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Abstract. An 8-nede brick element using Allman’s displacement interpolation is proposed. The aptimal number of 36 stress
modes is identificd. The six equal-rotation strainless modes which are intrinsic to Allman’s interpolation are stabilized by using
a penalty method. The penalty also enforces the equality of the nodal rotation and the continuum-defined rotation. To enhance
computational efficiency, 39 stress modes are initially assumed, three constraints on the stress field are then imposed. The
flexibility matrix is simplified, such that only four symmetric 3 x 3 matrices are required to be inverted. Numerical test results
are presented, showing good accuracy.

1 Introduction

Finite element researchers have long been aware of the importance of membrane elements with
factual inplane torsional stiffness. These elements are very useful for modeling spatial structures
such as tubular joints, girder boxes and folded plates. Unfortunately, early atlempts in deriving
these elements were not successful. Irons and Ahmad (1980) even pointed out that inclusion of
inplane rotations always leads to patch test failure. Nevertheless, a break through was achieved
by Allman (1984) and Bergan and Felippa (1985).

Allman adopted a quadratic interpolation scheme for the deformed element boundary in licu
of the conventional cubic beam function. The same scheme was soon applied to various structural
elements (Cook 1986; MacNeal and Harder 1989; Pawlak ct al. 1991; Ibrahimbegovic and Wilson
1991; Sze et al. 1992). However, the scheme is not defect-free. First, the nodal rotation used in
Allman’s interpolation is not in conformity with the continuum-defined rotation {Allman 1984).
Secondly, some strainless modes, which will be referred to as the equal-rotation modes (MacNeal
and Harder 1989}, can be observed when all the nodal rotations about any particular axis assume
the same value. For membrane elements, the mechanism does not plague practical analyses, since
it can be suppressed by restraining any one of nodal rotations in a mesh. However, the situation
in brick elements becomes much more complicated, and a built-in stabilization scheme should
be used.

Recent emphasis on elements with rotational d.o.f. is on the conformity of the nodal rotation
with the continuum-defined rotation, especially when nodal couples (the energy conjugate of the
nodal rotation) are prescribed. This is of prime importance when solid elements are interfaced
with plate, shell or beam elements. The interfacing is traditionally handled in a laborious way by
defining constraint equations (Cook et al. 1989).

The intent of the present paper is to develop a robust and accurate 8-node hybrid brick
element with Allman’s rotational d.o.f. A penalty method which enforces the equality of the nodal
rotation and the continuum-defined rotation is used. Admissible matrix formulation will be adopted,
to simplify the clement’s Mlexibility matrix (Sze 1992) for enhanced computational efficiency.
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2 Hellinger—Reissner functional with penalty

Precursors of the employed functional can be found in Reissner (1986), Hughes and Brezzi (1989)
and Tura and Atiuri (1992). As shown in the last reference, Iura and Atluri’s functional for elasticity
problem was derived from Atluri’s earlier works on large strain problems (Atluri 1979, 1980). To
derive the present functional, one may condense the skew symmetric stress components from any
of the precursors and write:
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where ¢ =[o, 0, a, 0,, a,, 6.,]" is the vectorial representation of the assumed symmetric
stress tensor, S is material compliance matrix; L, is strain-displacement differential operator;
u=[u v w]Tis the translational displacement vector; b is the body force vector; v* is the element
domain; 5t° is the portion of the element boundary over which the surface traction & is prescribed,;
@=[w, w, w,]"is the vector containing the independent assumed rotations; 2 = (€2, 12, 2.1
is the continuum-defined rotation, namely

ol
29 4] 8 : ay U
Q4= {!)y} - = 0 —= {v}:—-Lru. (2)
oz Ox
0, 3 3 w
22 0
| dy ox 4

Lastly, y is the penalty scalar for enforcing the equality of @ and . The functional is no different
from the conventional Hellinger-Reissner functional except for the last penalty integral.

