  is an interpretation of our language, where U is a non-empty set 
and f is a function which maps individual constants, 0-place and n- 
place predicates (n >/ 1) to elements of U, T or F, and subsets of U n 
respectively. ((U, f),  g) is an extended interpretation and an extension 
of ( U, f), where ( U, f )  is an interpretation and g is a function mapping 
variables to elements of U. The definition of truth under (( U, f),  g) is 
standard (e.g. (x)A(x) is true under (( U, f),  g) iff A(x)  is true under 
every (( U, f), g'), where g' differs from g at most on x, etc.), except 
that free variables get treated like individual constants. A formula is 
true under ( U, f )  iff it is true under every extension of ( U, f) .  
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Levels of  Information 

Let  (cl ,  . . .  , cn) be  the context  of  A at line i in der ivat ion D 

(hencefor th  'A~, o '  indicates the occur rence  of  fo rmula  A at line i in 
der ivat ion D) .  Then:  

1) T h e  0 th level of  in format ion  of  A in ( c 1 , . . . ,  On> = 
{ I11  is an extended in terpre ta t ion  and A is t rue under  I} 

2) The  rn th level of  in format ion  of A in (Cl, .  � 9  c ,)  (0 < m ~< n) = 

case a) c(~+1)_ m is a fo rmula  B: 
{I[ I belongs to the m --  i st level of  A in (cl ,  . . .  , cn) or  I is an 

extended in terpre ta t ion  which makes  B false} 

case b): c(,~+l)-m is the var iable  x and flags an appl icat ion of E l  (let 
P(x)  be  the fo rmula  in which x was in t roduced  and be  inferred 

f rom (Ey)P(y)  by EI):  
{II either I belongs  to the m - 1  st level of  A in (Cl, . . . ,  cn), makes  

(Ey)P(y) -~ P(x)  true, and all I '  differing f r o m  I at mos t  on  x 
which m a k e  ( E y ) P ( y )  -~ P(x)  t rue  be long  to the m - i st level of  A 

in (cl ,  � 9  cn) or some  I*  differing f rom I at mos t  on  x belongs to 
the m - 1 st level of  A in ( q ,  . . .  , Cn) , makes  (Ey)P(y) --, P(x)  
true, and all I * '  differing f r o m  I* at mos t  on  x which m a k e  
(Ey)P(y) --" P(x)  t rue  be long  to the rn - 1 st level of  A in ( c1, . . . ,  

on>} 31 
case c): %,+ 1)- m is the var iable  x and flags an appl icat ion of  UG:  

{ I ] I and  every  I '  differing f rom I at mos t  on  x belongs to the m --  
1st level of  A in ( C 1 , . . . ,  s ) } 

Truth in a Context Under an Interpretation 

Let  the context  of  Ai, D be  ( q ,  . . . ,  c,) .  T h e n  A is true in ( q ,  . . . ,  cn) 
under ( U, f ) i f f  every extension of ( U, f )  be longs  to the highest  (i.e. the 
n th) level of  in format ion  of  A in ( Q , . . . ,  cn). 

CDQ Validity 

Let  B at line i be  inferred f rom B I . . . . .  B m at lines 1"1, - -~  , Jm in 
der ivat ion D. T h e  inference  Bt . . . . .  Bm/B is CDQ valid in D iff for  
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any (U, f )  such that B~, . . .  , B m at lines/1 . . . .  , Jm are true in their 
contexts under ( U, f),  B at i is true in its context under ( U, f) .  

