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Abstract. An 8-node brick element using Allman's displacement interpolation is proposed. The optimal number of 36 stress 
modes is identified. The six equal-rotation strainless modes which are intrinsic to Allman's interpolation are stabilized by using 
a penalty method. The penalty also enforces the equality of the nodal rotation and the continuum-defined rotation. To enhance 
computational efficiency, 39 stress modes are initially assumed, three constraints on the stress field are then imposed. The 
flexibility matrix is simplified, such that only four symmetric 3 x 3 matrices are required to be inverted. Numerical test results 
are presented, showing good accuracy. 

1 Introduction 

Finite element researchers have long been aware of the importance of membrane elements with 
factual inplane torsional stiffness. These elements are very useful for modeling spatial structures 
such as tubular joints, girder boxes and folded plates. Unfortunately, early attempts in deriving 
these elements were not successful. Irons and Ahmad (1980) even pointed out that inclusion of 
inplane rotations always leads to patch test failure. Nevertheless, a break through was achieved 
by Allman (1984) and Bergan and Felippa (1985). 

Allman adopted a quadratic interpolation scheme for the deformed element boundary in lieu 
of the conventional cubic beam function. The same scheme was soon applied to various structural 
elements (Cook 1986; MacNeal and Harder 1989; Pawlak et al. 1991; Ibrahimbegovic and Wilson 
1991; Sze et al. 1992). However, the scheme is not defect-free. First, the nodal rotation used in 
Allman's interpolation is not in conformity with the continuum-defined rotation (Allman 1984). 
Secondly, some strainless modes, which will be referred to as the equal-rotation modes (MacNeal 
and Harder 1989), can be observed when all the nodal rotations about any particular axis assume 
the same value. For membrane elements, the mechanism does not plague practical analyses, since 
it can be suppressed by restraining any one of nodal rotations in a mesh. However, the situation 
in brick elements becomes much more complicated, and a built-in stabilization scheme should 
be used. 

Recent emphasis on elements with rotational d.o.f, is on the conformity of the nodal rotation 
with the continuum-defined rotation, especially when nodal couples (the energy conjugate of the 
nodal rotation) are prescribed. This is of prime importance when solid elements are interfaced 
with plate, shell or beam elements. The interfacing is traditionally handled in a laborious way by 
definingconstraint equations (Cook et al. 1989). 

The intent of the present paper is to develop a robust and accurate 8-node hybrid brick 
element with Allman's rotational d.o.f. A penalty method which enforces the equality of the nodal 
rotation and the continuum-defined rotation is used. Admissible matrix formulation will be adopted, 
to simplify the element's flexibility matrix (Sze 1992) for enhanced computational efficiency. 
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2 Hellinger-Reissner functional with penalty 

Precursors of the employed functional can be found in Reissner (1986), Hughes and Brezzi (1989) 
and Iura and Atluri (1992). As shown in the last reference, Iura and Atluri's functional for elasticity 
problem was derived from Atluri's earlier works on large strain problems (Atluri 1979, 1980). To 
derive the present functional, one may condense the skew symmetric stress components from any 
of the precursors and write: 

He= ~. (--�89 axSa+~-TL,u-bTn) d r -  ~ i~uds+�89 S (~- --~-) 2dr (1) 
v e  S t  e Ve 

where _o-= [ax ar o'z axy oy z Ozx] T is the vectorial representation of the assumed symmetric 
stress tensor, S is material compliance matrix; L~ is strain-displacement differential operator; 
n = [u v w] T is the translational displacement vector; b is the body force vector; v e is the element 
domain; St ~ is the portion of the element boundary over which the surface traction i is prescribed; 

= I-~x coy ~z] T is the vector containing the independent assumed rotations; _~ = [ ~  ~y ~ ] T  
is the continuum-defined rotation, namely 

0 
3z ~y 

_s J2, = ~ --~ 0x = L,u. (2) 
=Q: 

0 
~y ~x 

Lastly, 7 is the penalty scalar for enforcing the equality of _~ and ~. The functional is no different 
from the conventional Hellinger-Rcissner functional except for the last penalty integral. 

3 Interpolation for displacements and rotations 

Figure 1 shows an 8-node hexahedral element. According to Allman's (1984) scheme, the x- 
translational displacement of the fictitious mid-side point bounded by its two adjacent corner 
nodes i and j is: 

1 Yj - -  Y i  (r_Ozj z j  - -  Z i 
u =  (ul + u j) + 8 - cozi) 8 

(3) 

in which quantities with suffixes refer to their nodal values. Other translational displacement 
components can be obtained by cyclic symmetry (Yunus et al. 1989). With the translations of the 
midside points thus determined, the displacement field is interpolated by using the interpolation 

r 
3 

c~ Iw 8 ,2 

Fig. 1. Eight-node hexahedral element 
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functions of the standard 20-node brick element. After some simple algebra, we have: 

u = = N t  q = N t q  (4) 

8 

in which qi = [ui vi wl co:,i cor~ co~] T and the interpolation matrix N t is given explicitly in the 
Appendix. Strain can then be derived: 

re3 
- -  0 0 
dx 

0 - -  0 

( exx ~Y 

err 0 0 

= = = Ltu = LtNtq. (5) e | 2ex~ __8 __c3 0 

/ 2ey~ 8y t3x 
~2e~ 8 O 

0 
8z 8y 

8 0 8 
8z Ox 

The continuum-defined rotation is obtained by combining Eq. (2) and Eq. (4), 

O = e~u = L,N,q. (6) 

The independently assumed rotation is interpolated using the nodal rotations and the standard 
trilinear shape functions of the 8-node element, i.e. 