3 Interpolation for displacements and rotations

Figure 1 shows un 8-node hexahedral element. According to Allman’s (1984) scheme, the x-
translational displacement of the fictitious mid-side point bounded by its two adjacent corner
nodes i and j is:

Y i (c; — @y)
i

1
U= 5(”: + “j) + (o — W) — (3)
in which quantities with suffixes refer to their nodal values. Other translational displacement
components can be obtained by cyclic symmetry (Yunus et al. 1989). With the translations of the

midside points thus determined, the displacement field is interpolated by using the interpolation
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functions of the standard 20-node brick element. After some simple algebra, we have:

U q;
u= ”}=N: :.}‘l=N:fl (4)
w qs

in which q,=[u; v; w; 0w, ®,; w,]" and the interpolation matrix N, is given explicitly in the
Appendix. Strain can then be derived:
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The continuum-defined rotation is obtained by combining Eq. (2) and Eq. (4),
2=Lu=LNg. (6)

The independently assumed rotation is interpolated using the nodal rotations and the standard
trilinear shape functions of the 8-node element, i.e.

w=[0;,, N 0,,, NI - 0,5 Ny 0,.; Nglilg=Ngq. (7
Interpolation functions N, to N can be found in the Appendix.

4 Geometric parameters

Referring to Fig. 1, the following geometric parameters are defined for the sake of convenience:
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All f,’s can be evaluated by symbolic computation with minor effort.
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5 Stress shape functions

Withoul ambiguity, stress from now on would refer only to the symmetric one. Since it is easier
to maintain element invariance by using contravariant stress modes (Rubinstein et al. 1983; Pian
and Sumihara 1984; Punch and Atluri 1984; Sze et al. 1992), they will be adopted in the present
element. An important role of a chosen stress field is to stabilize the associated element. To avoid
an overstiff element and reduce computing time, the number of stress modes should preferably
be kept minimum which is taken as the difference between the number of nodal d.of. and the
number of rigid body modes (Pian and Tong 1969; Pian and Chen 1983; Rubinstein et al. 1983).
The physical idea behind this is to match each of the deformation modes, in which strain is non-
zero, by one stress mode. For the present element, there are 48 nodal d.o.f. and since the 6 rigid
body modes and the 6 equal-rotation modes (Yunus et al. 1991) are strainless modes, the minimum
number of stress modes would be 36.

To observe what stress modes can stabilize the element and at the same time are compatible
to the deformation modes, the displacement-derived strain of a quadrilateral with drilling d.o.f.
is examined. This element has 12 nodal d.o.f,, 3 rigid body modes and 1 egual-rotation mode, the
minimum number of stress modes is 8. Consider a bi-unit square clement with its x-and y-axes
parallel to the £- and y-axes respectively, its displacement field can be expressed as(Sze et al. 1992):

u=Ug+ U+ U+ UsEn+ Ui + Uk, o=V + Vil + Van+Valn+ V,E2 + V&% (10a,b)

in which U,’s and Vs are linear functions of the nodal d.o.f,, and U + V5 = 0. The derived strain
is:

3] dv .
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All the deformation modes can be stabilized by 3 constant stress modes plus the following 5
higher order contravariant stress modes (Sze and Ghali 1992):
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where f, represents a vector of coefficients for higher order stress modes. The higher order stress
modes for the brick element can now be derived by using Eq. (12) as the hierarchic building block.
As there are two layers of nodes in the {-direction, a linear variation of [¢** ¢™ o]} should be
assumed, i.c.
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Seemingly, for the layers of nodes in the ¢- and n-directions, we have:
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By combining the last three equations with the redundant modes deleted, the 30 higher order
contravariant stress modes are:
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It is interesting to note the difference between the present 30-8 higher order stress field and
the 36-f higher order stress field in element AH of Yunus et al. (1989). Though six more stress
modes are assumed in AH, the deformation modes stabilized by Py, P, and P, cannot be
suppressed.

It is possible to make the assumed stress field in Eq. (14) more equilibrating. For instance, the
stressmode [0 0 0 ¢ 0 0]" would be more equilibrating should it be changed to [0 —n 0 &0 0"
Since not much improvement is yielded by using a more equilibrating field, the derived stress field
would be adopted due to its simplicity.

Following the practice of Pian and Sumihara (1984), the higher order cartesian stress is
obtained by the transformation matrix evaluated at the element origin. The complete cartesian
stress would be:

— T _
g= [Gx JY Oz Gx)’ U)’z sz] - é‘c + TUgwnlravariam

:ﬁc+Ta[5P1 ne, (®, P, P; Py P, P, P, 1310]1_31: (135)

in which 6 constant stress modes are introduced by . and thus dim( B.)= 6. The transformation
matrix T, can be derived explicitly as:

T,=[T, T, T, T, Ts; T4} (16)
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in which

T =[a} b7 ¢ aiby biey ca ]y To=[a] b] ¢ @by byy ca,]"