THEOREM 1: All inferences in derivations of our system are CDQ 
valid in those derivations. 
To save space, we simply claim that classically valid rules of inference 
are CDQ valid in all derivations (again our concern is to show this for 
UG and EI). 32 This leaves UG and EI. 
Case 1): (x)A(x)k,D was inferred from A(y)i,D by UG: 
Note that the context of A(y)i,D differs from the context of (x)A(x)k,D 
only in containing y, and y is the last element of the context of A(y)i,D 
(since by restriction (i), A(Y)i,D is immediately subordinate to the y- 
flagged scope line). Let the context of A(y)i,D be ( c l , . . . ,  cn, y). Then 
that of (x)A(x)I~, D is ( q ,  . . .  , cn). To show that if A(y)i,V is true in 
(q ,  . . .  , cn, y) under (U, f) ,  (x)A(x)k,D is true in ( q  . . . .  , cn) under 
( U, f),  it suffices to show that any (( U, f),  g) that belongs to the highest 
level of A(y)i, D in its context, belongs to the highest level of (x)A(x)k, D 
in its context. We shall prove the stronger claim that the highest level of 
A(y)i, D in its context is identical to the highest level of (x)A(x)k, D in its 
context. To show this, it suffices to show that the first level of A(y)i,D 
(i.e. that formed by appeal to y) is identical to the 0 th level of (x)A(x)~,D 
(for the contexts of the two formulas are term by term identical from 
this point on --  hence the first, second, third . . . .  , n th levels of 
(x)A(x)k,D will be identical to the second, third, fourth . . . .  , n + 1 st 
levels of A(y)i,D respectively). Suppose (( U, f) ,  g) belongs to the 0 th 
level of (x)A(x)k,D. Then (( U, f), g) makes (x)A(x) true and hence 
every ((U, f ) ,  g'), where g' differs from g at most on x, makes A(x) 
true. Suppose (for reductio) that (( U, f) ,  g) doesn't belong to the first 
level of A(y)i,D. Then some (( U, f), g*), where g* differs from g at 
most on y, isn't in the 0 th level of A (Y)i, D and hence doesn't make A (y) 
true. But then the (( U, f) ,  g ' )  where g' differs from g at most on x and 
g'(x) = g*(y) makes A(x) false (here we rely on the fact that A(x) and 
A(y) differ only in that the former contains free x where and only 
where the latter contains free y; restriction (ii) in the statement of UG 
and EI insures this). Contradiction. Hence (( U, f),  g) belongs to the 
first level of A(y)i,D. Suppose ((U, f),  g) belongs to the first level of 
A(y)i,D. Then every (( U, f), g') where g' differs from g at most on y 
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belongs to the 0 th level of A(y)i,D and hence makes A(y) true. Suppose 
(for reductio) that (( U, f),  g) doesn't belong to the 0 th level of (x)A (x) 
and hence doesn't make (x)A(x) true. Then some (( U, f) ,  g*) where g* 
differs from g at most on x doesn't make A(x)  true. But then the 
((U, f) ,  g ')  where g' differs from g at most on y and g'(y) --- g*(x) 
doesn't make A(y) true. Contradiction. Hence, (( U, f), g) belongs to 
the 0 th level of (x)A (x)k ' D" 
Case 2: A(y)k,D was inferred from (Ex)A(x)i,D by EI: 
Note that the context of A(y)k ' D differs from the context of OEx)A (x)i ' D 
only in containing y, and y is the last element of A(y)k,D'S context. The 
proof is similar to the UG case. 

THEOREM 2: (Classical Soundness) Let B1, �9 �9 �9 be the permanent 
premises of derivation D, let B be the final formula in D, and let B be 
subordinate to no flagged scope lines in D. Then if B1, �9 �9 �9 Bn are true 
under ( U, f) ,  B is true under ( U, f ) Y  
PROOF: Note that the contexts of B, B1, . . .  , Bn in D will all be () ,  
since these depend on no temporary assumptions and are subordinate 
to no flagged scope lines in D. Suppose that B~ . . . . .  Bn are true under 
(U, f). Then B1, . . .  , B, are true in their (null) contexts in D under 
( U, f )  (i.e. every extension of ( U, f)  makes B1, . . .  , Bn true and hence 
belongs to the 0 th level of each of these formulas in its null context). So, 
by theorem 1, any formula C inferred from one or more of B I , . . . ,  B n 
is true in its context in D. By theorem 1 again, any formula inferred 
from C (and any other formulas inferred from one or more of B a , . . . ,  
B~) is true in its context in D under ( U, f ) .  So, by repeated applications 
of theorem 1, it will follow that B is true in its (null) context in D under 
( U, f).  Thus B is true under ( U, f). Q.E.D. 