0-=[03•  NlI3 03x3 N213 "'" 03• N713 03• N s l a ] q = N , q .  (7) 

Interpolation functions N~ to N8 can be found in the Appendix. 

4 G e o m e t r i c  p a r a m e t e r s  

Referring to Fig. 1, the following geometric parameters are defined for the sake of convenience: 

a2 b2 c2 = 1 1 - 1  - 1  1 1 - 1  

a 3 b 3 c 3 1 1 1 1 - 1  - 1  - 1  s Ys 8 

Bt B2 B3 --- a2 b2 c2 

Cl C2 C3 a3 b3 c3 

(8a) 

(8b) 

and 

{fo f l  f2 fa f4 f5 f6 f7 fs f9 f lo fa~ f12 f13 f~4 f15} 

=~{1  ~ r I ~ rl~ ~ ~rl 4 2 rfl ~2 ~ 2  ~rl2 rl~2 rl~2 ~r12 ~2}dv .  (9) 

All f~'s can be evaluated by symbolic computation with minor effort. 
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5 Stress shape functions 

Without ambiguity, stress from now on would refer only to the symmetric one. Since it is easier 
to maintain element invariance by using contravariant stress modes (Rubinstein et al. 1983; Pian 
and Sumihara 1984; Punch and Atluri 1984; Sze et al. 1992), they will be adopted in the present 
element. An important  role of a chosen stress field is to stabilize the associated element. To avoid 
an overstiff element and reduce computing time, the number of stress modes should preferably 
be kept minimum which is taken as the difference between the number of nodal d.o.f, and the 
number of rigid body modes (Pian and Tong 1969; Pian and Chen 1983; Rubinstein et al. 1983). 
The physical idea behind this is to match each of the deformation modes, in which strain is non- 
zero, by one stress mode. For the present element, there are 48 nodal d.o.f, and since the 6 rigid 
body modes and the 6 e q u a l - r o t a t i o n  modes (Yunus et al. 1991) are strainless modes, the minimum 
number of stress modes would be 36. 

To observe what stress modes can stabilize the element and at the same time are compatible 
to the deformation modes, the displacement-derived strain of a quadrilateral with drilling d.o.f. 
is examined. This element has 12 nodal d.o.f., 3 rigid body modes and 1 e q u a l - r o t a t i o n  mode, the 
minimum number of stress modes is 8. Consider a bi-unit square element with its x-and y-axes 
parallel to the 4- and r/-axes respectively, its displacement field can be expressed as (Sze et al. 1992): 

u=Uo+Ul~+U2?]+U34~+U4?]2+U5~?] 2, v=Vo+VI~+V2~+V3~+V4~2+V5~2~ (10a, b) 

in which Ui's and V/s are linear functions of the nodal d.o.f., and U 5 + V 5 = 0. The derived strain 
is: 

t 3 v  
~--U-u = U1 + U r  U5~/2; e,1 n - ~ l  1/2 + V34 ~ U542  ( l la)  

c~u ~v 
2er = - -  + - -  = U z  + 1/1 + (U 3 + 2Va)4 + (2U4 + Vs)r/. ( l ib)  

All the deformation modes can be stabilized by 3 constant stress modes plus the following 5 
higher order contravariant stress modes (Sze and Ghali 1992): 

I = o o 0 - (12) 

a ~" 0 0 r/ 

where fih represents a vector of coefficients for higher order stress modes. The higher order stress 
modes Tor the brick element can now be derived by using Eq. (12) as the hierarchic building block. 
As there are two layers of nodes in the ~-direction, a linear variation of [a r162 a ~ ar T should be 
assumed, i.e. 

= 4 0 0 _r  + (  0 0 4 2 

O'er/) h 0 ~ /7 0 0 ~ ~ --0--J 

Seemingly, for the layers of nodes in the 4- and r/-directions, we have: 

o -~ = 17 0 0 - ~ f  + ~  0 ~/ 0 0 - flh 
0""~ h 0 r/ ~ 0 0 0 r/ 

and 

lI'~176176 I!~176176  il) a ~ = 0 ~ 0 0 _ (2  + ~  ~ 0 0 - fib- 

(13a) 

(13b) 

(13c) 
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By combining the last three equations with the redundant modes deleted, the 30 higher order 
contravariant stress modes are: 

_O'contravarian t -~ 

O-nn 

omr 

(14) 

where 
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It is interesting to note the difference between the present 30-fi higher order stress field and 
the 36-/3 higher order stress field in element AH of Yunus et al. (1989). Though six more stress 
modes are assumed in AH, the deformation modes stabilized by Ps, P9 and P~o cannot be 
suppressed. 