T,= [a§ b§ C; azhy  bsc, c3a3]T;

T, =[2a,a, 2bhs 2c¢, ah,+ab; bicy,+bye, cia,+caa,]"

Ty =[2asa; 2byhy 2c,c5 aybs+azh, byes+bye, caas +cia,]"

Ts=[2a3a, 2bsh, 2¢3¢; ash;+abs bsci+bies csay+ca3]1"

The stress modes in Eq. {15) are orthogonalized with respect to the constant modes by carrying
out the following replacements:
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With the suggested replacements, Eq. (15) can further be expanded as:

Q:Ec+[¢1Tap1 ¢, T,P, ¢;T,Py P, Ps Py P, Py Py Polf; (18)

where

Py =¢a[T, Ty Tk Ps=¢s[Ty Ty Tel Ps=¢elTs Ts Tsl:
Po=[¢sTy— Ty Ty —dsTy ¢T3 — T 1 Py =[1,T1 — 10T
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6 Equivalent stress field with constraints

With the stress field given in the Eq. (18), inversion of a 30 x 30 flexibility sub-maltrix is required.
To reduce this cost, stress constraints would be employed. Though incompatible displacement
modes are often used to constrain the initially assumed stress field (Pian et al. 1983; Sze and
Chow 1991a), the constraints would be directly incorporated instead of using any incompatible
modes (Sze and Chow 1991b) in the present implementation. The unconstrained stress {ield is
taken to be:

=P+ QT+ O, T o+ O3T, B3 +Pafs+ Psfs + Psfis + PB4 Psfs +Pofio + Piohio
= Icé’c + Phéh (19)

where gl =81 B3 B3 By BE By By Bs B Bio]. Obviously, this is the same as the stress ficld
in Eq. (18) if the following three constraints are imposed:

RT8, =0, Rif,=0; R3f;=0 (20)
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where R, =11 0,,5]", R,=[010,,,]" and Ry;=[0,,, 1 0,,,]". As the higher order stress
modes have been orthogonalized with respect to the constant modes, substituting Eqs. (5)+H7), (19)
and (20) into Eq. (1) yields:

1
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in which
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F= [ N'bdv+ | N'tds (the element nodal force vector)
ve Ste

K.=y [ (LN, —N,)(L N, —N,)dv (the penalty stiffness)

BRA’s in [1° represent the stress constraints and A’s are the pertinent Lagrange multipliers,
Nodal forces and couples for prescribed stress and body force should be computed according to
the interpolation matrix N, as defined in F for consistency. It is sufficient to evaluate matrices H’s
and G’s by the 14-point integration rule (Irons 1971). The advantage of inducing the constraints
on f3,, B, and fi; is now elaborated.

7 Simplification by admissible matrix formuiation

Recently, Sze (1992) has proved that entries in the flexibility matrix not coupled with the constant
stress modes can be subjected to arbitrary changes provided that the matrix is still positive definite.
The resulting element can still pass the generalized patch test {Taylor et al. 1986). The proof offers
a clue for admissible changes in the flexibility matrix.

To enhance computational efficiency of the present element, all entries that vanish for regular
element geometry in the flexibility matrix H, are set to zero. As a result of the enforced sparsity,
inversion of the matrix can be done in a blockwise manner and the best finite element accuracy
which is often observed in regular-shaped elements can be preserved. The suggested admissible H,,
would thus be:

H,=diag{H, H, H; H, H; Hy H, H, H, Hyo} (22)
where
{H, H, H;}=TIST,|{¢7 ¢ ¢2}dv (order 6 x 6)

H;=[P/SP.dv fori=4t07 (order 3 x 3)
H;= [{P/SPdv fori=81t010 (scalars).

It can be noted that
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in which
B? B2 B? BB, B,B, B.B,

24,B, 2A4,B, 2A.B; A,B,+B,A, A,B;+B,A; A,B,+B4,
2B,C, 2B,C, 2B.C; B,C,+C,B, B,Ci+C,B; B,C,+C,B,
i ZCIAI 2C2A2 2C3A3 CIAZ + A1C2 C2A3 + A2C3 C3A1 + A3C1—

A/'s, B/s and C;'s have been defined in Eq. (8b). Computing H; !, H; ! and H " incurs no inversion
cost, With the chosen admissible H,, Eq. (21) can be expanded as:

3
o= —L2psp+ plGa+ Y (~$ETHA+ BGA+BRA)
i=1
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Variation of the functional gives:
1
Er":_s—lccq (253')
Jo
f:=H, (Gq +R4); R/f;=0 fori=12and3 (25b)
g:i=H;'Gq fori=4,56and 7 (25¢)
L
Bi= T Gq fori=8,9and 10. (25e)
Further manipulations yield:
RH'G, -y (H7'R)H, 'R)’ ;
)Li qu’ ﬁg = (H: t —*‘W@ qu fori= 1, 2 and 3 (26)
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The element stiffness matrix is apparently the one included by the braces. As (RTH'R,)s are
scalars, the only inversion cost is incurred by H,, H;, Hy and H; which are 3 x 3 symmetric
matrices.

8 Simplified evaluation of penalty stiffness

Since the roles of the penalty are to stabilize the element and to enforce the equality of the two
rotations £ and w, much freedom is available in its evaluation. To keep K, efficient in formulation
and effective in suppressing the six equal-rotation modes, only 6 integration points out of 14-point
rule (Irons 1971) are employed for its evaluation. The natural coordinates of the employed
integration points are:

(+:5,0,0), (0,+b,0) and (0,0, 1b) (28)
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in which b = 0.795822426. The differences in rotations £2 and w about the natural coordinate axes
are first resolved, namely

gi(@u - (.'Q) = gi(LrNt - Nr)q [29)
where

1 T
£ {a; Dy <]

- a’ + h? + 32
) ) L

and i equals 1, 2 and 3 for the difference in rotations about ¢-, #- and {-axis, respectively. The
refined penalty stiffness would be:

Ks = Ksl + Ksz + Kss (30)
in which
Ksi = '}’fo Z(Ler - Nr)Tg}-gi(Ler - Nr)' (31)

Summation is carried out over (+5,0,0), (0, £5,0) and {0,0, +b)fori=1,2 and 3, respectively.
Each of the K,;’s serves (o stabilize the two equal-rotation modes about the corresponding axis. In
penalty formulations, the choice of the penalty factor are often controversial. However, we would
simply follow the practice of Hughes and Brezzi (1989) and Ibrahimbegovic and Wilson (1991) in
taking y as the shear modulus, instead of optimizing y with respect to any benchmark problems.

9 Numerical tests

Besides the present element, termed HBR, predictions of the following 8-node brick elements
with rotational d.o.l. will also be included whenever possible:

(a) AH is the 42-f hybrid element developed by Yunus et al. (1989). No stabilization scheme
against the equal-rotation modes was mentioned in reference. The 14-point integration rule is used.

(b) HEX8RX is the element devised by Yunus et al. (1991). Three internal displacement modes
are assumed in the element and the two-point quadrature is employed for numerical integration.
MacNeal and Harder’s (1989) stubilization schemes are generalized to suppress the 6 equal-rotation
modes and the 6 hourglass modes,

(c) IBR-D and IBR-M are Ibrahimbegovic and Wilson’s elements (1991). Both elements
employ the 14-point integration rule for their core stiffness matrices and the two-point quadrature
for the penalty stiffness matrices.

Results of AH, IBR-D and IBR-M are all extracied from the corresponding references. Results
of HEX8RX that cannot be found in (Yunus et al. 1991) are computed by using the commercial
finite element package ANSYS. Designation of HEX8RX in ANSYS Rev.4.441s STIF73.

Patch test, invariance and nodal rumbering

HBR has been tested to be geometrically invariant, insensitive to different node numbering
sequence and able to pass the generalized patch test. It is therefore consistent from the finite element
point of view and of the correct rank, namely 42.

Simple beam problem

Figure 2 describes the problem. The applied moments are represented by (1) end bending forces
P/2 and by (2) nodal couples M/2 at all end nodes. Load case (3) simulates the situation when a
plate/shell element is connected to the end sections. For case (1), zero rotations wy and w, are
restrained so that the nodal couples obtained by discretizing the distributed bending stress need
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1 - Fig. 2. A simple beam

not be prescribed. For convenience, the same displacement boundary conditions would be applied
for cases (2) and (3). Normalized midspan deflections and end rotations are listed in Table 1 for
cases (1) and (2). It can be seen that HBR is least susceptible to mesh distortion and is accurate in
both deflection and rotation, particularly under the couple load. HEX8RX is poor in rotation
under the couple load. For load case (3), only the regular mesh is employed but the beam depth
d is varied. In view of the normalized predictions in Table 2, it is advisable to interface plate/shell
elements with thin solid elements with rotational d.o.f.