Roles of Restrictions on E1 and UG in the Above Proofs 

Restrictions (i) and (ii) were appealed to explicitly in the proof of 
theorem 1. Restriction (iii) is required to show that the rule of 
reiteration (which allows one to move formulas "inward" across scope 
lines) is CDQ valid (which we have not done). Restriction (iv) enables 
us to hold that each flag flags an application of UG or EI but not both: 
if the flag flags a scope line to which a formula entered by EI is 
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immediately subordinate,  it flags an application of  El;  otherwise, it flags 

an application of  U G  (note that a "vacuous" flag - -  that  is, a flag 

flagging a line to which no formula  entered by E I  is immediately 

subordinate  and which does not  end in an application of  U G  - -  gets 

const rued as flagging an application of  UG).  Restr ict ion (iv) was 

implicitly appealed to twice above. First, in defining levels of  informa- 
tion we assumed that each variable flags an application of  E I  or  U G  

but  no t  both  (see cases b) and c)). Second,  in the p roo f  of  theorem 1, 

we assumed that if (x)A(x)  was inferred f rom A(y )  by UG,  the variable 

y in the context of  A(y)  flags an application of  U G  (only) and hence  is 

to be treated in accordance  with case c) in the definition of  levels of  

information.  Restriction (iv) justifies this assumption (and the analogous 

assumption in the E I  case). Restrict ion (v) is required to prove  the 

C D Q  validity of  what  I above called E discharge (see note  32). 

NOTES 

* I wish to thank Michael Liston, Mark Wilson, and John Vickers for helpful discus- 
sions of the issues addressed herein. 
1 Translations from the Philosophical Writings of Gottlob Frege (eds. Geach and 
Black), Basil Blackwell, Oxford 1977, p. 110. 
2 Indeed, in Begriffschrift, Frege gives as the reason for introducing his quantifier 
notation the necessity of marking the scope of an expression of generality. 
3 See 'A Defence of Arbitrary Objects' (henceforth, DAO), Proceedings of the 
Aristotelian Society Supplementary Volume 57, 1983, pp. 55--77; 'Natural Deduction 
and Arbitrary Objects' (henceforth, NDAO), Journal of Philosophical Logic 14 (1985) 
57--107; and Reasoning with Arbitrary Objects Aristotelian Society Series Volume 3 
lhenceforth, RAO), Basil Blackwell, Oxford, 1985. 

It may seem provincial of me to limit my attention to Fine s view and the alternative I 
intend to discuss, given the existence of sophisticated theories of anaphoric pronouns 
such as that outlined in Hans Kamp's 'A Theory of Truth and Semantic Representation' 
(in Formal Methods in the Study of Language, J. Groenendijk, T. Janssen, M. Stockhof 
(eds.), Mathematisch Centrum, Amsterdam, 1981, pp. 277--322). But Kamp's theory is 
incapable of handling much of the data that is at issue here. For example, that theory is 
incapable of handling the anaphoric pronoun in the following discourse 

Every female professor has a computer. She is financially responsible for 
it. 