It is possible to make the assumed stress field in Eq. (14) more equilibrating�9 For instance, the 
stress mode [0 0 0 ~ 0 0] r would be more equilibrating should it be changed to [0 - t /  0 ~ 0 0] x. 
Since not much improvement is yielded by using a more equilibrating field, the derived stress field 
would be adopted due to its simplicity. 

Following the practice of Plan and Sumihara (1984), the higher order cartesian stress is 
obtained by the transformation matrix evaluated at the element origin. The complete cartesian 
stress would be: 

f f '=[CT x O'y O" z r  O'yz O'zx]T'=~c"}-Ta~-contravariant 

in which 6 constant stress modes are introduced by tic and thus dim (_~c) = 6. The transformation 
matrix Tr can be derived explicitly as: 

T , = [ T 1  T2 T3 T4 T5 T6] (16) 
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in which 

2 a2bz b2c2 a~b~ b~c~ c~a~l~; Tz = [a~ b~ c2 

a3b 3 b3c3 c3a3]~; �9 

T , = [ 2 a l a 2  2b~b2 2ClC2 a~b2+a2b~ b~c2+b2c~ cla2 +Czar] ~ 

Ts =[2a2a 3 2b2b 3 2c2cs a2b3 +a3b2 bzc3+b3c2 c2a3 +c3a2] ~ 

T6=[2a3ai 2b3b~ 2c3c~ a3b~ +ajb3 b3c~ +b~c3 c3a~+c~a3] v. 

The stress modes in Eq. (15) are orthogonalized with respect to the constant modes by carrying 
out the following replacements: 

f l  f2 A .  
~, r / , (byq51=~ fo '  ~b2=r/-~oo' q53=~ fo 

fo '  fo '  fo '  

~2 ,~ /2 , (2by~b  7 = ~ 2 - f - 2  ~bs=r/2 f8 q ~ 9 = ( e - f 9 "  
fo' fo' fo' 

~r to q~1o = ~2  ~b3 flo. ~/2 by (J)ll = ~/~2 (~1 f l l .  
3 f o '  3 f o '  

rff 2 to q~12 = g/~2 q~2 f12. t]~ 2 by ~b13 = r/~ 2 q52 f13. 
3 f o '  3 f o '  

(r/2 to 4 h , =  ~/~2 (~3 fl4. ~(2 by ~b15 = ((2 q51 f15 
3 f o '  3 fo" 

With the suggested replacements, Eq. (15) can further be expanded as: 

_a=flc+[-~blT~P1 ~b2T~Pz ~b3TaP3 P4 P5 P6 P7 P8 P9 PioJflh 

where 

P4=~b4[T2  T 4 T5]; Ps=q65[T1 T4 T6]; P6=q~6[T3 T5 T6]; 

P7 = [qSsT~ - ~b7T2 q~9T2 - q~sT3 ~7T3 - q~9T1]; Ps = [~b14T1 - q~loT2]; 

P9 = [~15T2 -- ~b11T3~]; Plo = [~13T3 -- ~12T1] - 

(17) 

(18) 

6 Equivalent stress field with constraints 

With the stress field given in the Eq. (18), inversion of a 30 x 30 flexibility sub-matrix is required. 
To reduce this cost, stress constraints would be employed. Though incompatible displacement 
modes are often used to constrain the initially assumed stress field (Pian et al. 1983; Sze and 
Chow 1991a), the constraints would be directly incorporated instead of using any incompatible 
modes (Sze and Chow 1991b) in the present implementation. The unconstrained stress field is 
taken to be: 

O" ----- tic @ qblTa_fll + ~2Tef12 + ~3Tafl_3 + P4_/)',, + P5/)_5 @ P6fl_6 @ PTfl_7 + Psfls + P9f19 + elOfllO 

= + Ph h (19) 

where  _fl~=_l-/~ flTflT_2 _3 ~zI-T 65T ~6T ~TT f18 f19 fiX0]" Obviously,  this is the same  as the stress field 
in Eq. (18) if the following three constraints are imposed: 

T T T (20) = 113/}_ 3 = 0 _ = Rzfl 2 0; Rif t  1 0; 
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where R1 = [1 0a • 5] T, R 2 = [0 1 01 • ,]T and R 3 = [01 • 2 1 0~ • 3] T. As the higher order stress 
modes have been orthogonalized with respect to the constant modes, substituting Eqs. (5)-(7), (19) 
and (20) into Eq. (1) yields: 