Simply supported square plate problem
This problem is illustrated in Fig. 3. The plate is subjected to a uniform transverse loading of

intensity g = 1. Owing to symmetry, only a quarter of the plate is analyzed by either a 2 x 2 mesh
or a4 x 4 mesh. Central deflections are normalized by the series solutions cited in (Ybrahimbegovic

Table 1. Normalized mid-span deflection and end rotation for simple beam problem, load cases (1} and (2), Fig. 2

Element Regular mesh Distorted mesh

Load case (1) Load case (2) Load case (1) Load case (2)

Deflect. Rotat, Deflect. Rotat. Deflect. Rotat. Deflect. Rotat.
IBR-D 1.000 1.000 1.000 1.074 0.848 0.880 0.853 1.041
IBR-M 1.000 1.000 1.000 1.050 0.882 0.946 0.885 1.092
HEXSRX 1.000 LO0O 1.000 1,720 0.966 0.827 0.814 1.512
HBR 1.000 1.000 1.007 1.060 0.945 0.937 0942 1.020
Theory 15 0.6 1.5 0.6 1.5 0.6 1.5 0.6

Table 2. Normalized mid-span deflection and end rotation with varying depth
d for simple beam preblem, load case (3), regular mesh, Fig. 2

Depth HEDERX HBR

d I
Deflect, Rotat. Deflect. Rotat.

1.0 1.025 1.991 1.027 1.283

0.5 1.002 1.220 1.004 1.054

0.1 1.000 1.008 1.000 1.001

Theory [d%] 1.5 0.6 1.5 0.6
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Fig. 3. Simply supported square plate with uniform loading

Table 3. Normalized central deflection for simply supporied square plate, Fig, 3

Element h=1 k=0.1

2 x 2 mesh 4 x 4 mesh 2 x 2 mesh 4 % 4 mesh
IBR-D 0.942 0.986 0.569 0.782
IBR-M 0.959 0.986 0.583 0.806
HEX8RX 1.033 — 0981 —
HBR 0.995 1.027 Q.717 0.991
Series solution 42728 42,728 40644 40644

and Wilson 1991). The results are given in Table 3. HEX8RX is less susceptible to shear locking
than HBR. This is due to the strong penalty (roughly, 10® times of the penalty employed in
HEXS8RX) employed in penalty matrix.

Slender beam problem

Figure 4 shows a slender straight beam subjected to unit inplane and unit out-of-plane end shear
forces. In all distorted meshes, the nodes are shifted from their regular positions by 0.1 unit along
the centroidal axis. All d.o.fl. at the clamped end are restrained to zero. Normalized beam tip
deflections in direction of the applied loads and the reference solutions given by MacNeal and
Harder (1985} are listed in Table 4. The present HBR is least susceptible to mesh distortions.

Full i LS P S PO T P S QOut-of-plane
uly e E— ; —— loadin
clamped [ H ,‘| T‘i EL g
end e s, B8 S inplane

a Uniform mesh Iozding

{f '
.
!y: b Trapezoidal mesh

P 7
CLZ 2 7]
c Parallelogram mesh

4 B 7 E

- Py
D‘“l\\\“#“l{“ "L/?"' ‘%‘Jilj Fig. 4a-d. MacNeal's slender beam problem, E = 107,
d

Skew mesh v=03
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Table 4. Normalized predictions for straight beam problems, Fig. 4

Element Inplane loading Out-of-plane loading

Reg. Trape. Para. Skew Reg. Trape. Para. Skew
AH 0.898 0.860  0.870 — 0.888 0.868 Q.878 —
HEXS8RX 0.988 0.863 0.921 0.949 0.983 0.943 0.969 0.856
HBR 0.989 0.938 0935 0.960 0.984 0923 0.969 0.930
Reference 1.081 04321 -

Curved and twisted beam problems

Curved beam and the twisted beam problems are depicted in Figs. 5 and 6, respectively. Same as
the slender beam problem, all nodal d.o.f. at the clamped ends are deleted. The normalized
predictions are given in Table 5. The reference solutions are quoted from (MacNeat and Harder
1985). Accuracy of HEX8RX and HBR are extremely close except for the curved beam problem
with out-of-plane loading. This is again caused by the strong penalty in HBR. It has been checked
that if the penalty in HBR is reduced by 10° times (same order of magnitude as that in HEX8R X)),
an accuracy of 0.90 can be obtained.