(I intend 'a computer' to have narrow scope with respect to 'Every female professor'). 
Kamp's rules of DRS construction prevent the construction of what Kamp calls a 
complete DRS for this discourse; and one must construct a complete DRS for a 
discourse for Kamp's semantics to handle the discourse. (In particular, Kamp's rule 
CR3 (p. 311) prevents substituting the "discourse referent" introduced by the process- 
ing of 'a computer' for 'it' in the second sentence, in effect preventing anaphoric 
connection between 'it' and 'a computer'; similarly for 'Every female professor' and 
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'she'.) More importantly, even if the rules were changed in order to allow the construc- 
tion of a complete DRS for this discourse, the semantics would not come out right. For 
the value of the pronoun 'it' in the second sentence depends on the value of the 
pronoun 'She' in the sense that the truth of the sentence requires that for any female 
professor we choose (value of 'She') there must be a computer (value of 'it') such that 
the professor is financially responsible for the computer. Kamp's semantics does not 
include a device for keeping track of such dependence between the values of pronouns. 
This lack prevents Kamp's theory from handling instantial terms in natural deduction 
and English arguments, and variables in mathematics as well. But this is just the sort of 
data that is the subject of this essay. 
5 The resulting formulations of UG and EI are essentially those of Copi (Symbolic 
Logic, second edition; The Macmillan Company, New York, 1965) as reformulated by 
Kalish (review of Copi in Journal of Symbolic Logic 1967, vol. 32, p. 254). 
6 NDAO p. 64. 
v What Fine actually does is to extend classical models for first order languages to 
what he calls A-models by adding (i) a set A of arbitrary objects; (ii) a relation on the 
set A (intuitively, the relation of dependence between arbitrary objects); (iii) and a 
designation function which maps A-letters (instantial terms in EI and UG) to elements 
of the set A (arbitrary objects). He then provides a definition of what it is for an A- 
model to be suitable for a given derivation D -- roughly, suitable A-models properly 
interpret the instantial terms in D --  and shows that any classical model can be 
extended to a suitable A-model for a given derivation D. Finally, Fine proves, for each 
system of natural deduction he treats, that if the premises of some rule of inference 
(including UG and EI) in a derivation D are true under a suitable A-model for D, the 
conclusion is true under that model. 
8 This account was first suggested in George Wilson's 'Pronouns and Pronomial 
Descriptions: A New Semantical Category' in Philosophical Studies 45 (1984), 1--30; 
and subsequently developed in more detail in my 'Pronouns, Descriptions, and the 
Semantics of Discourse' in PhilosophicalStudies 51 (1987), 341--363. 
9 I use the term 'relative scopes' here on analogy with the use of the term as applied to 
ordinary quantifiers. If, as I am suggesting, 'z '  and 'w' are expressions of generality with 
universal and existential force respectively, 'Fwz' could express the claim that for any z, 
there is a w such that Fwz or there is a w, such that for any z Fwz. The different 
readings, as I shall say, result from giving 'z' and 'w' different relative scopes. In the 
sequel, whenever I talk about the relative scopes of what I shall call context dependent 
quantifiers, I intend the term 'relative scopes' in the same way. The point being made 
here is that which of these two possible readings is intended is not marked by 
syntactical features of the formula 'Fwz', but by syntactical features of the derivation it 
occurs in (i.e. the order of subordination of the flagged scope lines). 
10 I intend sentence 1) to be understood in such a way that 'Every professor' takes 
wide scope over 'a large lecture class'. Each anaphoric pronoun/description is intended 
to be anaphoric to the noun phrase with the same numerical subscript. 
11 The force of one of these context dependent quantifiers/anaphoric descriptions is 
determined by the force of its quantifier antecedent. Similarly for the domain over 
which the expression ranges. The relative scopes of these context dependent quantifiers 
are determined by the relative scopes of their quantifier antecedents (they take wide 
scope with respect to all other operators in sentence). Hence in sentence 2) of (F2) 'The 
professor' has wide scope with respect to 'the class' (i.e. the sentence claims that for any 
professor at the University of San Clemente, there is a large lecture class he/she teaches 
for which he/she does all the grading). 
lz I haven't explained the details of this semantic for the same reason I avoided the 
technical details of Fine's theory: these details aren't relevant to the issues I wish to 
raise. The interested reader may look at the application of this type of semantic theory 
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to natural deduction in the appendix of the present paper, or consult roy paper 
mentioned in note 8. 
t3 RAO pp. 122--26 and NDAO pp. 99--102. 
4 Fine mentions a number of such failures in RAO p. 123. 