He fo T - :/?~Sflc+flTG~q - fl~HhOh+_flhTGhq 

] T + _~IRI~I + ~R2'~2 + flIR3~3- FTq + ~q K~q (21) 

in which 

Hh=~pTSPhdV; G T = [  G T h  GT GT GI GT GT6 G7T G8T G9T G10]T 
lye 

Go= ~ LtNtdv; G~ =TTI ,  dp~(LtNt)dv; G 2 "=TTI, r q52(L,Nt)dv 
~e lye ~e 

G3 = T T~ ~ ~b3(LtN,)dv; Gi = ~ P~(L,N,)dv for i =  4 to 10 
Ve lye 

F = ~ N~bdv + ~ NXtids (the element nodal force vector) 
ve S t e  

Ks = 7 j" (L,N~ - N,)T(LrNt - Nr)dv (the penalty stiffness) 
lye 

flTR )~' H e i i i s in represent the stress constraints and 21's are the pertinent Lagrange multipliers. 
Nodal forces and couples for prescribed stress and body force should be computed according to 
the interpolation matrix N t as defined in F for consistency. It is sufficient to evaluate matrices H's 
and G's by the 14-point integration rule (Irons 1971). The advantage of inducing the constraints 
on ill, 132 and _~3 is now elaborated. 

7 Simplification by admissible matrix formulation 

Recently, Sze (1992) has proved that entries in the flexibility matrix not coupled with the constant 
stress modes can be subjected to arbitrary changes provided that the matrix is still positive definite. 
The resulting element can still pass the generalized patch test (Taylor et al. 1986). The proof offers 
a clue for admissible changes in the flexibility matrix. 

To enhance computational efficiency of the present element, all entries that vanish for regular 
element geometry in the flexibility matrix Hh are set to zero. As a result of the enforced sparsity, 
inversion of the matrix can be done in a blockwise manner and the best finite element accuracy 
which is often observed in regular-shaped elements can be preserved. The suggested admissible Hh 
would thus be: 

Hh=diag{H1 H2 H3 H,  

where 

{Hi H2 n3} ~-- To TSTa S {q~2 
t) e 

Hi = ]" P~TSPIdv for i = 4 to 7 
9o 

H i=~pTSPidv  f o r i = 8 t o l 0  
De 

It can be noted that 

Hs H 6 H 7 H s H 9 H10 } (22) 

cb2}dv (order 6 x 6) 

(order 3 x 3) 

(scalars). 

H~_ 1 H 3 1 } = {  1 1 1 }T~_IS_~T~_ T 

lye Ve ly~ 

(23) 
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in which 

T~ 1 = 

A~ A 2 A~ A1A2 AzA3 A3Aa 

C21 C 2 C 2 C 1 C  2 C 2 C  3 C 3 C  1 

2A1B1 2AaB2 2A3B3 A1B2 + B1A2 A2B3 + BzAa A3B1 + B3A1 

2B1C1 2B2C2 2B3C3 B I C 2  Jr- C 1 B  2 B2C3 -1- CzB 3 B3C1 q- C a B  1 

2CaAa 2C2A 2 2C3A 3 C I A  2 -k A 1 C  2 C 2 A  3 -k A 2 C  3 C 3 A  1 -{- A 3 C  1 

Ai's, Bi's and Ci's have been defined in Eq. (8b). Computing H~ 1, HE 1 and H~ 1 incurs no inversion 
cost. With the chosen admissible Hh, Eq. (21) can be expanded as: 

3 1RTH ~ + fl~Gi q + fl~Ri2i ) He-~-f~ ~,(-2-r__i iCi _ _ 
2 -- -- i=l 
7 10 

"J- E ( - - l f l_THiS i  "~- flTGiq) + _  E x(---1/?TH'/~'"}-2r'i tt't flTGiq)--FTq+�89 �9 (24) 
i=4 i=8 

Variation of the functional gives: 

= ~-~S-~Gcq (25a) 

fli = H (  l(Giq + Ri2i); R~fli = 0 for i = 1, 2 and 3 (25b) 

8i  = H/- 1Giq for i = 4, 5, 6 and 7 (25c) 

1 
fl/= ~ Giq for i = 8, 9 and 10. (25e) 

Further manipulations yield: 

(H~- LR)(H( ' R)T'~ ._, 
21=R~H/__IR iR~Hi-lGiq; fli=_ H/-1 ~ i - ~ i  JI.jiq fori=l ,  Zand3 (26) 

and 

l i e =  =~1GT H ;  ~ -  i + E GTH? 1Gi 

and 
T 3 1 (n/- 1Ri)(U/- 1Ri)T~ G 

i Ri Hi i 7 i=4 

+ E 1 G T G i  + GTS-1Gc+Ks q--FVq. (27) 
i = 8 H i  

The element stiffness matrix is apparently the one included by the braces. As (R~H~-1Ri)'s are 
scalars, the only inversion cost is incurred by H4, Hs, H6 and H7 which are 3 x 3 symmetric 
matrices. 