Plane wedge problem

The popular plane wedge problem is shown in Fig. 7. Shear force of unit magnitude is uniformly
distributed over the free end of the wedge. All d.of. at the clamped end are deleted. The normalized

Table 5. Normalized predictions for curved and twisted beams, Figs. 5 and 6

Element Inplane loading Out-of-plane leading
Curved beam Twisted beam Curved beam Twisted beam
AH 0.969 — 0.896 —
HEXSRX 0.997 1.001 0.890 0.999
HBR 0.998 1.002 0.818 1.001
Reference 0.08734 0.005424 0.5022 0.001754
1
!’reaT ,’I
inner radius = 412 length = 12 twist = 90° from root to tip
outer radius = 4.32 width = 110 E=29% 106
E=107 thickness = 0.32 v = 0.22
» =025 )
unit out-of - plane
\ force
z ’ \unit
fixed .
<Y end inplane force
b 6

Figs. 5 and 6. 5 Curved beam problem, 6 twisted beam problem
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y E=10 v=1/3
48
B
1 16
I M
t'e
w 557 4
=]
X Fig. 7. Plane wedge problem (4 x 4 mesh}

Table 6. Normalized predictions for plane wedge problem, Fig. 7

FElement 2 x 2 mesh 4 x 4 mesh

2 a.{(max) UE‘(min) U, Gdtmax) aB(min)
HEDSRX 0911 0.779 0.977 0.964 0.963 0.964
HBR 0.914 0.796 0936 0.968 0.960 0.952
Best known 23.90 0.2360 —-0.2010 23.90 0.2360 —0.2010

predictions for the upward deflection at C, maximum principal stress at A and minimum principal
stress at B are listed in Table 6. The best known solution is quoted from {(Cook 1986). Once again
HEXS8RX and HBR yield close accuracy,

3

Two-element cantilever beam-—effect of element distortion

Except for the predictions in rotations under point couple loading, the present HBR and HEXSRX
yield close accuracy. It is mainly because the considered meshes are largely restricted to prismatic
shape which is highly symmetric for solid clements. Effect of the chisel-shaped distortion is

Clamped M
end . /
_;1_ #
z
s s
x Fig. 8. Two-clement cantilever beam, M = 1000, E = 1500, v =0.25

Table 7. Normalized predictions for two-beam cantilever beam, Fig, 8

e HEX8RX HBR HBR without AMF

Deflect, Rotat. O Deflect. Rotat. Ter Deflect. Rotat. Uy
Q 0988 1393 1.000 0996  1.044 1.004 0996 1.044 1.004
1 0920 1.354 0.881 0971  1.041 1.027 0975  1.041 0975
2 0.766  1.258 (.683 0.890  1.033 0.961 0304 1.030 0.884
3 0573 1.149 0.498 0.750 1019 0.800 0766 0.990 0.728

Reference —100 20 3000 — 100 20 300 —100 20 3000
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Thickness=t E=1000

Fig. 9. Meshes for modeling quadrant of a circular
plate, v= 0.3, 0.49, 0.4999

Table 8. Normalized central deflections for clamped circular plate, Fig. 9

Element =03 h=0.1 h=01,N=12

N=3 N=12 N =48 =049 v =04999
HEXSRX — 0.850 — 0.670 0.036
HBR 0.208 0.832 0.967 0.848 0.849

Reference (k7] 5431 4535 4477

considered by using the two-element cantilever beam problem shown in Fig. 8. At the clamped
end, all nodal d.of. are restrained. Bending stress o, at the element face centre B, end deflection
and end rotation are computed. Their normalized values are given in Table 7. It can be seen that
HBR is much less susceptible to distortion than HEX8RX. Results of the unsimplified HBR in
which admissible matrix formulation (AMF) is not applied are also included to examine its effect.
While the unsimplified HBR is slightly more accurate in deflection and rotation, it is less accurate
in the bending stress.

Ciamped circular plate and volumetric locking

Three different meshes are employed to model a quadrant of a clamped circular plate, see Fig, 9.
The plate is subjected to a unit transverse central point load. In the clamped periphery, all nodal
d.o.f are restrained. Results for the convergence study for thickness h=0.1 and Poisson’s ratio
v = 0.3 is listed in Table 8. Finally, the Poisson’s ratio is set to 0.49 and 0.4999. Only the mesh with
medium density is considered. HEX8RX exhibits the volumetric locking as noted in the table.
The reference solution is quoted by Timoshenko and Woinowsky-Krieger (1970).