15 Methods of Logic, revised edition; Holt, Rinehart and Winston, New York 1959, pp. 
153--167. 
16 As Fine points out, the system appears incorrectly formulated in Copi's Symbolic 
Logic, second edition, The Macmillan Company, New York 1965 and was correctly 
formulated in Kalish's review of the former work in Journal of Symbolic Logic vol. 32, 
1967, p. 254. 
17 The interested reader should consult the appendix to this paper to see how the 
restrictions on UG insure that when an occurrence of a formula B is inferred from an 
occurrence of a formula A by UG, A, B, and their contexts have certain properties 
which allow the proof of the claim that if A is true in its context under an inter- 
pretation, B is true in its context under the interpretation. See particularly the last 
section. 
18 RAOp.  141--142;NDAOp. 105. 
19 RAO p. 142. 
20 DAO p. 75. 
2t RAOp.  142. 
22 These remarks may appear inconsistent with the "criticism" of Fine made above. 
There I claimed that attempting to apply Fine's theory directly to the example results in 
non-sensicality. But tile fact that Fine talks about the "A-objects k and h" suggests that 
he envisions applying his theory to the example as is (especially since he says nothing 
to indicate otherwise). My point is that since Fine apparently thinks his theory will 
apply to the example as it stands, and yet the theory as formulated doesn't handle the 
example as it is, it seemed odd to cite the example in support of the theory. 
23 Here we define the limit of an infinite sequence of reals. Other sorts of limits (e.g. 
limit of a function) are also defined by means of epsilon/delta formulations, as are the 
various notions of a function being continuous. 
24 The following passage, in which the author introduces , 4 ,  notation after giving an 
epsilon/delta definition of the limit of a sequence and introducing the notation 
'tim,_ ~o an ~ A'  to mean that the limit of the sequence al, a2,. �9 �9 is A, is typical: "As an 
alternative notation to [limn~ ~ an ~ A] we sometimes write a, ~ A as n --- oo', 
(Calculus with Analytic Geometry by Burton Rodin, Prentice-Hall, New Jersey, t970, 
p. 30). 
25 Recall that Fine has not actually shown that arbitrary objects semantics can handle 
the pronouns that CDQ is capable of treating, nor has he shown how to reformulate the 
theory to treat the variables in the passage we have just discussed. In talking about 
parity between CDQ and arbitrary object semantics here, I am assuming that these 
promisory notes can be cashed in. 
26 In a number of places Fine suggests that he favors just such a semantics for 
quantifiers. See RAO pp. vii--viii and p. 130. It is interesting to note that on such a 
view, quantifier phrases are apparently virtually infinitely ambiguous! For consider the 
following sentences: 1) John loves a woman. 2) Every man over twenty-one loves a 
woman. 3) Every male friend of every man over twenty-one loves a woman. (I assume 
that what we would normally call the scopes of the quantifiers are determined by the 
left-to-right ordering of the quantifiers - -  the left-most quantifier taking widest scope, 
etc.) In Fine's technical terms, the arbitrary object that 'a woman' refers to in 1) doesn't 
depend on any other arbitrary object. In sentence 2), however, the arbitrary object 'a 
woman' refers to depends on the arbitrary object 'Every man' refers to (we would 
normally express this by saying that 'every man' has wide scope over 'a woman'). But 
according to Fine's identity conditions for arbitrary objects, A-objects that depend on 
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different A-objects are different. Hence 'a woman' refers to a different A-object in 1) 
than it does in 2). For the same reason, 'a woman' in 3) refers to a different A-object 
than it does in either 1) or 2). Since 'a woman' can (as we usually say) take narrow 
scope with respect to an indefinite number of universal quantifiers, there is no upper 
limit on the number of different A-objects 'a woman' can refer to. 
27 Of course these notions can be given different names and captured differently within 
different formalisms. For example, rather than appealing to the usual notion of 
quantifier scope somehow marked syntactically, Hintikka (Anaphora and Definite 
Descriptions; D. Reidel, Dordrecht; 1985) in constructing his game theoretical seman- 
tics for natural languages, appeals to principles of rule ordering which determine the 
order in which evaluation clauses for different quantifiers are to be applied. 
28 It is just this sort of consideration that militates against explaining the fact that T can 
refer to different individuals by claiming it is ambiguous. The behavior of 'I' in this 
respect is so unlike genuinely ambiguous expressions that we think it best to provide a 
different explanation of its behavior. 
29 RAO p. 92. 
30 Because it reduces clutter and doesn't lead to confusion, I avoid quotation marks 
(and other devices) to distinguish use and mention throughout the appendix. 
31 Some might have expected a simpler clause here according to which the set of 
extended interpretations would be characterized as: {I[I belongs to the m - 1 st level of 
A in (c  I . . . . .  c,) and makes OEy)P(y) -~ P(x) true, or some I '  differing from I at most 
on x belongs to the rn - 1 st level of A in (C 1 . . . . .  Cn> and makes (Ey)P(y) -, P(x) 
true}. Though such a clause would indeed suffice to prove that EI is truth-preserving 
with respect to our semantics (i.e. CDQ valid), the more complicated clause is required 
in order that certain truth functional inferences occurring subordinate to scope lines 
marking an EI strategy be truth preserving. For example, without the more complicated 
clause, the following sort of inference ('Fx & Gx' from 'Fx' and 'Gx') in general would 
not be truth-preserving: (Ex)Hx 

x 1Hx 
I 
IFx 
J 
] Gx 
I 
I Fx & Gx 

32 The CDQ validity in a given derivation of what I earlier called E discharge follows 
from the following easily proved lemma: If a formula A is true under an interpretation 
in a context C containing a (flagged) variable y not occurring in A, then A is true in the 
context resulting from deleting y from C. 
33 A more rigorous proof of theorem 2 could be given by first using theorem 1 to 
prove the following lemma: If B I , . . . ,  B, are the permanent premises of D, then ff B 1 , 
. . . .  B n are true under ( U, f ) ,  every formula in D is true in its context under ( U, f) .  
Theorem 2 follows directly. 
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