8 Simplified evaluation of penalty stiffness 

Since the roles of the penalty are to stabilize the element and to enforce the equality of the two 
rotations s and ~, much freedom is available in its evaluation. To keep K s efficient in formulation 
and effectiSve in suppressing the six equal-rotation modes, only 6 integration points out of 14-point 
rule (Irons 1971) are employed for its evaluation. The natural coordinates of the employed 
integration points are: 

(_+b,0,0), (0,_+b,0) and (0,0,__+b) (28) 
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in which b = 0.795822426. The differences in rotations ~ and m__ about the natural coordinate axes 
are first resolved, namely 

gi(m_" - co) = gi(LrN t - Nr)q (29) 

where 

1 
gi =(a/Z + b~ + c2) 1/i[ai bi ci]T 

and i equals 1, 2 and 3 for the difference in rotations about r r/- and ,r-axis, respectively. The 
refined penalty stiffness would be: 

Ks = Ksl + Ks2 + Ks3 (30) 

in which 

K~ = 7fo ~ ( L , N , -  Nr)TgTg,(L,Nt- N,). (31) 

Summation is carried out over (_+ b, 0, 0), (0, + b, 0) and (0, 0, _+ b) for i = 1, 2 and 3, respectively. 
Each of the K / s  serves to stabilize the two equal-rotation modes about the corresponding axis. In 
penalty formulations, the choice of the penalty factor are often controversial. However, we would 
simply follow the practice of Hughes and Brezzi (1989) and Ibrahimbegovic and Wilson (1991) in 
taking 7 as the shear modulus, instead of optimizing 7 with respect to any benchmark problems. 

9 Numerical tests 

Besides the present element, termed HBR, predictions of the following 8-node brick elements 
with rotational d.o.f, will also be included whenever possible: 

(a) AH is the 42-fl hybrid element developed by Yunus et al. (1989). No stabilization scheme 
against the equal-rotation modes was mentioned in reference. The 14-point integration rule is used. 

(b) HEXSRX is the element devised by Yunus et al. (1991). Three internal displacement modes 
are assumed in the element and the two-point quadrature is employed for numerical integration. 
MacNeal and Harder's (1989) stabilization schemes are generalized to suppress the 6 equal-rotation 
modes and the 6 hourglass modes. 

(c) IBR-D and IBR-M are Ibrahimbegovic and Wilson's elements (1991). Both elements 
employ the 14-point integration rule for their core stiffness matrices and the two-point quadrature 
for the penalty stiffness matrices. 

Results of AH, IBR-D and IBR-M are all extracted from the corresponding references. Results 
of HEXSRX that cannot be found in (Yunus et al. 1991) are computed by using the commercial 
finite element package ANSYS. Designation of HEXSRX in ANSYS Rev.4.4A is STIF73. 

Patch test, invariance and nodal numberin9 

HBR has been tested to be geometrically invariant, insensitive to different node numbering 
sequence and able to pass the generalized patch test. It is therefore consistent from the finite element 
point of view and of the correct rank, namely 42. 

Simple beam problem 

Figure 2 describes the problem. The applied moments are represented by (1) end bending forces 
P/2 and by (2) nodal couples 34/2 at all end nodes. Load case (3) simulates the situation when a 
plate/shell element is connected to the end sections. For case (1), zero rotations co r and co s are 
restrained so that the nodal couples obtained by discretizing the distributed bending stress need 
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Load Load Load 
case 1 case 2 case 3 t 

2M~M~ ~IP.P { ~ "iP M)  2M) 

Mr LLL Re o,o, mesh E 
I I I I  p : ,  

Z ~ y  q =1 
Distorted mesh M = 0.5 

Fig. 2. A simple beam 

not be prescribed. For convenience, the same displacement boundary conditions would be applied 
for cases (2) and (3). Normalized midspan deflections and end rotations are listed in Table 1 for 
cases (1) and (2). It can be seen that HBR is least susceptible to mesh distortion and is accurate in 
both deflection and rotation, particularly under the couple load. HEX8RX is poor in rotation 
under the couple load. For load case (3), only the regular mesh is employed but the beam depth 
d is varied. In view of the normalized predictions in Table 2, it is advisable to interface plate/shell 
elements with thin solid elements with rotational d.o.f. 

Simply supported square plate problem 

This problem is illustrated in Fig. 3. The plate is subjected to a uniform transverse loading of 
intensity q = 1. Owing to symmetry, only a quarter of the plate is analyzed by either a 2 • 2 mesh 
or a 4 • 4 mesh. Central deflections are normalized by the series solutions cited in (Ibrahimbegovic 

Table 1. Normalized mid-span deflection and end rotation for simple beam problem, load cases (1) and (2), Fig. 2 

Element Regular mesh Distorted mesh 
Load case (1) Load case (2) Load case (1) Load case (2) 

Deflect. Rotat. Deflect. Rotat. Deflect. Rotat. Deflect. Rotat. 

IBR-D 1,000 1.000 1.000 1,074 0,848 0.880 0.853 1.041 
IBR-M 1.000 1,000 1.000 1.050 0.882 0.946 0.885 1.092 
HEX8RX 1.000 1.000 1.000 1.720 0,966 0.827 0.814 1.512 
HBR 1.000 1.000 1.007 1.060 0.945 0.937 0.942 1.020 

Theory 1.5 0.6 1.5 0.6 1.5 0.6 1.5 0.6 

Table 2. Normalized mid-span deflection and end rotation with varying depth 
d for simple beam problem, load case (3), regular mesh, Fig. 2 

Depth HED8RX HBR 
d 

Deflect. Rotat. Deflect, Rotat. 