11 Conclusions

A 8-node hybrid brick element with rotational d.o.l. is presented. The element is rank sufficient,
geometrically invariant and insensitive to different node numbering schemes. The element is also
free from volumetric and trapezoidal lockings. The six equal-rotation spurious zero energy modes
intrinsic to Allman’s interpolation are suppressed by using a penalty stiffness. The latter enforces
the equality of the nodal rotation and the continuum-defined rotation. For the chosen penalty
parameter, close agreement of the nodal rotation and the continuum-defined rotation is achieved.
Compared to other elements in the open literature, this element is least susceptible to mesh
distortion.

An efficient computational scheme, based on the admissible matrix formulation (Sze 1992) and
stress constraints, is suggested. To invert the flexibility matrix for the effectively 36-f8 stress field,
only four 3 x 3 symmetric matrices have to be inverted.
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Appendix: Shape function matrix N,

Before giving out the displacement shape function matrix N, explicitly, the following guantities

are defined:

N, = %(1 +EE1 4 na(L+ L),

M, =

M,

M= 08 —n(1 =27 M,

My,

1
g(i =L+ +)

X;; = X;—

M,

Xpp Yii=Yi— Y

J?

Zy=z;—Z;

%(1 —OU -1 +0) My= ;(1 O =)L +0)

1
LA+ -+ My =%{1 O Em -8 M, =é(1 — L 41— )

8

1
= g(l +EU - %)

1
M9=§(1 ~ L+ )l - )

%(1 ~HA -0 My = ;-u S —p(=0 M, r-%u LN — )L -0,

In Ny, (i 17, ;) s the natural coordinates of the i-th node, N, can then be partitioned as:

Nx=[N|[3 M1 Nzls Mz
in which

B 0
M, =} —z, M, +z,, M, —z5,M;

L yaMy—y M,y M
i 0

—Z32My + 25, M, ~z25, M,
L VaaM, -y M+ ye, Mg

N 0
—z43M 3+ 23,M, — 27, M,
L VasMy—ya M, 4y, M,
- 0
=~z My + 2 3My - 25, My
L ViaMy— yasMy+ yg My
I 0
251 M s —z5sMg +z55M
L—=Ysi:Ms+yesMg-— y54M,,

NoIy M; Ngly Mg

23 My — 2. M, + 25, M
(]
=Xy M +x My — x5, M5

Z32M,y — 2y M,y + 24,Mg
0
= X32My+ 3 My — x5,M
Z43M3 — 23, M + 2,5M;
0
—XgaMy + x5 M; — x3M,

ZyaMy— 2 My + 25, M
0
=X Mg+ x My — x5, M,

—Z51Ms+zgsMy —z5gM
0
X5 Ms —xgsMg+ x59M 5

— YoM+ y My -y M
Xo1 My — x4 M+ x5, M
0

~ Y32 Mo 4y M — ye Mg |
X32My — x5 M, + x5 Mg
0

—YaaMs +y5.M; —yu M,
XaaMy — x5, M, + x93 M,
0

—¥1aMay+ yaaMy — yg My |
XyaMy — x4 My + x5 Mg
0 B

VsaMs = yesMo + yssM 5
— X5 M5+ x55Mg— x5gM,
0
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i 0 —ZeaMg + 276M 15 — 255 My VeaMe — V76M 1o+ ¥esMo
Mg= | 25:Mg—276M1g+265Ms 0 —Xe2Me + X76M g — Xes Mg

L_Y62‘M6 + y36M 1o — YesMo XgaMg— x76M 19+ X55M, 0

i 0 —zo3My 2. M — 276M g Y7aMoy — ygo My + y7sM 0]
M; = Z73M7 = 2g7My +276M 1o 0 —X73M, +x5:My; — x76M g

L—p7aMy+ pgaM — y7:6M 1, X73Maq — Xgo My + x76M g 0 .

[ 0 —2gaMyg + z5gM ;3 ~2g; My, VeaMg — ¥seM o+ v M ]
M, = ZgaMy — 2ssM 5 + 237 M1y 0 —XxgaMg + x55M 13 — x5:M

| — VaaMg+ ¥sgM 3 — yg-My,y XgaMg— X5aM 5 + Xg, M4 0 i
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