1,0 1.025 1.991 1.027 1.283 
0.5 1.002 1.220 1.004 1.054 
0,1 1.000 1.008 1.000 1.001 

Theory I-d a] 1.5 0.6 1.5 0.6 



K. Y. Sze and A. Ghali: A hybrid brick element with rotational degrees of freedom 157 

y l  FE Mesh 

,7 
Symm. 

Symm. 

, / h  

E = 1 0 . 9 2  
v = 0.3 
a = l O  --~ q:~ 

Fig. 3. Simply supported square plate with uniform loading 

Table 3. Normalized central deflection for simply supported square plate, Fig. 3 

Element h = 1 h = 0.1 

2 x 2 mesh 4 x 4 mesh 2 x 2 mesh 4 • 4 mesh 

IBR-D 0.942 0.986 0.569 0.782 
IBR-M 0.959 0.986 0.583 0.806 
H E X 8 R X  1.033 - -  0.98 l - -  
HBR 0.995 1.027 0.717 0.991 

Series solution 42.728 42.728 40644 40644 

and Wilson 1991). The results are given in Table 3. HEX8RX is less susceptible to shear locking 
than HBR. This is due to the strong penalty (roughly, 10  6 times of the penalty employed in 
HEX8RX) employed in penalty matrix. 

Slender beam problem 

Figure 4 shows a slender straight beam subjected to unit inplane and unit out-of-plane end shear 
forces. In all distorted meshes, the nodes are shifted from their regular positions by 0.1 unit along 
the centroidal axis. All d.o.f, at the clamped end are restrained to zero. Normalized beam tip 
deflections in direction of the applied loads and the reference solutions ~iven by MacNeal and 
Harder (1985) are listed in Table 4. The present HBR is least susceptible to mesh distortions. 

I_ t ;!_ I ,!_ t , !_ ' [  _!< t _1_ I ~. /Out-of-plane 
Fully ~. .4. ,4. ~. ,,1 ,4. .,1 ~ r  
clamped ; ' ; i i i 
end [2---- l ; 'J--"- " D - - -  " ] f "L--  J r tL - -  J r / L - - P  Inplane 

a Uniform mesh I .  .. 
�9 ioaolng 

00"1 '̂-~1 "] C ,  - , /  -/', ..z, f,. ,4 

z 1 . ~ r  b Trapezoidal mesh 
~ X  

Z ~ ,  ~," A f d .# /1  
i ,/ r 7' r z 

L ' , - - t : -  J - -  - / :  - - t :  - - / ' -  - - P 
c Parallelogram mesh 

/1 ~ Z I I', ~ ~ / 1  
i >, / ~ i \ LJ--- 

d Skew mesh 
Fig. 4a-d. MacNeal's slender beam problem, E = 107, 
v =0,3  
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Table 4. Normalized predictions for straight beam problems, Fig. 4 

Computational Mechanics 12 (1993) 

Element Inplane loading Out-of-plane loading 

Reg. Trape. Para. Skew Reg, Trape. Para. Skew 

A H  0.898 0 . 8 6 0  0.870 - -  0.888 0 . 8 6 8  0.878 - -  
H E X 8 R X  0.988 0.863 0.921 0.949 0.983 0.943 0 . 9 6 9  0.856 
HBR 0.989 0 . 9 3 8  0 . 9 3 5  0.960 0.984 0 . 9 2 3  0 . 9 6 9  0.930 

Reference 1.081 0.4321 

Curved and twisted beam problems 

Curved beam and the twisted beam problems are depicted in Figs. 5 and 6, respectively. Same as 
the slender beam problem, all nodal d.o.f, at the clamped ends are deleted. The normalized 
predictions are given in Table 5. The reference solutions are quoted from (MacNeal and Harder 
1985). Accuracy of HEX8RX and HBR are extremely close except for the curved beam problem 
with out-of-plane loading. This is again caused by the strong penalty in HBR. It has been checked 
that if the penalty in HBR is reduced by 10 6 times (same order of magnitude as that in HEX8RX), 
an accuracy of 0.90 can be obtained. 

Plane wedge problem 

The popular plane wedge problem is shown in Fig. 7. Shear force of unit magnitude is uniformly 
distributed over the free end of the wedge. All d.o.f, at the clamped end are deleted. The normalized 

Table 5. Normalized predictions for curved and twisted beams, Figs. 5 and 6 

Element Inplane loading Out-of-plane loading 

Curved beam Twisted beam Curved beam Twisted beam 

A H  0.969 - -  0.896 - -  
H E X 8 R X  0.997 1.001 0.890 0.999 
HBR 0.998 1.002 0.818 1.001 

Reference 0.08734 0.005424 0.5022 0.001754 

freell ~ 

inner radius = 4.12 
outer radius = 4.32 

E = 10 7 

z, = 0.25 

5 

l e n g t h  = 12 t w i s t  = 9 0  ~ f r o m  root  to  t ip  

w i d t h  = 1.10 E = 2 9  x 1 0 6  

t h i c k n e s s  = 0 . 5 2  =, = 0 . 2 2  

unit out -of -p lane 

f ixed inplane force end 

Figs. 5 and 6. 5 Curved beam problem, 6 twisted beam problem 
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E=1.0  v=1/3 

Y l" 48 

2 
Fig. 7. Plane wedge problem (4 x 4 mesh) 

Table 6. Normalized predictions for plane wedge problem, Fig. 7 

Element 2 x 2 mesh 4 x 4 mesh 

Uc O'A(max) O'B(min) 1) c O'A(max) O'B(rnin ) 

HEDSRX 0.911 0.779 0.977 0.964 0.963 0.964 
HBR 0.914 0.796 0.936 0.968 0.960 0.952 

Best known 23.90 0.2360 -0 .2010 23.90 0.2360 -0 .2010 

predictions for the upward deflection at C, maximum principal stress at A and minimum principal 
stress at B are listed in Table 6. The best known solution is quoted from (Cook 1986). Once again, 
HEX8RX and HBR yield close accuracy. 

Two-element cantilever beam--effect of element distortion 

Except for the predictions in rotations under point couple loading, the present HBR and HEX8RX 
yield close accuracy. It is mainly because the considered meshes are largely restricted to prismatic 
shape which is highly symmetric for solid elements. Effect of the chisel-shaped distortion is 

Clamped 
end Le j M/## 

. . . . . . . . .  . . . . . . . .  

X Fig. 8. Two-element cantilever beam, M = 1000, E = 1500, v = 0.25 

Table 7. Normalized predictions for two-beam cantilever beam, Fig. 8 

e H E X 8 R X  HBR HBR without A M F  

Deflect. Rotat. ax~ Deflect. Rotat. a ~  Deflect. Rotat. a~x 

0 0.988 1.393 1.000 0.996 1.044 1.004 0.996 1.044 1.004 
1 0.920 1.354 0.881 0.971 1.041 1.027 0.975 1.041 0.975 
2 0.760 1.258 0.683 0.890 1.033 0.961 0.904 1.030 0.884 
3 0.573 1.149 0.498 0.750 1.019 0.800 0.766 0.990 0.728 

Reference - 100 20 3000 - 100 20 300 - 100 20 3000 



160 

Thickness=f. E= 1000 

I [ 

N=3 N=12 N=48 

C o m p u t a t i o n a l  Mechan ics  12 (1993) 

Fig. 9. Meshes  for mode l ing  q u a d r a n t  of  a circular 
plate, v = 0.3, 0.49, 0.4999 

Table 8. Normal ized  central  deflections for c l amped  circular  plate, Fig. 9 

E lement  v = 0.3; h = 0.1 h = 0.1; N = 12 

N = 3 N = 12 N = 48 v = 0.49 v = 0.4999 

HEXSRX - -  0.850 - -  0.670 0.036 
HBR 0.208 0.832 0.967 0.848 0.849 

Reference [h s]  5431 4535 4477 

considered by using the two-element cantilever beam problem shown in Fig. 8. At the clamped 
end, all nodal d.o.f, are restrained. Bending stress o%, at the element face centre B, end deflection 
and end rotation are computed. Their normalized values are given in Table 7. It can be seen that 
HBR is much less susceptible to distortion than HEX8RX. Results of the unsimplified HBR in 
which admissible matrix formulation (AMF) is not applied are also included to examine its effect. 
While the unsimplified HBR is slightly more accurate in deflection and rotation, it is less accurate 
in the bending stress. 

Clamped circular plate and volumetric locking 

Three different meshes are employed to model a quadrant of a clamped circular plate, see Fig. 9. 
The plate is subjected to a unit transverse central point load. In the clamped periphery, all nodal 
d.o.f, are restrained. Results for the convergence study for thickness h = 0.1 and Poisson's ratio 
v = 0.3 is listed in Table 8. Finally, the Poisson's ratio is set to 0.49 and 0.4999. Only the mesh with 
medium density is considered. HEX8RX exhibits the volumetric locking as noted in the table. 
The reference solution is quoted by Timoshenko and Woinowsky-Krieger (1970). 

II Conclusions 

A 8-node hybrid brick element with rotational d.o.f, is presented. The element is rank sufficient, 
geometrically invariant and insensitive to different node numbering schemes. The element is also 
free from volumetric and trapezoidal lockings. The six equal-rotation spurious zero energy modes 
intrinsic to Allman's interpolation are suppressed by using a penalty stiffness. The latter enforces 
the equality of the nodal rotation and the continuum-defined rotation. For the chosen penalty 
parameter, close agreement of the nodal rotation and the continuum-defined rotation is achieved. 
Compared to other elements in the open literature, this element is least susceptible to mesh 
distortion. 

An efficient computational scheme, based on the admissible matrix formulation (Sze 1992) and 
stress constraints, is suggested. To invert the flexibility matrix for the effectively 36-/3 stress field, 
only four 3 x 3 symmetric matrices have to be inverted. 
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Appendix: Shape function matrix N t 

Before giving out the displacement shape function matrix Nt explicitly, the following quantities 
are defined: 

Ni =~(1  + r + r/it/)(1 + ~i~), xij = xi - xj, Yi.i = Y i  - -  Yj, Zlj = Z i - -  Zj 

M i = ~ ( 1 - ~ 2 ) ( l + t / ) ( l + ( )  M 2 = ~ ( 1 - ~ ) ( 1 - q 2 ) ( l + ~ )  M a = ~ ( 1 - ~ x ) ( 1 - t / ) ( l + ( )  

M 4 = ~ ( 1  + ~)(1 - r/Z)(1 + ( )  

M ,  = ~ ( 1  - ~)(1 - n)(1 - Q )  

Mlo = ~ ( 1  - ~1(1 - r/2)(1 - ~1 

M 5 = ~(1 + ~)(1 + r/)(1 - (2) 

M 8 = ~(1 + ~)(1 - r/)(1 - (2) 

M ~  = ~(1 - r - r/)(1 -- ~1 

M 6 = ~(1  - ~)(1 q- r])(1 - ~2) 

M 9 = ~ (1  - ~2)(1 + 0)(1 - ~) 

M ,  ~ --- ~(1  + ~)(1 - C ) ( 1  - ~). 

In Ni, (~i, qi, (i) is the natural coordinates of the i-th node, N t can then be partitioned as: 

N , =  [Nl l  3 M 1 N2I 3 M 2 ... N7I 3 M 7 N8I 3 Ms]  

in which 

I 0 
M 1 = -z2 iM 1 + z14M4 - zs1M 5 

Y21M1 -- yl4M~ + ys1M5 

I 0 
M 2 - - z a z M  2 + z21M 1 -- z 6 2 M  6 

Y32M2 - y 2 1 M i  + Y62M6 

I 0 

M3 = - z 4 3 M  3 -t- z32M 2 - z73M 7 

y43M3 - Y32M2 + Yv3M7 

I 0 
M4 = -zi4M,, + z,t3M 3 - zs4M 8 

yi4M4 -- y g 3 M 3  -t- ys4M8 

0 

M 5  = z s i M 5  - z65M 9 5- z58M12 

- Y s i M 5  + Y65M9 - yssMlz 

221M 1 - 214M 4 + zs~M5 
0 

- - x 2 1 M  1 + x 1 4 M  4 - x s i M  5 

z 3 2 M  2 -- z2aM 1 + z 6 2 M  6 

0 
-- x 3 2 M  2 + x 2 1 M  1 --  x 6 2 M  6 

z43M 3 -- z 3 2 M  2 + z 7 3 M  7 

0 
- - x 4 3 M  3 q-- x 3 2 M  2 --  x 7 3 M  7 

z i 4 M  4 --  z 4 3 M  3 + zsaMs 
0 

- - x 1 4 M  4 --[- x 4 3 M  3 -- x s , M  s 

- - z s l M  5 + z 6 5 M  9 --  z58M12 

0 
Xs1M 5 -- x 6 5 M  9 + x s a M 1 2  

- Y 2 t M t  + Y 1 4 M 4 -  Y s t M s  ] 

x21Mi  - XioM4 + x s t M s  ] 

- Y a 2 M 2  + Y21M1 - Y62M6 ] 

J x32M 2 -- x 2 1 M  1 + x 6 2 M  6 

0 

- Y 4 3 M 3  + Y32M2 - Y73Mv ] 

J x 4 3 M  a --  x 3 2 M  2 + XTaM 7 

0 

-Yl4M4 + Y43M3 -- y84Ma ] 

x14M,, - x 4 3 M  3 d- xscM 8 
0 

Y s i M  5 - Y65M9 + Y58Mi2] 

- x s i M 5  + x 6 5 0 9  --  x58M12 ~ 
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0 - -z62M 6 -1- 276M10 --  z65M 9 

M6 = z62M 6 - z76Mlo -q- z65M 9 0 

k--Y62M6 q- Y76Mlo - Y65M9 x62M6 - x76Mlo  q- x65M 9 

0 - z 7 3 M  7 q- z87M11 - z76Mlo 

M7 = z73M 7 - z 8 7 M t l  -k z76Mto 0 

L-Y73M7d-Y87Mll-Y76Mlo x73MT-x87Mll-l- /76Mlo 

0 -z84M8 + zs8M12 - z87Mll 

M8 = zs4M 8 - 258M12 + z 8 7 M l l  0 

I_- Ys4M8 + yssM12 - Y87M11 x84M8 - x58Mlz  + x87MI 1 

Y62M6 - Y76Mlo q- y65M9 

- x 6 2 M  6 -P x76Mlo  - x65M 9 

0 

Y73M7-Y87M11 + y76Mao~ 

- x 7 3 M  7 -k x87Mt 1 - x76Mto | 

J 0 

Y8,,Ms - y58M12 + Y87Mll "] 
- xs4M8 + x58M12 -- x s7M11 |  | 

3 0 
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